memcontrol.c 143.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204 205

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
206
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207

B
Balbir Singh 已提交
208 209 210 211 212 213 214
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 216 217
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
218 219 220 221 222 223 224
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
225 226 227 228
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
229 230 231 232
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
233
	struct mem_cgroup_lru_info info;
234
	/*
235
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
236
	 * reclaimed from.
237
	 */
K
KAMEZAWA Hiroyuki 已提交
238
	int last_scanned_child;
239 240 241
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
242 243
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
244
#endif
245 246 247 248
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
249
	atomic_t	oom_lock;
250
	atomic_t	refcnt;
251

252
	int	swappiness;
253 254
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
255

256 257 258
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

259 260 261 262
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
263
	struct mem_cgroup_thresholds thresholds;
264

265
	/* thresholds for mem+swap usage. RCU-protected */
266
	struct mem_cgroup_thresholds memsw_thresholds;
267

K
KAMEZAWA Hiroyuki 已提交
268 269 270
	/* For oom notifier event fd */
	struct list_head oom_notify;

271 272 273 274 275
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
276
	/*
277
	 * percpu counter.
278
	 */
279
	struct mem_cgroup_stat_cpu *stat;
280 281 282 283 284 285
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
286 287
};

288 289 290 291 292 293
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
294
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
295
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
296 297 298
	NR_MOVE_TYPE,
};

299 300
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
301
	spinlock_t	  lock; /* for from, to */
302 303 304
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
305
	unsigned long moved_charge;
306
	unsigned long moved_swap;
307 308 309
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
310
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
311 312
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
313

D
Daisuke Nishimura 已提交
314 315 316 317 318 319
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

320 321 322 323 324 325
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

326 327 328 329 330 331 332
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

333 334 335
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
336
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
337
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
338
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
339
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
340 341 342
	NR_CHARGE_TYPE,
};

343 344 345
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
346
#define _OOM_TYPE		(2)
347 348 349
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
350 351
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
352

353 354 355 356 357 358 359
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
360 361
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
362

363 364
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
365
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
366
static void drain_all_stock_async(struct mem_cgroup *mem);
367

368 369 370 371 372 373
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

374 375 376 377 378
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

379
static struct mem_cgroup_per_zone *
380
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
381
{
382 383
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
404
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
405
				struct mem_cgroup_per_zone *mz,
406 407
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
408 409 410 411 412 413 414 415
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

416 417 418
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
435 436 437 438 439 440 441 442 443 444 445 446 447
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

448 449 450 451 452 453
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
454
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
455 456 457 458 459 460
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
461
	unsigned long long excess;
462 463
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
464 465
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
466 467 468
	mctz = soft_limit_tree_from_page(page);

	/*
469 470
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
471
	 */
472 473
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
474
		excess = res_counter_soft_limit_excess(&mem->res);
475 476 477 478
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
479
		if (excess || mz->on_tree) {
480 481 482 483 484
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
485 486
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
487
			 */
488
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
489 490
			spin_unlock(&mctz->lock);
		}
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

509 510 511 512
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
513
	struct mem_cgroup_per_zone *mz;
514 515

retry:
516
	mz = NULL;
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
565 566
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
567
{
568
	long val = 0;
569 570
	int cpu;

571 572
	get_online_cpus();
	for_each_online_cpu(cpu)
573
		val += per_cpu(mem->stat->count[idx], cpu);
574 575 576 577 578 579
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
580 581 582
	return val;
}

583 584 585 586
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
587
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
588 589
}

590 591 592 593 594 595 596 597 598 599
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

616
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
617
					 bool file, int nr_pages)
618
{
619 620
	preempt_disable();

621 622
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
623
	else
624
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
625

626 627
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
628
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
629
	else {
630
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
631 632
		nr_pages = -nr_pages; /* for event */
	}
633

634
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
635

636
	preempt_enable();
637 638
}

639 640 641 642 643 644 645 646 647 648 649 650 651
static unsigned long
mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
{
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
		total += MEM_CGROUP_ZSTAT(mz, idx);
	}
	return total;
}
K
KAMEZAWA Hiroyuki 已提交
652
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
653
					enum lru_list idx)
654
{
655
	int nid;
656 657 658
	u64 total = 0;

	for_each_online_node(nid)
659
		total += mem_cgroup_get_zonestat_node(mem, nid, idx);
660
	return total;
661 662
}

663 664 665 666 667 668 669 670 671 672 673
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
674
{
675
	unsigned long val, next;
676

677
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
678

679 680 681 682 683 684 685
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
686 687 688
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
689 690 691 692 693
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
694 695 696 697 698 699 700 701 702
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
703
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
704
		mem_cgroup_threshold(mem);
705 706
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
707
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
708
			mem_cgroup_update_tree(mem, page);
709
			__mem_cgroup_target_update(mem,
710 711 712 713 714 715 716 717
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
718
		}
719
#endif
720 721 722
	}
}

723
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
724 725 726 727 728 729
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

730
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
731
{
732 733 734 735 736 737 738 739
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

740 741 742 743
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

744
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
745 746
{
	struct mem_cgroup *mem = NULL;
747 748 749

	if (!mm)
		return NULL;
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
765 766
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
767
{
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
790 791 792 793 794 795 796 797 798
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
799 800
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
801
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
802

K
KAMEZAWA Hiroyuki 已提交
803
	css_put(&iter->css);
804 805
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
806
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
807

808 809 810
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
811 812
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
813
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
814 815 816

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
817
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
818
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
819
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
820
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
821
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
822
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
823

K
KAMEZAWA Hiroyuki 已提交
824
	return iter;
K
KAMEZAWA Hiroyuki 已提交
825
}
K
KAMEZAWA Hiroyuki 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

839 840 841
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
842

843 844 845 846 847
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
888

K
KAMEZAWA Hiroyuki 已提交
889 890 891 892
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
893

894
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
895 896 897
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
898
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
899
		return;
900
	VM_BUG_ON(!pc->mem_cgroup);
901 902 903 904
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
905
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
906 907
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
908 909 910
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
911
	list_del_init(&pc->lru);
912 913
}

K
KAMEZAWA Hiroyuki 已提交
914
void mem_cgroup_del_lru(struct page *page)
915
{
K
KAMEZAWA Hiroyuki 已提交
916 917
	mem_cgroup_del_lru_list(page, page_lru(page));
}
918

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
941
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
942 943 944
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
945 946 947 948
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
949

950
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
951
		return;
952

K
KAMEZAWA Hiroyuki 已提交
953
	pc = lookup_page_cgroup(page);
954
	/* unused or root page is not rotated. */
955 956 957 958 959
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
960
		return;
961
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
962
	list_move(&pc->lru, &mz->lists[lru]);
963 964
}

K
KAMEZAWA Hiroyuki 已提交
965
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
966
{
K
KAMEZAWA Hiroyuki 已提交
967 968
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
969

970
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
971 972
		return;
	pc = lookup_page_cgroup(page);
973
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
974
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
975
		return;
976 977
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
978
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
979 980
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
981 982 983
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
984 985
	list_add(&pc->lru, &mz->lists[lru]);
}
986

K
KAMEZAWA Hiroyuki 已提交
987
/*
988 989 990 991
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
992
 */
993
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
994
{
995 996 997 998
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1010 1011 1012 1013 1014 1015 1016 1017
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1018 1019
}

1020
static void mem_cgroup_lru_add_after_commit(struct page *page)
1021 1022 1023 1024 1025
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1026 1027 1028
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1029 1030
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1031
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1032 1033 1034 1035 1036
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1037 1038 1039
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1040
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1041 1042 1043
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1044 1045
}

1046 1047 1048
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1049
	struct mem_cgroup *curr = NULL;
1050
	struct task_struct *p;
1051

1052 1053 1054 1055 1056
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1057 1058
	if (!curr)
		return 0;
1059 1060 1061 1062 1063 1064 1065
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1066 1067 1068 1069
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1070 1071 1072
	return ret;
}

1073
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1074 1075 1076
{
	unsigned long active;
	unsigned long inactive;
1077 1078
	unsigned long gb;
	unsigned long inactive_ratio;
1079

K
KAMEZAWA Hiroyuki 已提交
1080 1081
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1110 1111 1112 1113 1114
		return 1;

	return 0;
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1126 1127 1128
unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
						struct zone *zone,
						enum lru_list lru)
1129
{
1130
	int nid = zone_to_nid(zone);
1131 1132 1133 1134 1135 1136
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);

	return ret;
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);
	return ret;
}

#if MAX_NUMNODES > 1
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);

	return total;
}

static unsigned long
mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
{
	return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
}

static unsigned long
mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	enum lru_list l;
	u64 total = 0;

	for_each_lru(l)
		total += mem_cgroup_get_zonestat_node(memcg, nid, l);

	return total;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(memcg, nid);

	return total;
}
#endif /* CONFIG_NUMA */

K
KOSAKI Motohiro 已提交
1223 1224 1225
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1226
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1243 1244
	if (!PageCgroupUsed(pc))
		return NULL;
1245 1246
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1247
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1248 1249 1250
	return &mz->reclaim_stat;
}

1251 1252 1253 1254 1255
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1256
					int active, int file)
1257 1258 1259 1260 1261 1262
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1263
	struct page_cgroup *pc, *tmp;
1264
	int nid = zone_to_nid(z);
1265 1266
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1267
	int lru = LRU_FILE * file + active;
1268
	int ret;
1269

1270
	BUG_ON(!mem_cont);
1271
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1272
	src = &mz->lists[lru];
1273

1274 1275
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1276
		if (scan >= nr_to_scan)
1277
			break;
K
KAMEZAWA Hiroyuki 已提交
1278

1279 1280
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1281

1282
		page = lookup_cgroup_page(pc);
1283

H
Hugh Dickins 已提交
1284
		if (unlikely(!PageLRU(page)))
1285 1286
			continue;

H
Hugh Dickins 已提交
1287
		scan++;
1288 1289 1290
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1291
			list_move(&page->lru, dst);
1292
			mem_cgroup_del_lru(page);
1293
			nr_taken += hpage_nr_pages(page);
1294 1295 1296 1297 1298 1299 1300
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1301 1302 1303 1304
		}
	}

	*scanned = scan;
1305 1306 1307 1308

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1309 1310 1311
	return nr_taken;
}

1312 1313 1314
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1315
/**
1316 1317
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1318
 *
1319
 * Returns the maximum amount of memory @mem can be charged with, in
1320
 * pages.
1321
 */
1322
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1323
{
1324 1325 1326 1327 1328
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1329
	return margin >> PAGE_SHIFT;
1330 1331
}

1332
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1333 1334 1335 1336 1337 1338 1339
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1340
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1341 1342
}

1343 1344 1345
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1346 1347 1348 1349

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1350
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1351 1352 1353
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1364 1365 1366
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1367
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1368 1369 1370
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1389 1390 1391

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1392 1393
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1394
	bool ret = false;
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1429
/**
1430
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1449
	if (!memcg || !p)
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1496 1497 1498 1499 1500 1501 1502
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1503 1504 1505 1506
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1507 1508 1509
	return num;
}

D
David Rientjes 已提交
1510 1511 1512 1513 1514 1515 1516 1517
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1518 1519 1520
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1521 1522 1523 1524 1525 1526 1527 1528
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1529
/*
K
KAMEZAWA Hiroyuki 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
	if (mem_cgroup_node_nr_file_lru_pages(mem, nid))
		return true;
	if (noswap || !total_swap_pages)
		return false;
	if (mem_cgroup_node_nr_anon_lru_pages(mem, nid))
		return true;
	return false;

}
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1599 1600 1601 1602 1603 1604 1605
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1606 1607 1608 1609 1610 1611 1612
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1613 1614
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1615
	}
1616 1617 1618

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1691 1692 1693 1694 1695
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1696 1697 1698 1699 1700

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1701 1702
#endif

K
KAMEZAWA Hiroyuki 已提交
1703 1704 1705 1706
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1707 1708
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1709 1710 1711
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1712 1713
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1714 1715
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1716
						struct zone *zone,
1717
						gfp_t gfp_mask,
1718 1719
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1720
{
K
KAMEZAWA Hiroyuki 已提交
1721 1722 1723
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1724 1725
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1726
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1727
	unsigned long excess;
1728
	unsigned long nr_scanned;
1729 1730

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1731

1732
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1733
	if (!check_soft && root_mem->memsw_is_minimum)
1734 1735
		noswap = true;

1736
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1737
		victim = mem_cgroup_select_victim(root_mem);
1738
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1739
			loop++;
1740 1741 1742 1743 1744 1745 1746
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1747
				drain_all_stock_async(root_mem);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1759
				 * We want to do more targeted reclaim.
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1771
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1772 1773
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1774 1775
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1776
		/* we use swappiness of local cgroup */
1777
		if (check_soft) {
1778
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1779
				noswap, zone, &nr_scanned);
1780 1781
			*total_scanned += nr_scanned;
		} else
1782
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1783
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1784
		css_put(&victim->css);
1785 1786 1787 1788 1789 1790 1791
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1792
		total += ret;
1793
		if (check_soft) {
1794
			if (!res_counter_soft_limit_excess(&root_mem->res))
1795
				return total;
1796
		} else if (mem_cgroup_margin(root_mem))
1797
			return total;
1798
	}
K
KAMEZAWA Hiroyuki 已提交
1799
	return total;
1800 1801
}

K
KAMEZAWA Hiroyuki 已提交
1802 1803 1804 1805 1806 1807
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1808 1809
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1810

K
KAMEZAWA Hiroyuki 已提交
1811 1812 1813 1814
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1815 1816 1817 1818

	if (lock_count == 1)
		return true;
	return false;
1819
}
1820

K
KAMEZAWA Hiroyuki 已提交
1821
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1822
{
K
KAMEZAWA Hiroyuki 已提交
1823 1824
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1825 1826 1827 1828 1829
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1830 1831
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1832 1833 1834
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1835 1836 1837 1838

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1875 1876
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1877
	if (mem && atomic_read(&mem->oom_lock))
1878 1879 1880
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1881 1882 1883 1884
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1885
{
K
KAMEZAWA Hiroyuki 已提交
1886
	struct oom_wait_info owait;
1887
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1888

K
KAMEZAWA Hiroyuki 已提交
1889 1890 1891 1892 1893
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1894
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1895 1896 1897 1898 1899 1900 1901 1902
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1903 1904 1905 1906
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1907
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1908 1909
	mutex_unlock(&memcg_oom_mutex);

1910 1911
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1912
		mem_cgroup_out_of_memory(mem, mask);
1913
	} else {
K
KAMEZAWA Hiroyuki 已提交
1914
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1915
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1916 1917 1918
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1919
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1920 1921 1922 1923 1924 1925 1926
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1927 1928
}

1929 1930 1931
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1951
 */
1952

1953 1954
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1955 1956
{
	struct mem_cgroup *mem;
1957 1958
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1959
	unsigned long uninitialized_var(flags);
1960 1961 1962 1963

	if (unlikely(!pc))
		return;

1964
	rcu_read_lock();
1965
	mem = pc->mem_cgroup;
1966 1967 1968
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1969
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1970
		/* take a lock against to access pc->mem_cgroup */
1971
		move_lock_page_cgroup(pc, &flags);
1972 1973 1974 1975 1976
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1977 1978

	switch (idx) {
1979
	case MEMCG_NR_FILE_MAPPED:
1980 1981 1982
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1983
			ClearPageCgroupFileMapped(pc);
1984
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1985 1986 1987
		break;
	default:
		BUG();
1988
	}
1989

1990 1991
	this_cpu_add(mem->stat->count[idx], val);

1992 1993
out:
	if (unlikely(need_unlock))
1994
		move_unlock_page_cgroup(pc, &flags);
1995 1996
	rcu_read_unlock();
	return;
1997
}
1998
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1999

2000 2001 2002 2003
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2004
#define CHARGE_BATCH	32U
2005 2006
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2007
	unsigned int nr_pages;
2008
	struct work_struct work;
2009 2010
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2011 2012
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2013
static DEFINE_MUTEX(percpu_charge_mutex);
2014 2015

/*
2016
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2027 2028
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2042 2043 2044 2045
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2046
		if (do_swap_account)
2047 2048
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2061
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2062 2063 2064 2065
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2066
 * This will be consumed by consume_stock() function, later.
2067
 */
2068
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2069 2070 2071 2072 2073 2074 2075
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2076
	stock->nr_pages += nr_pages;
2077 2078 2079 2080 2081 2082 2083 2084 2085
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2086
static void drain_all_stock_async(struct mem_cgroup *root_mem)
2087
{
2088 2089 2090
	int cpu, curcpu;
	/*
	 * If someone calls draining, avoid adding more kworker runs.
2091
	 */
2092
	if (!mutex_trylock(&percpu_charge_mutex))
2093 2094 2095
		return;
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2096 2097 2098 2099 2100 2101 2102
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2103 2104
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
		struct mem_cgroup *mem;

		if (cpu == curcpu)
			continue;

		mem = stock->cached;
		if (!mem)
			continue;
		if (mem != root_mem) {
			if (!root_mem->use_hierarchy)
				continue;
			/* check whether "mem" is under tree of "root_mem" */
			if (!css_is_ancestor(&mem->css, &root_mem->css))
				continue;
		}
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
			schedule_work_on(cpu, &stock->work);
2122 2123
	}
 	put_online_cpus();
2124
	mutex_unlock(&percpu_charge_mutex);
2125 2126 2127 2128 2129 2130 2131
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
2132
	mutex_lock(&percpu_charge_mutex);
2133
	schedule_on_each_cpu(drain_local_stock);
2134
	mutex_unlock(&percpu_charge_mutex);
2135 2136
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2147
		long x = per_cpu(mem->stat->count[i], cpu);
2148 2149 2150 2151

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2152 2153 2154 2155 2156 2157
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2169 2170 2171 2172
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2173 2174 2175 2176 2177
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2178
	struct mem_cgroup *iter;
2179

2180 2181 2182 2183 2184 2185
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2186
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2187
		return NOTIFY_OK;
2188 2189 2190 2191

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2192 2193 2194 2195 2196
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2207 2208
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2209
{
2210
	unsigned long csize = nr_pages * PAGE_SIZE;
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2225
		res_counter_uncharge(&mem->res, csize);
2226 2227 2228 2229
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2230
	/*
2231 2232
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2233 2234 2235 2236
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2237
	if (nr_pages == CHARGE_BATCH)
2238 2239 2240 2241 2242 2243
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2244
					      gfp_mask, flags, NULL);
2245
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2246
		return CHARGE_RETRY;
2247
	/*
2248 2249 2250 2251 2252 2253 2254
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2255
	 */
2256
	if (nr_pages == 1 && ret)
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2276 2277 2278
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2279
 */
2280
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2281
				   gfp_t gfp_mask,
2282 2283 2284
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2285
{
2286
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2287 2288 2289
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2290

K
KAMEZAWA Hiroyuki 已提交
2291 2292 2293 2294 2295 2296 2297 2298
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2299

2300
	/*
2301 2302
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2303 2304 2305
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2306 2307 2308 2309
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2310
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2311 2312 2313
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2314
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2315
			goto done;
2316 2317
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2318
		struct task_struct *p;
2319

K
KAMEZAWA Hiroyuki 已提交
2320 2321 2322
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2323 2324 2325 2326 2327 2328 2329 2330
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2331 2332
		 */
		mem = mem_cgroup_from_task(p);
2333
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2334 2335 2336
			rcu_read_unlock();
			goto done;
		}
2337
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2356

2357 2358
	do {
		bool oom_check;
2359

2360
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2361 2362
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2363
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2364
		}
2365

2366 2367 2368 2369
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2370
		}
2371

2372
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2373 2374 2375 2376
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2377
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2378 2379 2380
			css_put(&mem->css);
			mem = NULL;
			goto again;
2381
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2382
			css_put(&mem->css);
2383 2384
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2385 2386
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2387
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2388
			}
2389 2390 2391 2392
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2393
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2394
			goto bypass;
2395
		}
2396 2397
	} while (ret != CHARGE_OK);

2398 2399
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2400
	css_put(&mem->css);
2401
done:
K
KAMEZAWA Hiroyuki 已提交
2402
	*memcg = mem;
2403 2404
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2405
	*memcg = NULL;
2406
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2407 2408 2409
bypass:
	*memcg = NULL;
	return 0;
2410
}
2411

2412 2413 2414 2415 2416
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2417
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2418
				       unsigned int nr_pages)
2419 2420
{
	if (!mem_cgroup_is_root(mem)) {
2421 2422 2423
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2424
		if (do_swap_account)
2425
			res_counter_uncharge(&mem->memsw, bytes);
2426
	}
2427 2428
}

2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2448
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2449
{
2450
	struct mem_cgroup *mem = NULL;
2451
	struct page_cgroup *pc;
2452
	unsigned short id;
2453 2454
	swp_entry_t ent;

2455 2456 2457
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2458
	lock_page_cgroup(pc);
2459
	if (PageCgroupUsed(pc)) {
2460
		mem = pc->mem_cgroup;
2461 2462
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2463
	} else if (PageSwapCache(page)) {
2464
		ent.val = page_private(page);
2465 2466 2467 2468 2469 2470
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2471
	}
2472
	unlock_page_cgroup(pc);
2473 2474 2475
	return mem;
}

2476
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2477
				       struct page *page,
2478
				       unsigned int nr_pages,
2479
				       struct page_cgroup *pc,
2480
				       enum charge_type ctype)
2481
{
2482 2483 2484
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2485
		__mem_cgroup_cancel_charge(mem, nr_pages);
2486 2487 2488 2489 2490 2491
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2492
	pc->mem_cgroup = mem;
2493 2494 2495 2496 2497 2498 2499
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2500
	smp_wmb();
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2514

2515
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2516
	unlock_page_cgroup(pc);
2517 2518 2519 2520 2521
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2522
	memcg_check_events(mem, page);
2523
}
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2539 2540
	if (mem_cgroup_disabled())
		return;
2541
	/*
2542
	 * We have no races with charge/uncharge but will have races with
2543 2544 2545 2546 2547 2548
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2559
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2560 2561
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2562 2563 2564 2565 2566
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2567
/**
2568
 * mem_cgroup_move_account - move account of the page
2569
 * @page: the page
2570
 * @nr_pages: number of regular pages (>1 for huge pages)
2571 2572 2573
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2574
 * @uncharge: whether we should call uncharge and css_put against @from.
2575 2576
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2577
 * - page is not on LRU (isolate_page() is useful.)
2578
 * - compound_lock is held when nr_pages > 1
2579
 *
2580
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2581
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2582 2583
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2584
 */
2585 2586 2587 2588 2589 2590
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2591
{
2592 2593
	unsigned long flags;
	int ret;
2594

2595
	VM_BUG_ON(from == to);
2596
	VM_BUG_ON(PageLRU(page));
2597 2598 2599 2600 2601 2602 2603
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2604
	if (nr_pages > 1 && !PageTransHuge(page))
2605 2606 2607 2608 2609 2610 2611 2612 2613
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2614

2615
	if (PageCgroupFileMapped(pc)) {
2616 2617 2618 2619 2620
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2621
	}
2622
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2623 2624
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2625
		__mem_cgroup_cancel_charge(from, nr_pages);
2626

2627
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2628
	pc->mem_cgroup = to;
2629
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2630 2631 2632
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2633
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2634
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2635
	 * status here.
2636
	 */
2637 2638 2639
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2640
	unlock_page_cgroup(pc);
2641 2642 2643
	/*
	 * check events
	 */
2644 2645
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2646
out:
2647 2648 2649 2650 2651 2652 2653
	return ret;
}

/*
 * move charges to its parent.
 */

2654 2655
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2656 2657 2658 2659 2660 2661
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2662
	unsigned int nr_pages;
2663
	unsigned long uninitialized_var(flags);
2664 2665 2666 2667 2668 2669
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2670 2671 2672 2673 2674
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2675

2676
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2677

2678
	parent = mem_cgroup_from_cont(pcg);
2679
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2680
	if (ret || !parent)
2681
		goto put_back;
2682

2683
	if (nr_pages > 1)
2684 2685
		flags = compound_lock_irqsave(page);

2686
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2687
	if (ret)
2688
		__mem_cgroup_cancel_charge(parent, nr_pages);
2689

2690
	if (nr_pages > 1)
2691
		compound_unlock_irqrestore(page, flags);
2692
put_back:
K
KAMEZAWA Hiroyuki 已提交
2693
	putback_lru_page(page);
2694
put:
2695
	put_page(page);
2696
out:
2697 2698 2699
	return ret;
}

2700 2701 2702 2703 2704 2705 2706
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2707
				gfp_t gfp_mask, enum charge_type ctype)
2708
{
2709
	struct mem_cgroup *mem = NULL;
2710
	unsigned int nr_pages = 1;
2711
	struct page_cgroup *pc;
2712
	bool oom = true;
2713
	int ret;
A
Andrea Arcangeli 已提交
2714

A
Andrea Arcangeli 已提交
2715
	if (PageTransHuge(page)) {
2716
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2717
		VM_BUG_ON(!PageTransHuge(page));
2718 2719 2720 2721 2722
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2723
	}
2724 2725

	pc = lookup_page_cgroup(page);
2726
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2727

2728
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2729
	if (ret || !mem)
2730 2731
		return ret;

2732
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2733 2734 2735
	return 0;
}

2736 2737
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2738
{
2739
	if (mem_cgroup_disabled())
2740
		return 0;
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2752
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2753
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2754 2755
}

D
Daisuke Nishimura 已提交
2756 2757 2758 2759
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2776 2777
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2778
{
2779
	struct mem_cgroup *mem = NULL;
2780 2781
	int ret;

2782
	if (mem_cgroup_disabled())
2783
		return 0;
2784 2785
	if (PageCompound(page))
		return 0;
2786 2787 2788 2789 2790 2791 2792 2793
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2794 2795
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2796 2797 2798 2799
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2800 2801 2802 2803 2804 2805
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2806 2807
			return 0;
		}
2808
		unlock_page_cgroup(pc);
2809 2810
	}

2811
	if (unlikely(!mm))
2812
		mm = &init_mm;
2813

2814 2815 2816 2817
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2818

2819 2820 2821 2822 2823 2824 2825 2826 2827
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2828 2829 2830 2831 2832 2833 2834 2835
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2836
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2837 2838

	return ret;
2839 2840
}

2841 2842 2843
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2844
 * struct page_cgroup is acquired. This refcnt will be consumed by
2845 2846
 * "commit()" or removed by "cancel()"
 */
2847 2848 2849 2850 2851
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2852
	int ret;
2853

2854 2855
	*ptr = NULL;

2856
	if (mem_cgroup_disabled())
2857 2858 2859 2860 2861 2862
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2863 2864 2865
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2866 2867
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2868
		goto charge_cur_mm;
2869
	mem = try_get_mem_cgroup_from_page(page);
2870 2871
	if (!mem)
		goto charge_cur_mm;
2872
	*ptr = mem;
2873
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2874 2875
	css_put(&mem->css);
	return ret;
2876 2877 2878
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2879
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2880 2881
}

D
Daisuke Nishimura 已提交
2882 2883 2884
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2885
{
2886
	if (mem_cgroup_disabled())
2887 2888 2889
		return;
	if (!ptr)
		return;
2890
	cgroup_exclude_rmdir(&ptr->css);
2891 2892

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2893 2894 2895
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2896 2897 2898
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2899
	 */
2900
	if (do_swap_account && PageSwapCache(page)) {
2901
		swp_entry_t ent = {.val = page_private(page)};
2902
		unsigned short id;
2903
		struct mem_cgroup *memcg;
2904 2905 2906 2907

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2908
		if (memcg) {
2909 2910 2911 2912
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2913
			if (!mem_cgroup_is_root(memcg))
2914
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2915
			mem_cgroup_swap_statistics(memcg, false);
2916 2917
			mem_cgroup_put(memcg);
		}
2918
		rcu_read_unlock();
2919
	}
2920 2921 2922 2923 2924 2925
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2926 2927
}

D
Daisuke Nishimura 已提交
2928 2929 2930 2931 2932 2933
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2934 2935
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2936
	if (mem_cgroup_disabled())
2937 2938 2939
		return;
	if (!mem)
		return;
2940
	__mem_cgroup_cancel_charge(mem, 1);
2941 2942
}

2943 2944 2945
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2946 2947 2948
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2962 2963
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2964
	 * In those cases, all pages freed continuously can be expected to be in
2965 2966 2967 2968 2969 2970 2971 2972
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2973
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2974 2975
		goto direct_uncharge;

2976 2977 2978 2979 2980 2981 2982 2983
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2984
	batch->nr_pages++;
2985
	if (uncharge_memsw)
2986
		batch->memsw_nr_pages++;
2987 2988
	return;
direct_uncharge:
2989
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2990
	if (uncharge_memsw)
2991
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2992 2993
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2994 2995
	return;
}
2996

2997
/*
2998
 * uncharge if !page_mapped(page)
2999
 */
3000
static struct mem_cgroup *
3001
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3002
{
3003
	struct mem_cgroup *mem = NULL;
3004 3005
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3006

3007
	if (mem_cgroup_disabled())
3008
		return NULL;
3009

K
KAMEZAWA Hiroyuki 已提交
3010
	if (PageSwapCache(page))
3011
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3012

A
Andrea Arcangeli 已提交
3013
	if (PageTransHuge(page)) {
3014
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3015 3016
		VM_BUG_ON(!PageTransHuge(page));
	}
3017
	/*
3018
	 * Check if our page_cgroup is valid
3019
	 */
3020 3021
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3022
		return NULL;
3023

3024
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3025

3026 3027
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
3028 3029 3030 3031 3032
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3033
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3034 3035
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3047
	}
K
KAMEZAWA Hiroyuki 已提交
3048

3049
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3050

3051
	ClearPageCgroupUsed(pc);
3052 3053 3054 3055 3056 3057
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3058

3059
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3060 3061 3062 3063
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3064
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3065 3066 3067 3068 3069
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3070
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3071

3072
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3073 3074 3075

unlock_out:
	unlock_page_cgroup(pc);
3076
	return NULL;
3077 3078
}

3079 3080
void mem_cgroup_uncharge_page(struct page *page)
{
3081 3082 3083 3084 3085
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3086 3087 3088 3089 3090 3091
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3092
	VM_BUG_ON(page->mapping);
3093 3094 3095
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3110 3111
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3132 3133 3134 3135 3136 3137
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3138
	memcg_oom_recover(batch->memcg);
3139 3140 3141 3142
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3143
#ifdef CONFIG_SWAP
3144
/*
3145
 * called after __delete_from_swap_cache() and drop "page" account.
3146 3147
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3148 3149
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3150 3151
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3152 3153 3154 3155 3156 3157
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3158

K
KAMEZAWA Hiroyuki 已提交
3159 3160 3161 3162 3163
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3164
		swap_cgroup_record(ent, css_id(&memcg->css));
3165
}
3166
#endif
3167 3168 3169 3170 3171 3172 3173

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3174
{
3175
	struct mem_cgroup *memcg;
3176
	unsigned short id;
3177 3178 3179 3180

	if (!do_swap_account)
		return;

3181 3182 3183
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3184
	if (memcg) {
3185 3186 3187 3188
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3189
		if (!mem_cgroup_is_root(memcg))
3190
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3191
		mem_cgroup_swap_statistics(memcg, false);
3192 3193
		mem_cgroup_put(memcg);
	}
3194
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3195
}
3196 3197 3198 3199 3200 3201

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3202
 * @need_fixup: whether we should fixup res_counters and refcounts.
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3213
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3214 3215 3216 3217 3218 3219 3220 3221
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3222
		mem_cgroup_swap_statistics(to, true);
3223
		/*
3224 3225 3226 3227 3228 3229
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3230 3231
		 */
		mem_cgroup_get(to);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3243 3244 3245 3246 3247 3248
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3249
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3250 3251 3252
{
	return -EINVAL;
}
3253
#endif
K
KAMEZAWA Hiroyuki 已提交
3254

3255
/*
3256 3257
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3258
 */
3259
int mem_cgroup_prepare_migration(struct page *page,
3260
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3261
{
3262
	struct mem_cgroup *mem = NULL;
3263
	struct page_cgroup *pc;
3264
	enum charge_type ctype;
3265
	int ret = 0;
3266

3267 3268
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3269
	VM_BUG_ON(PageTransHuge(page));
3270
	if (mem_cgroup_disabled())
3271 3272
		return 0;

3273 3274 3275
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3276 3277
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3309
	}
3310
	unlock_page_cgroup(pc);
3311 3312 3313 3314 3315 3316
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3317

A
Andrea Arcangeli 已提交
3318
	*ptr = mem;
3319
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3332
	}
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3346
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3347
	return ret;
3348
}
3349

3350
/* remove redundant charge if migration failed*/
3351
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3352
	struct page *oldpage, struct page *newpage, bool migration_ok)
3353
{
3354
	struct page *used, *unused;
3355 3356 3357 3358
	struct page_cgroup *pc;

	if (!mem)
		return;
3359
	/* blocks rmdir() */
3360
	cgroup_exclude_rmdir(&mem->css);
3361
	if (!migration_ok) {
3362 3363
		used = oldpage;
		unused = newpage;
3364
	} else {
3365
		used = newpage;
3366 3367
		unused = oldpage;
	}
3368
	/*
3369 3370 3371
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3372
	 */
3373 3374 3375 3376
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3377

3378 3379
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3380
	/*
3381 3382 3383 3384 3385 3386
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3387
	 */
3388 3389
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3390
	/*
3391 3392
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3393 3394 3395 3396
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3397
}
3398

3399
/*
3400 3401 3402 3403 3404 3405
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3406
 */
3407
int mem_cgroup_shmem_charge_fallback(struct page *page,
3408 3409
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3410
{
3411
	struct mem_cgroup *mem;
3412
	int ret;
3413

3414
	if (mem_cgroup_disabled())
3415
		return 0;
3416

3417 3418 3419
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3420

3421
	return ret;
3422 3423
}

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3470 3471
static DEFINE_MUTEX(set_limit_mutex);

3472
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3473
				unsigned long long val)
3474
{
3475
	int retry_count;
3476
	u64 memswlimit, memlimit;
3477
	int ret = 0;
3478 3479
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3480
	int enlarge;
3481 3482 3483 3484 3485 3486 3487 3488 3489

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3490

3491
	enlarge = 0;
3492
	while (retry_count) {
3493 3494 3495 3496
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3507 3508
			break;
		}
3509 3510 3511 3512 3513

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3514
		ret = res_counter_set_limit(&memcg->res, val);
3515 3516 3517 3518 3519 3520
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3521 3522 3523 3524 3525
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3526
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3527 3528
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3529 3530 3531 3532 3533 3534
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3535
	}
3536 3537
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3538

3539 3540 3541
	return ret;
}

L
Li Zefan 已提交
3542 3543
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3544
{
3545
	int retry_count;
3546
	u64 memlimit, memswlimit, oldusage, curusage;
3547 3548
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3549
	int enlarge = 0;
3550

3551 3552 3553
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3571 3572 3573
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3574
		ret = res_counter_set_limit(&memcg->memsw, val);
3575 3576 3577 3578 3579 3580
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3581 3582 3583 3584 3585
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3586
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3587
						MEM_CGROUP_RECLAIM_NOSWAP |
3588 3589
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3590
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3591
		/* Usage is reduced ? */
3592
		if (curusage >= oldusage)
3593
			retry_count--;
3594 3595
		else
			oldusage = curusage;
3596
	}
3597 3598
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3599 3600 3601
	return ret;
}

3602
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3603 3604
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3605 3606 3607 3608 3609 3610
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3611
	unsigned long long excess;
3612
	unsigned long nr_scanned;
3613 3614 3615 3616

	if (order > 0)
		return 0;

3617
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3631
		nr_scanned = 0;
3632 3633
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3634 3635
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3636
		nr_reclaimed += reclaimed;
3637
		*total_scanned += nr_scanned;
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3660
				if (next_mz == mz)
3661
					css_put(&next_mz->mem->css);
3662
				else /* next_mz == NULL or other memcg */
3663 3664 3665 3666
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3667
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3668 3669 3670 3671 3672 3673 3674 3675
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3676 3677
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3696 3697 3698 3699
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3700
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3701
				int node, int zid, enum lru_list lru)
3702
{
K
KAMEZAWA Hiroyuki 已提交
3703 3704
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3705
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3706
	unsigned long flags, loop;
3707
	struct list_head *list;
3708
	int ret = 0;
3709

K
KAMEZAWA Hiroyuki 已提交
3710 3711
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3712
	list = &mz->lists[lru];
3713

3714 3715 3716 3717 3718
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3719 3720
		struct page *page;

3721
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3722
		spin_lock_irqsave(&zone->lru_lock, flags);
3723
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3724
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3725
			break;
3726 3727 3728 3729
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3730
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3731
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3732 3733
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3734
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3735

3736
		page = lookup_cgroup_page(pc);
3737 3738

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3739
		if (ret == -ENOMEM)
3740
			break;
3741 3742 3743 3744 3745 3746 3747

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3748
	}
K
KAMEZAWA Hiroyuki 已提交
3749

3750 3751 3752
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3753 3754 3755 3756 3757 3758
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3759
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3760
{
3761 3762 3763
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3764
	struct cgroup *cgrp = mem->css.cgroup;
3765

3766
	css_get(&mem->css);
3767 3768

	shrink = 0;
3769 3770 3771
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3772
move_account:
3773
	do {
3774
		ret = -EBUSY;
3775 3776 3777 3778
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3779
			goto out;
3780 3781
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3782
		drain_all_stock_sync();
3783
		ret = 0;
3784
		mem_cgroup_start_move(mem);
3785
		for_each_node_state(node, N_HIGH_MEMORY) {
3786
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3787
				enum lru_list l;
3788 3789
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3790
							node, zid, l);
3791 3792 3793
					if (ret)
						break;
				}
3794
			}
3795 3796 3797
			if (ret)
				break;
		}
3798
		mem_cgroup_end_move(mem);
3799
		memcg_oom_recover(mem);
3800 3801 3802
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3803
		cond_resched();
3804 3805
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3806 3807 3808
out:
	css_put(&mem->css);
	return ret;
3809 3810

try_to_free:
3811 3812
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3813 3814 3815
		ret = -EBUSY;
		goto out;
	}
3816 3817
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3818 3819 3820 3821
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3822 3823 3824 3825 3826

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3827
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3828
						false);
3829
		if (!progress) {
3830
			nr_retries--;
3831
			/* maybe some writeback is necessary */
3832
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3833
		}
3834 3835

	}
K
KAMEZAWA Hiroyuki 已提交
3836
	lru_add_drain();
3837
	/* try move_account...there may be some *locked* pages. */
3838
	goto move_account;
3839 3840
}

3841 3842 3843 3844 3845 3846
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3865
	 * If parent's use_hierarchy is set, we can't make any modifications
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3885

3886 3887
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3888
{
K
KAMEZAWA Hiroyuki 已提交
3889
	struct mem_cgroup *iter;
3890
	long val = 0;
3891

3892
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3893 3894 3895 3896 3897 3898
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3899 3900
}

3901 3902
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3903
	u64 val;
3904 3905 3906 3907 3908 3909 3910 3911

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3912 3913
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3914

K
KAMEZAWA Hiroyuki 已提交
3915
	if (swap)
3916
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3917 3918 3919 3920

	return val << PAGE_SHIFT;
}

3921
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3922
{
3923
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3924
	u64 val;
3925 3926 3927 3928 3929 3930
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3931 3932 3933
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3934
			val = res_counter_read_u64(&mem->res, name);
3935 3936
		break;
	case _MEMSWAP:
3937 3938 3939
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3940
			val = res_counter_read_u64(&mem->memsw, name);
3941 3942 3943 3944 3945 3946
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3947
}
3948 3949 3950 3951
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3952 3953
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3954
{
3955
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3956
	int type, name;
3957 3958 3959
	unsigned long long val;
	int ret;

3960 3961 3962
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3963
	case RES_LIMIT:
3964 3965 3966 3967
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3968 3969
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3970 3971 3972
		if (ret)
			break;
		if (type == _MEM)
3973
			ret = mem_cgroup_resize_limit(memcg, val);
3974 3975
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3976
		break;
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3991 3992 3993 3994 3995
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3996 3997
}

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4026
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4027 4028
{
	struct mem_cgroup *mem;
4029
	int type, name;
4030 4031

	mem = mem_cgroup_from_cont(cont);
4032 4033 4034
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4035
	case RES_MAX_USAGE:
4036 4037 4038 4039
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
4040 4041
		break;
	case RES_FAILCNT:
4042 4043 4044 4045
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
4046 4047
		break;
	}
4048

4049
	return 0;
4050 4051
}

4052 4053 4054 4055 4056 4057
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4058
#ifdef CONFIG_MMU
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4077 4078 4079 4080 4081 4082 4083
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4084

K
KAMEZAWA Hiroyuki 已提交
4085 4086 4087 4088 4089

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4090
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4091 4092
	MCS_PGPGIN,
	MCS_PGPGOUT,
4093
	MCS_SWAP,
4094 4095
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4106 4107
};

K
KAMEZAWA Hiroyuki 已提交
4108 4109 4110 4111 4112 4113
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4114
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4115 4116
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4117
	{"swap", "total_swap"},
4118 4119
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4120 4121 4122 4123 4124 4125 4126 4127
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4128 4129
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4130 4131 4132 4133
{
	s64 val;

	/* per cpu stat */
4134
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4135
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4136
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4137
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4138
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4139
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4140
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4141
	s->stat[MCS_PGPGIN] += val;
4142
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4143
	s->stat[MCS_PGPGOUT] += val;
4144
	if (do_swap_account) {
4145
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4146 4147
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4148 4149 4150 4151
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4169 4170 4171 4172
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4173 4174
}

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

	total_nr = mem_cgroup_nr_lru_pages(mem_cont);
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
									nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4220 4221
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4222 4223
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4224
	struct mcs_total_stat mystat;
4225 4226
	int i;

K
KAMEZAWA Hiroyuki 已提交
4227 4228
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4229

4230

4231 4232 4233
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4234
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4235
	}
L
Lee Schermerhorn 已提交
4236

K
KAMEZAWA Hiroyuki 已提交
4237
	/* Hierarchical information */
4238 4239 4240 4241 4242 4243 4244
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4245

K
KAMEZAWA Hiroyuki 已提交
4246 4247
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4248 4249 4250
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4251
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4252
	}
K
KAMEZAWA Hiroyuki 已提交
4253

K
KOSAKI Motohiro 已提交
4254
#ifdef CONFIG_DEBUG_VM
4255
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4283 4284 4285
	return 0;
}

K
KOSAKI Motohiro 已提交
4286 4287 4288 4289
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4290
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4291 4292 4293 4294 4295 4296 4297
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4298

K
KOSAKI Motohiro 已提交
4299 4300 4301 4302 4303 4304 4305
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4306 4307 4308

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4309 4310
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4311 4312
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4313
		return -EINVAL;
4314
	}
K
KOSAKI Motohiro 已提交
4315 4316 4317

	memcg->swappiness = val;

4318 4319
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4320 4321 4322
	return 0;
}

4323 4324 4325 4326 4327 4328 4329 4330
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4331
		t = rcu_dereference(memcg->thresholds.primary);
4332
	else
4333
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4345
	i = t->current_threshold;
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4369
	t->current_threshold = i - 1;
4370 4371 4372 4373 4374 4375
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4376 4377 4378 4379 4380 4381 4382
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4393
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4404 4405 4406 4407
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4408 4409 4410 4411
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4412 4413
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4414 4415
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4416 4417
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4418
	int i, size, ret;
4419 4420 4421 4422 4423 4424

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4425

4426
	if (type == _MEM)
4427
		thresholds = &memcg->thresholds;
4428
	else if (type == _MEMSWAP)
4429
		thresholds = &memcg->memsw_thresholds;
4430 4431 4432 4433 4434 4435
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4436
	if (thresholds->primary)
4437 4438
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4439
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4440 4441

	/* Allocate memory for new array of thresholds */
4442
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4443
			GFP_KERNEL);
4444
	if (!new) {
4445 4446 4447
		ret = -ENOMEM;
		goto unlock;
	}
4448
	new->size = size;
4449 4450

	/* Copy thresholds (if any) to new array */
4451 4452
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4453
				sizeof(struct mem_cgroup_threshold));
4454 4455
	}

4456
	/* Add new threshold */
4457 4458
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4459 4460

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4461
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4462 4463 4464
			compare_thresholds, NULL);

	/* Find current threshold */
4465
	new->current_threshold = -1;
4466
	for (i = 0; i < size; i++) {
4467
		if (new->entries[i].threshold < usage) {
4468
			/*
4469 4470
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4471 4472
			 * it here.
			 */
4473
			++new->current_threshold;
4474 4475 4476
		}
	}

4477 4478 4479 4480 4481
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4482

4483
	/* To be sure that nobody uses thresholds */
4484 4485 4486 4487 4488 4489 4490 4491
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4492
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4493
	struct cftype *cft, struct eventfd_ctx *eventfd)
4494 4495
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4496 4497
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4498 4499
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4500
	int i, j, size;
4501 4502 4503

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4504
		thresholds = &memcg->thresholds;
4505
	else if (type == _MEMSWAP)
4506
		thresholds = &memcg->memsw_thresholds;
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4522 4523 4524
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4525 4526 4527
			size++;
	}

4528
	new = thresholds->spare;
4529

4530 4531
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4532 4533
		kfree(new);
		new = NULL;
4534
		goto swap_buffers;
4535 4536
	}

4537
	new->size = size;
4538 4539

	/* Copy thresholds and find current threshold */
4540 4541 4542
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4543 4544
			continue;

4545 4546
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4547
			/*
4548
			 * new->current_threshold will not be used
4549 4550 4551
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4552
			++new->current_threshold;
4553 4554 4555 4556
		}
		j++;
	}

4557
swap_buffers:
4558 4559 4560
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4561

4562
	/* To be sure that nobody uses thresholds */
4563 4564 4565 4566
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4567

K
KAMEZAWA Hiroyuki 已提交
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4593
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4648 4649
	if (!val)
		memcg_oom_recover(mem);
4650 4651 4652 4653
	cgroup_unlock();
	return 0;
}

4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4670 4671
static struct cftype mem_cgroup_files[] = {
	{
4672
		.name = "usage_in_bytes",
4673
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4674
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4675 4676
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4677
	},
4678 4679
	{
		.name = "max_usage_in_bytes",
4680
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4681
		.trigger = mem_cgroup_reset,
4682 4683
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4684
	{
4685
		.name = "limit_in_bytes",
4686
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4687
		.write_string = mem_cgroup_write,
4688
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4689
	},
4690 4691 4692 4693 4694 4695
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4696 4697
	{
		.name = "failcnt",
4698
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4699
		.trigger = mem_cgroup_reset,
4700
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4701
	},
4702 4703
	{
		.name = "stat",
4704
		.read_map = mem_control_stat_show,
4705
	},
4706 4707 4708 4709
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4710 4711 4712 4713 4714
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4715 4716 4717 4718 4719
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4720 4721 4722 4723 4724
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4725 4726
	{
		.name = "oom_control",
4727 4728
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4729 4730 4731 4732
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4733 4734 4735 4736
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4737
		.mode = S_IRUGO,
4738 4739
	},
#endif
B
Balbir Singh 已提交
4740 4741
};

4742 4743 4744 4745 4746 4747
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4748 4749
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4785 4786 4787
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4788
	struct mem_cgroup_per_zone *mz;
4789
	enum lru_list l;
4790
	int zone, tmp = node;
4791 4792 4793 4794 4795 4796 4797 4798
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4799 4800
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4801
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4802 4803
	if (!pn)
		return 1;
4804

4805
	mem->info.nodeinfo[node] = pn;
4806 4807
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4808 4809
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4810
		mz->usage_in_excess = 0;
4811 4812
		mz->on_tree = false;
		mz->mem = mem;
4813
	}
4814 4815 4816
	return 0;
}

4817 4818 4819 4820 4821
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4822 4823 4824
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4825
	int size = sizeof(struct mem_cgroup);
4826

4827
	/* Can be very big if MAX_NUMNODES is very big */
4828
	if (size < PAGE_SIZE)
4829
		mem = kzalloc(size, GFP_KERNEL);
4830
	else
4831
		mem = vzalloc(size);
4832

4833 4834 4835
	if (!mem)
		return NULL;

4836
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4837 4838
	if (!mem->stat)
		goto out_free;
4839
	spin_lock_init(&mem->pcp_counter_lock);
4840
	return mem;
4841 4842 4843 4844 4845 4846 4847

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4848 4849
}

4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4861
static void __mem_cgroup_free(struct mem_cgroup *mem)
4862
{
K
KAMEZAWA Hiroyuki 已提交
4863 4864
	int node;

4865
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4866 4867
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4868 4869 4870
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4871 4872
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4873 4874 4875 4876 4877
		kfree(mem);
	else
		vfree(mem);
}

4878 4879 4880 4881 4882
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4883
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4884
{
4885
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4886
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4887
		__mem_cgroup_free(mem);
4888 4889 4890
		if (parent)
			mem_cgroup_put(parent);
	}
4891 4892
}

4893 4894 4895 4896 4897
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4898 4899 4900 4901 4902 4903 4904 4905 4906
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4907

4908 4909 4910
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4911
	if (!mem_cgroup_disabled() && really_do_swap_account)
4912 4913 4914 4915 4916 4917 4918 4919
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4945
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4946 4947
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4948
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4949
	long error = -ENOMEM;
4950
	int node;
B
Balbir Singh 已提交
4951

4952 4953
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4954
		return ERR_PTR(error);
4955

4956 4957 4958
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4959

4960
	/* root ? */
4961
	if (cont->parent == NULL) {
4962
		int cpu;
4963
		enable_swap_cgroup();
4964
		parent = NULL;
4965
		root_mem_cgroup = mem;
4966 4967
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4968 4969 4970 4971 4972
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4973
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4974
	} else {
4975
		parent = mem_cgroup_from_cont(cont->parent);
4976
		mem->use_hierarchy = parent->use_hierarchy;
4977
		mem->oom_kill_disable = parent->oom_kill_disable;
4978
	}
4979

4980 4981 4982
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4983 4984 4985 4986 4987 4988 4989
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4990 4991 4992 4993
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4994
	mem->last_scanned_child = 0;
4995
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4996
	INIT_LIST_HEAD(&mem->oom_notify);
4997

K
KOSAKI Motohiro 已提交
4998
	if (parent)
4999
		mem->swappiness = mem_cgroup_swappiness(parent);
5000
	atomic_set(&mem->refcnt, 1);
5001
	mem->move_charge_at_immigrate = 0;
5002
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
5003
	return &mem->css;
5004
free_out:
5005
	__mem_cgroup_free(mem);
5006
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
5007
	return ERR_PTR(error);
B
Balbir Singh 已提交
5008 5009
}

5010
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5011 5012 5013
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5014 5015

	return mem_cgroup_force_empty(mem, false);
5016 5017
}

B
Balbir Singh 已提交
5018 5019 5020
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5021 5022 5023
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
5024 5025 5026 5027 5028
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5029 5030 5031 5032 5033 5034 5035 5036
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
5037 5038
}

5039
#ifdef CONFIG_MMU
5040
/* Handlers for move charge at task migration. */
5041 5042
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5043
{
5044 5045
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5046 5047
	struct mem_cgroup *mem = mc.to;

5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5083
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5084 5085 5086 5087 5088
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5089 5090 5091 5092 5093 5094 5095 5096
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5097
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5098 5099 5100 5101 5102 5103
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5104 5105 5106
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5107 5108 5109 5110 5111
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5112
	swp_entry_t	ent;
5113 5114 5115 5116 5117
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5118
	MC_TARGET_SWAP,
5119 5120
};

D
Daisuke Nishimura 已提交
5121 5122
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5123
{
D
Daisuke Nishimura 已提交
5124
	struct page *page = vm_normal_page(vma, addr, ptent);
5125

D
Daisuke Nishimura 已提交
5126 5127 5128 5129 5130 5131
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5132 5133
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5152 5153
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5154
		return NULL;
5155
	}
D
Daisuke Nishimura 已提交
5156 5157 5158 5159 5160 5161
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5207 5208
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5209 5210 5211

	if (!page && !ent.val)
		return 0;
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5227 5228
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5229 5230 5231 5232
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5245 5246
	split_huge_page_pmd(walk->mm, pmd);

5247 5248 5249 5250 5251 5252 5253
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5254 5255 5256
	return 0;
}

5257 5258 5259 5260 5261
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5262
	down_read(&mm->mmap_sem);
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5274
	up_read(&mm->mmap_sem);
5275 5276 5277 5278 5279 5280 5281 5282 5283

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5284 5285 5286 5287 5288
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5289 5290
}

5291 5292
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5293
{
5294 5295 5296
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5297
	/* we must uncharge all the leftover precharges from mc.to */
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5309
	}
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5344
	spin_lock(&mc.lock);
5345 5346
	mc.from = NULL;
	mc.to = NULL;
5347
	spin_unlock(&mc.lock);
5348
	mem_cgroup_end_move(from);
5349 5350
}

5351 5352
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5353
				struct task_struct *p)
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5368 5369 5370 5371
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5372
			VM_BUG_ON(mc.moved_charge);
5373
			VM_BUG_ON(mc.moved_swap);
5374
			mem_cgroup_start_move(from);
5375
			spin_lock(&mc.lock);
5376 5377
			mc.from = from;
			mc.to = mem;
5378
			spin_unlock(&mc.lock);
5379
			/* We set mc.moving_task later */
5380 5381 5382 5383

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5384 5385
		}
		mmput(mm);
5386 5387 5388 5389 5390 5391
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5392
				struct task_struct *p)
5393
{
5394
	mem_cgroup_clear_mc();
5395 5396
}

5397 5398 5399
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5400
{
5401 5402 5403 5404 5405
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5406
	split_huge_page_pmd(walk->mm, pmd);
5407 5408 5409 5410 5411 5412 5413 5414
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5415
		swp_entry_t ent;
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5427 5428
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5429
				mc.precharge--;
5430 5431
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5432 5433 5434 5435 5436
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5437 5438
		case MC_TARGET_SWAP:
			ent = target.ent;
5439 5440
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5441
				mc.precharge--;
5442 5443 5444
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5445
			break;
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5460
		ret = mem_cgroup_do_precharge(1);
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5504
	up_read(&mm->mmap_sem);
5505 5506
}

B
Balbir Singh 已提交
5507 5508 5509
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5510
				struct task_struct *p)
B
Balbir Singh 已提交
5511
{
5512
	struct mm_struct *mm = get_task_mm(p);
5513 5514

	if (mm) {
5515 5516 5517
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5518 5519
		mmput(mm);
	}
5520 5521
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5522
}
5523 5524 5525
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5526
				struct task_struct *p)
5527 5528 5529 5530 5531
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5532
				struct task_struct *p)
5533 5534 5535 5536 5537
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5538
				struct task_struct *p)
5539 5540 5541
{
}
#endif
B
Balbir Singh 已提交
5542

B
Balbir Singh 已提交
5543 5544 5545 5546
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5547
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5548 5549
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5550 5551
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5552
	.attach = mem_cgroup_move_task,
5553
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5554
	.use_id = 1,
B
Balbir Singh 已提交
5555
};
5556 5557

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5558 5559 5560
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5561
	if (!strcmp(s, "1"))
5562
		really_do_swap_account = 1;
5563
	else if (!strcmp(s, "0"))
5564 5565 5566
		really_do_swap_account = 0;
	return 1;
}
5567
__setup("swapaccount=", enable_swap_account);
5568 5569

#endif