memcontrol.c 63.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
K
KAMEZAWA Hiroyuki 已提交
24
#include <linux/pagemap.h>
25
#include <linux/smp.h>
26
#include <linux/page-flags.h>
27
#include <linux/backing-dev.h>
28 29
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
30
#include <linux/limits.h>
31
#include <linux/mutex.h>
32
#include <linux/slab.h>
33 34 35
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
36
#include <linux/seq_file.h>
37
#include <linux/vmalloc.h>
38
#include <linux/mm_inline.h>
39
#include <linux/page_cgroup.h>
K
KAMEZAWA Hiroyuki 已提交
40
#include "internal.h"
B
Balbir Singh 已提交
41

42 43
#include <asm/uaccess.h>

44 45
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
46

47
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
48
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
49 50 51 52 53 54
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

55
static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
56

57 58 59 60 61 62 63 64
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
65 66
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
	MEM_CGROUP_STAT_MAPPED_FILE,  /* # of pages charged as file rss */
67 68
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
69 70 71 72 73 74 75 76 77

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
78
	struct mem_cgroup_stat_cpu cpustat[0];
79 80 81 82 83
};

/*
 * For accounting under irq disable, no need for increment preempt count.
 */
84
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
85 86
		enum mem_cgroup_stat_index idx, int val)
{
87
	stat->count[idx] += val;
88 89 90 91 92 93 94 95 96 97 98 99
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
100 101 102 103 104 105 106 107 108
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

109 110 111 112
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
113 114 115
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
116 117
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
118 119

	struct zone_reclaim_stat reclaim_stat;
120 121 122 123 124 125 126 127 128 129 130 131
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

B
Balbir Singh 已提交
132 133 134 135 136 137 138
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
139 140 141
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
142 143 144 145 146 147 148
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
149 150 151 152
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
153 154 155 156
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
157
	struct mem_cgroup_lru_info info;
158

K
KOSAKI Motohiro 已提交
159 160 161 162 163
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

164
	int	prev_priority;	/* for recording reclaim priority */
165 166 167

	/*
	 * While reclaiming in a hiearchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
168
	 * reclaimed from.
169
	 */
K
KAMEZAWA Hiroyuki 已提交
170
	int last_scanned_child;
171 172 173 174
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
175
	unsigned long	last_oom_jiffies;
176
	atomic_t	refcnt;
177

K
KOSAKI Motohiro 已提交
178 179
	unsigned int	swappiness;

180 181 182
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

183
	/*
184
	 * statistics. This must be placed at the end of memcg.
185 186
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
187 188
};

189 190 191
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
192
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
193
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
194
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
195
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
196 197 198
	NR_CHARGE_TYPE,
};

199 200 201 202
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
203 204
static const unsigned long
pcg_default_flags[NR_CHARGE_TYPE] = {
K
KAMEZAWA Hiroyuki 已提交
205 206 207
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
	PCGF_USED | PCGF_LOCK, /* Anon */
	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
208
	0, /* FORCE */
209 210
};

211 212 213 214 215 216 217 218 219
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
220
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
221

222 223 224
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
225 226 227
{
	int val = (charge)? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
228
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
229
	int cpu = get_cpu();
230

K
KAMEZAWA Hiroyuki 已提交
231
	cpustat = &stat->cpustat[cpu];
232
	if (PageCgroupCache(pc))
233
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
234
	else
235
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
236 237

	if (charge)
238
		__mem_cgroup_stat_add_safe(cpustat,
239 240
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
241
		__mem_cgroup_stat_add_safe(cpustat,
242
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
K
KAMEZAWA Hiroyuki 已提交
243
	put_cpu();
244 245
}

246
static struct mem_cgroup_per_zone *
247 248 249 250 251
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

252
static struct mem_cgroup_per_zone *
253 254 255 256 257
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);
258

259 260 261
	if (!mem)
		return NULL;

262 263 264
	return mem_cgroup_zoneinfo(mem, nid, zid);
}

K
KAMEZAWA Hiroyuki 已提交
265
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
266
					enum lru_list idx)
267 268 269 270 271 272 273 274 275 276 277
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
278 279
}

280
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
281 282 283 284 285 286
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

287
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
288
{
289 290 291 292 293 294 295 296
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

297 298 299 300
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

301 302 303
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
304 305 306

	if (!mm)
		return NULL;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
370

K
KAMEZAWA Hiroyuki 已提交
371 372 373 374 375
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup *mem;
	struct mem_cgroup_per_zone *mz;
376

377
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
378 379 380
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
381
	if (list_empty(&pc->lru) || !pc->mem_cgroup)
K
KAMEZAWA Hiroyuki 已提交
382
		return;
383 384 385 386
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
387 388
	mz = page_cgroup_zoneinfo(pc);
	mem = pc->mem_cgroup;
389
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
K
KAMEZAWA Hiroyuki 已提交
390 391
	list_del_init(&pc->lru);
	return;
392 393
}

K
KAMEZAWA Hiroyuki 已提交
394
void mem_cgroup_del_lru(struct page *page)
395
{
K
KAMEZAWA Hiroyuki 已提交
396 397
	mem_cgroup_del_lru_list(page, page_lru(page));
}
398

K
KAMEZAWA Hiroyuki 已提交
399 400 401 402
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
403

404
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
405
		return;
406

K
KAMEZAWA Hiroyuki 已提交
407
	pc = lookup_page_cgroup(page);
408 409 410 411
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
412 413 414 415 416 417
	smp_rmb();
	/* unused page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
418 419
}

K
KAMEZAWA Hiroyuki 已提交
420
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
421
{
K
KAMEZAWA Hiroyuki 已提交
422 423
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
424

425
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
426 427
		return;
	pc = lookup_page_cgroup(page);
428 429 430 431
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
432 433
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
434
		return;
435

K
KAMEZAWA Hiroyuki 已提交
436
	mz = page_cgroup_zoneinfo(pc);
437
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
K
KAMEZAWA Hiroyuki 已提交
438 439
	list_add(&pc->lru, &mz->lists[lru]);
}
440

K
KAMEZAWA Hiroyuki 已提交
441
/*
442 443 444 445 446
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
447
 */
448
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
449
{
450 451 452 453 454 455 456 457 458 459 460 461
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476 477
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
	if (PageLRU(page) && list_empty(&pc->lru))
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
478 479 480
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
481
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
482 483 484
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
485 486
}

487 488 489
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
490
	struct mem_cgroup *curr = NULL;
491 492

	task_lock(task);
493 494 495
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
496
	task_unlock(task);
497 498 499 500 501 502 503
	if (!curr)
		return 0;
	if (curr->use_hierarchy)
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
504 505 506
	return ret;
}

507 508 509 510 511
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
512 513 514 515 516 517 518
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
519 520 521 522
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
523
	spin_lock(&mem->reclaim_param_lock);
524 525
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
526
	spin_unlock(&mem->reclaim_param_lock);
527 528 529 530
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
531
	spin_lock(&mem->reclaim_param_lock);
532
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
533
	spin_unlock(&mem->reclaim_param_lock);
534 535
}

536
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
537 538 539
{
	unsigned long active;
	unsigned long inactive;
540 541
	unsigned long gb;
	unsigned long inactive_ratio;
542

K
KAMEZAWA Hiroyuki 已提交
543 544
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
545

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
573 574 575 576 577
		return 1;

	return 0;
}

578 579 580 581 582 583 584 585 586 587 588
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

589 590 591 592 593 594 595 596 597 598 599
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
620 621 622 623 624 625 626 627
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
628 629 630 631 632 633 634
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

635 636 637 638 639
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
640
					int active, int file)
641 642 643 644 645 646
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
647
	struct page_cgroup *pc, *tmp;
648 649 650
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
651
	int lru = LRU_FILE * !!file + !!active;
652
	int ret;
653

654
	BUG_ON(!mem_cont);
655
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
656
	src = &mz->lists[lru];
657

658 659
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
660
		if (scan >= nr_to_scan)
661
			break;
K
KAMEZAWA Hiroyuki 已提交
662 663

		page = pc->page;
664 665
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
666
		if (unlikely(!PageLRU(page)))
667 668
			continue;

H
Hugh Dickins 已提交
669
		scan++;
670 671 672
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
673
			list_move(&page->lru, dst);
674
			mem_cgroup_del_lru(page);
675
			nr_taken++;
676 677 678 679 680 681 682
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
683 684 685 686 687 688 689
		}
	}

	*scanned = scan;
	return nr_taken;
}

690 691 692
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

693 694 695 696 697 698 699 700 701 702 703 704
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

721 722 723 724 725 726
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

	if (!memcg)
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

795 796 797 798 799 800 801 802 803 804 805
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

806
/*
K
KAMEZAWA Hiroyuki 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
849 850
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
851 852 853
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
854 855
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
856 857
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
858
				   gfp_t gfp_mask, bool noswap, bool shrink)
859
{
K
KAMEZAWA Hiroyuki 已提交
860 861 862 863
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;

864 865 866 867
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

K
KAMEZAWA Hiroyuki 已提交
868 869 870 871 872 873 874
	while (loop < 2) {
		victim = mem_cgroup_select_victim(root_mem);
		if (victim == root_mem)
			loop++;
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
875 876
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
877 878 879 880
		/* we use swappiness of local cgroup */
		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
						   get_swappiness(victim));
		css_put(&victim->css);
881 882 883 884 885 886 887
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
888
		total += ret;
889
		if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
890
			return 1 + total;
891
	}
K
KAMEZAWA Hiroyuki 已提交
892
	return total;
893 894
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
911 912 913 914 915 916 917 918 919 920 921 922

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	if (!page_is_file_cache(page))
		return;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
done:
	unlock_page_cgroup(pc);
}
961

962 963 964
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
965
 */
966
static int __mem_cgroup_try_charge(struct mm_struct *mm,
967 968
			gfp_t gfp_mask, struct mem_cgroup **memcg,
			bool oom)
969
{
970
	struct mem_cgroup *mem, *mem_over_limit;
971
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
972
	struct res_counter *fail_res;
973 974 975 976 977 978 979

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

980
	/*
981 982
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
983 984 985
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
986 987 988
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
989
		*memcg = mem;
990
	} else {
991
		css_get(&mem->css);
992
	}
993 994 995
	if (unlikely(!mem))
		return 0;

996
	VM_BUG_ON(css_is_removed(&mem->css));
997

998 999 1000
	while (1) {
		int ret;
		bool noswap = false;
1001

1002
		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1003 1004 1005
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1006 1007
			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
							&fail_res);
1008 1009 1010 1011 1012
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
			res_counter_uncharge(&mem->res, PAGE_SIZE);
			noswap = true;
1013 1014 1015 1016 1017 1018 1019
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1020
		if (!(gfp_mask & __GFP_WAIT))
1021
			goto nomem;
1022

1023
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
1024
							noswap, false);
1025 1026
		if (ret)
			continue;
1027 1028

		/*
1029 1030 1031 1032 1033
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1034
		 *
1035
		 */
1036 1037
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1038 1039

		if (!nr_retries--) {
1040
			if (oom) {
1041
				mutex_lock(&memcg_tasklist);
1042
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1043
				mutex_unlock(&memcg_tasklist);
1044
				record_last_oom(mem_over_limit);
1045
			}
1046
			goto nomem;
1047
		}
1048
	}
1049 1050 1051 1052 1053
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1054

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1075 1076 1077
static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
{
	struct mem_cgroup *mem;
1078
	struct page_cgroup *pc;
1079
	unsigned short id;
1080 1081
	swp_entry_t ent;

1082 1083
	VM_BUG_ON(!PageLocked(page));

1084 1085 1086
	if (!PageSwapCache(page))
		return NULL;

1087
	pc = lookup_page_cgroup(page);
1088
	lock_page_cgroup(pc);
1089
	if (PageCgroupUsed(pc)) {
1090
		mem = pc->mem_cgroup;
1091 1092 1093
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
	} else {
1094
		ent.val = page_private(page);
1095 1096 1097 1098 1099 1100
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1101
	}
1102
	unlock_page_cgroup(pc);
1103 1104 1105
	return mem;
}

1106
/*
1107
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1118 1119 1120 1121 1122

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		res_counter_uncharge(&mem->res, PAGE_SIZE);
1123 1124
		if (do_swap_account)
			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1125
		css_put(&mem->css);
1126
		return;
1127
	}
1128
	pc->mem_cgroup = mem;
K
KAMEZAWA Hiroyuki 已提交
1129
	smp_wmb();
1130
	pc->flags = pcg_default_flags[ctype];
1131

K
KAMEZAWA Hiroyuki 已提交
1132
	mem_cgroup_charge_statistics(mem, pc, true);
1133 1134

	unlock_page_cgroup(pc);
1135
}
1136

1137 1138 1139 1140 1141 1142 1143
/**
 * mem_cgroup_move_account - move account of the page
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1144
 * - page is not on LRU (isolate_page() is useful.)
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
 *
 * returns 0 at success,
 * returns -EBUSY when lock is busy or "pc" is unstable.
 *
 * This function does "uncharge" from old cgroup but doesn't do "charge" to
 * new cgroup. It should be done by a caller.
 */

static int mem_cgroup_move_account(struct page_cgroup *pc,
	struct mem_cgroup *from, struct mem_cgroup *to)
{
	struct mem_cgroup_per_zone *from_mz, *to_mz;
	int nid, zid;
	int ret = -EBUSY;
1159 1160 1161 1162
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1163 1164

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1165
	VM_BUG_ON(PageLRU(pc->page));
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

	nid = page_cgroup_nid(pc);
	zid = page_cgroup_zid(pc);
	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);

	if (!trylock_page_cgroup(pc))
		return ret;

	if (!PageCgroupUsed(pc))
		goto out;

	if (pc->mem_cgroup != from)
		goto out;

K
KAMEZAWA Hiroyuki 已提交
1181 1182
	res_counter_uncharge(&from->res, PAGE_SIZE);
	mem_cgroup_charge_statistics(from, pc, false);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

	page = pc->page;
	if (page_is_file_cache(page) && page_mapped(page)) {
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
						1);
	}

K
KAMEZAWA Hiroyuki 已提交
1200 1201
	if (do_swap_account)
		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1202 1203 1204
	css_put(&from->css);

	css_get(&to->css);
K
KAMEZAWA Hiroyuki 已提交
1205 1206 1207
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
	ret = 0;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
out:
	unlock_page_cgroup(pc);
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1221
	struct page *page = pc->page;
1222 1223 1224 1225 1226 1227 1228 1229 1230
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

K
KAMEZAWA Hiroyuki 已提交
1231

1232 1233
	parent = mem_cgroup_from_cont(pcg);

K
KAMEZAWA Hiroyuki 已提交
1234

1235
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1236
	if (ret || !parent)
1237 1238
		return ret;

1239 1240 1241 1242
	if (!get_page_unless_zero(page)) {
		ret = -EBUSY;
		goto uncharge;
	}
K
KAMEZAWA Hiroyuki 已提交
1243 1244 1245 1246 1247

	ret = isolate_lru_page(page);

	if (ret)
		goto cancel;
1248 1249 1250

	ret = mem_cgroup_move_account(pc, child, parent);

K
KAMEZAWA Hiroyuki 已提交
1251 1252 1253
	putback_lru_page(page);
	if (!ret) {
		put_page(page);
1254 1255
		/* drop extra refcnt by try_charge() */
		css_put(&parent->css);
K
KAMEZAWA Hiroyuki 已提交
1256
		return 0;
1257
	}
1258

K
KAMEZAWA Hiroyuki 已提交
1259
cancel:
1260 1261 1262 1263 1264
	put_page(page);
uncharge:
	/* drop extra refcnt by try_charge() */
	css_put(&parent->css);
	/* uncharge if move fails */
K
KAMEZAWA Hiroyuki 已提交
1265 1266 1267
	res_counter_uncharge(&parent->res, PAGE_SIZE);
	if (do_swap_account)
		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1268 1269 1270
	return ret;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1292
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1293
	if (ret || !mem)
1294 1295 1296
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1297 1298 1299
	return 0;
}

1300 1301
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1302
{
1303
	if (mem_cgroup_disabled())
1304
		return 0;
1305 1306
	if (PageCompound(page))
		return 0;
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1318
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1319
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1320 1321
}

D
Daisuke Nishimura 已提交
1322 1323 1324 1325
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1326 1327
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1328
{
1329 1330 1331
	struct mem_cgroup *mem = NULL;
	int ret;

1332
	if (mem_cgroup_disabled())
1333
		return 0;
1334 1335
	if (PageCompound(page))
		return 0;
1336 1337 1338 1339 1340 1341 1342 1343
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1344 1345
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1346 1347 1348 1349
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1350 1351 1352 1353 1354 1355 1356

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1357 1358
			return 0;
		}
1359
		unlock_page_cgroup(pc);
1360 1361
	}

1362
	if (unlikely(!mm && !mem))
1363
		mm = &init_mm;
1364

1365 1366
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1367
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1368

D
Daisuke Nishimura 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1378 1379

	return ret;
1380 1381
}

1382 1383 1384 1385 1386 1387
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
 * struct page_cgroup is aquired. This refcnt will be cumsumed by
 * "commit()" or removed by "cancel()"
 */
1388 1389 1390 1391 1392
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1393
	int ret;
1394

1395
	if (mem_cgroup_disabled())
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
	 * the pte, and even removed page from swap cache: return success
	 * to go on to do_swap_page()'s pte_same() test, which should fail.
	 */
	if (!PageSwapCache(page))
		return 0;
1407
	mem = try_get_mem_cgroup_from_swapcache(page);
1408 1409
	if (!mem)
		goto charge_cur_mm;
1410
	*ptr = mem;
1411 1412 1413 1414
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1415 1416 1417 1418 1419 1420
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
}

D
Daisuke Nishimura 已提交
1421 1422 1423
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1424 1425 1426
{
	struct page_cgroup *pc;

1427
	if (mem_cgroup_disabled())
1428 1429 1430 1431
		return;
	if (!ptr)
		return;
	pc = lookup_page_cgroup(page);
1432
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1433
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1434
	mem_cgroup_lru_add_after_commit_swapcache(page);
1435 1436 1437
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1438 1439 1440
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1441
	 */
1442
	if (do_swap_account && PageSwapCache(page)) {
1443
		swp_entry_t ent = {.val = page_private(page)};
1444
		unsigned short id;
1445
		struct mem_cgroup *memcg;
1446 1447 1448 1449

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1450
		if (memcg) {
1451 1452 1453 1454
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1455 1456 1457
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
			mem_cgroup_put(memcg);
		}
1458
		rcu_read_unlock();
1459
	}
K
KAMEZAWA Hiroyuki 已提交
1460
	/* add this page(page_cgroup) to the LRU we want. */
1461

1462 1463
}

D
Daisuke Nishimura 已提交
1464 1465 1466 1467 1468 1469
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1470 1471
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1472
	if (mem_cgroup_disabled())
1473 1474 1475 1476
		return;
	if (!mem)
		return;
	res_counter_uncharge(&mem->res, PAGE_SIZE);
1477 1478
	if (do_swap_account)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1479 1480 1481 1482
	css_put(&mem->css);
}


1483
/*
1484
 * uncharge if !page_mapped(page)
1485
 */
1486
static struct mem_cgroup *
1487
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1488
{
H
Hugh Dickins 已提交
1489
	struct page_cgroup *pc;
1490
	struct mem_cgroup *mem = NULL;
1491
	struct mem_cgroup_per_zone *mz;
1492

1493
	if (mem_cgroup_disabled())
1494
		return NULL;
1495

K
KAMEZAWA Hiroyuki 已提交
1496
	if (PageSwapCache(page))
1497
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
1498

1499
	/*
1500
	 * Check if our page_cgroup is valid
1501
	 */
1502 1503
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
1504
		return NULL;
1505

1506
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
1507

1508 1509
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
1510 1511 1512 1513 1514
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
1515
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
1528
	}
K
KAMEZAWA Hiroyuki 已提交
1529

1530 1531 1532
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
1533
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
1534

1535
	ClearPageCgroupUsed(pc);
1536 1537 1538 1539 1540 1541
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
1542

1543
	mz = page_cgroup_zoneinfo(pc);
1544
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
1545

K
KAMEZAWA Hiroyuki 已提交
1546 1547 1548
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
1549

1550
	return mem;
K
KAMEZAWA Hiroyuki 已提交
1551 1552 1553

unlock_out:
	unlock_page_cgroup(pc);
1554
	return NULL;
1555 1556
}

1557 1558
void mem_cgroup_uncharge_page(struct page *page)
{
1559 1560 1561 1562 1563
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
1564 1565 1566 1567 1568 1569
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
1570
	VM_BUG_ON(page->mapping);
1571 1572 1573
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

1574
#ifdef CONFIG_SWAP
1575
/*
1576
 * called after __delete_from_swap_cache() and drop "page" account.
1577 1578
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
1579 1580
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1581 1582
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1583 1584 1585 1586 1587 1588
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
1589 1590

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
1591
	if (do_swap_account && swapout && memcg) {
1592
		swap_cgroup_record(ent, css_id(&memcg->css));
1593 1594
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
1595
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
1596
		css_put(&memcg->css);
1597
}
1598
#endif
1599 1600 1601 1602 1603 1604 1605

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
1606
{
1607
	struct mem_cgroup *memcg;
1608
	unsigned short id;
1609 1610 1611 1612

	if (!do_swap_account)
		return;

1613 1614 1615
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
1616
	if (memcg) {
1617 1618 1619 1620
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
1621 1622 1623
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
		mem_cgroup_put(memcg);
	}
1624
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
1625
}
1626
#endif
K
KAMEZAWA Hiroyuki 已提交
1627

1628
/*
1629 1630
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
1631
 */
1632
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1633 1634
{
	struct page_cgroup *pc;
1635 1636
	struct mem_cgroup *mem = NULL;
	int ret = 0;
1637

1638
	if (mem_cgroup_disabled())
1639 1640
		return 0;

1641 1642 1643
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
1644 1645 1646
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
1647
	unlock_page_cgroup(pc);
1648

1649
	if (mem) {
1650
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1651 1652
		css_put(&mem->css);
	}
1653
	*ptr = mem;
1654
	return ret;
1655
}
1656

1657
/* remove redundant charge if migration failed*/
1658 1659
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
1660
{
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;

	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
1685
	if (unused)
1686 1687 1688
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
1689
	/*
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
1704
	 */
1705 1706
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
1707
}
1708

1709
/*
1710 1711 1712 1713 1714 1715
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
1716
 */
1717
int mem_cgroup_shmem_charge_fallback(struct page *page,
1718 1719
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
1720
{
1721
	struct mem_cgroup *mem = NULL;
1722
	int ret;
1723

1724
	if (mem_cgroup_disabled())
1725
		return 0;
1726

1727 1728 1729
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1730

1731
	return ret;
1732 1733
}

1734 1735
static DEFINE_MUTEX(set_limit_mutex);

1736
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1737
				unsigned long long val)
1738
{
1739
	int retry_count;
1740
	int progress;
1741
	u64 memswlimit;
1742
	int ret = 0;
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1754

1755
	while (retry_count) {
1756 1757 1758 1759
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
1770 1771
			break;
		}
1772
		ret = res_counter_set_limit(&memcg->res, val);
1773 1774 1775 1776 1777 1778
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
1779 1780 1781 1782 1783
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1784
		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1785 1786 1787 1788 1789 1790 1791
						   false, true);
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
1792
	}
1793

1794 1795 1796
	return ret;
}

L
Li Zefan 已提交
1797 1798
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
1799
{
1800
	int retry_count;
1801
	u64 memlimit, oldusage, curusage;
1802 1803
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
1804

1805 1806 1807
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
1826 1827 1828 1829 1830 1831
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
1832 1833 1834 1835 1836
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

1837
		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1838
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1839
		/* Usage is reduced ? */
1840
		if (curusage >= oldusage)
1841
			retry_count--;
1842 1843
		else
			oldusage = curusage;
1844 1845 1846 1847
	}
	return ret;
}

1848 1849 1850 1851
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
1852
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
1853
				int node, int zid, enum lru_list lru)
1854
{
K
KAMEZAWA Hiroyuki 已提交
1855 1856
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
1857
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
1858
	unsigned long flags, loop;
1859
	struct list_head *list;
1860
	int ret = 0;
1861

K
KAMEZAWA Hiroyuki 已提交
1862 1863
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
1864
	list = &mz->lists[lru];
1865

1866 1867 1868 1869 1870 1871
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
1872
		spin_lock_irqsave(&zone->lru_lock, flags);
1873
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
1874
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1875
			break;
1876 1877 1878 1879 1880
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
			busy = 0;
K
KAMEZAWA Hiroyuki 已提交
1881
			spin_unlock_irqrestore(&zone->lru_lock, flags);
1882 1883
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1884
		spin_unlock_irqrestore(&zone->lru_lock, flags);
1885

K
KAMEZAWA Hiroyuki 已提交
1886
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1887
		if (ret == -ENOMEM)
1888
			break;
1889 1890 1891 1892 1893 1894 1895

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
1896
	}
K
KAMEZAWA Hiroyuki 已提交
1897

1898 1899 1900
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
1901 1902 1903 1904 1905 1906
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
1907
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1908
{
1909 1910 1911
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1912
	struct cgroup *cgrp = mem->css.cgroup;
1913

1914
	css_get(&mem->css);
1915 1916

	shrink = 0;
1917 1918 1919
	/* should free all ? */
	if (free_all)
		goto try_to_free;
1920
move_account:
1921
	while (mem->res.usage > 0) {
1922
		ret = -EBUSY;
1923 1924 1925 1926
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
1927
			goto out;
1928 1929
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
1930
		ret = 0;
1931
		for_each_node_state(node, N_HIGH_MEMORY) {
1932
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1933
				enum lru_list l;
1934 1935
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
1936
							node, zid, l);
1937 1938 1939
					if (ret)
						break;
				}
1940
			}
1941 1942 1943 1944 1945 1946
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
1947
		cond_resched();
1948 1949 1950 1951 1952
	}
	ret = 0;
out:
	css_put(&mem->css);
	return ret;
1953 1954

try_to_free:
1955 1956
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1957 1958 1959
		ret = -EBUSY;
		goto out;
	}
1960 1961
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
1962 1963 1964 1965
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
1966 1967 1968 1969 1970

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
1971 1972
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
1973
		if (!progress) {
1974
			nr_retries--;
1975 1976 1977
			/* maybe some writeback is necessary */
			congestion_wait(WRITE, HZ/10);
		}
1978 1979

	}
K
KAMEZAWA Hiroyuki 已提交
1980
	lru_add_drain();
1981 1982 1983 1984 1985
	/* try move_account...there may be some *locked* pages. */
	if (mem->res.usage)
		goto move_account;
	ret = 0;
	goto out;
1986 1987
}

1988 1989 1990 1991 1992 1993
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
	 * If parent's use_hiearchy is set, we can't make any modifications
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2032
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2033
{
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	u64 val = 0;
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
		val = res_counter_read_u64(&mem->res, name);
		break;
	case _MEMSWAP:
L
Li Zefan 已提交
2045
		val = res_counter_read_u64(&mem->memsw, name);
2046 2047 2048 2049 2050 2051
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2052
}
2053 2054 2055 2056
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2057 2058
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2059
{
2060
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2061
	int type, name;
2062 2063 2064
	unsigned long long val;
	int ret;

2065 2066 2067
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2068 2069 2070
	case RES_LIMIT:
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2071 2072 2073
		if (ret)
			break;
		if (type == _MEM)
2074
			ret = mem_cgroup_resize_limit(memcg, val);
2075 2076
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2077 2078 2079 2080 2081 2082
		break;
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2083 2084
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2113
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2114 2115
{
	struct mem_cgroup *mem;
2116
	int type, name;
2117 2118

	mem = mem_cgroup_from_cont(cont);
2119 2120 2121
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2122
	case RES_MAX_USAGE:
2123 2124 2125 2126
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2127 2128
		break;
	case RES_FAILCNT:
2129 2130 2131 2132
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2133 2134
		break;
	}
2135
	return 0;
2136 2137
}

K
KAMEZAWA Hiroyuki 已提交
2138 2139 2140 2141 2142

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2143
	MCS_MAPPED_FILE,
K
KAMEZAWA Hiroyuki 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	MCS_PGPGIN,
	MCS_PGPGOUT,
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2156 2157
};

K
KAMEZAWA Hiroyuki 已提交
2158 2159 2160 2161 2162 2163
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2164
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2185 2186
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
	s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

2212 2213
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
2214 2215
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
2216
	struct mcs_total_stat mystat;
2217 2218
	int i;

K
KAMEZAWA Hiroyuki 已提交
2219 2220
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
2221

K
KAMEZAWA Hiroyuki 已提交
2222 2223
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
L
Lee Schermerhorn 已提交
2224

K
KAMEZAWA Hiroyuki 已提交
2225
	/* Hierarchical information */
2226 2227 2228 2229 2230 2231 2232
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
2233

K
KAMEZAWA Hiroyuki 已提交
2234 2235 2236 2237 2238 2239
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
	for (i = 0; i < NR_MCS_STAT; i++)
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);


K
KOSAKI Motohiro 已提交
2240
#ifdef CONFIG_DEBUG_VM
2241
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

2269 2270 2271
	return 0;
}

K
KOSAKI Motohiro 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
2284

K
KOSAKI Motohiro 已提交
2285 2286 2287 2288 2289 2290 2291
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
2292 2293 2294

	cgroup_lock();

K
KOSAKI Motohiro 已提交
2295 2296
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
2297 2298
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
2299
		return -EINVAL;
2300
	}
K
KOSAKI Motohiro 已提交
2301 2302 2303 2304 2305

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

2306 2307
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
2308 2309 2310
	return 0;
}

2311

B
Balbir Singh 已提交
2312 2313
static struct cftype mem_cgroup_files[] = {
	{
2314
		.name = "usage_in_bytes",
2315
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2316
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2317
	},
2318 2319
	{
		.name = "max_usage_in_bytes",
2320
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2321
		.trigger = mem_cgroup_reset,
2322 2323
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
2324
	{
2325
		.name = "limit_in_bytes",
2326
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2327
		.write_string = mem_cgroup_write,
2328
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2329 2330 2331
	},
	{
		.name = "failcnt",
2332
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2333
		.trigger = mem_cgroup_reset,
2334
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
2335
	},
2336 2337
	{
		.name = "stat",
2338
		.read_map = mem_control_stat_show,
2339
	},
2340 2341 2342 2343
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
2344 2345 2346 2347 2348
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
2349 2350 2351 2352 2353
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
B
Balbir Singh 已提交
2354 2355
};

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

2397 2398 2399
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
2400
	struct mem_cgroup_per_zone *mz;
2401
	enum lru_list l;
2402
	int zone, tmp = node;
2403 2404 2405 2406 2407 2408 2409 2410
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
2411 2412 2413
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2414 2415
	if (!pn)
		return 1;
2416

2417 2418
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
2419 2420 2421

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
2422 2423
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
2424
	}
2425 2426 2427
	return 0;
}

2428 2429 2430 2431 2432
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

2433 2434 2435 2436 2437 2438
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

2439 2440 2441
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
2442
	int size = mem_cgroup_size();
2443

2444 2445
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
2446
	else
2447
		mem = vmalloc(size);
2448 2449

	if (mem)
2450
		memset(mem, 0, size);
2451 2452 2453
	return mem;
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

2465
static void __mem_cgroup_free(struct mem_cgroup *mem)
2466
{
K
KAMEZAWA Hiroyuki 已提交
2467 2468
	int node;

K
KAMEZAWA Hiroyuki 已提交
2469 2470
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
2471 2472 2473
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

2474
	if (mem_cgroup_size() < PAGE_SIZE)
2475 2476 2477 2478 2479
		kfree(mem);
	else
		vfree(mem);
}

2480 2481 2482 2483 2484 2485 2486
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
2487 2488
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2489
		__mem_cgroup_free(mem);
2490 2491 2492
		if (parent)
			mem_cgroup_put(parent);
	}
2493 2494
}

2495 2496 2497 2498 2499 2500 2501 2502 2503
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
2504

2505 2506 2507
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
2508
	if (!mem_cgroup_disabled() && really_do_swap_account)
2509 2510 2511 2512 2513 2514 2515 2516
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

L
Li Zefan 已提交
2517
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
2518 2519
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
2520
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
2521
	long error = -ENOMEM;
2522
	int node;
B
Balbir Singh 已提交
2523

2524 2525
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
2526
		return ERR_PTR(error);
2527

2528 2529 2530
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
2531
	/* root ? */
2532
	if (cont->parent == NULL) {
2533
		enable_swap_cgroup();
2534
		parent = NULL;
2535
	} else {
2536
		parent = mem_cgroup_from_cont(cont->parent);
2537 2538
		mem->use_hierarchy = parent->use_hierarchy;
	}
2539

2540 2541 2542
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
2543 2544 2545 2546 2547 2548 2549
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
2550 2551 2552 2553
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
2554
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
2555
	spin_lock_init(&mem->reclaim_param_lock);
2556

K
KOSAKI Motohiro 已提交
2557 2558
	if (parent)
		mem->swappiness = get_swappiness(parent);
2559
	atomic_set(&mem->refcnt, 1);
B
Balbir Singh 已提交
2560
	return &mem->css;
2561
free_out:
2562
	__mem_cgroup_free(mem);
K
KAMEZAWA Hiroyuki 已提交
2563
	return ERR_PTR(error);
B
Balbir Singh 已提交
2564 2565
}

2566
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2567 2568 2569
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2570 2571

	return mem_cgroup_force_empty(mem, false);
2572 2573
}

B
Balbir Singh 已提交
2574 2575 2576
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2577 2578 2579
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
2580 2581 2582 2583 2584
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
2585 2586 2587 2588 2589 2590 2591 2592
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
2593 2594
}

B
Balbir Singh 已提交
2595 2596 2597 2598 2599
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p)
{
2600
	mutex_lock(&memcg_tasklist);
B
Balbir Singh 已提交
2601
	/*
2602 2603
	 * FIXME: It's better to move charges of this process from old
	 * memcg to new memcg. But it's just on TODO-List now.
B
Balbir Singh 已提交
2604
	 */
2605
	mutex_unlock(&memcg_tasklist);
B
Balbir Singh 已提交
2606 2607
}

B
Balbir Singh 已提交
2608 2609 2610 2611
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
2612
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
2613 2614
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
B
Balbir Singh 已提交
2615
	.attach = mem_cgroup_move_task,
2616
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
2617
	.use_id = 1,
B
Balbir Singh 已提交
2618
};
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif