memcontrol.c 142.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
111
	MEM_CGROUP_TARGET_NUMAINFO,
112 113 114 115
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
116
#define NUMAINFO_EVENTS_TARGET	(1024)
117

118
struct mem_cgroup_stat_cpu {
119
	long count[MEM_CGROUP_STAT_NSTATS];
120
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121
	unsigned long targets[MEM_CGROUP_NTARGETS];
122 123
};

124 125 126 127
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
128 129 130
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
131 132
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
133 134

	struct zone_reclaim_stat reclaim_stat;
135 136 137 138
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
139 140
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
141 142 143 144 145 146 147 148 149 150 151 152
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

173 174 175 176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
178
/* For threshold */
179 180
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
181
	int current_threshold;
182 183 184 185 186
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
187 188 189 190 191 192 193 194 195 196 197 198

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
199 200 201 202 203
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
204 205

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
206
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207

B
Balbir Singh 已提交
208 209 210 211 212 213 214
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
215 216 217
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
218 219 220 221 222 223 224
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
225 226 227 228
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
229 230 231 232
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
233
	struct mem_cgroup_lru_info info;
234
	/*
235
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
236
	 * reclaimed from.
237
	 */
K
KAMEZAWA Hiroyuki 已提交
238
	int last_scanned_child;
239 240 241
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
242 243
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
244
#endif
245 246 247 248
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
249 250 251 252

	bool		oom_lock;
	atomic_t	under_oom;

253
	atomic_t	refcnt;
254

255
	int	swappiness;
256 257
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
258

259 260 261
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

262 263 264 265
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
266
	struct mem_cgroup_thresholds thresholds;
267

268
	/* thresholds for mem+swap usage. RCU-protected */
269
	struct mem_cgroup_thresholds memsw_thresholds;
270

K
KAMEZAWA Hiroyuki 已提交
271 272 273
	/* For oom notifier event fd */
	struct list_head oom_notify;

274 275 276 277 278
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
279
	/*
280
	 * percpu counter.
281
	 */
282
	struct mem_cgroup_stat_cpu *stat;
283 284 285 286 287 288
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
289 290
};

291 292 293 294 295 296
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
297
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
298
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
299 300 301
	NR_MOVE_TYPE,
};

302 303
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
304
	spinlock_t	  lock; /* for from, to */
305 306 307
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
308
	unsigned long moved_charge;
309
	unsigned long moved_swap;
310 311 312
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
313
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
314 315
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
316

D
Daisuke Nishimura 已提交
317 318 319 320 321 322
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

323 324 325 326 327 328
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

329 330 331 332 333 334 335
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

336 337 338
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
339
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
340
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
341
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
342
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
343 344 345
	NR_CHARGE_TYPE,
};

346 347 348
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
349
#define _OOM_TYPE		(2)
350 351 352
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
353 354
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
355

356 357 358 359 360 361 362
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
363 364
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
365

366 367
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
368
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
369
static void drain_all_stock_async(struct mem_cgroup *mem);
370

371 372 373 374 375 376
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

377 378 379 380 381
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

382
static struct mem_cgroup_per_zone *
383
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
384
{
385 386
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
407
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
408
				struct mem_cgroup_per_zone *mz,
409 410
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
411 412 413 414 415 416 417 418
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

419 420 421
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
438 439 440 441 442 443 444 445 446 447 448 449 450
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

451 452 453 454 455 456
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
457
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
458 459 460 461 462 463
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
464
	unsigned long long excess;
465 466
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
467 468
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
469 470 471
	mctz = soft_limit_tree_from_page(page);

	/*
472 473
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
474
	 */
475 476
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
477
		excess = res_counter_soft_limit_excess(&mem->res);
478 479 480 481
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
482
		if (excess || mz->on_tree) {
483 484 485 486 487
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
488 489
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
490
			 */
491
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
492 493
			spin_unlock(&mctz->lock);
		}
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

512 513 514 515
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
516
	struct mem_cgroup_per_zone *mz;
517 518

retry:
519
	mz = NULL;
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
568 569
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
570
{
571
	long val = 0;
572 573
	int cpu;

574 575
	get_online_cpus();
	for_each_online_cpu(cpu)
576
		val += per_cpu(mem->stat->count[idx], cpu);
577 578 579 580 581 582
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
583 584 585
	return val;
}

586 587 588 589
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
590
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
591 592
}

593 594 595 596 597 598 599 600 601 602
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

619
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
620
					 bool file, int nr_pages)
621
{
622 623
	preempt_disable();

624 625
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
626
	else
627
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
628

629 630
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
631
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
632
	else {
633
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
634 635
		nr_pages = -nr_pages; /* for event */
	}
636

637
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
638

639
	preempt_enable();
640 641
}

642 643 644
unsigned long
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
			unsigned int lru_mask)
645 646
{
	struct mem_cgroup_per_zone *mz;
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	enum lru_list l;
	unsigned long ret = 0;

	mz = mem_cgroup_zoneinfo(mem, nid, zid);

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
			int nid, unsigned int lru_mask)
{
663 664 665
	u64 total = 0;
	int zid;

666 667 668
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
		total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);

669 670
	return total;
}
671 672 673

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
			unsigned int lru_mask)
674
{
675
	int nid;
676 677
	u64 total = 0;

678 679
	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
680
	return total;
681 682
}

683 684 685 686 687 688 689 690 691 692 693
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
694
{
695
	unsigned long val, next;
696

697
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
698

699 700 701 702 703 704 705
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
706 707 708
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
709 710 711 712 713
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
714 715 716 717 718 719 720 721 722
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
723
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
724
		mem_cgroup_threshold(mem);
725 726
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
727
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
728
			mem_cgroup_update_tree(mem, page);
729
			__mem_cgroup_target_update(mem,
730 731 732 733 734 735 736 737
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_NUMAINFO))) {
			atomic_inc(&mem->numainfo_events);
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_NUMAINFO);
738
		}
739
#endif
740 741 742
	}
}

743
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
744 745 746 747 748 749
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

750
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
751
{
752 753 754 755 756 757 758 759
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

760 761 762 763
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

764
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
765 766
{
	struct mem_cgroup *mem = NULL;
767 768 769

	if (!mm)
		return NULL;
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
785 786
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
787
{
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
810 811 812 813 814 815 816 817 818
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
819 820
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
821
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
822

K
KAMEZAWA Hiroyuki 已提交
823
	css_put(&iter->css);
824 825
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
826
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
827

828 829 830
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
831 832
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
833
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
834 835 836

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
837
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
838
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
839
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
840
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
841
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
842
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
843

K
KAMEZAWA Hiroyuki 已提交
844
	return iter;
K
KAMEZAWA Hiroyuki 已提交
845
}
K
KAMEZAWA Hiroyuki 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

859 860 861
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
862

863 864 865 866 867
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
895 896 897 898 899 900 901 902 903 904 905 906 907
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
908

K
KAMEZAWA Hiroyuki 已提交
909 910 911 912
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
913

914
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
915 916 917
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
918
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
919
		return;
920
	VM_BUG_ON(!pc->mem_cgroup);
921 922 923 924
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
925
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
926 927
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
928 929 930
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
931
	list_del_init(&pc->lru);
932 933
}

K
KAMEZAWA Hiroyuki 已提交
934
void mem_cgroup_del_lru(struct page *page)
935
{
K
KAMEZAWA Hiroyuki 已提交
936 937
	mem_cgroup_del_lru_list(page, page_lru(page));
}
938

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
961
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
962 963 964
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
965 966 967 968
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
969

970
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
971
		return;
972

K
KAMEZAWA Hiroyuki 已提交
973
	pc = lookup_page_cgroup(page);
974
	/* unused or root page is not rotated. */
975 976 977 978 979
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
980
		return;
981
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
982
	list_move(&pc->lru, &mz->lists[lru]);
983 984
}

K
KAMEZAWA Hiroyuki 已提交
985
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
986
{
K
KAMEZAWA Hiroyuki 已提交
987 988
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
989

990
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
991 992
		return;
	pc = lookup_page_cgroup(page);
993
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
994
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
995
		return;
996 997
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
998
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
999 1000
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1001 1002 1003
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
1004 1005
	list_add(&pc->lru, &mz->lists[lru]);
}
1006

K
KAMEZAWA Hiroyuki 已提交
1007
/*
1008 1009 1010 1011
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1012
 */
1013
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1014
{
1015 1016 1017 1018
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1030 1031 1032 1033 1034 1035 1036 1037
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1038 1039
}

1040
static void mem_cgroup_lru_add_after_commit(struct page *page)
1041 1042 1043 1044 1045
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1046 1047 1048
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1049 1050
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1051
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1052 1053 1054 1055 1056
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1057 1058 1059
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1060
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1061 1062 1063
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1064 1065
}

1066 1067 1068
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1069
	struct mem_cgroup *curr = NULL;
1070
	struct task_struct *p;
1071

1072 1073 1074 1075 1076
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1077 1078
	if (!curr)
		return 0;
1079 1080 1081 1082 1083 1084 1085
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1086 1087 1088 1089
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1090 1091 1092
	return ret;
}

1093
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1094 1095 1096
{
	unsigned long active;
	unsigned long inactive;
1097 1098
	unsigned long gb;
	unsigned long inactive_ratio;
1099

1100 1101
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1130 1131 1132 1133 1134
		return 1;

	return 0;
}

1135 1136 1137 1138 1139
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

1140 1141
	inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
1142 1143 1144 1145

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1146 1147 1148
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1149
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1166 1167
	if (!PageCgroupUsed(pc))
		return NULL;
1168 1169
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1170
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1171 1172 1173
	return &mz->reclaim_stat;
}

1174 1175 1176 1177 1178
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1179
					int active, int file)
1180 1181 1182 1183 1184 1185
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1186
	struct page_cgroup *pc, *tmp;
1187
	int nid = zone_to_nid(z);
1188 1189
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1190
	int lru = LRU_FILE * file + active;
1191
	int ret;
1192

1193
	BUG_ON(!mem_cont);
1194
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1195
	src = &mz->lists[lru];
1196

1197 1198
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1199
		if (scan >= nr_to_scan)
1200
			break;
K
KAMEZAWA Hiroyuki 已提交
1201

1202 1203
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1204

1205
		page = lookup_cgroup_page(pc);
1206

H
Hugh Dickins 已提交
1207
		if (unlikely(!PageLRU(page)))
1208 1209
			continue;

H
Hugh Dickins 已提交
1210
		scan++;
1211 1212 1213
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1214
			list_move(&page->lru, dst);
1215
			mem_cgroup_del_lru(page);
1216
			nr_taken += hpage_nr_pages(page);
1217 1218 1219 1220 1221 1222 1223
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1224 1225 1226 1227
		}
	}

	*scanned = scan;
1228 1229 1230 1231

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1232 1233 1234
	return nr_taken;
}

1235 1236 1237
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1238
/**
1239 1240
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1241
 *
1242
 * Returns the maximum amount of memory @mem can be charged with, in
1243
 * pages.
1244
 */
1245
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1246
{
1247 1248 1249 1250 1251
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1252
	return margin >> PAGE_SHIFT;
1253 1254
}

1255
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1256 1257 1258 1259 1260 1261 1262
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1263
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1264 1265
}

1266 1267 1268
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1269 1270 1271 1272

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1273
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1274 1275 1276
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1287 1288 1289
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1290
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1291 1292 1293
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1312 1313 1314

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1315 1316
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1317
	bool ret = false;
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1352
/**
1353
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1372
	if (!memcg || !p)
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1419 1420 1421 1422 1423 1424 1425
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1426 1427 1428 1429
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1430 1431 1432
	return num;
}

D
David Rientjes 已提交
1433 1434 1435 1436 1437 1438 1439 1440
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1441 1442 1443
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1444 1445 1446 1447 1448 1449 1450 1451
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1452
/*
K
KAMEZAWA Hiroyuki 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
1502
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
1503 1504 1505
		return true;
	if (noswap || !total_swap_pages)
		return false;
1506
	if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
1507 1508 1509 1510
		return true;
	return false;

}
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;
1522 1523 1524 1525 1526 1527 1528
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
	if (!atomic_read(&mem->numainfo_events))
		return;
	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1529 1530 1531 1532 1533 1534 1535
		return;

	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1536 1537
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1538
	}
1539 1540 1541

	atomic_set(&mem->numainfo_events, 0);
	atomic_set(&mem->numainfo_updating, 0);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1614 1615 1616 1617 1618
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1619 1620 1621 1622 1623

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1624 1625
#endif

K
KAMEZAWA Hiroyuki 已提交
1626 1627 1628 1629
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1630 1631
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1632 1633 1634
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1635 1636
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1637 1638
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1639
						struct zone *zone,
1640
						gfp_t gfp_mask,
1641 1642
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1643
{
K
KAMEZAWA Hiroyuki 已提交
1644 1645 1646
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1647 1648
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1649
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1650
	unsigned long excess;
1651
	unsigned long nr_scanned;
1652 1653

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1654

1655
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1656
	if (!check_soft && root_mem->memsw_is_minimum)
1657 1658
		noswap = true;

1659
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1660
		victim = mem_cgroup_select_victim(root_mem);
1661
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1662
			loop++;
1663 1664 1665 1666 1667 1668 1669
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1670
				drain_all_stock_async(root_mem);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1682
				 * We want to do more targeted reclaim.
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1694
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1695 1696
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1697 1698
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1699
		/* we use swappiness of local cgroup */
1700
		if (check_soft) {
1701
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1702
				noswap, zone, &nr_scanned);
1703 1704
			*total_scanned += nr_scanned;
		} else
1705
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1706
						noswap);
K
KAMEZAWA Hiroyuki 已提交
1707
		css_put(&victim->css);
1708 1709 1710 1711 1712 1713 1714
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1715
		total += ret;
1716
		if (check_soft) {
1717
			if (!res_counter_soft_limit_excess(&root_mem->res))
1718
				return total;
1719
		} else if (mem_cgroup_margin(root_mem))
1720
			return total;
1721
	}
K
KAMEZAWA Hiroyuki 已提交
1722
	return total;
1723 1724
}

K
KAMEZAWA Hiroyuki 已提交
1725 1726 1727
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1728
 * Has to be called with memcg_oom_mutex
K
KAMEZAWA Hiroyuki 已提交
1729 1730 1731
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
1732 1733 1734
	int lock_count = -1;
	struct mem_cgroup *iter, *failed = NULL;
	bool cond = true;
1735

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		bool locked = iter->oom_lock;

		iter->oom_lock = true;
		if (lock_count == -1)
			lock_count = iter->oom_lock;
		else if (lock_count != locked) {
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			lock_count = 0;
			failed = iter;
			cond = false;
		}
K
KAMEZAWA Hiroyuki 已提交
1751
	}
K
KAMEZAWA Hiroyuki 已提交
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	if (!failed)
		goto done;

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
	cond = true;
	for_each_mem_cgroup_tree_cond(iter, mem, cond) {
		if (iter == failed) {
			cond = false;
			continue;
		}
		iter->oom_lock = false;
	}
done:
	return lock_count;
1770
}
1771

1772 1773 1774
/*
 * Has to be called with memcg_oom_mutex
 */
K
KAMEZAWA Hiroyuki 已提交
1775
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1776
{
K
KAMEZAWA Hiroyuki 已提交
1777 1778
	struct mem_cgroup *iter;

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	for_each_mem_cgroup_tree(iter, mem)
		iter->oom_lock = false;
	return 0;
}

static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		atomic_inc(&iter->under_oom);
}

static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1796 1797 1798 1799 1800
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1801
	for_each_mem_cgroup_tree(iter, mem)
1802
		atomic_add_unless(&iter->under_oom, -1, 0);
1803 1804
}

K
KAMEZAWA Hiroyuki 已提交
1805 1806 1807
static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1844 1845
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1846
	if (mem && atomic_read(&mem->under_oom))
1847 1848 1849
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1850 1851 1852 1853
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1854
{
K
KAMEZAWA Hiroyuki 已提交
1855
	struct oom_wait_info owait;
1856
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1857

K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860 1861 1862
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1863
	need_to_kill = true;
1864 1865
	mem_cgroup_mark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1866 1867 1868 1869 1870 1871 1872 1873
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1874 1875 1876 1877
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1878
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1879 1880
	mutex_unlock(&memcg_oom_mutex);

1881 1882
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1883
		mem_cgroup_out_of_memory(mem, mask);
1884
	} else {
K
KAMEZAWA Hiroyuki 已提交
1885
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1886
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1887 1888
	}
	mutex_lock(&memcg_oom_mutex);
1889 1890
	if (locked)
		mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1891
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1892 1893
	mutex_unlock(&memcg_oom_mutex);

1894 1895
	mem_cgroup_unmark_under_oom(mem);

K
KAMEZAWA Hiroyuki 已提交
1896 1897 1898 1899 1900
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1901 1902
}

1903 1904 1905
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1925
 */
1926

1927 1928
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1929 1930
{
	struct mem_cgroup *mem;
1931 1932
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1933
	unsigned long uninitialized_var(flags);
1934 1935 1936 1937

	if (unlikely(!pc))
		return;

1938
	rcu_read_lock();
1939
	mem = pc->mem_cgroup;
1940 1941 1942
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1943
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1944
		/* take a lock against to access pc->mem_cgroup */
1945
		move_lock_page_cgroup(pc, &flags);
1946 1947 1948 1949 1950
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1951 1952

	switch (idx) {
1953
	case MEMCG_NR_FILE_MAPPED:
1954 1955 1956
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1957
			ClearPageCgroupFileMapped(pc);
1958
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1959 1960 1961
		break;
	default:
		BUG();
1962
	}
1963

1964 1965
	this_cpu_add(mem->stat->count[idx], val);

1966 1967
out:
	if (unlikely(need_unlock))
1968
		move_unlock_page_cgroup(pc, &flags);
1969 1970
	rcu_read_unlock();
	return;
1971
}
1972
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1973

1974 1975 1976 1977
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1978
#define CHARGE_BATCH	32U
1979 1980
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1981
	unsigned int nr_pages;
1982
	struct work_struct work;
1983 1984
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1985 1986
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1987
static DEFINE_MUTEX(percpu_charge_mutex);
1988 1989

/*
1990
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2001 2002
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2016 2017 2018 2019
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2020
		if (do_swap_account)
2021 2022
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2035
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2036 2037 2038 2039
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2040
 * This will be consumed by consume_stock() function, later.
2041
 */
2042
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2043 2044 2045 2046 2047 2048 2049
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2050
	stock->nr_pages += nr_pages;
2051 2052 2053 2054 2055 2056 2057 2058 2059
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2060
static void drain_all_stock_async(struct mem_cgroup *root_mem)
2061
{
2062 2063 2064
	int cpu, curcpu;
	/*
	 * If someone calls draining, avoid adding more kworker runs.
2065
	 */
2066
	if (!mutex_trylock(&percpu_charge_mutex))
2067 2068 2069
		return;
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2070 2071 2072 2073 2074 2075 2076
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2077 2078
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
		struct mem_cgroup *mem;

		if (cpu == curcpu)
			continue;

		mem = stock->cached;
		if (!mem)
			continue;
		if (mem != root_mem) {
			if (!root_mem->use_hierarchy)
				continue;
			/* check whether "mem" is under tree of "root_mem" */
			if (!css_is_ancestor(&mem->css, &root_mem->css))
				continue;
		}
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
			schedule_work_on(cpu, &stock->work);
2096 2097
	}
 	put_online_cpus();
2098
	mutex_unlock(&percpu_charge_mutex);
2099 2100 2101 2102 2103 2104 2105
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
2106
	mutex_lock(&percpu_charge_mutex);
2107
	schedule_on_each_cpu(drain_local_stock);
2108
	mutex_unlock(&percpu_charge_mutex);
2109 2110
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2121
		long x = per_cpu(mem->stat->count[i], cpu);
2122 2123 2124 2125

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2126 2127 2128 2129 2130 2131
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2143 2144 2145 2146
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2147 2148 2149 2150 2151
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2152
	struct mem_cgroup *iter;
2153

2154 2155 2156 2157 2158 2159
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2160
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2161
		return NOTIFY_OK;
2162 2163 2164 2165

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2166 2167 2168 2169 2170
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2181 2182
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2183
{
2184
	unsigned long csize = nr_pages * PAGE_SIZE;
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2199
		res_counter_uncharge(&mem->res, csize);
2200 2201 2202 2203
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2204
	/*
2205 2206
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2207 2208 2209 2210
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2211
	if (nr_pages == CHARGE_BATCH)
2212 2213 2214 2215 2216 2217
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2218
					      gfp_mask, flags, NULL);
2219
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2220
		return CHARGE_RETRY;
2221
	/*
2222 2223 2224 2225 2226 2227 2228
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2229
	 */
2230
	if (nr_pages == 1 && ret)
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2250 2251 2252
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2253
 */
2254
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2255
				   gfp_t gfp_mask,
2256 2257 2258
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2259
{
2260
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2261 2262 2263
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2264

K
KAMEZAWA Hiroyuki 已提交
2265 2266 2267 2268 2269 2270 2271 2272
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2273

2274
	/*
2275 2276
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2277 2278 2279
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2280 2281 2282 2283
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2284
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2285 2286 2287
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2288
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2289
			goto done;
2290 2291
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2292
		struct task_struct *p;
2293

K
KAMEZAWA Hiroyuki 已提交
2294 2295 2296
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2297 2298 2299 2300 2301 2302 2303 2304
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2305 2306
		 */
		mem = mem_cgroup_from_task(p);
2307
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2308 2309 2310
			rcu_read_unlock();
			goto done;
		}
2311
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2330

2331 2332
	do {
		bool oom_check;
2333

2334
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2335 2336
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2337
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2338
		}
2339

2340 2341 2342 2343
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2344
		}
2345

2346
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2347 2348 2349 2350
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2351
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2352 2353 2354
			css_put(&mem->css);
			mem = NULL;
			goto again;
2355
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2356
			css_put(&mem->css);
2357 2358
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2359 2360
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2361
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2362
			}
2363 2364 2365 2366
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2367
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2368
			goto bypass;
2369
		}
2370 2371
	} while (ret != CHARGE_OK);

2372 2373
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2374
	css_put(&mem->css);
2375
done:
K
KAMEZAWA Hiroyuki 已提交
2376
	*memcg = mem;
2377 2378
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2379
	*memcg = NULL;
2380
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2381 2382 2383
bypass:
	*memcg = NULL;
	return 0;
2384
}
2385

2386 2387 2388 2389 2390
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2391
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2392
				       unsigned int nr_pages)
2393 2394
{
	if (!mem_cgroup_is_root(mem)) {
2395 2396 2397
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2398
		if (do_swap_account)
2399
			res_counter_uncharge(&mem->memsw, bytes);
2400
	}
2401 2402
}

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2422
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2423
{
2424
	struct mem_cgroup *mem = NULL;
2425
	struct page_cgroup *pc;
2426
	unsigned short id;
2427 2428
	swp_entry_t ent;

2429 2430 2431
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2432
	lock_page_cgroup(pc);
2433
	if (PageCgroupUsed(pc)) {
2434
		mem = pc->mem_cgroup;
2435 2436
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2437
	} else if (PageSwapCache(page)) {
2438
		ent.val = page_private(page);
2439 2440 2441 2442 2443 2444
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2445
	}
2446
	unlock_page_cgroup(pc);
2447 2448 2449
	return mem;
}

2450
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2451
				       struct page *page,
2452
				       unsigned int nr_pages,
2453
				       struct page_cgroup *pc,
2454
				       enum charge_type ctype)
2455
{
2456 2457 2458
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2459
		__mem_cgroup_cancel_charge(mem, nr_pages);
2460 2461 2462 2463 2464 2465
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2466
	pc->mem_cgroup = mem;
2467 2468 2469 2470 2471 2472 2473
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2474
	smp_wmb();
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2488

2489
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2490
	unlock_page_cgroup(pc);
2491 2492 2493 2494 2495
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2496
	memcg_check_events(mem, page);
2497
}
2498

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2513 2514
	if (mem_cgroup_disabled())
		return;
2515
	/*
2516
	 * We have no races with charge/uncharge but will have races with
2517 2518 2519 2520 2521 2522
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2533
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2534 2535
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2536 2537 2538 2539 2540
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2541
/**
2542
 * mem_cgroup_move_account - move account of the page
2543
 * @page: the page
2544
 * @nr_pages: number of regular pages (>1 for huge pages)
2545 2546 2547
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2548
 * @uncharge: whether we should call uncharge and css_put against @from.
2549 2550
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2551
 * - page is not on LRU (isolate_page() is useful.)
2552
 * - compound_lock is held when nr_pages > 1
2553
 *
2554
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2555
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2556 2557
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2558
 */
2559 2560 2561 2562 2563 2564
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2565
{
2566 2567
	unsigned long flags;
	int ret;
2568

2569
	VM_BUG_ON(from == to);
2570
	VM_BUG_ON(PageLRU(page));
2571 2572 2573 2574 2575 2576 2577
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2578
	if (nr_pages > 1 && !PageTransHuge(page))
2579 2580 2581 2582 2583 2584 2585 2586 2587
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2588

2589
	if (PageCgroupFileMapped(pc)) {
2590 2591 2592 2593 2594
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2595
	}
2596
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2597 2598
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2599
		__mem_cgroup_cancel_charge(from, nr_pages);
2600

2601
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2602
	pc->mem_cgroup = to;
2603
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2604 2605 2606
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2607
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2608
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2609
	 * status here.
2610
	 */
2611 2612 2613
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2614
	unlock_page_cgroup(pc);
2615 2616 2617
	/*
	 * check events
	 */
2618 2619
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2620
out:
2621 2622 2623 2624 2625 2626 2627
	return ret;
}

/*
 * move charges to its parent.
 */

2628 2629
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2630 2631 2632 2633 2634 2635
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2636
	unsigned int nr_pages;
2637
	unsigned long uninitialized_var(flags);
2638 2639 2640 2641 2642 2643
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2644 2645 2646 2647 2648
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2649

2650
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2651

2652
	parent = mem_cgroup_from_cont(pcg);
2653
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2654
	if (ret || !parent)
2655
		goto put_back;
2656

2657
	if (nr_pages > 1)
2658 2659
		flags = compound_lock_irqsave(page);

2660
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2661
	if (ret)
2662
		__mem_cgroup_cancel_charge(parent, nr_pages);
2663

2664
	if (nr_pages > 1)
2665
		compound_unlock_irqrestore(page, flags);
2666
put_back:
K
KAMEZAWA Hiroyuki 已提交
2667
	putback_lru_page(page);
2668
put:
2669
	put_page(page);
2670
out:
2671 2672 2673
	return ret;
}

2674 2675 2676 2677 2678 2679 2680
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2681
				gfp_t gfp_mask, enum charge_type ctype)
2682
{
2683
	struct mem_cgroup *mem = NULL;
2684
	unsigned int nr_pages = 1;
2685
	struct page_cgroup *pc;
2686
	bool oom = true;
2687
	int ret;
A
Andrea Arcangeli 已提交
2688

A
Andrea Arcangeli 已提交
2689
	if (PageTransHuge(page)) {
2690
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2691
		VM_BUG_ON(!PageTransHuge(page));
2692 2693 2694 2695 2696
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2697
	}
2698 2699

	pc = lookup_page_cgroup(page);
2700
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2701

2702
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2703
	if (ret || !mem)
2704 2705
		return ret;

2706
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2707 2708 2709
	return 0;
}

2710 2711
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2712
{
2713
	if (mem_cgroup_disabled())
2714
		return 0;
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2726
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2727
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2728 2729
}

D
Daisuke Nishimura 已提交
2730 2731 2732 2733
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2750 2751
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2752
{
2753
	struct mem_cgroup *mem = NULL;
2754 2755
	int ret;

2756
	if (mem_cgroup_disabled())
2757
		return 0;
2758 2759
	if (PageCompound(page))
		return 0;
2760 2761 2762 2763 2764 2765 2766 2767
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2768 2769
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2770 2771 2772 2773
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2774 2775 2776 2777 2778 2779
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2780 2781
			return 0;
		}
2782
		unlock_page_cgroup(pc);
2783 2784
	}

2785
	if (unlikely(!mm))
2786
		mm = &init_mm;
2787

2788 2789 2790 2791
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2802 2803 2804 2805 2806 2807 2808 2809
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2810
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2811 2812

	return ret;
2813 2814
}

2815 2816 2817
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2818
 * struct page_cgroup is acquired. This refcnt will be consumed by
2819 2820
 * "commit()" or removed by "cancel()"
 */
2821 2822 2823 2824 2825
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2826
	int ret;
2827

2828 2829
	*ptr = NULL;

2830
	if (mem_cgroup_disabled())
2831 2832 2833 2834 2835 2836
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2837 2838 2839
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2840 2841
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2842
		goto charge_cur_mm;
2843
	mem = try_get_mem_cgroup_from_page(page);
2844 2845
	if (!mem)
		goto charge_cur_mm;
2846
	*ptr = mem;
2847
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2848 2849
	css_put(&mem->css);
	return ret;
2850 2851 2852
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2853
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2854 2855
}

D
Daisuke Nishimura 已提交
2856 2857 2858
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2859
{
2860
	if (mem_cgroup_disabled())
2861 2862 2863
		return;
	if (!ptr)
		return;
2864
	cgroup_exclude_rmdir(&ptr->css);
2865 2866

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2867 2868 2869
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2870 2871 2872
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2873
	 */
2874
	if (do_swap_account && PageSwapCache(page)) {
2875
		swp_entry_t ent = {.val = page_private(page)};
2876
		unsigned short id;
2877
		struct mem_cgroup *memcg;
2878 2879 2880 2881

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2882
		if (memcg) {
2883 2884 2885 2886
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2887
			if (!mem_cgroup_is_root(memcg))
2888
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2889
			mem_cgroup_swap_statistics(memcg, false);
2890 2891
			mem_cgroup_put(memcg);
		}
2892
		rcu_read_unlock();
2893
	}
2894 2895 2896 2897 2898 2899
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2900 2901
}

D
Daisuke Nishimura 已提交
2902 2903 2904 2905 2906 2907
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2908 2909
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2910
	if (mem_cgroup_disabled())
2911 2912 2913
		return;
	if (!mem)
		return;
2914
	__mem_cgroup_cancel_charge(mem, 1);
2915 2916
}

2917 2918 2919
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2920 2921 2922
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2936 2937
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2938
	 * In those cases, all pages freed continuously can be expected to be in
2939 2940 2941 2942 2943 2944 2945 2946
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2947
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2948 2949
		goto direct_uncharge;

2950 2951 2952 2953 2954 2955 2956 2957
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2958
	batch->nr_pages++;
2959
	if (uncharge_memsw)
2960
		batch->memsw_nr_pages++;
2961 2962
	return;
direct_uncharge:
2963
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2964
	if (uncharge_memsw)
2965
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2966 2967
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2968 2969
	return;
}
2970

2971
/*
2972
 * uncharge if !page_mapped(page)
2973
 */
2974
static struct mem_cgroup *
2975
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2976
{
2977
	struct mem_cgroup *mem = NULL;
2978 2979
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2980

2981
	if (mem_cgroup_disabled())
2982
		return NULL;
2983

K
KAMEZAWA Hiroyuki 已提交
2984
	if (PageSwapCache(page))
2985
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2986

A
Andrea Arcangeli 已提交
2987
	if (PageTransHuge(page)) {
2988
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2989 2990
		VM_BUG_ON(!PageTransHuge(page));
	}
2991
	/*
2992
	 * Check if our page_cgroup is valid
2993
	 */
2994 2995
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2996
		return NULL;
2997

2998
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2999

3000 3001
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
3002 3003 3004 3005 3006
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3007
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3008 3009
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3021
	}
K
KAMEZAWA Hiroyuki 已提交
3022

3023
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3024

3025
	ClearPageCgroupUsed(pc);
3026 3027 3028 3029 3030 3031
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3032

3033
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3034 3035 3036 3037
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3038
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3039 3040 3041 3042 3043
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3044
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3045

3046
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3047 3048 3049

unlock_out:
	unlock_page_cgroup(pc);
3050
	return NULL;
3051 3052
}

3053 3054
void mem_cgroup_uncharge_page(struct page *page)
{
3055 3056 3057 3058 3059
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3060 3061 3062 3063 3064 3065
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3066
	VM_BUG_ON(page->mapping);
3067 3068 3069
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3084 3085
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3106 3107 3108 3109 3110 3111
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3112
	memcg_oom_recover(batch->memcg);
3113 3114 3115 3116
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3117
#ifdef CONFIG_SWAP
3118
/*
3119
 * called after __delete_from_swap_cache() and drop "page" account.
3120 3121
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3122 3123
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3124 3125
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3126 3127 3128 3129 3130 3131
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3132

K
KAMEZAWA Hiroyuki 已提交
3133 3134 3135 3136 3137
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3138
		swap_cgroup_record(ent, css_id(&memcg->css));
3139
}
3140
#endif
3141 3142 3143 3144 3145 3146 3147

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3148
{
3149
	struct mem_cgroup *memcg;
3150
	unsigned short id;
3151 3152 3153 3154

	if (!do_swap_account)
		return;

3155 3156 3157
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3158
	if (memcg) {
3159 3160 3161 3162
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3163
		if (!mem_cgroup_is_root(memcg))
3164
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3165
		mem_cgroup_swap_statistics(memcg, false);
3166 3167
		mem_cgroup_put(memcg);
	}
3168
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3169
}
3170 3171 3172 3173 3174 3175

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3176
 * @need_fixup: whether we should fixup res_counters and refcounts.
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3187
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3188 3189 3190 3191 3192 3193 3194 3195
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3196
		mem_cgroup_swap_statistics(to, true);
3197
		/*
3198 3199 3200 3201 3202 3203
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3204 3205
		 */
		mem_cgroup_get(to);
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3217 3218 3219 3220 3221 3222
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3223
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3224 3225 3226
{
	return -EINVAL;
}
3227
#endif
K
KAMEZAWA Hiroyuki 已提交
3228

3229
/*
3230 3231
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3232
 */
3233
int mem_cgroup_prepare_migration(struct page *page,
3234
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3235
{
3236
	struct mem_cgroup *mem = NULL;
3237
	struct page_cgroup *pc;
3238
	enum charge_type ctype;
3239
	int ret = 0;
3240

3241 3242
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3243
	VM_BUG_ON(PageTransHuge(page));
3244
	if (mem_cgroup_disabled())
3245 3246
		return 0;

3247 3248 3249
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3250 3251
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3283
	}
3284
	unlock_page_cgroup(pc);
3285 3286 3287 3288 3289 3290
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3291

A
Andrea Arcangeli 已提交
3292
	*ptr = mem;
3293
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3306
	}
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3320
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3321
	return ret;
3322
}
3323

3324
/* remove redundant charge if migration failed*/
3325
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3326
	struct page *oldpage, struct page *newpage, bool migration_ok)
3327
{
3328
	struct page *used, *unused;
3329 3330 3331 3332
	struct page_cgroup *pc;

	if (!mem)
		return;
3333
	/* blocks rmdir() */
3334
	cgroup_exclude_rmdir(&mem->css);
3335
	if (!migration_ok) {
3336 3337
		used = oldpage;
		unused = newpage;
3338
	} else {
3339
		used = newpage;
3340 3341
		unused = oldpage;
	}
3342
	/*
3343 3344 3345
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3346
	 */
3347 3348 3349 3350
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3351

3352 3353
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3354
	/*
3355 3356 3357 3358 3359 3360
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3361
	 */
3362 3363
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3364
	/*
3365 3366
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3367 3368 3369 3370
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3371
}
3372

3373
/*
3374 3375 3376 3377 3378 3379
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3380
 */
3381
int mem_cgroup_shmem_charge_fallback(struct page *page,
3382 3383
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3384
{
3385
	struct mem_cgroup *mem;
3386
	int ret;
3387

3388
	if (mem_cgroup_disabled())
3389
		return 0;
3390

3391 3392 3393
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3394

3395
	return ret;
3396 3397
}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3444 3445
static DEFINE_MUTEX(set_limit_mutex);

3446
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3447
				unsigned long long val)
3448
{
3449
	int retry_count;
3450
	u64 memswlimit, memlimit;
3451
	int ret = 0;
3452 3453
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3454
	int enlarge;
3455 3456 3457 3458 3459 3460 3461 3462 3463

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464

3465
	enlarge = 0;
3466
	while (retry_count) {
3467 3468 3469 3470
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3481 3482
			break;
		}
3483 3484 3485 3486 3487

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3488
		ret = res_counter_set_limit(&memcg->res, val);
3489 3490 3491 3492 3493 3494
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3495 3496 3497 3498 3499
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3500
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3501 3502
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3503 3504 3505 3506 3507 3508
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3509
	}
3510 3511
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3512

3513 3514 3515
	return ret;
}

L
Li Zefan 已提交
3516 3517
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3518
{
3519
	int retry_count;
3520
	u64 memlimit, memswlimit, oldusage, curusage;
3521 3522
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3523
	int enlarge = 0;
3524

3525 3526 3527
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3545 3546 3547
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3548
		ret = res_counter_set_limit(&memcg->memsw, val);
3549 3550 3551 3552 3553 3554
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3555 3556 3557 3558 3559
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3560
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3561
						MEM_CGROUP_RECLAIM_NOSWAP |
3562 3563
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3564
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3565
		/* Usage is reduced ? */
3566
		if (curusage >= oldusage)
3567
			retry_count--;
3568 3569
		else
			oldusage = curusage;
3570
	}
3571 3572
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3573 3574 3575
	return ret;
}

3576
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3577 3578
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3579 3580 3581 3582 3583 3584
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3585
	unsigned long long excess;
3586
	unsigned long nr_scanned;
3587 3588 3589 3590

	if (order > 0)
		return 0;

3591
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3605
		nr_scanned = 0;
3606 3607
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3608 3609
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3610
		nr_reclaimed += reclaimed;
3611
		*total_scanned += nr_scanned;
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3634
				if (next_mz == mz)
3635
					css_put(&next_mz->mem->css);
3636
				else /* next_mz == NULL or other memcg */
3637 3638 3639 3640
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3641
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3642 3643 3644 3645 3646 3647 3648 3649
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3650 3651
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3670 3671 3672 3673
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3674
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3675
				int node, int zid, enum lru_list lru)
3676
{
K
KAMEZAWA Hiroyuki 已提交
3677 3678
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3679
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3680
	unsigned long flags, loop;
3681
	struct list_head *list;
3682
	int ret = 0;
3683

K
KAMEZAWA Hiroyuki 已提交
3684 3685
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3686
	list = &mz->lists[lru];
3687

3688 3689 3690 3691 3692
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3693 3694
		struct page *page;

3695
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3696
		spin_lock_irqsave(&zone->lru_lock, flags);
3697
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3698
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3699
			break;
3700 3701 3702 3703
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3704
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3705
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3706 3707
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3708
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3709

3710
		page = lookup_cgroup_page(pc);
3711 3712

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3713
		if (ret == -ENOMEM)
3714
			break;
3715 3716 3717 3718 3719 3720 3721

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3722
	}
K
KAMEZAWA Hiroyuki 已提交
3723

3724 3725 3726
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3727 3728 3729 3730 3731 3732
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3733
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3734
{
3735 3736 3737
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3738
	struct cgroup *cgrp = mem->css.cgroup;
3739

3740
	css_get(&mem->css);
3741 3742

	shrink = 0;
3743 3744 3745
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3746
move_account:
3747
	do {
3748
		ret = -EBUSY;
3749 3750 3751 3752
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3753
			goto out;
3754 3755
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3756
		drain_all_stock_sync();
3757
		ret = 0;
3758
		mem_cgroup_start_move(mem);
3759
		for_each_node_state(node, N_HIGH_MEMORY) {
3760
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3761
				enum lru_list l;
3762 3763
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3764
							node, zid, l);
3765 3766 3767
					if (ret)
						break;
				}
3768
			}
3769 3770 3771
			if (ret)
				break;
		}
3772
		mem_cgroup_end_move(mem);
3773
		memcg_oom_recover(mem);
3774 3775 3776
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3777
		cond_resched();
3778 3779
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3780 3781 3782
out:
	css_put(&mem->css);
	return ret;
3783 3784

try_to_free:
3785 3786
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3787 3788 3789
		ret = -EBUSY;
		goto out;
	}
3790 3791
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3792 3793 3794 3795
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3796 3797 3798 3799 3800

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3801
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3802
						false);
3803
		if (!progress) {
3804
			nr_retries--;
3805
			/* maybe some writeback is necessary */
3806
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3807
		}
3808 3809

	}
K
KAMEZAWA Hiroyuki 已提交
3810
	lru_add_drain();
3811
	/* try move_account...there may be some *locked* pages. */
3812
	goto move_account;
3813 3814
}

3815 3816 3817 3818 3819 3820
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3839
	 * If parent's use_hierarchy is set, we can't make any modifications
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3859

3860 3861
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3862
{
K
KAMEZAWA Hiroyuki 已提交
3863
	struct mem_cgroup *iter;
3864
	long val = 0;
3865

3866
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3867 3868 3869 3870 3871 3872
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3873 3874
}

3875 3876
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3877
	u64 val;
3878 3879 3880 3881 3882 3883 3884 3885

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3886 3887
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3888

K
KAMEZAWA Hiroyuki 已提交
3889
	if (swap)
3890
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3891 3892 3893 3894

	return val << PAGE_SHIFT;
}

3895
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3896
{
3897
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3898
	u64 val;
3899 3900 3901 3902 3903 3904
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3905 3906 3907
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3908
			val = res_counter_read_u64(&mem->res, name);
3909 3910
		break;
	case _MEMSWAP:
3911 3912 3913
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3914
			val = res_counter_read_u64(&mem->memsw, name);
3915 3916 3917 3918 3919 3920
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3921
}
3922 3923 3924 3925
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3926 3927
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3928
{
3929
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3930
	int type, name;
3931 3932 3933
	unsigned long long val;
	int ret;

3934 3935 3936
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3937
	case RES_LIMIT:
3938 3939 3940 3941
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3942 3943
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3944 3945 3946
		if (ret)
			break;
		if (type == _MEM)
3947
			ret = mem_cgroup_resize_limit(memcg, val);
3948 3949
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3950
		break;
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3965 3966 3967 3968 3969
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3970 3971
}

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4000
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4001 4002
{
	struct mem_cgroup *mem;
4003
	int type, name;
4004 4005

	mem = mem_cgroup_from_cont(cont);
4006 4007 4008
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4009
	case RES_MAX_USAGE:
4010 4011 4012 4013
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
4014 4015
		break;
	case RES_FAILCNT:
4016 4017 4018 4019
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
4020 4021
		break;
	}
4022

4023
	return 0;
4024 4025
}

4026 4027 4028 4029 4030 4031
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4032
#ifdef CONFIG_MMU
4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4051 4052 4053 4054 4055 4056 4057
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4058

K
KAMEZAWA Hiroyuki 已提交
4059 4060 4061 4062 4063

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4064
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4065 4066
	MCS_PGPGIN,
	MCS_PGPGOUT,
4067
	MCS_SWAP,
4068 4069
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4080 4081
};

K
KAMEZAWA Hiroyuki 已提交
4082 4083 4084 4085 4086 4087
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4088
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4089 4090
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4091
	{"swap", "total_swap"},
4092 4093
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4094 4095 4096 4097 4098 4099 4100 4101
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4102 4103
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4104 4105 4106 4107
{
	s64 val;

	/* per cpu stat */
4108
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4109
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4110
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4111
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4112
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4113
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4114
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4115
	s->stat[MCS_PGPGIN] += val;
4116
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4117
	s->stat[MCS_PGPGOUT] += val;
4118
	if (do_swap_account) {
4119
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4120 4121
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4122 4123 4124 4125
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4126 4127

	/* per zone stat */
4128
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4129
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4130
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4131
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4132
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4133
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4134
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4135
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4136
	val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4137 4138 4139 4140 4141 4142
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4143 4144 4145 4146
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4147 4148
}

4149 4150 4151 4152 4153 4154 4155 4156 4157
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4158
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4159 4160
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4161
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4162 4163 4164 4165
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4166
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4167 4168
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4169 4170
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4171 4172 4173 4174
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4175
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4176 4177
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4178 4179
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4180 4181 4182 4183
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4184
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4185 4186
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4187 4188
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4189 4190 4191 4192 4193 4194 4195
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4196 4197
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4198 4199
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4200
	struct mcs_total_stat mystat;
4201 4202
	int i;

K
KAMEZAWA Hiroyuki 已提交
4203 4204
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4205

4206

4207 4208 4209
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4210
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4211
	}
L
Lee Schermerhorn 已提交
4212

K
KAMEZAWA Hiroyuki 已提交
4213
	/* Hierarchical information */
4214 4215 4216 4217 4218 4219 4220
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4221

K
KAMEZAWA Hiroyuki 已提交
4222 4223
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4224 4225 4226
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4227
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4228
	}
K
KAMEZAWA Hiroyuki 已提交
4229

K
KOSAKI Motohiro 已提交
4230
#ifdef CONFIG_DEBUG_VM
4231
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4259 4260 4261
	return 0;
}

K
KOSAKI Motohiro 已提交
4262 4263 4264 4265
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4266
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4267 4268 4269 4270 4271 4272 4273
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4274

K
KOSAKI Motohiro 已提交
4275 4276 4277 4278 4279 4280 4281
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4282 4283 4284

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4285 4286
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4287 4288
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4289
		return -EINVAL;
4290
	}
K
KOSAKI Motohiro 已提交
4291 4292 4293

	memcg->swappiness = val;

4294 4295
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4296 4297 4298
	return 0;
}

4299 4300 4301 4302 4303 4304 4305 4306
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4307
		t = rcu_dereference(memcg->thresholds.primary);
4308
	else
4309
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4321
	i = t->current_threshold;
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4345
	t->current_threshold = i - 1;
4346 4347 4348 4349 4350 4351
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4352 4353 4354 4355 4356 4357 4358
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4369
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4380 4381 4382 4383
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4384 4385 4386 4387
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4388 4389
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4390 4391
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4392 4393
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4394
	int i, size, ret;
4395 4396 4397 4398 4399 4400

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4401

4402
	if (type == _MEM)
4403
		thresholds = &memcg->thresholds;
4404
	else if (type == _MEMSWAP)
4405
		thresholds = &memcg->memsw_thresholds;
4406 4407 4408 4409 4410 4411
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4412
	if (thresholds->primary)
4413 4414
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4415
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4416 4417

	/* Allocate memory for new array of thresholds */
4418
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4419
			GFP_KERNEL);
4420
	if (!new) {
4421 4422 4423
		ret = -ENOMEM;
		goto unlock;
	}
4424
	new->size = size;
4425 4426

	/* Copy thresholds (if any) to new array */
4427 4428
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4429
				sizeof(struct mem_cgroup_threshold));
4430 4431
	}

4432
	/* Add new threshold */
4433 4434
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4435 4436

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4437
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4438 4439 4440
			compare_thresholds, NULL);

	/* Find current threshold */
4441
	new->current_threshold = -1;
4442
	for (i = 0; i < size; i++) {
4443
		if (new->entries[i].threshold < usage) {
4444
			/*
4445 4446
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4447 4448
			 * it here.
			 */
4449
			++new->current_threshold;
4450 4451 4452
		}
	}

4453 4454 4455 4456 4457
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4458

4459
	/* To be sure that nobody uses thresholds */
4460 4461 4462 4463 4464 4465 4466 4467
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4468
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4469
	struct cftype *cft, struct eventfd_ctx *eventfd)
4470 4471
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4472 4473
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4474 4475
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4476
	int i, j, size;
4477 4478 4479

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4480
		thresholds = &memcg->thresholds;
4481
	else if (type == _MEMSWAP)
4482
		thresholds = &memcg->memsw_thresholds;
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4498 4499 4500
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4501 4502 4503
			size++;
	}

4504
	new = thresholds->spare;
4505

4506 4507
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4508 4509
		kfree(new);
		new = NULL;
4510
		goto swap_buffers;
4511 4512
	}

4513
	new->size = size;
4514 4515

	/* Copy thresholds and find current threshold */
4516 4517 4518
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4519 4520
			continue;

4521 4522
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4523
			/*
4524
			 * new->current_threshold will not be used
4525 4526 4527
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4528
			++new->current_threshold;
4529 4530 4531 4532
		}
		j++;
	}

4533
swap_buffers:
4534 4535 4536
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4537

4538
	/* To be sure that nobody uses thresholds */
4539 4540 4541 4542
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4543

K
KAMEZAWA Hiroyuki 已提交
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4562
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4563 4564 4565 4566 4567 4568
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4569
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4590 4591 4592 4593 4594 4595 4596
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

4597
	if (atomic_read(&mem->under_oom))
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4624 4625
	if (!val)
		memcg_oom_recover(mem);
4626 4627 4628 4629
	cgroup_unlock();
	return 0;
}

4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4646 4647
static struct cftype mem_cgroup_files[] = {
	{
4648
		.name = "usage_in_bytes",
4649
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4650
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4651 4652
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4653
	},
4654 4655
	{
		.name = "max_usage_in_bytes",
4656
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4657
		.trigger = mem_cgroup_reset,
4658 4659
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4660
	{
4661
		.name = "limit_in_bytes",
4662
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4663
		.write_string = mem_cgroup_write,
4664
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4665
	},
4666 4667 4668 4669 4670 4671
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4672 4673
	{
		.name = "failcnt",
4674
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4675
		.trigger = mem_cgroup_reset,
4676
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4677
	},
4678 4679
	{
		.name = "stat",
4680
		.read_map = mem_control_stat_show,
4681
	},
4682 4683 4684 4685
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4686 4687 4688 4689 4690
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4691 4692 4693 4694 4695
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4696 4697 4698 4699 4700
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4701 4702
	{
		.name = "oom_control",
4703 4704
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4705 4706 4707 4708
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4709 4710 4711 4712
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4713
		.mode = S_IRUGO,
4714 4715
	},
#endif
B
Balbir Singh 已提交
4716 4717
};

4718 4719 4720 4721 4722 4723
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4724 4725
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4761 4762 4763
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4764
	struct mem_cgroup_per_zone *mz;
4765
	enum lru_list l;
4766
	int zone, tmp = node;
4767 4768 4769 4770 4771 4772 4773 4774
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4775 4776
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4777
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4778 4779
	if (!pn)
		return 1;
4780

4781
	mem->info.nodeinfo[node] = pn;
4782 4783
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4784 4785
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4786
		mz->usage_in_excess = 0;
4787 4788
		mz->on_tree = false;
		mz->mem = mem;
4789
	}
4790 4791 4792
	return 0;
}

4793 4794 4795 4796 4797
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4798 4799 4800
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4801
	int size = sizeof(struct mem_cgroup);
4802

4803
	/* Can be very big if MAX_NUMNODES is very big */
4804
	if (size < PAGE_SIZE)
4805
		mem = kzalloc(size, GFP_KERNEL);
4806
	else
4807
		mem = vzalloc(size);
4808

4809 4810 4811
	if (!mem)
		return NULL;

4812
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4813 4814
	if (!mem->stat)
		goto out_free;
4815
	spin_lock_init(&mem->pcp_counter_lock);
4816
	return mem;
4817 4818 4819 4820 4821 4822 4823

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4824 4825
}

4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4837
static void __mem_cgroup_free(struct mem_cgroup *mem)
4838
{
K
KAMEZAWA Hiroyuki 已提交
4839 4840
	int node;

4841
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4842 4843
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4844 4845 4846
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4847 4848
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4849 4850 4851 4852 4853
		kfree(mem);
	else
		vfree(mem);
}

4854 4855 4856 4857 4858
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4859
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4860
{
4861
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4862
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4863
		__mem_cgroup_free(mem);
4864 4865 4866
		if (parent)
			mem_cgroup_put(parent);
	}
4867 4868
}

4869 4870 4871 4872 4873
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4874 4875 4876 4877 4878 4879 4880 4881 4882
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4883

4884 4885 4886
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4887
	if (!mem_cgroup_disabled() && really_do_swap_account)
4888 4889 4890 4891 4892 4893 4894 4895
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4921
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4922 4923
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4924
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4925
	long error = -ENOMEM;
4926
	int node;
B
Balbir Singh 已提交
4927

4928 4929
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4930
		return ERR_PTR(error);
4931

4932 4933 4934
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4935

4936
	/* root ? */
4937
	if (cont->parent == NULL) {
4938
		int cpu;
4939
		enable_swap_cgroup();
4940
		parent = NULL;
4941
		root_mem_cgroup = mem;
4942 4943
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4944 4945 4946 4947 4948
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4949
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4950
	} else {
4951
		parent = mem_cgroup_from_cont(cont->parent);
4952
		mem->use_hierarchy = parent->use_hierarchy;
4953
		mem->oom_kill_disable = parent->oom_kill_disable;
4954
	}
4955

4956 4957 4958
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4959 4960 4961 4962 4963 4964 4965
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4966 4967 4968 4969
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4970
	mem->last_scanned_child = 0;
4971
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4972
	INIT_LIST_HEAD(&mem->oom_notify);
4973

K
KOSAKI Motohiro 已提交
4974
	if (parent)
4975
		mem->swappiness = mem_cgroup_swappiness(parent);
4976
	atomic_set(&mem->refcnt, 1);
4977
	mem->move_charge_at_immigrate = 0;
4978
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4979
	return &mem->css;
4980
free_out:
4981
	__mem_cgroup_free(mem);
4982
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4983
	return ERR_PTR(error);
B
Balbir Singh 已提交
4984 4985
}

4986
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4987 4988 4989
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4990 4991

	return mem_cgroup_force_empty(mem, false);
4992 4993
}

B
Balbir Singh 已提交
4994 4995 4996
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4997 4998 4999
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
5000 5001 5002 5003 5004
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5005 5006 5007 5008 5009 5010 5011 5012
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
5013 5014
}

5015
#ifdef CONFIG_MMU
5016
/* Handlers for move charge at task migration. */
5017 5018
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5019
{
5020 5021
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5022 5023
	struct mem_cgroup *mem = mc.to;

5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5059
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5060 5061 5062 5063 5064
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5065 5066 5067 5068 5069 5070 5071 5072
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5073
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5074 5075 5076 5077 5078 5079
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5080 5081 5082
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5083 5084 5085 5086 5087
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5088
	swp_entry_t	ent;
5089 5090 5091 5092 5093
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5094
	MC_TARGET_SWAP,
5095 5096
};

D
Daisuke Nishimura 已提交
5097 5098
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5099
{
D
Daisuke Nishimura 已提交
5100
	struct page *page = vm_normal_page(vma, addr, ptent);
5101

D
Daisuke Nishimura 已提交
5102 5103 5104 5105 5106 5107
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5108 5109
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5128 5129
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5130
		return NULL;
5131
	}
D
Daisuke Nishimura 已提交
5132 5133 5134 5135 5136 5137
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5183 5184
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5185 5186 5187

	if (!page && !ent.val)
		return 0;
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5203 5204
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5205 5206 5207 5208
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5221 5222
	split_huge_page_pmd(walk->mm, pmd);

5223 5224 5225 5226 5227 5228 5229
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5230 5231 5232
	return 0;
}

5233 5234 5235 5236 5237
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5238
	down_read(&mm->mmap_sem);
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5250
	up_read(&mm->mmap_sem);
5251 5252 5253 5254 5255 5256 5257 5258 5259

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5260 5261 5262 5263 5264
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5265 5266
}

5267 5268
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5269
{
5270 5271 5272
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5273
	/* we must uncharge all the leftover precharges from mc.to */
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5285
	}
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5320
	spin_lock(&mc.lock);
5321 5322
	mc.from = NULL;
	mc.to = NULL;
5323
	spin_unlock(&mc.lock);
5324
	mem_cgroup_end_move(from);
5325 5326
}

5327 5328
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5329
				struct task_struct *p)
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5344 5345 5346 5347
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5348
			VM_BUG_ON(mc.moved_charge);
5349
			VM_BUG_ON(mc.moved_swap);
5350
			mem_cgroup_start_move(from);
5351
			spin_lock(&mc.lock);
5352 5353
			mc.from = from;
			mc.to = mem;
5354
			spin_unlock(&mc.lock);
5355
			/* We set mc.moving_task later */
5356 5357 5358 5359

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5360 5361
		}
		mmput(mm);
5362 5363 5364 5365 5366 5367
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5368
				struct task_struct *p)
5369
{
5370
	mem_cgroup_clear_mc();
5371 5372
}

5373 5374 5375
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5376
{
5377 5378 5379 5380 5381
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5382
	split_huge_page_pmd(walk->mm, pmd);
5383 5384 5385 5386 5387 5388 5389 5390
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5391
		swp_entry_t ent;
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5403 5404
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5405
				mc.precharge--;
5406 5407
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5408 5409 5410 5411 5412
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5413 5414
		case MC_TARGET_SWAP:
			ent = target.ent;
5415 5416
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5417
				mc.precharge--;
5418 5419 5420
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5421
			break;
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5436
		ret = mem_cgroup_do_precharge(1);
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5480
	up_read(&mm->mmap_sem);
5481 5482
}

B
Balbir Singh 已提交
5483 5484 5485
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5486
				struct task_struct *p)
B
Balbir Singh 已提交
5487
{
5488
	struct mm_struct *mm = get_task_mm(p);
5489 5490

	if (mm) {
5491 5492 5493
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5494 5495
		mmput(mm);
	}
5496 5497
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5498
}
5499 5500 5501
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5502
				struct task_struct *p)
5503 5504 5505 5506 5507
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5508
				struct task_struct *p)
5509 5510 5511 5512 5513
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5514
				struct task_struct *p)
5515 5516 5517
{
}
#endif
B
Balbir Singh 已提交
5518

B
Balbir Singh 已提交
5519 5520 5521 5522
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5523
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5524 5525
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5526 5527
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5528
	.attach = mem_cgroup_move_task,
5529
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5530
	.use_id = 1,
B
Balbir Singh 已提交
5531
};
5532 5533

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5534 5535 5536
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5537
	if (!strcmp(s, "1"))
5538
		really_do_swap_account = 1;
5539
	else if (!strcmp(s, "0"))
5540 5541 5542
		really_do_swap_account = 0;
	return 1;
}
5543
__setup("swapaccount=", enable_swap_account);
5544 5545

#endif