memcontrol.c 142.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376 377

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
378
#include <net/ip.h>
G
Glauber Costa 已提交
379 380 381 382 383 384 385 386 387

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

388 389 390 391 392 393 394 395 396 397 398 399 400 401
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
422 423 424 425 426 427 428 429 430

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567 568 569
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741 742
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
743 744 745
{
	unsigned long val, next;

746 747
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
748
	/* from time_after() in jiffies.h */
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
765
	}
766
	return false;
767 768 769 770 771 772
}

/*
 * Check events in order.
 *
 */
773
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774
{
775
	preempt_disable();
776
	/* threshold event is triggered in finer grain than soft limit */
777 778 779 780 781 782 783 784 785 786 787 788
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
		bool do_softlimit, do_numainfo;

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

789
		mem_cgroup_threshold(memcg);
790
		if (unlikely(do_softlimit))
791
			mem_cgroup_update_tree(memcg, page);
792
#if MAX_NUMNODES > 1
793
		if (unlikely(do_numainfo))
794
			atomic_inc(&memcg->numainfo_events);
795
#endif
796 797
	} else
		preempt_enable();
798 799
}

G
Glauber Costa 已提交
800
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
801 802 803 804 805 806
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

807
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808
{
809 810 811 812 813 814 815 816
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

817 818 819 820
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

821
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822
{
823
	struct mem_cgroup *memcg = NULL;
824 825 826

	if (!mm)
		return NULL;
827 828 829 830 831 832 833
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
834 835
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
836
			break;
837
	} while (!css_tryget(&memcg->css));
838
	rcu_read_unlock();
839
	return memcg;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
862
{
863 864
	struct mem_cgroup *memcg = NULL;
	int id = 0;
865

866 867 868
	if (mem_cgroup_disabled())
		return NULL;

869 870
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
871

872 873
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
874

875 876
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
877

878 879 880 881 882
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
883

884
	while (!memcg) {
885
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886
		struct cgroup_subsys_state *css;
887

888 889 890 891 892 893 894 895 896 897 898
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
899

900 901 902 903 904 905 906 907
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
908 909
		rcu_read_unlock();

910 911 912 913 914 915 916
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
917 918 919 920 921

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
922
}
K
KAMEZAWA Hiroyuki 已提交
923

924 925 926 927 928 929 930
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
931 932 933 934 935 936
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
937

938 939 940 941 942 943
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
944
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945
	     iter != NULL;				\
946
	     iter = mem_cgroup_iter(root, iter, NULL))
947

948
#define for_each_mem_cgroup(iter)			\
949
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950
	     iter != NULL;				\
951
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
952

953
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954
{
955
	return (memcg == root_mem_cgroup);
956 957
}

958 959
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
960
	struct mem_cgroup *memcg;
961 962 963 964 965

	if (!mm)
		return;

	rcu_read_lock();
966 967
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
968 969 970 971
		goto out;

	switch (idx) {
	case PGFAULT:
972 973 974 975
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976 977 978 979 980 981 982 983 984
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1034 1035
{
	struct mem_cgroup_per_zone *mz;
1036 1037
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1038

1039
	if (mem_cgroup_disabled())
1040 1041
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1042
	pc = lookup_page_cgroup(page);
1043
	memcg = pc->mem_cgroup;
1044 1045 1046 1047
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1048
}
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1059
 */
1060
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1061 1062
{
	struct mem_cgroup_per_zone *mz;
1063
	struct mem_cgroup *memcg;
1064 1065 1066 1067 1068 1069
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1070 1071
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1072 1073 1074
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1075 1076
}

1077
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1078
{
1079
	mem_cgroup_lru_del_list(page, page_lru(page));
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1100
{
1101 1102 1103
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1104
}
1105

1106
/*
1107
 * Checks whether given mem is same or in the root_mem_cgroup's
1108 1109
 * hierarchy subtree
 */
1110 1111
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1112
{
1113 1114 1115
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1116 1117 1118 1119 1120
	}

	return true;
}

1121
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1122 1123
{
	int ret;
1124
	struct mem_cgroup *curr = NULL;
1125
	struct task_struct *p;
1126

1127
	p = find_lock_task_mm(task);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1143 1144
	if (!curr)
		return 0;
1145
	/*
1146
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1147
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1148 1149
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1150
	 */
1151
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1152
	css_put(&curr->css);
1153 1154 1155
	return ret;
}

1156
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1157
{
1158 1159 1160
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1161
	unsigned long inactive;
1162
	unsigned long active;
1163
	unsigned long gb;
1164

1165 1166 1167 1168
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1169

1170 1171 1172 1173 1174 1175
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1176
	return inactive * inactive_ratio < active;
1177 1178
}

1179
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1180 1181 1182
{
	unsigned long active;
	unsigned long inactive;
1183 1184
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1185

1186 1187 1188 1189
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1190 1191 1192 1193

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1194 1195 1196
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1197
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1214 1215
	if (!PageCgroupUsed(pc))
		return NULL;
1216 1217
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1218
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1219 1220 1221
	return &mz->reclaim_stat;
}

1222 1223 1224
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1225
/**
1226 1227
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1228
 *
1229
 * Returns the maximum amount of memory @mem can be charged with, in
1230
 * pages.
1231
 */
1232
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1233
{
1234 1235
	unsigned long long margin;

1236
	margin = res_counter_margin(&memcg->res);
1237
	if (do_swap_account)
1238
		margin = min(margin, res_counter_margin(&memcg->memsw));
1239
	return margin >> PAGE_SHIFT;
1240 1241
}

1242
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1243 1244 1245 1246 1247 1248 1249
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1250
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1251 1252
}

1253
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1254 1255
{
	int cpu;
1256 1257

	get_online_cpus();
1258
	spin_lock(&memcg->pcp_counter_lock);
1259
	for_each_online_cpu(cpu)
1260 1261 1262
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1263
	put_online_cpus();
1264 1265 1266 1267

	synchronize_rcu();
}

1268
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1269 1270 1271
{
	int cpu;

1272
	if (!memcg)
1273
		return;
1274
	get_online_cpus();
1275
	spin_lock(&memcg->pcp_counter_lock);
1276
	for_each_online_cpu(cpu)
1277 1278 1279
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1280
	put_online_cpus();
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1294
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1295 1296
{
	VM_BUG_ON(!rcu_read_lock_held());
1297
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1298
}
1299

1300
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1301
{
1302 1303
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1304
	bool ret = false;
1305 1306 1307 1308 1309 1310 1311 1312 1313
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1314

1315 1316
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1317 1318
unlock:
	spin_unlock(&mc.lock);
1319 1320 1321
	return ret;
}

1322
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1323 1324
{
	if (mc.moving_task && current != mc.moving_task) {
1325
		if (mem_cgroup_under_move(memcg)) {
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1338
/**
1339
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1358
	if (!memcg || !p)
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1405 1406 1407 1408
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1409
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1410 1411
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1412 1413
	struct mem_cgroup *iter;

1414
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1415
		num++;
1416 1417 1418
	return num;
}

D
David Rientjes 已提交
1419 1420 1421 1422 1423 1424 1425 1426
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1427 1428 1429
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1430 1431 1432 1433 1434 1435 1436 1437
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1484
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1485 1486
		int nid, bool noswap)
{
1487
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1488 1489 1490
		return true;
	if (noswap || !total_swap_pages)
		return false;
1491
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1492 1493 1494 1495
		return true;
	return false;

}
1496 1497 1498 1499 1500 1501 1502 1503
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1504
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1505 1506
{
	int nid;
1507 1508 1509 1510
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1511
	if (!atomic_read(&memcg->numainfo_events))
1512
		return;
1513
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1514 1515 1516
		return;

	/* make a nodemask where this memcg uses memory from */
1517
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1518 1519 1520

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1521 1522
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1523
	}
1524

1525 1526
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1541
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1542 1543 1544
{
	int node;

1545 1546
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1547

1548
	node = next_node(node, memcg->scan_nodes);
1549
	if (node == MAX_NUMNODES)
1550
		node = first_node(memcg->scan_nodes);
1551 1552 1553 1554 1555 1556 1557 1558 1559
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1560
	memcg->last_scanned_node = node;
1561 1562 1563
	return node;
}

1564 1565 1566 1567 1568 1569
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1570
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1571 1572 1573 1574 1575 1576 1577
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1578 1579
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1580
		     nid < MAX_NUMNODES;
1581
		     nid = next_node(nid, memcg->scan_nodes)) {
1582

1583
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1584 1585 1586 1587 1588 1589 1590
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1591
		if (node_isset(nid, memcg->scan_nodes))
1592
			continue;
1593
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1594 1595 1596 1597 1598
			return true;
	}
	return false;
}

1599
#else
1600
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1601 1602 1603
{
	return 0;
}
1604

1605
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1606
{
1607
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1608
}
1609 1610
#endif

1611 1612 1613 1614
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1615
{
1616
	struct mem_cgroup *victim = NULL;
1617
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1618
	int loop = 0;
1619
	unsigned long excess;
1620
	unsigned long nr_scanned;
1621 1622 1623 1624
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1625

1626
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1627

1628
	while (1) {
1629
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1630
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1631
			loop++;
1632 1633 1634 1635 1636 1637
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1638
				if (!total)
1639 1640
					break;
				/*
L
Lucas De Marchi 已提交
1641
				 * We want to do more targeted reclaim.
1642 1643 1644 1645 1646
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1647
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1648 1649
					break;
			}
1650
			continue;
1651
		}
1652
		if (!mem_cgroup_reclaimable(victim, false))
1653
			continue;
1654 1655 1656 1657
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1658
			break;
1659
	}
1660
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1661
	return total;
1662 1663
}

K
KAMEZAWA Hiroyuki 已提交
1664 1665 1666
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1667
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1668
 */
1669
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1670
{
1671
	struct mem_cgroup *iter, *failed = NULL;
1672

1673
	for_each_mem_cgroup_tree(iter, memcg) {
1674
		if (iter->oom_lock) {
1675 1676 1677 1678 1679
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1680 1681
			mem_cgroup_iter_break(memcg, iter);
			break;
1682 1683
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1684
	}
K
KAMEZAWA Hiroyuki 已提交
1685

1686
	if (!failed)
1687
		return true;
1688 1689 1690 1691 1692

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1693
	for_each_mem_cgroup_tree(iter, memcg) {
1694
		if (iter == failed) {
1695 1696
			mem_cgroup_iter_break(memcg, iter);
			break;
1697 1698 1699
		}
		iter->oom_lock = false;
	}
1700
	return false;
1701
}
1702

1703
/*
1704
 * Has to be called with memcg_oom_lock
1705
 */
1706
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1707
{
K
KAMEZAWA Hiroyuki 已提交
1708 1709
	struct mem_cgroup *iter;

1710
	for_each_mem_cgroup_tree(iter, memcg)
1711 1712 1713 1714
		iter->oom_lock = false;
	return 0;
}

1715
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1716 1717 1718
{
	struct mem_cgroup *iter;

1719
	for_each_mem_cgroup_tree(iter, memcg)
1720 1721 1722
		atomic_inc(&iter->under_oom);
}

1723
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1724 1725 1726
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1727 1728 1729 1730 1731
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1732
	for_each_mem_cgroup_tree(iter, memcg)
1733
		atomic_add_unless(&iter->under_oom, -1, 0);
1734 1735
}

1736
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1737 1738
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1739 1740 1741 1742 1743 1744 1745 1746
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1747 1748
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1749 1750 1751
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1752
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1753 1754 1755 1756 1757

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1758 1759
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1760 1761 1762 1763
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1764
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1765
{
1766 1767
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1768 1769
}

1770
static void memcg_oom_recover(struct mem_cgroup *memcg)
1771
{
1772 1773
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1774 1775
}

K
KAMEZAWA Hiroyuki 已提交
1776 1777 1778
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1779
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1780
{
K
KAMEZAWA Hiroyuki 已提交
1781
	struct oom_wait_info owait;
1782
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1783

1784
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1785 1786 1787 1788
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1789
	need_to_kill = true;
1790
	mem_cgroup_mark_under_oom(memcg);
1791

1792
	/* At first, try to OOM lock hierarchy under memcg.*/
1793
	spin_lock(&memcg_oom_lock);
1794
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1795 1796 1797 1798 1799
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1800
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1801
	if (!locked || memcg->oom_kill_disable)
1802 1803
		need_to_kill = false;
	if (locked)
1804
		mem_cgroup_oom_notify(memcg);
1805
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1806

1807 1808
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1809
		mem_cgroup_out_of_memory(memcg, mask);
1810
	} else {
K
KAMEZAWA Hiroyuki 已提交
1811
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1812
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1813
	}
1814
	spin_lock(&memcg_oom_lock);
1815
	if (locked)
1816 1817
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1818
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1819

1820
	mem_cgroup_unmark_under_oom(memcg);
1821

K
KAMEZAWA Hiroyuki 已提交
1822 1823 1824
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1825
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1826
	return true;
1827 1828
}

1829 1830 1831
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1851
 */
1852

1853 1854
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1855
{
1856
	struct mem_cgroup *memcg;
1857 1858
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1859
	unsigned long uninitialized_var(flags);
1860

1861
	if (mem_cgroup_disabled())
1862 1863
		return;

1864
	rcu_read_lock();
1865 1866
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1867 1868
		goto out;
	/* pc->mem_cgroup is unstable ? */
1869
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1870
		/* take a lock against to access pc->mem_cgroup */
1871
		move_lock_page_cgroup(pc, &flags);
1872
		need_unlock = true;
1873 1874
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1875 1876
			goto out;
	}
1877 1878

	switch (idx) {
1879
	case MEMCG_NR_FILE_MAPPED:
1880 1881 1882
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1883
			ClearPageCgroupFileMapped(pc);
1884
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1885 1886 1887
		break;
	default:
		BUG();
1888
	}
1889

1890
	this_cpu_add(memcg->stat->count[idx], val);
1891

1892 1893
out:
	if (unlikely(need_unlock))
1894
		move_unlock_page_cgroup(pc, &flags);
1895 1896
	rcu_read_unlock();
	return;
1897
}
1898
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1899

1900 1901 1902 1903
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1904
#define CHARGE_BATCH	32U
1905 1906
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1907
	unsigned int nr_pages;
1908
	struct work_struct work;
1909 1910
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1911 1912
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1913
static DEFINE_MUTEX(percpu_charge_mutex);
1914 1915

/*
1916
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1917 1918 1919 1920
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1921
static bool consume_stock(struct mem_cgroup *memcg)
1922 1923 1924 1925 1926
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1927
	if (memcg == stock->cached && stock->nr_pages)
1928
		stock->nr_pages--;
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1942 1943 1944 1945
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1946
		if (do_swap_account)
1947 1948
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1961
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1962 1963 1964 1965
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1966
 * This will be consumed by consume_stock() function, later.
1967
 */
1968
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1969 1970 1971
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1972
	if (stock->cached != memcg) { /* reset if necessary */
1973
		drain_stock(stock);
1974
		stock->cached = memcg;
1975
	}
1976
	stock->nr_pages += nr_pages;
1977 1978 1979 1980
	put_cpu_var(memcg_stock);
}

/*
1981
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1982 1983
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
1984
 */
1985
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
1986
{
1987
	int cpu, curcpu;
1988

1989 1990
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1991
	curcpu = get_cpu();
1992 1993
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1994
		struct mem_cgroup *memcg;
1995

1996 1997
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1998
			continue;
1999
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2000
			continue;
2001 2002 2003 2004 2005 2006
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2007
	}
2008
	put_cpu();
2009 2010 2011 2012 2013 2014

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2015
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2016 2017 2018
			flush_work(&stock->work);
	}
out:
2019
 	put_online_cpus();
2020 2021 2022 2023 2024 2025 2026 2027
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2028
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2029
{
2030 2031 2032 2033 2034
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2035
	drain_all_stock(root_memcg, false);
2036
	mutex_unlock(&percpu_charge_mutex);
2037 2038 2039
}

/* This is a synchronous drain interface. */
2040
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2041 2042
{
	/* called when force_empty is called */
2043
	mutex_lock(&percpu_charge_mutex);
2044
	drain_all_stock(root_memcg, true);
2045
	mutex_unlock(&percpu_charge_mutex);
2046 2047
}

2048 2049 2050 2051
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2052
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2053 2054 2055
{
	int i;

2056
	spin_lock(&memcg->pcp_counter_lock);
2057
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2058
		long x = per_cpu(memcg->stat->count[i], cpu);
2059

2060 2061
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2062
	}
2063
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2064
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2065

2066 2067
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2068
	}
2069
	/* need to clear ON_MOVE value, works as a kind of lock. */
2070 2071
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2072 2073
}

2074
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2075 2076 2077
{
	int idx = MEM_CGROUP_ON_MOVE;

2078 2079 2080
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2081 2082 2083
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2084 2085 2086 2087 2088
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2089
	struct mem_cgroup *iter;
2090

2091
	if ((action == CPU_ONLINE)) {
2092
		for_each_mem_cgroup(iter)
2093 2094 2095 2096
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2097
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2098
		return NOTIFY_OK;
2099

2100
	for_each_mem_cgroup(iter)
2101 2102
		mem_cgroup_drain_pcp_counter(iter, cpu);

2103 2104 2105 2106 2107
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2118
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2119
				unsigned int nr_pages, bool oom_check)
2120
{
2121
	unsigned long csize = nr_pages * PAGE_SIZE;
2122 2123 2124 2125 2126
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2127
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2128 2129 2130 2131

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2132
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2133 2134 2135
		if (likely(!ret))
			return CHARGE_OK;

2136
		res_counter_uncharge(&memcg->res, csize);
2137 2138 2139 2140
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2141
	/*
2142 2143
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2144 2145 2146 2147
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2148
	if (nr_pages == CHARGE_BATCH)
2149 2150 2151 2152 2153
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2154
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2155
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2156
		return CHARGE_RETRY;
2157
	/*
2158 2159 2160 2161 2162 2163 2164
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2165
	 */
2166
	if (nr_pages == 1 && ret)
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2186
/*
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2206
 */
2207
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2208
				   gfp_t gfp_mask,
2209
				   unsigned int nr_pages,
2210
				   struct mem_cgroup **ptr,
2211
				   bool oom)
2212
{
2213
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2214
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2215
	struct mem_cgroup *memcg = NULL;
2216
	int ret;
2217

K
KAMEZAWA Hiroyuki 已提交
2218 2219 2220 2221 2222 2223 2224 2225
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2226

2227
	/*
2228 2229
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2230 2231 2232
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2233
	if (!*ptr && !mm)
2234
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2235
again:
2236 2237 2238 2239
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2240
			goto done;
2241
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2242
			goto done;
2243
		css_get(&memcg->css);
2244
	} else {
K
KAMEZAWA Hiroyuki 已提交
2245
		struct task_struct *p;
2246

K
KAMEZAWA Hiroyuki 已提交
2247 2248 2249
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2250
		 * Because we don't have task_lock(), "p" can exit.
2251
		 * In that case, "memcg" can point to root or p can be NULL with
2252 2253 2254 2255 2256 2257
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2258
		 */
2259
		memcg = mem_cgroup_from_task(p);
2260 2261 2262
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2263 2264 2265
			rcu_read_unlock();
			goto done;
		}
2266
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2279
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2280 2281 2282 2283 2284
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2285

2286 2287
	do {
		bool oom_check;
2288

2289
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2290
		if (fatal_signal_pending(current)) {
2291
			css_put(&memcg->css);
2292
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2293
		}
2294

2295 2296 2297 2298
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2299
		}
2300

2301
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2302 2303 2304 2305
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2306
			batch = nr_pages;
2307 2308
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2309
			goto again;
2310
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2311
			css_put(&memcg->css);
2312 2313
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2314
			if (!oom) {
2315
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2316
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2317
			}
2318 2319 2320 2321
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2322
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2323
			goto bypass;
2324
		}
2325 2326
	} while (ret != CHARGE_OK);

2327
	if (batch > nr_pages)
2328 2329
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2330
done:
2331
	*ptr = memcg;
2332 2333
	return 0;
nomem:
2334
	*ptr = NULL;
2335
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2336
bypass:
2337 2338
	*ptr = root_mem_cgroup;
	return -EINTR;
2339
}
2340

2341 2342 2343 2344 2345
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2346
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2347
				       unsigned int nr_pages)
2348
{
2349
	if (!mem_cgroup_is_root(memcg)) {
2350 2351
		unsigned long bytes = nr_pages * PAGE_SIZE;

2352
		res_counter_uncharge(&memcg->res, bytes);
2353
		if (do_swap_account)
2354
			res_counter_uncharge(&memcg->memsw, bytes);
2355
	}
2356 2357
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2377
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2378
{
2379
	struct mem_cgroup *memcg = NULL;
2380
	struct page_cgroup *pc;
2381
	unsigned short id;
2382 2383
	swp_entry_t ent;

2384 2385 2386
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2387
	lock_page_cgroup(pc);
2388
	if (PageCgroupUsed(pc)) {
2389 2390 2391
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2392
	} else if (PageSwapCache(page)) {
2393
		ent.val = page_private(page);
2394
		id = lookup_swap_cgroup_id(ent);
2395
		rcu_read_lock();
2396 2397 2398
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2399
		rcu_read_unlock();
2400
	}
2401
	unlock_page_cgroup(pc);
2402
	return memcg;
2403 2404
}

2405
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2406
				       struct page *page,
2407
				       unsigned int nr_pages,
2408
				       struct page_cgroup *pc,
2409
				       enum charge_type ctype)
2410
{
2411 2412 2413
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2414
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2415 2416 2417 2418 2419 2420
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2421
	pc->mem_cgroup = memcg;
2422 2423 2424 2425 2426 2427 2428
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2429
	smp_wmb();
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2443

2444
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2445
	unlock_page_cgroup(pc);
2446
	WARN_ON_ONCE(PageLRU(page));
2447 2448 2449 2450 2451
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2452
	memcg_check_events(memcg, page);
2453
}
2454

2455 2456 2457
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2458
			(1 << PCG_MIGRATION))
2459 2460
/*
 * Because tail pages are not marked as "used", set it. We're under
2461 2462 2463
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2464
 */
2465
void mem_cgroup_split_huge_fixup(struct page *head)
2466 2467
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2468
	struct mem_cgroup_per_zone *mz;
2469
	struct page_cgroup *pc;
2470
	enum lru_list lru;
2471
	int i;
2472

2473 2474
	if (mem_cgroup_disabled())
		return;
2475 2476 2477 2478 2479 2480
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2481 2482 2483 2484 2485 2486 2487
	/*
	 * Tail pages will be added to LRU.
	 * We hold lru_lock,then,reduce counter directly.
	 */
	lru = page_lru(head);
	mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
	MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2488 2489 2490
}
#endif

2491
/**
2492
 * mem_cgroup_move_account - move account of the page
2493
 * @page: the page
2494
 * @nr_pages: number of regular pages (>1 for huge pages)
2495 2496 2497
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2498
 * @uncharge: whether we should call uncharge and css_put against @from.
2499 2500
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2501
 * - page is not on LRU (isolate_page() is useful.)
2502
 * - compound_lock is held when nr_pages > 1
2503
 *
2504
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2505
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2506 2507
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2508
 */
2509 2510 2511 2512 2513 2514
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2515
{
2516 2517
	unsigned long flags;
	int ret;
2518

2519
	VM_BUG_ON(from == to);
2520
	VM_BUG_ON(PageLRU(page));
2521 2522 2523 2524 2525 2526 2527
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2528
	if (nr_pages > 1 && !PageTransHuge(page))
2529 2530 2531 2532 2533 2534 2535 2536 2537
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2538

2539
	if (PageCgroupFileMapped(pc)) {
2540 2541 2542 2543 2544
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2545
	}
2546
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2547 2548
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2549
		__mem_cgroup_cancel_charge(from, nr_pages);
2550

2551
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2552
	pc->mem_cgroup = to;
2553
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2554 2555 2556
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2557
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2558
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2559
	 * status here.
2560
	 */
2561 2562 2563
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2564
	unlock_page_cgroup(pc);
2565 2566 2567
	/*
	 * check events
	 */
2568 2569
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2570
out:
2571 2572 2573 2574 2575 2576 2577
	return ret;
}

/*
 * move charges to its parent.
 */

2578 2579
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2580 2581 2582 2583 2584 2585
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2586
	unsigned int nr_pages;
2587
	unsigned long uninitialized_var(flags);
2588 2589 2590 2591 2592 2593
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2594 2595 2596 2597 2598
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2599

2600
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2601

2602
	parent = mem_cgroup_from_cont(pcg);
2603
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2604
	if (ret)
2605
		goto put_back;
2606

2607
	if (nr_pages > 1)
2608 2609
		flags = compound_lock_irqsave(page);

2610
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2611
	if (ret)
2612
		__mem_cgroup_cancel_charge(parent, nr_pages);
2613

2614
	if (nr_pages > 1)
2615
		compound_unlock_irqrestore(page, flags);
2616
put_back:
K
KAMEZAWA Hiroyuki 已提交
2617
	putback_lru_page(page);
2618
put:
2619
	put_page(page);
2620
out:
2621 2622 2623
	return ret;
}

2624 2625 2626 2627 2628 2629 2630
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2631
				gfp_t gfp_mask, enum charge_type ctype)
2632
{
2633
	struct mem_cgroup *memcg = NULL;
2634
	unsigned int nr_pages = 1;
2635
	struct page_cgroup *pc;
2636
	bool oom = true;
2637
	int ret;
A
Andrea Arcangeli 已提交
2638

A
Andrea Arcangeli 已提交
2639
	if (PageTransHuge(page)) {
2640
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2641
		VM_BUG_ON(!PageTransHuge(page));
2642 2643 2644 2645 2646
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2647
	}
2648 2649

	pc = lookup_page_cgroup(page);
2650
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2651
	if (ret == -ENOMEM)
2652
		return ret;
2653
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2654 2655 2656
	return 0;
}

2657 2658
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2659
{
2660
	if (mem_cgroup_disabled())
2661
		return 0;
2662 2663 2664
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2665
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2666
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2667 2668
}

D
Daisuke Nishimura 已提交
2669 2670 2671 2672
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2673
static void
2674
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2675 2676 2677
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
2678 2679 2680 2681
	struct zone *zone = page_zone(page);
	unsigned long flags;
	bool removed = false;

2682 2683 2684 2685 2686
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
2687 2688 2689 2690 2691 2692
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(page)) {
		del_page_from_lru_list(zone, page, page_lru(page));
		ClearPageLRU(page);
		removed = true;
	}
2693
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2694 2695 2696 2697 2698
	if (removed) {
		add_page_to_lru_list(zone, page, page_lru(page));
		SetPageLRU(page);
	}
	spin_unlock_irqrestore(&zone->lru_lock, flags);
2699 2700 2701
	return;
}

2702 2703
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2704
{
2705
	struct mem_cgroup *memcg = NULL;
2706
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2707 2708
	int ret;

2709
	if (mem_cgroup_disabled())
2710
		return 0;
2711 2712
	if (PageCompound(page))
		return 0;
2713

2714
	if (unlikely(!mm))
2715
		mm = &init_mm;
2716 2717
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2718

2719
	if (!PageSwapCache(page))
2720
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2721
	else { /* page is swapcache/shmem */
2722
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2723
		if (!ret)
2724 2725
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2726
	return ret;
2727 2728
}

2729 2730 2731
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2732
 * struct page_cgroup is acquired. This refcnt will be consumed by
2733 2734
 * "commit()" or removed by "cancel()"
 */
2735 2736
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2737
				 gfp_t mask, struct mem_cgroup **memcgp)
2738
{
2739
	struct mem_cgroup *memcg;
2740
	int ret;
2741

2742
	*memcgp = NULL;
2743

2744
	if (mem_cgroup_disabled())
2745 2746 2747 2748 2749 2750
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2751 2752 2753
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2754 2755
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2756
		goto charge_cur_mm;
2757 2758
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2759
		goto charge_cur_mm;
2760 2761
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2762
	css_put(&memcg->css);
2763 2764
	if (ret == -EINTR)
		ret = 0;
2765
	return ret;
2766 2767 2768
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2769 2770 2771 2772
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2773 2774
}

D
Daisuke Nishimura 已提交
2775
static void
2776
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2777
					enum charge_type ctype)
2778
{
2779
	if (mem_cgroup_disabled())
2780
		return;
2781
	if (!memcg)
2782
		return;
2783
	cgroup_exclude_rmdir(&memcg->css);
2784

2785
	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2786 2787 2788
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2789 2790 2791
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2792
	 */
2793
	if (do_swap_account && PageSwapCache(page)) {
2794
		swp_entry_t ent = {.val = page_private(page)};
2795
		struct mem_cgroup *swap_memcg;
2796 2797 2798 2799
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2800 2801
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2802 2803 2804 2805
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2806 2807 2808 2809 2810
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2811
		}
2812
		rcu_read_unlock();
2813
	}
2814 2815 2816 2817 2818
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2819
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2820 2821
}

2822 2823
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2824
{
2825 2826
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2827 2828
}

2829
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2830
{
2831
	if (mem_cgroup_disabled())
2832
		return;
2833
	if (!memcg)
2834
		return;
2835
	__mem_cgroup_cancel_charge(memcg, 1);
2836 2837
}

2838
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2839 2840
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2841 2842 2843
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2856
		batch->memcg = memcg;
2857 2858
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2859
	 * In those cases, all pages freed continuously can be expected to be in
2860 2861 2862 2863 2864 2865 2866 2867
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2868
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2869 2870
		goto direct_uncharge;

2871 2872 2873 2874 2875
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2876
	if (batch->memcg != memcg)
2877 2878
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2879
	batch->nr_pages++;
2880
	if (uncharge_memsw)
2881
		batch->memsw_nr_pages++;
2882 2883
	return;
direct_uncharge:
2884
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2885
	if (uncharge_memsw)
2886 2887 2888
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2889 2890
	return;
}
2891

2892
/*
2893
 * uncharge if !page_mapped(page)
2894
 */
2895
static struct mem_cgroup *
2896
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2897
{
2898
	struct mem_cgroup *memcg = NULL;
2899 2900
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2901

2902
	if (mem_cgroup_disabled())
2903
		return NULL;
2904

K
KAMEZAWA Hiroyuki 已提交
2905
	if (PageSwapCache(page))
2906
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2907

A
Andrea Arcangeli 已提交
2908
	if (PageTransHuge(page)) {
2909
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2910 2911
		VM_BUG_ON(!PageTransHuge(page));
	}
2912
	/*
2913
	 * Check if our page_cgroup is valid
2914
	 */
2915
	pc = lookup_page_cgroup(page);
2916
	if (unlikely(!PageCgroupUsed(pc)))
2917
		return NULL;
2918

2919
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2920

2921
	memcg = pc->mem_cgroup;
2922

K
KAMEZAWA Hiroyuki 已提交
2923 2924 2925 2926 2927
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2928
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2929 2930
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2942
	}
K
KAMEZAWA Hiroyuki 已提交
2943

2944
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2945

2946
	ClearPageCgroupUsed(pc);
2947 2948 2949 2950 2951 2952
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2953

2954
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2955
	/*
2956
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2957 2958
	 * will never be freed.
	 */
2959
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2960
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2961 2962
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2963
	}
2964 2965
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2966

2967
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2968 2969 2970

unlock_out:
	unlock_page_cgroup(pc);
2971
	return NULL;
2972 2973
}

2974 2975
void mem_cgroup_uncharge_page(struct page *page)
{
2976 2977 2978
	/* early check. */
	if (page_mapped(page))
		return;
2979
	VM_BUG_ON(page->mapping && !PageAnon(page));
2980 2981 2982 2983 2984 2985
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2986
	VM_BUG_ON(page->mapping);
2987 2988 2989
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3004 3005
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3026 3027 3028 3029 3030 3031
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3032
	memcg_oom_recover(batch->memcg);
3033 3034 3035 3036
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
/*
 * A function for resetting pc->mem_cgroup for newly allocated pages.
 * This function should be called if the newpage will be added to LRU
 * before start accounting.
 */
void mem_cgroup_reset_owner(struct page *newpage)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(newpage);
	VM_BUG_ON(PageCgroupUsed(pc));
	pc->mem_cgroup = root_mem_cgroup;
}

3054
#ifdef CONFIG_SWAP
3055
/*
3056
 * called after __delete_from_swap_cache() and drop "page" account.
3057 3058
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3059 3060
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3061 3062
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3063 3064 3065 3066 3067 3068
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3069

K
KAMEZAWA Hiroyuki 已提交
3070 3071 3072 3073 3074
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3075
		swap_cgroup_record(ent, css_id(&memcg->css));
3076
}
3077
#endif
3078 3079 3080 3081 3082 3083 3084

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3085
{
3086
	struct mem_cgroup *memcg;
3087
	unsigned short id;
3088 3089 3090 3091

	if (!do_swap_account)
		return;

3092 3093 3094
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3095
	if (memcg) {
3096 3097 3098 3099
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3100
		if (!mem_cgroup_is_root(memcg))
3101
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3102
		mem_cgroup_swap_statistics(memcg, false);
3103 3104
		mem_cgroup_put(memcg);
	}
3105
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3106
}
3107 3108 3109 3110 3111 3112

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3113
 * @need_fixup: whether we should fixup res_counters and refcounts.
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3124
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3125 3126 3127 3128 3129 3130 3131 3132
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3133
		mem_cgroup_swap_statistics(to, true);
3134
		/*
3135 3136 3137 3138 3139 3140
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3141 3142
		 */
		mem_cgroup_get(to);
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3154 3155 3156 3157 3158 3159
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3160
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3161 3162 3163
{
	return -EINVAL;
}
3164
#endif
K
KAMEZAWA Hiroyuki 已提交
3165

3166
/*
3167 3168
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3169
 */
3170
int mem_cgroup_prepare_migration(struct page *page,
3171
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3172
{
3173
	struct mem_cgroup *memcg = NULL;
3174
	struct page_cgroup *pc;
3175
	enum charge_type ctype;
3176
	int ret = 0;
3177

3178
	*memcgp = NULL;
3179

A
Andrea Arcangeli 已提交
3180
	VM_BUG_ON(PageTransHuge(page));
3181
	if (mem_cgroup_disabled())
3182 3183
		return 0;

3184 3185 3186
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3187 3188
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3220
	}
3221
	unlock_page_cgroup(pc);
3222 3223 3224 3225
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3226
	if (!memcg)
3227
		return 0;
3228

3229 3230
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3231
	css_put(&memcg->css);/* drop extra refcnt */
3232
	if (ret) {
3233 3234 3235 3236 3237 3238 3239 3240 3241
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3242
		/* we'll need to revisit this error code (we have -EINTR) */
3243
		return -ENOMEM;
3244
	}
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3258
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3259
	return ret;
3260
}
3261

3262
/* remove redundant charge if migration failed*/
3263
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3264
	struct page *oldpage, struct page *newpage, bool migration_ok)
3265
{
3266
	struct page *used, *unused;
3267 3268
	struct page_cgroup *pc;

3269
	if (!memcg)
3270
		return;
3271
	/* blocks rmdir() */
3272
	cgroup_exclude_rmdir(&memcg->css);
3273
	if (!migration_ok) {
3274 3275
		used = oldpage;
		unused = newpage;
3276
	} else {
3277
		used = newpage;
3278 3279
		unused = oldpage;
	}
3280
	/*
3281 3282 3283
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3284
	 */
3285 3286 3287 3288
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3289

3290 3291
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3292
	/*
3293 3294 3295 3296 3297 3298
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3299
	 */
3300 3301
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3302
	/*
3303 3304
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3305 3306 3307
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3308
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3309
}
3310

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3342
	__mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3343 3344
}

3345 3346 3347 3348 3349 3350
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3351 3352 3353 3354 3355
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3396 3397
static DEFINE_MUTEX(set_limit_mutex);

3398
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3399
				unsigned long long val)
3400
{
3401
	int retry_count;
3402
	u64 memswlimit, memlimit;
3403
	int ret = 0;
3404 3405
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3406
	int enlarge;
3407 3408 3409 3410 3411 3412 3413 3414 3415

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3416

3417
	enlarge = 0;
3418
	while (retry_count) {
3419 3420 3421 3422
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3423 3424 3425
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3426
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3427 3428 3429 3430 3431 3432
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3433 3434
			break;
		}
3435 3436 3437 3438 3439

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3440
		ret = res_counter_set_limit(&memcg->res, val);
3441 3442 3443 3444 3445 3446
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3447 3448 3449 3450 3451
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3452 3453
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3454 3455 3456 3457 3458 3459
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3460
	}
3461 3462
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3463

3464 3465 3466
	return ret;
}

L
Li Zefan 已提交
3467 3468
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3469
{
3470
	int retry_count;
3471
	u64 memlimit, memswlimit, oldusage, curusage;
3472 3473
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3474
	int enlarge = 0;
3475

3476 3477 3478
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3479 3480 3481 3482 3483 3484 3485 3486
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3487
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3488 3489 3490 3491 3492 3493 3494 3495
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3496 3497 3498
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3499
		ret = res_counter_set_limit(&memcg->memsw, val);
3500 3501 3502 3503 3504 3505
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3506 3507 3508 3509 3510
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3511 3512 3513
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3514
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3515
		/* Usage is reduced ? */
3516
		if (curusage >= oldusage)
3517
			retry_count--;
3518 3519
		else
			oldusage = curusage;
3520
	}
3521 3522
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3523 3524 3525
	return ret;
}

3526
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3527 3528
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3529 3530 3531 3532 3533 3534
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3535
	unsigned long long excess;
3536
	unsigned long nr_scanned;
3537 3538 3539 3540

	if (order > 0)
		return 0;

3541
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3555
		nr_scanned = 0;
3556 3557
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3558
		nr_reclaimed += reclaimed;
3559
		*total_scanned += nr_scanned;
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3582
				if (next_mz == mz)
3583
					css_put(&next_mz->mem->css);
3584
				else /* next_mz == NULL or other memcg */
3585 3586 3587 3588
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3589
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3590 3591 3592 3593 3594 3595 3596 3597
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3598 3599
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3618 3619 3620 3621
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3622
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3623
				int node, int zid, enum lru_list lru)
3624
{
K
KAMEZAWA Hiroyuki 已提交
3625 3626
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3627
	struct list_head *list;
3628 3629
	struct page *busy;
	struct zone *zone;
3630
	int ret = 0;
3631

K
KAMEZAWA Hiroyuki 已提交
3632
	zone = &NODE_DATA(node)->node_zones[zid];
3633
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3634
	list = &mz->lruvec.lists[lru];
3635

3636 3637 3638 3639 3640
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3641
		struct page_cgroup *pc;
3642 3643
		struct page *page;

3644
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3645
		spin_lock_irqsave(&zone->lru_lock, flags);
3646
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3647
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3648
			break;
3649
		}
3650 3651 3652
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3653
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3654
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3655 3656
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3657
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3658

3659
		pc = lookup_page_cgroup(page);
3660

3661
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3662
		if (ret == -ENOMEM || ret == -EINTR)
3663
			break;
3664 3665 3666

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3667
			busy = page;
3668 3669 3670
			cond_resched();
		} else
			busy = NULL;
3671
	}
K
KAMEZAWA Hiroyuki 已提交
3672

3673 3674 3675
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3676 3677 3678 3679 3680 3681
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3682
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3683
{
3684 3685 3686
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3687
	struct cgroup *cgrp = memcg->css.cgroup;
3688

3689
	css_get(&memcg->css);
3690 3691

	shrink = 0;
3692 3693 3694
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3695
move_account:
3696
	do {
3697
		ret = -EBUSY;
3698 3699 3700 3701
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3702
			goto out;
3703 3704
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3705
		drain_all_stock_sync(memcg);
3706
		ret = 0;
3707
		mem_cgroup_start_move(memcg);
3708
		for_each_node_state(node, N_HIGH_MEMORY) {
3709
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3710
				enum lru_list l;
3711
				for_each_lru(l) {
3712
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3713
							node, zid, l);
3714 3715 3716
					if (ret)
						break;
				}
3717
			}
3718 3719 3720
			if (ret)
				break;
		}
3721 3722
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3723 3724 3725
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3726
		cond_resched();
3727
	/* "ret" should also be checked to ensure all lists are empty. */
3728
	} while (memcg->res.usage > 0 || ret);
3729
out:
3730
	css_put(&memcg->css);
3731
	return ret;
3732 3733

try_to_free:
3734 3735
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3736 3737 3738
		ret = -EBUSY;
		goto out;
	}
3739 3740
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3741 3742
	/* try to free all pages in this cgroup */
	shrink = 1;
3743
	while (nr_retries && memcg->res.usage > 0) {
3744
		int progress;
3745 3746 3747 3748 3749

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3750
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3751
						false);
3752
		if (!progress) {
3753
			nr_retries--;
3754
			/* maybe some writeback is necessary */
3755
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3756
		}
3757 3758

	}
K
KAMEZAWA Hiroyuki 已提交
3759
	lru_add_drain();
3760
	/* try move_account...there may be some *locked* pages. */
3761
	goto move_account;
3762 3763
}

3764 3765 3766 3767 3768 3769
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3770 3771 3772 3773 3774 3775 3776 3777 3778
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3779
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3780
	struct cgroup *parent = cont->parent;
3781
	struct mem_cgroup *parent_memcg = NULL;
3782 3783

	if (parent)
3784
		parent_memcg = mem_cgroup_from_cont(parent);
3785 3786 3787

	cgroup_lock();
	/*
3788
	 * If parent's use_hierarchy is set, we can't make any modifications
3789 3790 3791 3792 3793 3794
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3795
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3796 3797
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3798
			memcg->use_hierarchy = val;
3799 3800 3801 3802 3803 3804 3805 3806 3807
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3808

3809
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3810
					       enum mem_cgroup_stat_index idx)
3811
{
K
KAMEZAWA Hiroyuki 已提交
3812
	struct mem_cgroup *iter;
3813
	long val = 0;
3814

3815
	/* Per-cpu values can be negative, use a signed accumulator */
3816
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3817 3818 3819 3820 3821
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3822 3823
}

3824
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3825
{
K
KAMEZAWA Hiroyuki 已提交
3826
	u64 val;
3827

3828
	if (!mem_cgroup_is_root(memcg)) {
3829
		if (!swap)
3830
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3831
		else
3832
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3833 3834
	}

3835 3836
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3837

K
KAMEZAWA Hiroyuki 已提交
3838
	if (swap)
3839
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3840 3841 3842 3843

	return val << PAGE_SHIFT;
}

3844
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3845
{
3846
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3847
	u64 val;
3848 3849 3850 3851 3852 3853
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3854
		if (name == RES_USAGE)
3855
			val = mem_cgroup_usage(memcg, false);
3856
		else
3857
			val = res_counter_read_u64(&memcg->res, name);
3858 3859
		break;
	case _MEMSWAP:
3860
		if (name == RES_USAGE)
3861
			val = mem_cgroup_usage(memcg, true);
3862
		else
3863
			val = res_counter_read_u64(&memcg->memsw, name);
3864 3865 3866 3867 3868 3869
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3870
}
3871 3872 3873 3874
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3875 3876
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3877
{
3878
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3879
	int type, name;
3880 3881 3882
	unsigned long long val;
	int ret;

3883 3884 3885
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3886
	case RES_LIMIT:
3887 3888 3889 3890
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3891 3892
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3893 3894 3895
		if (ret)
			break;
		if (type == _MEM)
3896
			ret = mem_cgroup_resize_limit(memcg, val);
3897 3898
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3899
		break;
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3914 3915 3916 3917 3918
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3919 3920
}

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3949
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3950
{
3951
	struct mem_cgroup *memcg;
3952
	int type, name;
3953

3954
	memcg = mem_cgroup_from_cont(cont);
3955 3956 3957
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3958
	case RES_MAX_USAGE:
3959
		if (type == _MEM)
3960
			res_counter_reset_max(&memcg->res);
3961
		else
3962
			res_counter_reset_max(&memcg->memsw);
3963 3964
		break;
	case RES_FAILCNT:
3965
		if (type == _MEM)
3966
			res_counter_reset_failcnt(&memcg->res);
3967
		else
3968
			res_counter_reset_failcnt(&memcg->memsw);
3969 3970
		break;
	}
3971

3972
	return 0;
3973 3974
}

3975 3976 3977 3978 3979 3980
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3981
#ifdef CONFIG_MMU
3982 3983 3984
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3985
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3986 3987 3988 3989 3990 3991 3992 3993 3994

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3995
	memcg->move_charge_at_immigrate = val;
3996 3997 3998 3999
	cgroup_unlock();

	return 0;
}
4000 4001 4002 4003 4004 4005 4006
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4007

K
KAMEZAWA Hiroyuki 已提交
4008 4009 4010 4011 4012

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4013
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4014 4015
	MCS_PGPGIN,
	MCS_PGPGOUT,
4016
	MCS_SWAP,
4017 4018
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4029 4030
};

K
KAMEZAWA Hiroyuki 已提交
4031 4032 4033 4034 4035 4036
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4037
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4038 4039
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4040
	{"swap", "total_swap"},
4041 4042
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4043 4044 4045 4046 4047 4048 4049 4050
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4051
static void
4052
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4053 4054 4055 4056
{
	s64 val;

	/* per cpu stat */
4057
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4058
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4059
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4060
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4061
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4062
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4063
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4064
	s->stat[MCS_PGPGIN] += val;
4065
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4066
	s->stat[MCS_PGPGOUT] += val;
4067
	if (do_swap_account) {
4068
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4069 4070
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4071
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4072
	s->stat[MCS_PGFAULT] += val;
4073
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4074
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4075 4076

	/* per zone stat */
4077
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4078
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4079
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4080
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4081
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4082
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4083
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4084
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4085
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4086 4087 4088 4089
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4090
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4091
{
K
KAMEZAWA Hiroyuki 已提交
4092 4093
	struct mem_cgroup *iter;

4094
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4095
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4096 4097
}

4098 4099 4100 4101 4102 4103 4104 4105 4106
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4107
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4108 4109
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4110
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4111 4112 4113 4114
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4115
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4116 4117
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4118 4119
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4120 4121 4122 4123
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4124
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4125 4126
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4127 4128
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4129 4130 4131 4132
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4133
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4134 4135
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4136 4137
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4138 4139 4140 4141 4142 4143 4144
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4145 4146
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4147 4148
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4149
	struct mcs_total_stat mystat;
4150 4151
	int i;

K
KAMEZAWA Hiroyuki 已提交
4152 4153
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4154

4155

4156 4157 4158
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4159
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4160
	}
L
Lee Schermerhorn 已提交
4161

K
KAMEZAWA Hiroyuki 已提交
4162
	/* Hierarchical information */
4163 4164 4165 4166 4167 4168 4169
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4170

K
KAMEZAWA Hiroyuki 已提交
4171 4172
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4173 4174 4175
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4176
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4177
	}
K
KAMEZAWA Hiroyuki 已提交
4178

K
KOSAKI Motohiro 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4206 4207 4208
	return 0;
}

K
KOSAKI Motohiro 已提交
4209 4210 4211 4212
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4213
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4214 4215 4216 4217 4218 4219 4220
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4221

K
KOSAKI Motohiro 已提交
4222 4223 4224 4225 4226 4227 4228
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4229 4230 4231

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4232 4233
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4234 4235
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4236
		return -EINVAL;
4237
	}
K
KOSAKI Motohiro 已提交
4238 4239 4240

	memcg->swappiness = val;

4241 4242
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4243 4244 4245
	return 0;
}

4246 4247 4248 4249 4250 4251 4252 4253
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4254
		t = rcu_dereference(memcg->thresholds.primary);
4255
	else
4256
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4268
	i = t->current_threshold;
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4292
	t->current_threshold = i - 1;
4293 4294 4295 4296 4297 4298
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4299 4300 4301 4302 4303 4304 4305
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4316
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4317 4318 4319
{
	struct mem_cgroup_eventfd_list *ev;

4320
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4321 4322 4323 4324
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4325
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4326
{
K
KAMEZAWA Hiroyuki 已提交
4327 4328
	struct mem_cgroup *iter;

4329
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4330
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4331 4332 4333 4334
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4335 4336
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4337 4338
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4339 4340
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4341
	int i, size, ret;
4342 4343 4344 4345 4346 4347

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4348

4349
	if (type == _MEM)
4350
		thresholds = &memcg->thresholds;
4351
	else if (type == _MEMSWAP)
4352
		thresholds = &memcg->memsw_thresholds;
4353 4354 4355 4356 4357 4358
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4359
	if (thresholds->primary)
4360 4361
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4362
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4363 4364

	/* Allocate memory for new array of thresholds */
4365
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4366
			GFP_KERNEL);
4367
	if (!new) {
4368 4369 4370
		ret = -ENOMEM;
		goto unlock;
	}
4371
	new->size = size;
4372 4373

	/* Copy thresholds (if any) to new array */
4374 4375
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4376
				sizeof(struct mem_cgroup_threshold));
4377 4378
	}

4379
	/* Add new threshold */
4380 4381
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4382 4383

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4384
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4385 4386 4387
			compare_thresholds, NULL);

	/* Find current threshold */
4388
	new->current_threshold = -1;
4389
	for (i = 0; i < size; i++) {
4390
		if (new->entries[i].threshold < usage) {
4391
			/*
4392 4393
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4394 4395
			 * it here.
			 */
4396
			++new->current_threshold;
4397 4398 4399
		}
	}

4400 4401 4402 4403 4404
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4405

4406
	/* To be sure that nobody uses thresholds */
4407 4408 4409 4410 4411 4412 4413 4414
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4415
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4416
	struct cftype *cft, struct eventfd_ctx *eventfd)
4417 4418
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4419 4420
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4421 4422
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4423
	int i, j, size;
4424 4425 4426

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4427
		thresholds = &memcg->thresholds;
4428
	else if (type == _MEMSWAP)
4429
		thresholds = &memcg->memsw_thresholds;
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4445 4446 4447
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4448 4449 4450
			size++;
	}

4451
	new = thresholds->spare;
4452

4453 4454
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4455 4456
		kfree(new);
		new = NULL;
4457
		goto swap_buffers;
4458 4459
	}

4460
	new->size = size;
4461 4462

	/* Copy thresholds and find current threshold */
4463 4464 4465
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4466 4467
			continue;

4468 4469
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4470
			/*
4471
			 * new->current_threshold will not be used
4472 4473 4474
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4475
			++new->current_threshold;
4476 4477 4478 4479
		}
		j++;
	}

4480
swap_buffers:
4481 4482 4483
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4484

4485
	/* To be sure that nobody uses thresholds */
4486 4487 4488 4489
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4490

K
KAMEZAWA Hiroyuki 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4503
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4504 4505 4506 4507 4508

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4509
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4510
		eventfd_signal(eventfd, 1);
4511
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4512 4513 4514 4515

	return 0;
}

4516
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4517 4518
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4519
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4520 4521 4522 4523 4524
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4525
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4526

4527
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4528 4529 4530 4531 4532 4533
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4534
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4535 4536
}

4537 4538 4539
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4540
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4541

4542
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4543

4544
	if (atomic_read(&memcg->under_oom))
4545 4546 4547 4548 4549 4550 4551 4552 4553
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4554
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4566
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4567 4568 4569
		cgroup_unlock();
		return -EINVAL;
	}
4570
	memcg->oom_kill_disable = val;
4571
	if (!val)
4572
		memcg_oom_recover(memcg);
4573 4574 4575 4576
	cgroup_unlock();
	return 0;
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4593 4594 4595
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4596 4597 4598 4599 4600 4601 4602
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4603
	return mem_cgroup_sockets_init(cont, ss);
4604 4605
};

G
Glauber Costa 已提交
4606 4607 4608 4609 4610
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4611 4612 4613 4614 4615
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4616 4617 4618 4619 4620

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4621 4622
#endif

B
Balbir Singh 已提交
4623 4624
static struct cftype mem_cgroup_files[] = {
	{
4625
		.name = "usage_in_bytes",
4626
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4627
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4628 4629
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4630
	},
4631 4632
	{
		.name = "max_usage_in_bytes",
4633
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4634
		.trigger = mem_cgroup_reset,
4635 4636
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4637
	{
4638
		.name = "limit_in_bytes",
4639
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4640
		.write_string = mem_cgroup_write,
4641
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4642
	},
4643 4644 4645 4646 4647 4648
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4649 4650
	{
		.name = "failcnt",
4651
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4652
		.trigger = mem_cgroup_reset,
4653
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4654
	},
4655 4656
	{
		.name = "stat",
4657
		.read_map = mem_control_stat_show,
4658
	},
4659 4660 4661 4662
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4663 4664 4665 4666 4667
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4668 4669 4670 4671 4672
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4673 4674 4675 4676 4677
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4678 4679
	{
		.name = "oom_control",
4680 4681
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4682 4683 4684 4685
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4686 4687 4688 4689
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4690
		.mode = S_IRUGO,
4691 4692
	},
#endif
B
Balbir Singh 已提交
4693 4694
};

4695 4696 4697 4698 4699 4700
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4701 4702
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4738
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4739 4740
{
	struct mem_cgroup_per_node *pn;
4741
	struct mem_cgroup_per_zone *mz;
4742
	enum lru_list l;
4743
	int zone, tmp = node;
4744 4745 4746 4747 4748 4749 4750 4751
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4752 4753
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4754
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4755 4756
	if (!pn)
		return 1;
4757 4758 4759

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4760
		for_each_lru(l)
4761
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4762
		mz->usage_in_excess = 0;
4763
		mz->on_tree = false;
4764
		mz->mem = memcg;
4765
	}
4766
	memcg->info.nodeinfo[node] = pn;
4767 4768 4769
	return 0;
}

4770
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4771
{
4772
	kfree(memcg->info.nodeinfo[node]);
4773 4774
}

4775 4776 4777
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4778
	int size = sizeof(struct mem_cgroup);
4779

4780
	/* Can be very big if MAX_NUMNODES is very big */
4781
	if (size < PAGE_SIZE)
4782
		mem = kzalloc(size, GFP_KERNEL);
4783
	else
4784
		mem = vzalloc(size);
4785

4786 4787 4788
	if (!mem)
		return NULL;

4789
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4790 4791
	if (!mem->stat)
		goto out_free;
4792
	spin_lock_init(&mem->pcp_counter_lock);
4793
	return mem;
4794 4795 4796 4797 4798 4799 4800

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4801 4802
}

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4814
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4815
{
K
KAMEZAWA Hiroyuki 已提交
4816 4817
	int node;

4818 4819
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4820

K
KAMEZAWA Hiroyuki 已提交
4821
	for_each_node_state(node, N_POSSIBLE)
4822
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4823

4824
	free_percpu(memcg->stat);
4825
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4826
		kfree(memcg);
4827
	else
4828
		vfree(memcg);
4829 4830
}

4831
static void mem_cgroup_get(struct mem_cgroup *memcg)
4832
{
4833
	atomic_inc(&memcg->refcnt);
4834 4835
}

4836
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4837
{
4838 4839 4840
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4841 4842 4843
		if (parent)
			mem_cgroup_put(parent);
	}
4844 4845
}

4846
static void mem_cgroup_put(struct mem_cgroup *memcg)
4847
{
4848
	__mem_cgroup_put(memcg, 1);
4849 4850
}

4851 4852 4853
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4854
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4855
{
4856
	if (!memcg->res.parent)
4857
		return NULL;
4858
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4859
}
G
Glauber Costa 已提交
4860
EXPORT_SYMBOL(parent_mem_cgroup);
4861

4862 4863 4864
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4865
	if (!mem_cgroup_disabled() && really_do_swap_account)
4866 4867 4868 4869 4870 4871 4872 4873
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4886
			goto err_cleanup;
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906

err_cleanup:
	for_each_node_state(node, N_POSSIBLE) {
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4907 4908
}

L
Li Zefan 已提交
4909
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4910 4911
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4912
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4913
	long error = -ENOMEM;
4914
	int node;
B
Balbir Singh 已提交
4915

4916 4917
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4918
		return ERR_PTR(error);
4919

4920
	for_each_node_state(node, N_POSSIBLE)
4921
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4922
			goto free_out;
4923

4924
	/* root ? */
4925
	if (cont->parent == NULL) {
4926
		int cpu;
4927
		enable_swap_cgroup();
4928
		parent = NULL;
4929 4930
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4931
		root_mem_cgroup = memcg;
4932 4933 4934 4935 4936
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4937
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4938
	} else {
4939
		parent = mem_cgroup_from_cont(cont->parent);
4940 4941
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4942
	}
4943

4944
	if (parent && parent->use_hierarchy) {
4945 4946
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4947 4948 4949 4950 4951 4952 4953
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4954
	} else {
4955 4956
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4957
	}
4958 4959
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4960

K
KOSAKI Motohiro 已提交
4961
	if (parent)
4962 4963 4964 4965 4966
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4967
free_out:
4968
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4969
	return ERR_PTR(error);
B
Balbir Singh 已提交
4970 4971
}

4972
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4973 4974
					struct cgroup *cont)
{
4975
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4976

4977
	return mem_cgroup_force_empty(memcg, false);
4978 4979
}

B
Balbir Singh 已提交
4980 4981 4982
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4983
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4984

G
Glauber Costa 已提交
4985 4986
	kmem_cgroup_destroy(ss, cont);

4987
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4988 4989 4990 4991 4992
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4993 4994 4995 4996 4997 4998 4999
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5000 5001 5002 5003

	if (!ret)
		ret = register_kmem_files(cont, ss);

5004
	return ret;
B
Balbir Singh 已提交
5005 5006
}

5007
#ifdef CONFIG_MMU
5008
/* Handlers for move charge at task migration. */
5009 5010
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5011
{
5012 5013
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5014
	struct mem_cgroup *memcg = mc.to;
5015

5016
	if (mem_cgroup_is_root(memcg)) {
5017 5018 5019 5020 5021 5022 5023 5024
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5025
		 * "memcg" cannot be under rmdir() because we've already checked
5026 5027 5028 5029
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5030
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5031
			goto one_by_one;
5032
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5033
						PAGE_SIZE * count, &dummy)) {
5034
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5051 5052
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5053
		if (ret)
5054
			/* mem_cgroup_clear_mc() will do uncharge later */
5055
			return ret;
5056 5057
		mc.precharge++;
	}
5058 5059 5060 5061 5062 5063 5064 5065
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5066
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5067 5068 5069 5070 5071 5072
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5073 5074 5075
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5076 5077 5078 5079 5080
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5081
	swp_entry_t	ent;
5082 5083 5084 5085 5086
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5087
	MC_TARGET_SWAP,
5088 5089
};

D
Daisuke Nishimura 已提交
5090 5091
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5092
{
D
Daisuke Nishimura 已提交
5093
	struct page *page = vm_normal_page(vma, addr, ptent);
5094

D
Daisuke Nishimura 已提交
5095 5096 5097 5098 5099 5100
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5101 5102
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5121 5122
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5123
		return NULL;
5124
	}
D
Daisuke Nishimura 已提交
5125 5126 5127 5128 5129 5130
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5152 5153 5154 5155 5156 5157
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5158
		if (do_swap_account)
5159 5160
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5161
	}
5162
#endif
5163 5164 5165
	return page;
}

D
Daisuke Nishimura 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5178 5179
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5180 5181 5182

	if (!page && !ent.val)
		return 0;
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5198 5199
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5200
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5201 5202 5203
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5216 5217
	split_huge_page_pmd(walk->mm, pmd);

5218 5219 5220 5221 5222 5223 5224
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5225 5226 5227
	return 0;
}

5228 5229 5230 5231 5232
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5233
	down_read(&mm->mmap_sem);
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5245
	up_read(&mm->mmap_sem);
5246 5247 5248 5249 5250 5251 5252 5253 5254

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5255 5256 5257 5258 5259
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5260 5261
}

5262 5263
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5264
{
5265 5266 5267
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5268
	/* we must uncharge all the leftover precharges from mc.to */
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5280
	}
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5315
	spin_lock(&mc.lock);
5316 5317
	mc.from = NULL;
	mc.to = NULL;
5318
	spin_unlock(&mc.lock);
5319
	mem_cgroup_end_move(from);
5320 5321
}

5322 5323
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5324
				struct cgroup_taskset *tset)
5325
{
5326
	struct task_struct *p = cgroup_taskset_first(tset);
5327
	int ret = 0;
5328
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5329

5330
	if (memcg->move_charge_at_immigrate) {
5331 5332 5333
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5334
		VM_BUG_ON(from == memcg);
5335 5336 5337 5338 5339

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5340 5341 5342 5343
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5344
			VM_BUG_ON(mc.moved_charge);
5345
			VM_BUG_ON(mc.moved_swap);
5346
			mem_cgroup_start_move(from);
5347
			spin_lock(&mc.lock);
5348
			mc.from = from;
5349
			mc.to = memcg;
5350
			spin_unlock(&mc.lock);
5351
			/* We set mc.moving_task later */
5352 5353 5354 5355

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5356 5357
		}
		mmput(mm);
5358 5359 5360 5361 5362 5363
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5364
				struct cgroup_taskset *tset)
5365
{
5366
	mem_cgroup_clear_mc();
5367 5368
}

5369 5370 5371
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5372
{
5373 5374 5375 5376 5377
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5378
	split_huge_page_pmd(walk->mm, pmd);
5379 5380 5381 5382 5383 5384 5385 5386
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5387
		swp_entry_t ent;
5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5399 5400
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5401
				mc.precharge--;
5402 5403
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5404 5405 5406 5407 5408
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5409 5410
		case MC_TARGET_SWAP:
			ent = target.ent;
5411 5412
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5413
				mc.precharge--;
5414 5415 5416
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5417
			break;
5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5432
		ret = mem_cgroup_do_precharge(1);
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5476
	up_read(&mm->mmap_sem);
5477 5478
}

B
Balbir Singh 已提交
5479 5480
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5481
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5482
{
5483
	struct task_struct *p = cgroup_taskset_first(tset);
5484
	struct mm_struct *mm = get_task_mm(p);
5485 5486

	if (mm) {
5487 5488 5489
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5490 5491
		mmput(mm);
	}
5492 5493
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5494
}
5495 5496 5497
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5498
				struct cgroup_taskset *tset)
5499 5500 5501 5502 5503
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5504
				struct cgroup_taskset *tset)
5505 5506 5507 5508
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5509
				struct cgroup_taskset *tset)
5510 5511 5512
{
}
#endif
B
Balbir Singh 已提交
5513

B
Balbir Singh 已提交
5514 5515 5516 5517
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5518
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5519 5520
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5521 5522
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5523
	.attach = mem_cgroup_move_task,
5524
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5525
	.use_id = 1,
B
Balbir Singh 已提交
5526
};
5527 5528

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5529 5530 5531
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5532
	if (!strcmp(s, "1"))
5533
		really_do_swap_account = 1;
5534
	else if (!strcmp(s, "0"))
5535 5536 5537
		really_do_swap_account = 0;
	return 1;
}
5538
__setup("swapaccount=", enable_swap_account);
5539 5540

#endif