memcontrol.c 110.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
56
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
57

58
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
59
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 61 62 63 64 65
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

66 67 68 69 70 71 72 73 74
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75

76 77 78 79 80 81 82 83
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
84
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
85
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86 87
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
90 91 92 93 94 95 96 97

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

98 99 100 101
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
102 103 104
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
105 106
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
107 108

	struct zone_reclaim_stat reclaim_stat;
109 110 111 112
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
113 114
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
115 116 117 118 119 120 121 122 123 124 125 126
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
	atomic_t current_threshold;
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};

static void mem_cgroup_threshold(struct mem_cgroup *mem);

B
Balbir Singh 已提交
163 164 165 166 167 168 169
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
170 171 172
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
173 174 175 176 177 178 179
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
180 181 182 183
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
184 185 186 187
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
188
	struct mem_cgroup_lru_info info;
189

K
KOSAKI Motohiro 已提交
190 191 192 193 194
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

195
	int	prev_priority;	/* for recording reclaim priority */
196 197

	/*
198
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
199
	 * reclaimed from.
200
	 */
K
KAMEZAWA Hiroyuki 已提交
201
	int last_scanned_child;
202 203 204 205
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
206
	atomic_t	oom_lock;
207
	atomic_t	refcnt;
208

K
KOSAKI Motohiro 已提交
209 210
	unsigned int	swappiness;

211 212 213
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

214 215 216 217 218 219 220 221 222
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
	struct mem_cgroup_threshold_ary *thresholds;

	/* thresholds for mem+swap usage. RCU-protected */
	struct mem_cgroup_threshold_ary *memsw_thresholds;

223 224 225 226 227 228
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;

229
	/*
230
	 * percpu counter.
231
	 */
232
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
233 234
};

235 236 237 238 239 240
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
241
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
242 243 244
	NR_MOVE_TYPE,
};

245 246 247 248 249
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
250
	unsigned long moved_charge;
251
	unsigned long moved_swap;
252 253 254 255 256
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
257

258 259 260 261 262 263 264
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

265 266 267
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
268
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
269
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
270
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
271
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
272 273 274
	NR_CHARGE_TYPE,
};

275 276 277 278
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
279 280
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
281

282 283 284 285 286 287 288
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

289 290 291 292 293 294 295
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
296 297
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
298

299 300
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
301
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
302
static void drain_all_stock_async(void);
303

304 305 306 307 308 309
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

310 311 312 313 314
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
344
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
345
				struct mem_cgroup_per_zone *mz,
346 347
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
348 349 350 351 352 353 354 355
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

356 357 358
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
375 376 377 378 379 380 381 382 383 384 385 386 387
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

388 389 390 391 392 393
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
394
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
395 396 397 398 399 400
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
401
	unsigned long long excess;
402 403
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
404 405
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
406 407 408
	mctz = soft_limit_tree_from_page(page);

	/*
409 410
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
411
	 */
412 413
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
414
		excess = res_counter_soft_limit_excess(&mem->res);
415 416 417 418
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
419
		if (excess || mz->on_tree) {
420 421 422 423 424
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
425 426
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
427
			 */
428
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
429 430
			spin_unlock(&mctz->lock);
		}
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

449 450 451 452 453 454 455 456 457
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
458
	struct mem_cgroup_per_zone *mz;
459 460

retry:
461
	mz = NULL;
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

511 512 513 514
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
515
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
516 517
}

518 519 520
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
521
{
522
	int val = (charge) ? 1 : -1;
523

524 525
	preempt_disable();

526
	if (PageCgroupCache(pc))
527
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
528
	else
529
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
530 531

	if (charge)
532
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
533
	else
534
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
535
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
536

537
	preempt_enable();
538 539
}

K
KAMEZAWA Hiroyuki 已提交
540
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
541
					enum lru_list idx)
542 543 544 545 546 547 548 549 550 551 552
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

578
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
579 580 581 582 583 584
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

585
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
586
{
587 588 589 590 591 592 593 594
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

595 596 597 598
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

599 600 601
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
602 603 604

	if (!mm)
		return NULL;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

655 656 657 658 659
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
673

K
KAMEZAWA Hiroyuki 已提交
674 675 676 677
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
678

679
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
680 681 682
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
683
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
684
		return;
685
	VM_BUG_ON(!pc->mem_cgroup);
686 687 688 689
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
690
	mz = page_cgroup_zoneinfo(pc);
691
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
692 693 694
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
695 696
	list_del_init(&pc->lru);
	return;
697 698
}

K
KAMEZAWA Hiroyuki 已提交
699
void mem_cgroup_del_lru(struct page *page)
700
{
K
KAMEZAWA Hiroyuki 已提交
701 702
	mem_cgroup_del_lru_list(page, page_lru(page));
}
703

K
KAMEZAWA Hiroyuki 已提交
704 705 706 707
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
708

709
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
710
		return;
711

K
KAMEZAWA Hiroyuki 已提交
712
	pc = lookup_page_cgroup(page);
713 714 715 716
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
717
	smp_rmb();
718 719
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
720 721 722
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
723 724
}

K
KAMEZAWA Hiroyuki 已提交
725
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
726
{
K
KAMEZAWA Hiroyuki 已提交
727 728
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
729

730
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
731 732
		return;
	pc = lookup_page_cgroup(page);
733
	VM_BUG_ON(PageCgroupAcctLRU(pc));
734 735 736 737
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
738 739
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
740
		return;
741

K
KAMEZAWA Hiroyuki 已提交
742
	mz = page_cgroup_zoneinfo(pc);
743
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
744 745 746
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
747 748
	list_add(&pc->lru, &mz->lists[lru]);
}
749

K
KAMEZAWA Hiroyuki 已提交
750
/*
751 752 753 754 755
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
756
 */
757
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
758
{
759 760 761 762 763 764 765 766 767 768 769 770
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
771 772
}

773 774 775 776 777 778 779 780
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
781
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
782 783 784 785 786
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
787 788 789
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
790
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
791 792 793
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
794 795
}

796 797 798
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
799
	struct mem_cgroup *curr = NULL;
800 801

	task_lock(task);
802 803 804
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
805
	task_unlock(task);
806 807
	if (!curr)
		return 0;
808 809 810 811 812 813 814
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
815 816 817 818
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
819 820 821
	return ret;
}

822 823 824 825 826
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
827 828 829 830 831 832 833
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
834 835 836 837
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
838
	spin_lock(&mem->reclaim_param_lock);
839 840
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
841
	spin_unlock(&mem->reclaim_param_lock);
842 843 844 845
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
846
	spin_lock(&mem->reclaim_param_lock);
847
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
848
	spin_unlock(&mem->reclaim_param_lock);
849 850
}

851
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
852 853 854
{
	unsigned long active;
	unsigned long inactive;
855 856
	unsigned long gb;
	unsigned long inactive_ratio;
857

K
KAMEZAWA Hiroyuki 已提交
858 859
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
860

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
888 889 890 891 892
		return 1;

	return 0;
}

893 894 895 896 897 898 899 900 901 902 903
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

904 905 906 907 908 909 910 911 912 913 914
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
935 936 937 938 939 940 941 942
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
943 944 945 946 947 948 949
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

950 951 952 953 954
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
955
					int active, int file)
956 957 958 959 960 961
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
962
	struct page_cgroup *pc, *tmp;
963 964 965
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
966
	int lru = LRU_FILE * file + active;
967
	int ret;
968

969
	BUG_ON(!mem_cont);
970
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
971
	src = &mz->lists[lru];
972

973 974
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
975
		if (scan >= nr_to_scan)
976
			break;
K
KAMEZAWA Hiroyuki 已提交
977 978

		page = pc->page;
979 980
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
981
		if (unlikely(!PageLRU(page)))
982 983
			continue;

H
Hugh Dickins 已提交
984
		scan++;
985 986 987
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
988
			list_move(&page->lru, dst);
989
			mem_cgroup_del_lru(page);
990
			nr_taken++;
991 992 993 994 995 996 997
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
998 999 1000 1001 1002 1003 1004
		}
	}

	*scanned = scan;
	return nr_taken;
}

1005 1006 1007
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1036 1037 1038 1039 1040 1041
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1042 1043

/**
1044
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1063
	if (!memcg || !p)
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1121
/*
K
KAMEZAWA Hiroyuki 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1164 1165
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1166 1167 1168
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1169 1170
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1171 1172
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1173
						struct zone *zone,
1174 1175
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1176
{
K
KAMEZAWA Hiroyuki 已提交
1177 1178 1179
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1180 1181
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1182 1183
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1184

1185 1186 1187 1188
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1189
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1190
		victim = mem_cgroup_select_victim(root_mem);
1191
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1192
			loop++;
1193 1194
			if (loop >= 1)
				drain_all_stock_async();
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1218
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1219 1220
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1221 1222
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1223
		/* we use swappiness of local cgroup */
1224 1225 1226 1227 1228 1229 1230
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1231
		css_put(&victim->css);
1232 1233 1234 1235 1236 1237 1238
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1239
		total += ret;
1240 1241 1242 1243
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1244
			return 1 + total;
1245
	}
K
KAMEZAWA Hiroyuki 已提交
1246
	return total;
1247 1248
}

K
KAMEZAWA Hiroyuki 已提交
1249
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1250
{
K
KAMEZAWA Hiroyuki 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1269

K
KAMEZAWA Hiroyuki 已提交
1270 1271 1272 1273 1274
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1275
}
1276

K
KAMEZAWA Hiroyuki 已提交
1277
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1278
{
K
KAMEZAWA Hiroyuki 已提交
1279 1280 1281 1282 1283 1284
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1285 1286 1287
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1300
{
K
KAMEZAWA Hiroyuki 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	DEFINE_WAIT(wait);
	bool locked;

	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
	if (!locked)
		prepare_to_wait(&memcg_oom_waitq, &wait, TASK_KILLABLE);
	mutex_unlock(&memcg_oom_mutex);

	if (locked)
		mem_cgroup_out_of_memory(mem, mask);
	else {
		schedule();
		finish_wait(&memcg_oom_waitq, &wait);
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
	/*
	 * Here, we use global waitq .....more fine grained waitq ?
	 * Assume following hierarchy.
	 * A/
	 *   01
	 *   02
	 * assume OOM happens both in A and 01 at the same time. Tthey are
	 * mutually exclusive by lock. (kill in 01 helps A.)
	 * When we use per memcg waitq, we have to wake up waiters on A and 02
	 * in addtion to waiters on 01. We use global waitq for avoiding mess.
	 * It will not be a big problem.
	 * (And a task may be moved to other groups while it's waiting for OOM.)
	 */
	wake_up_all(&memcg_oom_waitq);
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1345 1346
}

1347 1348 1349 1350
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1351
void mem_cgroup_update_file_mapped(struct page *page, int val)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1362
	if (!mem || !PageCgroupUsed(pc))
1363 1364 1365
		goto done;

	/*
1366
	 * Preemption is already disabled. We can use __this_cpu_xxx
1367
	 */
1368 1369 1370 1371 1372 1373 1374
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		ClearPageCgroupFileMapped(pc);
	}
1375 1376 1377 1378

done:
	unlock_page_cgroup(pc);
}
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1441
 * This will be consumed by consume_stock() function, later.
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1507 1508 1509
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1510
 */
1511
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1512
			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1513
{
1514
	struct mem_cgroup *mem, *mem_over_limit;
1515
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1516
	struct res_counter *fail_res;
1517
	int csize = CHARGE_SIZE;
1518

K
KAMEZAWA Hiroyuki 已提交
1519 1520 1521 1522 1523 1524 1525 1526
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1527

1528
	/*
1529 1530
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1531 1532 1533
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1534 1535 1536
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1537
		*memcg = mem;
1538
	} else {
1539
		css_get(&mem->css);
1540
	}
1541 1542 1543
	if (unlikely(!mem))
		return 0;

1544
	VM_BUG_ON(css_is_removed(&mem->css));
1545 1546
	if (mem_cgroup_is_root(mem))
		goto done;
1547

1548
	while (1) {
1549
		int ret = 0;
1550
		unsigned long flags = 0;
1551

1552
		if (consume_stock(mem))
1553
			goto done;
1554 1555

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1556 1557 1558
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1559
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1560 1561 1562
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1563
			res_counter_uncharge(&mem->res, csize);
1564
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1565 1566 1567 1568 1569 1570 1571
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1572 1573 1574 1575 1576
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1577
		if (!(gfp_mask & __GFP_WAIT))
1578
			goto nomem;
1579

1580 1581
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1582 1583
		if (ret)
			continue;
1584 1585

		/*
1586 1587 1588 1589 1590
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1591
		 *
1592
		 */
1593 1594
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1595

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1636
		if (!nr_retries--) {
K
KAMEZAWA Hiroyuki 已提交
1637 1638 1639 1640 1641
			if (!oom)
				goto nomem;
			if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
				nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
				continue;
1642
			}
K
KAMEZAWA Hiroyuki 已提交
1643 1644 1645
			/* When we reach here, current task is dying .*/
			css_put(&mem->css);
			goto bypass;
1646
		}
1647
	}
1648 1649
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
1650
done:
1651 1652 1653 1654
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1655 1656 1657
bypass:
	*memcg = NULL;
	return 0;
1658
}
1659

1660 1661 1662 1663 1664
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1665 1666
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1667 1668
{
	if (!mem_cgroup_is_root(mem)) {
1669
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1670
		if (do_swap_account)
1671 1672 1673 1674
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1675
	}
1676 1677 1678 1679 1680 1681
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1682 1683
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1703
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1704
{
1705
	struct mem_cgroup *mem = NULL;
1706
	struct page_cgroup *pc;
1707
	unsigned short id;
1708 1709
	swp_entry_t ent;

1710 1711 1712
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1713
	lock_page_cgroup(pc);
1714
	if (PageCgroupUsed(pc)) {
1715
		mem = pc->mem_cgroup;
1716 1717
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1718
	} else if (PageSwapCache(page)) {
1719
		ent.val = page_private(page);
1720 1721 1722 1723 1724 1725
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1726
	}
1727
	unlock_page_cgroup(pc);
1728 1729 1730
	return mem;
}

1731
/*
1732
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1743 1744 1745 1746

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1747
		mem_cgroup_cancel_charge(mem);
1748
		return;
1749
	}
1750

1751
	pc->mem_cgroup = mem;
1752 1753 1754 1755 1756 1757 1758
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1759
	smp_wmb();
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1773

K
KAMEZAWA Hiroyuki 已提交
1774
	mem_cgroup_charge_statistics(mem, pc, true);
1775 1776

	unlock_page_cgroup(pc);
1777 1778 1779 1780 1781
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1782
	memcg_check_events(mem, pc->page);
1783
}
1784

1785
/**
1786
 * __mem_cgroup_move_account - move account of the page
1787 1788 1789
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1790
 * @uncharge: whether we should call uncharge and css_put against @from.
1791 1792
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1793
 * - page is not on LRU (isolate_page() is useful.)
1794
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1795
 *
1796 1797 1798 1799
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1800 1801
 */

1802
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1803
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1804 1805
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1806
	VM_BUG_ON(PageLRU(pc->page));
1807 1808 1809
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1810

1811
	if (PageCgroupFileMapped(pc)) {
1812 1813 1814 1815 1816
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1817
	}
1818 1819 1820 1821
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1822

1823
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1824 1825
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1826 1827 1828
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1829 1830 1831
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1832
	 */
1833 1834 1835 1836 1837 1838 1839
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1840
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1841 1842 1843 1844
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1845
		__mem_cgroup_move_account(pc, from, to, uncharge);
1846 1847 1848
		ret = 0;
	}
	unlock_page_cgroup(pc);
1849 1850 1851 1852 1853
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1865
	struct page *page = pc->page;
1866 1867 1868 1869 1870 1871 1872 1873 1874
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1875 1876 1877 1878 1879
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1880

1881
	parent = mem_cgroup_from_cont(pcg);
1882
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1883
	if (ret || !parent)
1884
		goto put_back;
1885

1886 1887 1888
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1889
put_back:
K
KAMEZAWA Hiroyuki 已提交
1890
	putback_lru_page(page);
1891
put:
1892
	put_page(page);
1893
out:
1894 1895 1896
	return ret;
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1918
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1919
	if (ret || !mem)
1920 1921 1922
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1923 1924 1925
	return 0;
}

1926 1927
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1928
{
1929
	if (mem_cgroup_disabled())
1930
		return 0;
1931 1932
	if (PageCompound(page))
		return 0;
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1944
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1945
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1946 1947
}

D
Daisuke Nishimura 已提交
1948 1949 1950 1951
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1952 1953
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1954
{
1955 1956 1957
	struct mem_cgroup *mem = NULL;
	int ret;

1958
	if (mem_cgroup_disabled())
1959
		return 0;
1960 1961
	if (PageCompound(page))
		return 0;
1962 1963 1964 1965 1966 1967 1968 1969
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1970 1971
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1972 1973 1974 1975
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1976 1977 1978 1979 1980 1981 1982

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1983 1984
			return 0;
		}
1985
		unlock_page_cgroup(pc);
1986 1987
	}

1988
	if (unlikely(!mm && !mem))
1989
		mm = &init_mm;
1990

1991 1992
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1993
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1994

D
Daisuke Nishimura 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2004 2005

	return ret;
2006 2007
}

2008 2009 2010
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2011
 * struct page_cgroup is acquired. This refcnt will be consumed by
2012 2013
 * "commit()" or removed by "cancel()"
 */
2014 2015 2016 2017 2018
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2019
	int ret;
2020

2021
	if (mem_cgroup_disabled())
2022 2023 2024 2025 2026 2027
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2028 2029 2030
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2031 2032
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2033
		goto charge_cur_mm;
2034
	mem = try_get_mem_cgroup_from_page(page);
2035 2036
	if (!mem)
		goto charge_cur_mm;
2037
	*ptr = mem;
2038
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2039 2040 2041
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2042 2043 2044
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2045
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2046 2047
}

D
Daisuke Nishimura 已提交
2048 2049 2050
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2051 2052 2053
{
	struct page_cgroup *pc;

2054
	if (mem_cgroup_disabled())
2055 2056 2057
		return;
	if (!ptr)
		return;
2058
	cgroup_exclude_rmdir(&ptr->css);
2059
	pc = lookup_page_cgroup(page);
2060
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2061
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2062
	mem_cgroup_lru_add_after_commit_swapcache(page);
2063 2064 2065
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2066 2067 2068
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2069
	 */
2070
	if (do_swap_account && PageSwapCache(page)) {
2071
		swp_entry_t ent = {.val = page_private(page)};
2072
		unsigned short id;
2073
		struct mem_cgroup *memcg;
2074 2075 2076 2077

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2078
		if (memcg) {
2079 2080 2081 2082
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2083
			if (!mem_cgroup_is_root(memcg))
2084
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2085
			mem_cgroup_swap_statistics(memcg, false);
2086 2087
			mem_cgroup_put(memcg);
		}
2088
		rcu_read_unlock();
2089
	}
2090 2091 2092 2093 2094 2095
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2096 2097
}

D
Daisuke Nishimura 已提交
2098 2099 2100 2101 2102 2103
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2104 2105
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2106
	if (mem_cgroup_disabled())
2107 2108 2109
		return;
	if (!mem)
		return;
2110
	mem_cgroup_cancel_charge(mem);
2111 2112
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */
	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	return;
}
2157

2158
/*
2159
 * uncharge if !page_mapped(page)
2160
 */
2161
static struct mem_cgroup *
2162
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2163
{
H
Hugh Dickins 已提交
2164
	struct page_cgroup *pc;
2165
	struct mem_cgroup *mem = NULL;
2166
	struct mem_cgroup_per_zone *mz;
2167

2168
	if (mem_cgroup_disabled())
2169
		return NULL;
2170

K
KAMEZAWA Hiroyuki 已提交
2171
	if (PageSwapCache(page))
2172
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2173

2174
	/*
2175
	 * Check if our page_cgroup is valid
2176
	 */
2177 2178
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2179
		return NULL;
2180

2181
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2182

2183 2184
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2185 2186 2187 2188 2189
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2190
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2203
	}
K
KAMEZAWA Hiroyuki 已提交
2204

2205 2206
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2207 2208
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2209
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2210

2211
	ClearPageCgroupUsed(pc);
2212 2213 2214 2215 2216 2217
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2218

2219
	mz = page_cgroup_zoneinfo(pc);
2220
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2221

2222
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2223 2224 2225
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2226

2227
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2228 2229 2230

unlock_out:
	unlock_page_cgroup(pc);
2231
	return NULL;
2232 2233
}

2234 2235
void mem_cgroup_uncharge_page(struct page *page)
{
2236 2237 2238 2239 2240
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2241 2242 2243 2244 2245 2246
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2247
	VM_BUG_ON(page->mapping);
2248 2249 2250
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2295
#ifdef CONFIG_SWAP
2296
/*
2297
 * called after __delete_from_swap_cache() and drop "page" account.
2298 2299
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2300 2301
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2302 2303
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2304 2305 2306 2307 2308 2309
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2310 2311

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2312
	if (do_swap_account && swapout && memcg) {
2313
		swap_cgroup_record(ent, css_id(&memcg->css));
2314 2315
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2316
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2317
		css_put(&memcg->css);
2318
}
2319
#endif
2320 2321 2322 2323 2324 2325 2326

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2327
{
2328
	struct mem_cgroup *memcg;
2329
	unsigned short id;
2330 2331 2332 2333

	if (!do_swap_account)
		return;

2334 2335 2336
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2337
	if (memcg) {
2338 2339 2340 2341
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2342
		if (!mem_cgroup_is_root(memcg))
2343
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2344
		mem_cgroup_swap_statistics(memcg, false);
2345 2346
		mem_cgroup_put(memcg);
	}
2347
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2348
}
2349 2350 2351 2352 2353 2354

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2355
 * @need_fixup: whether we should fixup res_counters and refcounts.
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2366
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2367 2368 2369 2370 2371 2372 2373 2374
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2375
		mem_cgroup_swap_statistics(to, true);
2376
		/*
2377 2378 2379 2380 2381 2382
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2383 2384
		 */
		mem_cgroup_get(to);
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2397 2398 2399 2400 2401 2402
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2403
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2404 2405 2406
{
	return -EINVAL;
}
2407
#endif
K
KAMEZAWA Hiroyuki 已提交
2408

2409
/*
2410 2411
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2412
 */
2413
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2414 2415
{
	struct page_cgroup *pc;
2416 2417
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2418

2419
	if (mem_cgroup_disabled())
2420 2421
		return 0;

2422 2423 2424
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2425 2426 2427
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2428
	unlock_page_cgroup(pc);
2429

A
Andrea Arcangeli 已提交
2430
	*ptr = mem;
2431
	if (mem) {
A
Andrea Arcangeli 已提交
2432
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2433 2434 2435
		css_put(&mem->css);
	}
	return ret;
2436
}
2437

2438
/* remove redundant charge if migration failed*/
2439 2440
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2441
{
2442 2443 2444 2445 2446 2447
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2448
	cgroup_exclude_rmdir(&mem->css);
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2466
	if (unused)
2467 2468 2469
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2470
	/*
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2485
	 */
2486 2487
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2488 2489 2490 2491 2492 2493
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2494
}
2495

2496
/*
2497 2498 2499 2500 2501 2502
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2503
 */
2504
int mem_cgroup_shmem_charge_fallback(struct page *page,
2505 2506
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2507
{
2508
	struct mem_cgroup *mem = NULL;
2509
	int ret;
2510

2511
	if (mem_cgroup_disabled())
2512
		return 0;
2513

2514 2515 2516
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2517

2518
	return ret;
2519 2520
}

2521 2522
static DEFINE_MUTEX(set_limit_mutex);

2523
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2524
				unsigned long long val)
2525
{
2526
	int retry_count;
2527
	u64 memswlimit;
2528
	int ret = 0;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2540

2541
	while (retry_count) {
2542 2543 2544 2545
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2556 2557
			break;
		}
2558
		ret = res_counter_set_limit(&memcg->res, val);
2559 2560 2561 2562 2563 2564
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2565 2566 2567 2568 2569
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2570
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2571
						MEM_CGROUP_RECLAIM_SHRINK);
2572 2573 2574 2575 2576 2577
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2578
	}
2579

2580 2581 2582
	return ret;
}

L
Li Zefan 已提交
2583 2584
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2585
{
2586
	int retry_count;
2587
	u64 memlimit, oldusage, curusage;
2588 2589
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2590

2591 2592 2593
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2612 2613 2614 2615 2616 2617
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2618 2619 2620 2621 2622
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2623
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2624 2625
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2626
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2627
		/* Usage is reduced ? */
2628
		if (curusage >= oldusage)
2629
			retry_count--;
2630 2631
		else
			oldusage = curusage;
2632 2633 2634 2635
	}
	return ret;
}

2636 2637 2638 2639 2640 2641 2642 2643 2644
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2645
	unsigned long long excess;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2698
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2699 2700 2701 2702 2703 2704 2705 2706
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2707 2708
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2727 2728 2729 2730
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2731
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2732
				int node, int zid, enum lru_list lru)
2733
{
K
KAMEZAWA Hiroyuki 已提交
2734 2735
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2736
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2737
	unsigned long flags, loop;
2738
	struct list_head *list;
2739
	int ret = 0;
2740

K
KAMEZAWA Hiroyuki 已提交
2741 2742
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2743
	list = &mz->lists[lru];
2744

2745 2746 2747 2748 2749 2750
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2751
		spin_lock_irqsave(&zone->lru_lock, flags);
2752
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2753
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2754
			break;
2755 2756 2757 2758
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2759
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2760
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2761 2762
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2763
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2764

K
KAMEZAWA Hiroyuki 已提交
2765
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2766
		if (ret == -ENOMEM)
2767
			break;
2768 2769 2770 2771 2772 2773 2774

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2775
	}
K
KAMEZAWA Hiroyuki 已提交
2776

2777 2778 2779
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2780 2781 2782 2783 2784 2785
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2786
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2787
{
2788 2789 2790
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2791
	struct cgroup *cgrp = mem->css.cgroup;
2792

2793
	css_get(&mem->css);
2794 2795

	shrink = 0;
2796 2797 2798
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2799
move_account:
2800
	do {
2801
		ret = -EBUSY;
2802 2803 2804 2805
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2806
			goto out;
2807 2808
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2809
		drain_all_stock_sync();
2810
		ret = 0;
2811
		for_each_node_state(node, N_HIGH_MEMORY) {
2812
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2813
				enum lru_list l;
2814 2815
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2816
							node, zid, l);
2817 2818 2819
					if (ret)
						break;
				}
2820
			}
2821 2822 2823 2824 2825 2826
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2827
		cond_resched();
2828 2829
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2830 2831 2832
out:
	css_put(&mem->css);
	return ret;
2833 2834

try_to_free:
2835 2836
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2837 2838 2839
		ret = -EBUSY;
		goto out;
	}
2840 2841
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2842 2843 2844 2845
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2846 2847 2848 2849 2850

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2851 2852
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2853
		if (!progress) {
2854
			nr_retries--;
2855
			/* maybe some writeback is necessary */
2856
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2857
		}
2858 2859

	}
K
KAMEZAWA Hiroyuki 已提交
2860
	lru_add_drain();
2861
	/* try move_account...there may be some *locked* pages. */
2862
	goto move_account;
2863 2864
}

2865 2866 2867 2868 2869 2870
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2889
	 * If parent's use_hierarchy is set, we can't make any modifications
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2909 2910 2911 2912 2913 2914 2915 2916 2917
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
2918
	d->val += mem_cgroup_read_stat(mem, d->idx);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

2958
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2959
{
2960
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2961
	u64 val;
2962 2963 2964 2965 2966 2967
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2968 2969 2970
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
2971
			val = res_counter_read_u64(&mem->res, name);
2972 2973
		break;
	case _MEMSWAP:
2974 2975 2976
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
2977
			val = res_counter_read_u64(&mem->memsw, name);
2978 2979 2980 2981 2982 2983
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2984
}
2985 2986 2987 2988
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2989 2990
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2991
{
2992
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2993
	int type, name;
2994 2995 2996
	unsigned long long val;
	int ret;

2997 2998 2999
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3000
	case RES_LIMIT:
3001 3002 3003 3004
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3005 3006
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3007 3008 3009
		if (ret)
			break;
		if (type == _MEM)
3010
			ret = mem_cgroup_resize_limit(memcg, val);
3011 3012
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3013
		break;
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3028 3029 3030 3031 3032
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3033 3034
}

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3063
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3064 3065
{
	struct mem_cgroup *mem;
3066
	int type, name;
3067 3068

	mem = mem_cgroup_from_cont(cont);
3069 3070 3071
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3072
	case RES_MAX_USAGE:
3073 3074 3075 3076
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3077 3078
		break;
	case RES_FAILCNT:
3079 3080 3081 3082
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3083 3084
		break;
	}
3085

3086
	return 0;
3087 3088
}

3089 3090 3091 3092 3093 3094
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3095
#ifdef CONFIG_MMU
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3114 3115 3116 3117 3118 3119 3120
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3121

K
KAMEZAWA Hiroyuki 已提交
3122 3123 3124 3125 3126

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3127
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3128 3129
	MCS_PGPGIN,
	MCS_PGPGOUT,
3130
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3141 3142
};

K
KAMEZAWA Hiroyuki 已提交
3143 3144 3145 3146 3147 3148
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3149
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3150 3151
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3152
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3167
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3168
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3169
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3170
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3171
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3172
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3173
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3174
	s->stat[MCS_PGPGIN] += val;
3175
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3176
	s->stat[MCS_PGPGOUT] += val;
3177
	if (do_swap_account) {
3178
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3179 3180
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3202 3203
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3204 3205
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3206
	struct mcs_total_stat mystat;
3207 3208
	int i;

K
KAMEZAWA Hiroyuki 已提交
3209 3210
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3211

3212 3213 3214
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3215
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3216
	}
L
Lee Schermerhorn 已提交
3217

K
KAMEZAWA Hiroyuki 已提交
3218
	/* Hierarchical information */
3219 3220 3221 3222 3223 3224 3225
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3226

K
KAMEZAWA Hiroyuki 已提交
3227 3228
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3229 3230 3231
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3232
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3233
	}
K
KAMEZAWA Hiroyuki 已提交
3234

K
KOSAKI Motohiro 已提交
3235
#ifdef CONFIG_DEBUG_VM
3236
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3264 3265 3266
	return 0;
}

K
KOSAKI Motohiro 已提交
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3279

K
KOSAKI Motohiro 已提交
3280 3281 3282 3283 3284 3285 3286
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3287 3288 3289

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3290 3291
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3292 3293
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3294
		return -EINVAL;
3295
	}
K
KOSAKI Motohiro 已提交
3296 3297 3298 3299 3300

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3301 3302
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3303 3304 3305
	return 0;
}

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
		t = rcu_dereference(memcg->thresholds);
	else
		t = rcu_dereference(memcg->memsw_thresholds);

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
	i = atomic_read(&t->current_threshold);

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
	atomic_set(&t->current_threshold, i - 1);
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

static int mem_cgroup_register_event(struct cgroup *cgrp, struct cftype *cft,
		struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
	int size;
	int i, ret;

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
	if (thresholds)
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	if (thresholds)
		size = thresholds->size + 1;
	else
		size = 1;

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds (if any) to new array */
	if (thresholds)
		memcpy(thresholds_new->entries, thresholds->entries,
				thresholds->size *
				sizeof(struct mem_cgroup_threshold));
	/* Add new threshold */
	thresholds_new->entries[size - 1].eventfd = eventfd;
	thresholds_new->entries[size - 1].threshold = threshold;

	/* Sort thresholds. Registering of new threshold isn't time-critical */
	sort(thresholds_new->entries, size,
			sizeof(struct mem_cgroup_threshold),
			compare_thresholds, NULL);

	/* Find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0; i < size; i++) {
		if (thresholds_new->entries[i].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
	}

	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

static int mem_cgroup_unregister_event(struct cgroup *cgrp, struct cftype *cft,
		struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
	int size = 0;
	int i, j, ret;

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
		thresholds = memcg->thresholds;
	else if (type == _MEMSWAP)
		thresholds = memcg->memsw_thresholds;
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
	for (i = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd != eventfd)
			size++;
	}

	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
		thresholds_new = NULL;
		goto assign;
	}

	/* Allocate memory for new array of thresholds */
	thresholds_new = kmalloc(sizeof(*thresholds_new) +
			size * sizeof(struct mem_cgroup_threshold),
			GFP_KERNEL);
	if (!thresholds_new) {
		ret = -ENOMEM;
		goto unlock;
	}
	thresholds_new->size = size;

	/* Copy thresholds and find current threshold */
	atomic_set(&thresholds_new->current_threshold, -1);
	for (i = 0, j = 0; i < thresholds->size; i++) {
		if (thresholds->entries[i].eventfd == eventfd)
			continue;

		thresholds_new->entries[j] = thresholds->entries[i];
		if (thresholds_new->entries[j].threshold < usage) {
			/*
			 * thresholds_new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			atomic_inc(&thresholds_new->current_threshold);
		}
		j++;
	}

assign:
	if (type == _MEM)
		rcu_assign_pointer(memcg->thresholds, thresholds_new);
	else
		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);

	/* To be sure that nobody uses thresholds before freeing it */
	synchronize_rcu();

	kfree(thresholds);
unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}
3541

B
Balbir Singh 已提交
3542 3543
static struct cftype mem_cgroup_files[] = {
	{
3544
		.name = "usage_in_bytes",
3545
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3546
		.read_u64 = mem_cgroup_read,
3547 3548
		.register_event = mem_cgroup_register_event,
		.unregister_event = mem_cgroup_unregister_event,
B
Balbir Singh 已提交
3549
	},
3550 3551
	{
		.name = "max_usage_in_bytes",
3552
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3553
		.trigger = mem_cgroup_reset,
3554 3555
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3556
	{
3557
		.name = "limit_in_bytes",
3558
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3559
		.write_string = mem_cgroup_write,
3560
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3561
	},
3562 3563 3564 3565 3566 3567
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3568 3569
	{
		.name = "failcnt",
3570
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3571
		.trigger = mem_cgroup_reset,
3572
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3573
	},
3574 3575
	{
		.name = "stat",
3576
		.read_map = mem_control_stat_show,
3577
	},
3578 3579 3580 3581
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3582 3583 3584 3585 3586
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3587 3588 3589 3590 3591
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3592 3593 3594 3595 3596
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
B
Balbir Singh 已提交
3597 3598
};

3599 3600 3601 3602 3603 3604
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
3605 3606
		.register_event = mem_cgroup_register_event,
		.unregister_event = mem_cgroup_unregister_event,
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3642 3643 3644
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3645
	struct mem_cgroup_per_zone *mz;
3646
	enum lru_list l;
3647
	int zone, tmp = node;
3648 3649 3650 3651 3652 3653 3654 3655
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3656 3657 3658
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3659 3660
	if (!pn)
		return 1;
3661

3662 3663
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3664 3665 3666

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3667 3668
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3669
		mz->usage_in_excess = 0;
3670 3671
		mz->on_tree = false;
		mz->mem = mem;
3672
	}
3673 3674 3675
	return 0;
}

3676 3677 3678 3679 3680
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3681 3682 3683
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3684
	int size = sizeof(struct mem_cgroup);
3685

3686
	/* Can be very big if MAX_NUMNODES is very big */
3687 3688
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3689
	else
3690
		mem = vmalloc(size);
3691

3692 3693 3694 3695
	if (!mem)
		return NULL;

	memset(mem, 0, size);
3696 3697 3698 3699 3700 3701 3702 3703
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
3704 3705 3706
	return mem;
}

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3718
static void __mem_cgroup_free(struct mem_cgroup *mem)
3719
{
K
KAMEZAWA Hiroyuki 已提交
3720 3721
	int node;

3722
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3723 3724
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3725 3726 3727
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3728 3729
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3730 3731 3732 3733 3734
		kfree(mem);
	else
		vfree(mem);
}

3735 3736 3737 3738 3739
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

3740
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3741
{
3742
	if (atomic_sub_and_test(count, &mem->refcnt)) {
3743
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3744
		__mem_cgroup_free(mem);
3745 3746 3747
		if (parent)
			mem_cgroup_put(parent);
	}
3748 3749
}

3750 3751 3752 3753 3754
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

3755 3756 3757 3758 3759 3760 3761 3762 3763
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3764

3765 3766 3767
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3768
	if (!mem_cgroup_disabled() && really_do_swap_account)
3769 3770 3771 3772 3773 3774 3775 3776
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3802
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3803 3804
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3805
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3806
	long error = -ENOMEM;
3807
	int node;
B
Balbir Singh 已提交
3808

3809 3810
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3811
		return ERR_PTR(error);
3812

3813 3814 3815
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3816

3817
	/* root ? */
3818
	if (cont->parent == NULL) {
3819
		int cpu;
3820
		enable_swap_cgroup();
3821
		parent = NULL;
3822
		root_mem_cgroup = mem;
3823 3824
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
3825 3826 3827 3828 3829 3830
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3831
	} else {
3832
		parent = mem_cgroup_from_cont(cont->parent);
3833 3834
		mem->use_hierarchy = parent->use_hierarchy;
	}
3835

3836 3837 3838
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3839 3840 3841 3842 3843 3844 3845
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3846 3847 3848 3849
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3850
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3851
	spin_lock_init(&mem->reclaim_param_lock);
3852

K
KOSAKI Motohiro 已提交
3853 3854
	if (parent)
		mem->swappiness = get_swappiness(parent);
3855
	atomic_set(&mem->refcnt, 1);
3856
	mem->move_charge_at_immigrate = 0;
3857
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
3858
	return &mem->css;
3859
free_out:
3860
	__mem_cgroup_free(mem);
3861
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3862
	return ERR_PTR(error);
B
Balbir Singh 已提交
3863 3864
}

3865
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3866 3867 3868
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3869 3870

	return mem_cgroup_force_empty(mem, false);
3871 3872
}

B
Balbir Singh 已提交
3873 3874 3875
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3876 3877 3878
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3879 3880 3881 3882 3883
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3884 3885 3886 3887 3888 3889 3890 3891
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3892 3893
}

3894
#ifdef CONFIG_MMU
3895
/* Handlers for move charge at task migration. */
3896 3897
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
3898
{
3899 3900
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
3901 3902
	struct mem_cgroup *mem = mc.to;

3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
3941
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
3942 3943 3944 3945 3946
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
3947 3948 3949 3950 3951 3952 3953 3954
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
3955
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
3956 3957 3958 3959 3960 3961
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
3962 3963 3964
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
3965 3966 3967 3968 3969
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
3970
	swp_entry_t	ent;
3971 3972 3973 3974 3975
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
3976
	MC_TARGET_SWAP,
3977 3978 3979 3980 3981
};

static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
3982
	struct page *page = NULL;
3983 3984
	struct page_cgroup *pc;
	int ret = 0;
3985 3986
	swp_entry_t ent = { .val = 0 };
	int usage_count = 0;
3987 3988 3989
	bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	if (!pte_present(ptent)) {
		/* TODO: handle swap of shmes/tmpfs */
		if (pte_none(ptent) || pte_file(ptent))
			return 0;
		else if (is_swap_pte(ptent)) {
			ent = pte_to_swp_entry(ptent);
			if (!move_anon || non_swap_entry(ent))
				return 0;
			usage_count = mem_cgroup_count_swap_user(ent, &page);
		}
	} else {
		page = vm_normal_page(vma, addr, ptent);
		if (!page || !page_mapped(page))
			return 0;
		/*
		 * TODO: We don't move charges of file(including shmem/tmpfs)
		 * pages for now.
		 */
		if (!move_anon || !PageAnon(page))
			return 0;
		if (!get_page_unless_zero(page))
			return 0;
		usage_count = page_mapcount(page);
	}
	if (usage_count > 1) {
		/*
		 * TODO: We don't move charges of shared(used by multiple
		 * processes) pages for now.
		 */
		if (page)
			put_page(page);
4021
		return 0;
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
	}
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
	/* throught */
4039 4040 4041 4042 4043
	if (ent.val && do_swap_account && !ret &&
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4063 4064 4065
	return 0;
}

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4096
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4097 4098 4099 4100 4101
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4113
	}
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4137 4138
	mc.from = NULL;
	mc.to = NULL;
4139 4140
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4141 4142
}

4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4161 4162 4163 4164
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4165
			VM_BUG_ON(mc.moved_charge);
4166
			VM_BUG_ON(mc.moved_swap);
4167
			VM_BUG_ON(mc.moving_task);
4168 4169 4170
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4171
			mc.moved_charge = 0;
4172
			mc.moved_swap = 0;
4173
			mc.moving_task = current;
4174 4175 4176 4177 4178

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4189
	mem_cgroup_clear_mc();
4190 4191
}

4192 4193 4194
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4195
{
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4209
		swp_entry_t ent;
4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4221 4222
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4223
				mc.precharge--;
4224 4225
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4226 4227 4228 4229 4230
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4231 4232
		case MC_TARGET_SWAP:
			ent = target.ent;
4233 4234
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4235
				mc.precharge--;
4236 4237 4238
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4239
			break;
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4254
		ret = mem_cgroup_do_precharge(1);
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4290 4291
}

B
Balbir Singh 已提交
4292 4293 4294
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4295 4296
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4297
{
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4310
}
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4333

B
Balbir Singh 已提交
4334 4335 4336 4337
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4338
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4339 4340
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4341 4342
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4343
	.attach = mem_cgroup_move_task,
4344
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4345
	.use_id = 1,
B
Balbir Singh 已提交
4346
};
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif