memcontrol.c 118.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
50
#include "internal.h"
B
Balbir Singh 已提交
51

52 53
#include <asm/uaccess.h>

54 55
#include <trace/events/vmscan.h>

56 57
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
58
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
59

60
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
61
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
62 63 64 65 66 67
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

68 69 70 71 72 73 74 75 76
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
77

78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88 89
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
92 93 94 95 96 97 98 99

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

100 101 102 103
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
104 105 106
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
107 108
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
109 110

	struct zone_reclaim_stat reclaim_stat;
111 112 113 114
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
115 116
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
117 118 119 120 121 122 123 124 125 126 127 128
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

149 150 151 152 153
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
154
/* For threshold */
155 156
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
157
	int current_threshold;
158 159 160 161 162
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
163 164 165 166 167 168 169 170 171 172 173 174

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
175 176 177 178 179
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
180 181

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
182
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
183

B
Balbir Singh 已提交
184 185 186 187 188 189 190
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
191 192 193
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
194 195 196 197 198 199 200
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
201 202 203 204
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
205 206 207 208
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
209
	struct mem_cgroup_lru_info info;
210

K
KOSAKI Motohiro 已提交
211 212 213 214 215
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

216
	/*
217
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
218
	 * reclaimed from.
219
	 */
K
KAMEZAWA Hiroyuki 已提交
220
	int last_scanned_child;
221 222 223 224
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
225
	atomic_t	oom_lock;
226
	atomic_t	refcnt;
227

K
KOSAKI Motohiro 已提交
228
	unsigned int	swappiness;
229 230
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
231

232 233 234
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

235 236 237 238
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
239
	struct mem_cgroup_thresholds thresholds;
240

241
	/* thresholds for mem+swap usage. RCU-protected */
242
	struct mem_cgroup_thresholds memsw_thresholds;
243

K
KAMEZAWA Hiroyuki 已提交
244 245 246
	/* For oom notifier event fd */
	struct list_head oom_notify;

247 248 249 250 251
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
252
	/*
253
	 * percpu counter.
254
	 */
255
	struct mem_cgroup_stat_cpu *stat;
B
Balbir Singh 已提交
256 257
};

258 259 260 261 262 263
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
264
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
265
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
266 267 268
	NR_MOVE_TYPE,
};

269 270 271 272 273
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
274
	unsigned long moved_charge;
275
	unsigned long moved_swap;
276 277 278 279 280
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
281

D
Daisuke Nishimura 已提交
282 283 284 285 286 287
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

288 289 290 291 292 293
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

294 295 296 297 298 299 300
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

301 302 303
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
304
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
305
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
306
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
307
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
308 309 310
	NR_CHARGE_TYPE,
};

311 312 313 314
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
315 316
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
317

318 319 320
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
321
#define _OOM_TYPE		(2)
322 323 324
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
325 326
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
327

328 329 330 331 332 333 334
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
335 336
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
337

338 339
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
340
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
341
static void drain_all_stock_async(void);
342

343 344 345 346 347 348
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

349 350 351 352 353
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
383
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
384
				struct mem_cgroup_per_zone *mz,
385 386
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
387 388 389 390 391 392 393 394
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

395 396 397
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
414 415 416 417 418 419 420 421 422 423 424 425 426
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

427 428 429 430 431 432
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
433
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
434 435 436 437 438 439
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
440
	unsigned long long excess;
441 442
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
443 444
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
445 446 447
	mctz = soft_limit_tree_from_page(page);

	/*
448 449
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
450
	 */
451 452
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
453
		excess = res_counter_soft_limit_excess(&mem->res);
454 455 456 457
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
458
		if (excess || mz->on_tree) {
459 460 461 462 463
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
464 465
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
466
			 */
467
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
468 469
			spin_unlock(&mctz->lock);
		}
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

488 489 490 491 492 493 494 495 496
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
497
	struct mem_cgroup_per_zone *mz;
498 499

retry:
500
	mz = NULL;
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

	for_each_possible_cpu(cpu)
		val += per_cpu(mem->stat->count[idx], cpu);
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

550 551 552 553
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
554
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
555 556
}

557 558 559
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
560
{
561
	int val = (charge) ? 1 : -1;
562

563 564
	preempt_disable();

565
	if (PageCgroupCache(pc))
566
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
567
	else
568
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
569 570

	if (charge)
571
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
572
	else
573
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
574
	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
575

576
	preempt_enable();
577 578
}

K
KAMEZAWA Hiroyuki 已提交
579
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
580
					enum lru_list idx)
581 582 583 584 585 586 587 588 589 590 591
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

617
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
618 619 620 621 622 623
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

624
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
625
{
626 627 628 629 630 631 632 633
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

634 635 636 637
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

638 639 640
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
641 642 643

	if (!mm)
		return NULL;
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

694 695 696 697 698
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
712

K
KAMEZAWA Hiroyuki 已提交
713 714 715 716
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
717

718
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
719 720 721
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
722
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
723
		return;
724
	VM_BUG_ON(!pc->mem_cgroup);
725 726 727 728
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
729
	mz = page_cgroup_zoneinfo(pc);
730
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
731 732 733
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
734 735
	list_del_init(&pc->lru);
	return;
736 737
}

K
KAMEZAWA Hiroyuki 已提交
738
void mem_cgroup_del_lru(struct page *page)
739
{
K
KAMEZAWA Hiroyuki 已提交
740 741
	mem_cgroup_del_lru_list(page, page_lru(page));
}
742

K
KAMEZAWA Hiroyuki 已提交
743 744 745 746
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
747

748
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
749
		return;
750

K
KAMEZAWA Hiroyuki 已提交
751
	pc = lookup_page_cgroup(page);
752 753 754 755
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
756
	smp_rmb();
757 758
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
759 760 761
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
762 763
}

K
KAMEZAWA Hiroyuki 已提交
764
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
765
{
K
KAMEZAWA Hiroyuki 已提交
766 767
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
768

769
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
770 771
		return;
	pc = lookup_page_cgroup(page);
772
	VM_BUG_ON(PageCgroupAcctLRU(pc));
773 774 775 776
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
777 778
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
779
		return;
780

K
KAMEZAWA Hiroyuki 已提交
781
	mz = page_cgroup_zoneinfo(pc);
782
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
783 784 785
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
786 787
	list_add(&pc->lru, &mz->lists[lru]);
}
788

K
KAMEZAWA Hiroyuki 已提交
789
/*
790 791 792 793 794
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
795
 */
796
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
797
{
798 799 800 801 802 803 804 805 806 807 808 809
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
810 811
}

812 813 814 815 816 817 818 819
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
820
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
821 822 823 824 825
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
826 827 828
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
829
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
830 831 832
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
833 834
}

835 836 837
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
838
	struct mem_cgroup *curr = NULL;
839 840

	task_lock(task);
841 842 843
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
844
	task_unlock(task);
845 846
	if (!curr)
		return 0;
847 848 849 850 851 852 853
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
854 855 856 857
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
858 859 860
	return ret;
}

861
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
862 863 864
{
	unsigned long active;
	unsigned long inactive;
865 866
	unsigned long gb;
	unsigned long inactive_ratio;
867

K
KAMEZAWA Hiroyuki 已提交
868 869
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
898 899 900 901 902
		return 1;

	return 0;
}

903 904 905 906 907 908 909 910 911 912 913
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

914 915 916 917 918 919 920 921 922 923 924
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
945 946 947 948 949 950 951 952
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
953 954 955 956 957 958 959
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

960 961 962 963 964
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
965
					int active, int file)
966 967 968 969 970 971
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
972
	struct page_cgroup *pc, *tmp;
973 974 975
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
976
	int lru = LRU_FILE * file + active;
977
	int ret;
978

979
	BUG_ON(!mem_cont);
980
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
981
	src = &mz->lists[lru];
982

983 984
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
985
		if (scan >= nr_to_scan)
986
			break;
K
KAMEZAWA Hiroyuki 已提交
987 988

		page = pc->page;
989 990
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
991
		if (unlikely(!PageLRU(page)))
992 993
			continue;

H
Hugh Dickins 已提交
994
		scan++;
995 996 997
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
998
			list_move(&page->lru, dst);
999
			mem_cgroup_del_lru(page);
1000
			nr_taken++;
1001 1002 1003 1004 1005 1006 1007
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1008 1009 1010 1011
		}
	}

	*scanned = scan;
1012 1013 1014 1015

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1016 1017 1018
	return nr_taken;
}

1019 1020 1021
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1050 1051 1052 1053 1054 1055
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1056 1057

/**
1058
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1077
	if (!memcg || !p)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

D
David Rientjes 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

	limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
			total_swap_pages;
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1153
/*
K
KAMEZAWA Hiroyuki 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1196 1197
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1198 1199 1200
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1201 1202
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1203 1204
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1205
						struct zone *zone,
1206 1207
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1208
{
K
KAMEZAWA Hiroyuki 已提交
1209 1210 1211
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1212 1213
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1214 1215
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1216

1217 1218 1219 1220
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1221
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1222
		victim = mem_cgroup_select_victim(root_mem);
1223
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1224
			loop++;
1225 1226
			if (loop >= 1)
				drain_all_stock_async();
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1250
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1251 1252
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1253 1254
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1255
		/* we use swappiness of local cgroup */
1256 1257 1258 1259 1260 1261 1262
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1263
		css_put(&victim->css);
1264 1265 1266 1267 1268 1269 1270
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1271
		total += ret;
1272 1273 1274 1275
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1276
			return 1 + total;
1277
	}
K
KAMEZAWA Hiroyuki 已提交
1278
	return total;
1279 1280
}

K
KAMEZAWA Hiroyuki 已提交
1281
static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1282
{
K
KAMEZAWA Hiroyuki 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
	int *val = (int *)data;
	int x;
	/*
	 * Logically, we can stop scanning immediately when we find
	 * a memcg is already locked. But condidering unlock ops and
	 * creation/removal of memcg, scan-all is simple operation.
	 */
	x = atomic_inc_return(&mem->oom_lock);
	*val = max(x, *val);
	return 0;
}
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
	int lock_count = 0;
1301

K
KAMEZAWA Hiroyuki 已提交
1302 1303 1304 1305 1306
	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);

	if (lock_count == 1)
		return true;
	return false;
1307
}
1308

K
KAMEZAWA Hiroyuki 已提交
1309
static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1310
{
K
KAMEZAWA Hiroyuki 已提交
1311 1312 1313 1314 1315 1316
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
	atomic_add_unless(&mem->oom_lock, -1, 0);
1317 1318 1319
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1320 1321 1322 1323 1324 1325 1326 1327
static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
}

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1364 1365
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1366
	if (atomic_read(&mem->oom_lock))
1367 1368 1369
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1370 1371 1372 1373
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1374
{
K
KAMEZAWA Hiroyuki 已提交
1375
	struct oom_wait_info owait;
1376
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1377

K
KAMEZAWA Hiroyuki 已提交
1378 1379 1380 1381 1382
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1383
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1384 1385 1386 1387 1388 1389 1390 1391
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1392 1393 1394 1395
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1396
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1397 1398
	mutex_unlock(&memcg_oom_mutex);

1399 1400
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1401
		mem_cgroup_out_of_memory(mem, mask);
1402
	} else {
K
KAMEZAWA Hiroyuki 已提交
1403
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1404
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1405 1406 1407
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1408
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1409 1410 1411 1412 1413 1414 1415
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1416 1417
}

1418 1419 1420 1421
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1422
void mem_cgroup_update_file_mapped(struct page *page, int val)
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
1433
	if (!mem || !PageCgroupUsed(pc))
1434 1435 1436
		goto done;

	/*
1437
	 * Preemption is already disabled. We can use __this_cpu_xxx
1438
	 */
1439 1440 1441 1442 1443 1444 1445
	if (val > 0) {
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		SetPageCgroupFileMapped(pc);
	} else {
		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		ClearPageCgroupFileMapped(pc);
	}
1446 1447 1448 1449

done:
	unlock_page_cgroup(pc);
}
1450

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1512
 * This will be consumed by consume_stock() function, later.
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1578 1579 1580
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1581
 */
1582
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1583
			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1584
{
1585
	struct mem_cgroup *mem, *mem_over_limit;
1586
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1587
	struct res_counter *fail_res;
1588
	int csize = CHARGE_SIZE;
1589

K
KAMEZAWA Hiroyuki 已提交
1590 1591 1592 1593 1594 1595 1596 1597
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1598

1599
	/*
1600 1601
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1602 1603 1604
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1605 1606 1607
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1608
		*memcg = mem;
1609
	} else {
1610
		css_get(&mem->css);
1611
	}
1612 1613 1614
	if (unlikely(!mem))
		return 0;

1615
	VM_BUG_ON(css_is_removed(&mem->css));
1616 1617
	if (mem_cgroup_is_root(mem))
		goto done;
1618

1619
	while (1) {
1620
		int ret = 0;
1621
		unsigned long flags = 0;
1622

1623
		if (consume_stock(mem))
1624
			goto done;
1625 1626

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1627 1628 1629
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1630
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1631 1632 1633
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1634
			res_counter_uncharge(&mem->res, csize);
1635
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1636 1637 1638 1639 1640 1641 1642
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1643 1644 1645 1646 1647
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1648
		if (!(gfp_mask & __GFP_WAIT))
1649
			goto nomem;
1650

1651 1652
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1653 1654
		if (ret)
			continue;
1655 1656

		/*
1657 1658 1659 1660 1661
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1662
		 *
1663
		 */
1664 1665
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
		/* try to avoid oom while someone is moving charge */
		if (mc.moving_task && current != mc.moving_task) {
			struct mem_cgroup *from, *to;
			bool do_continue = false;
			/*
			 * There is a small race that "from" or "to" can be
			 * freed by rmdir, so we use css_tryget().
			 */
			from = mc.from;
			to = mc.to;
			if (from && css_tryget(&from->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&from->css,
							&mem_over_limit->css);
				else
					do_continue = (from == mem_over_limit);
				css_put(&from->css);
			}
			if (!do_continue && to && css_tryget(&to->css)) {
				if (mem_over_limit->use_hierarchy)
					do_continue = css_is_ancestor(
							&to->css,
							&mem_over_limit->css);
				else
					do_continue = (to == mem_over_limit);
				css_put(&to->css);
			}
			if (do_continue) {
				DEFINE_WAIT(wait);
				prepare_to_wait(&mc.waitq, &wait,
							TASK_INTERRUPTIBLE);
				/* moving charge context might have finished. */
				if (mc.moving_task)
					schedule();
				finish_wait(&mc.waitq, &wait);
				continue;
			}
		}

1707
		if (!nr_retries--) {
K
KAMEZAWA Hiroyuki 已提交
1708 1709 1710 1711 1712
			if (!oom)
				goto nomem;
			if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
				nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
				continue;
1713
			}
K
KAMEZAWA Hiroyuki 已提交
1714 1715 1716
			/* When we reach here, current task is dying .*/
			css_put(&mem->css);
			goto bypass;
1717
		}
1718
	}
1719 1720
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
1721
done:
1722 1723 1724 1725
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
1726 1727 1728
bypass:
	*memcg = NULL;
	return 0;
1729
}
1730

1731 1732 1733 1734 1735
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1736 1737
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1738 1739
{
	if (!mem_cgroup_is_root(mem)) {
1740
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1741
		if (do_swap_account)
1742 1743 1744 1745
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1746
	}
1747 1748 1749 1750 1751 1752
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1753 1754
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1774
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1775
{
1776
	struct mem_cgroup *mem = NULL;
1777
	struct page_cgroup *pc;
1778
	unsigned short id;
1779 1780
	swp_entry_t ent;

1781 1782 1783
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1784
	lock_page_cgroup(pc);
1785
	if (PageCgroupUsed(pc)) {
1786
		mem = pc->mem_cgroup;
1787 1788
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1789
	} else if (PageSwapCache(page)) {
1790
		ent.val = page_private(page);
1791 1792 1793 1794 1795 1796
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1797
	}
1798
	unlock_page_cgroup(pc);
1799 1800 1801
	return mem;
}

1802
/*
1803
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1814 1815 1816 1817

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1818
		mem_cgroup_cancel_charge(mem);
1819
		return;
1820
	}
1821

1822
	pc->mem_cgroup = mem;
1823 1824 1825 1826 1827 1828 1829
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1830
	smp_wmb();
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1844

K
KAMEZAWA Hiroyuki 已提交
1845
	mem_cgroup_charge_statistics(mem, pc, true);
1846 1847

	unlock_page_cgroup(pc);
1848 1849 1850 1851 1852
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
1853
	memcg_check_events(mem, pc->page);
1854
}
1855

1856
/**
1857
 * __mem_cgroup_move_account - move account of the page
1858 1859 1860
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1861
 * @uncharge: whether we should call uncharge and css_put against @from.
1862 1863
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1864
 * - page is not on LRU (isolate_page() is useful.)
1865
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1866
 *
1867 1868 1869 1870
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1871 1872
 */

1873
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1874
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1875 1876
{
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1877
	VM_BUG_ON(PageLRU(pc->page));
1878 1879 1880
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1881

1882
	if (PageCgroupFileMapped(pc)) {
1883 1884 1885 1886 1887
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
1888
	}
1889 1890 1891 1892
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1893

1894
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1895 1896
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1897 1898 1899
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1900 1901 1902
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1903
	 */
1904 1905 1906 1907 1908 1909 1910
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1911
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1912 1913 1914 1915
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1916
		__mem_cgroup_move_account(pc, from, to, uncharge);
1917 1918 1919
		ret = 0;
	}
	unlock_page_cgroup(pc);
1920 1921 1922 1923 1924
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1936
	struct page *page = pc->page;
1937 1938 1939 1940 1941 1942 1943 1944 1945
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1946 1947 1948 1949 1950
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1951

1952
	parent = mem_cgroup_from_cont(pcg);
1953
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1954
	if (ret || !parent)
1955
		goto put_back;
1956

1957 1958 1959
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1960
put_back:
K
KAMEZAWA Hiroyuki 已提交
1961
	putback_lru_page(page);
1962
put:
1963
	put_page(page);
1964
out:
1965 1966 1967
	return ret;
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1989
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1990
	if (ret || !mem)
1991 1992 1993
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1994 1995 1996
	return 0;
}

1997 1998
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1999
{
2000
	if (mem_cgroup_disabled())
2001
		return 0;
2002 2003
	if (PageCompound(page))
		return 0;
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2015
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2016
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2017 2018
}

D
Daisuke Nishimura 已提交
2019 2020 2021 2022
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2023 2024
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2025
{
2026 2027 2028
	struct mem_cgroup *mem = NULL;
	int ret;

2029
	if (mem_cgroup_disabled())
2030
		return 0;
2031 2032
	if (PageCompound(page))
		return 0;
2033 2034 2035 2036 2037 2038 2039 2040
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2041 2042
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2043 2044 2045 2046
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2047 2048 2049 2050 2051 2052 2053

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2054 2055
			return 0;
		}
2056
		unlock_page_cgroup(pc);
2057 2058
	}

2059
	if (unlikely(!mm && !mem))
2060
		mm = &init_mm;
2061

2062 2063
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2064
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2065

D
Daisuke Nishimura 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2075 2076

	return ret;
2077 2078
}

2079 2080 2081
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2082
 * struct page_cgroup is acquired. This refcnt will be consumed by
2083 2084
 * "commit()" or removed by "cancel()"
 */
2085 2086 2087 2088 2089
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2090
	int ret;
2091

2092
	if (mem_cgroup_disabled())
2093 2094 2095 2096 2097 2098
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2099 2100 2101
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2102 2103
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2104
		goto charge_cur_mm;
2105
	mem = try_get_mem_cgroup_from_page(page);
2106 2107
	if (!mem)
		goto charge_cur_mm;
2108
	*ptr = mem;
2109
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2110 2111 2112
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
2113 2114 2115
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2116
	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2117 2118
}

D
Daisuke Nishimura 已提交
2119 2120 2121
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2122 2123 2124
{
	struct page_cgroup *pc;

2125
	if (mem_cgroup_disabled())
2126 2127 2128
		return;
	if (!ptr)
		return;
2129
	cgroup_exclude_rmdir(&ptr->css);
2130
	pc = lookup_page_cgroup(page);
2131
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
2132
	__mem_cgroup_commit_charge(ptr, pc, ctype);
2133
	mem_cgroup_lru_add_after_commit_swapcache(page);
2134 2135 2136
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2137 2138 2139
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2140
	 */
2141
	if (do_swap_account && PageSwapCache(page)) {
2142
		swp_entry_t ent = {.val = page_private(page)};
2143
		unsigned short id;
2144
		struct mem_cgroup *memcg;
2145 2146 2147 2148

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2149
		if (memcg) {
2150 2151 2152 2153
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2154
			if (!mem_cgroup_is_root(memcg))
2155
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2156
			mem_cgroup_swap_statistics(memcg, false);
2157 2158
			mem_cgroup_put(memcg);
		}
2159
		rcu_read_unlock();
2160
	}
2161 2162 2163 2164 2165 2166
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2167 2168
}

D
Daisuke Nishimura 已提交
2169 2170 2171 2172 2173 2174
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2175 2176
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2177
	if (mem_cgroup_disabled())
2178 2179 2180
		return;
	if (!mem)
		return;
2181
	mem_cgroup_cancel_charge(mem);
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2228 2229
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2230 2231
	return;
}
2232

2233
/*
2234
 * uncharge if !page_mapped(page)
2235
 */
2236
static struct mem_cgroup *
2237
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2238
{
H
Hugh Dickins 已提交
2239
	struct page_cgroup *pc;
2240
	struct mem_cgroup *mem = NULL;
2241
	struct mem_cgroup_per_zone *mz;
2242

2243
	if (mem_cgroup_disabled())
2244
		return NULL;
2245

K
KAMEZAWA Hiroyuki 已提交
2246
	if (PageSwapCache(page))
2247
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2248

2249
	/*
2250
	 * Check if our page_cgroup is valid
2251
	 */
2252 2253
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2254
		return NULL;
2255

2256
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2257

2258 2259
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2260 2261 2262 2263 2264
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2265
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2266 2267
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2279
	}
K
KAMEZAWA Hiroyuki 已提交
2280

2281 2282
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2283 2284
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2285
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2286

2287
	ClearPageCgroupUsed(pc);
2288 2289 2290 2291 2292 2293
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2294

2295
	mz = page_cgroup_zoneinfo(pc);
2296
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2297

2298
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2299 2300 2301
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2302

2303
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2304 2305 2306

unlock_out:
	unlock_page_cgroup(pc);
2307
	return NULL;
2308 2309
}

2310 2311
void mem_cgroup_uncharge_page(struct page *page)
{
2312 2313 2314 2315 2316
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2317 2318 2319 2320 2321 2322
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2323
	VM_BUG_ON(page->mapping);
2324 2325 2326
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2367
	memcg_oom_recover(batch->memcg);
2368 2369 2370 2371
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2372
#ifdef CONFIG_SWAP
2373
/*
2374
 * called after __delete_from_swap_cache() and drop "page" account.
2375 2376
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2377 2378
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2379 2380
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2381 2382 2383 2384 2385 2386
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2387 2388

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2389
	if (do_swap_account && swapout && memcg) {
2390
		swap_cgroup_record(ent, css_id(&memcg->css));
2391 2392
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2393
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2394
		css_put(&memcg->css);
2395
}
2396
#endif
2397 2398 2399 2400 2401 2402 2403

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2404
{
2405
	struct mem_cgroup *memcg;
2406
	unsigned short id;
2407 2408 2409 2410

	if (!do_swap_account)
		return;

2411 2412 2413
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2414
	if (memcg) {
2415 2416 2417 2418
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2419
		if (!mem_cgroup_is_root(memcg))
2420
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2421
		mem_cgroup_swap_statistics(memcg, false);
2422 2423
		mem_cgroup_put(memcg);
	}
2424
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2425
}
2426 2427 2428 2429 2430 2431

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2432
 * @need_fixup: whether we should fixup res_counters and refcounts.
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2443
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2444 2445 2446 2447 2448 2449 2450 2451
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2452
		mem_cgroup_swap_statistics(to, true);
2453
		/*
2454 2455 2456 2457 2458 2459
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2460 2461
		 */
		mem_cgroup_get(to);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
			css_put(&to->css);
		}
2474 2475 2476 2477 2478 2479
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2480
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2481 2482 2483
{
	return -EINVAL;
}
2484
#endif
K
KAMEZAWA Hiroyuki 已提交
2485

2486
/*
2487 2488
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2489
 */
2490 2491
int mem_cgroup_prepare_migration(struct page *page,
	struct page *newpage, struct mem_cgroup **ptr)
2492 2493
{
	struct page_cgroup *pc;
2494
	struct mem_cgroup *mem = NULL;
2495
	enum charge_type ctype;
2496
	int ret = 0;
2497

2498
	if (mem_cgroup_disabled())
2499 2500
		return 0;

2501 2502 2503
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2504 2505
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2537
	}
2538
	unlock_page_cgroup(pc);
2539 2540 2541 2542 2543 2544
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2545

A
Andrea Arcangeli 已提交
2546
	*ptr = mem;
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2560
	}
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
	__mem_cgroup_commit_charge(mem, pc, ctype);
2575
	return ret;
2576
}
2577

2578
/* remove redundant charge if migration failed*/
2579
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2580
	struct page *oldpage, struct page *newpage)
2581
{
2582
	struct page *used, *unused;
2583 2584 2585 2586
	struct page_cgroup *pc;

	if (!mem)
		return;
2587
	/* blocks rmdir() */
2588
	cgroup_exclude_rmdir(&mem->css);
2589 2590
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
2591 2592
		used = oldpage;
		unused = newpage;
2593
	} else {
2594
		used = newpage;
2595 2596
		unused = oldpage;
	}
2597
	/*
2598 2599 2600
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
2601
	 */
2602 2603 2604 2605
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
2606

2607 2608 2609 2610 2611
	if (unused != oldpage)
		pc = lookup_page_cgroup(unused);
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

	pc = lookup_page_cgroup(used);
2612
	/*
2613 2614 2615 2616 2617 2618
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
2619
	 */
2620 2621
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
2622
	/*
2623 2624
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
2625 2626 2627 2628
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2629
}
2630

2631
/*
2632 2633 2634 2635 2636 2637
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2638
 */
2639
int mem_cgroup_shmem_charge_fallback(struct page *page,
2640 2641
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2642
{
2643
	struct mem_cgroup *mem = NULL;
2644
	int ret;
2645

2646
	if (mem_cgroup_disabled())
2647
		return 0;
2648

2649 2650 2651
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2652

2653
	return ret;
2654 2655
}

2656 2657
static DEFINE_MUTEX(set_limit_mutex);

2658
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2659
				unsigned long long val)
2660
{
2661
	int retry_count;
2662
	u64 memswlimit, memlimit;
2663
	int ret = 0;
2664 2665
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
2666
	int enlarge;
2667 2668 2669 2670 2671 2672 2673 2674 2675

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2676

2677
	enlarge = 0;
2678
	while (retry_count) {
2679 2680 2681 2682
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2693 2694
			break;
		}
2695 2696 2697 2698 2699

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

2700
		ret = res_counter_set_limit(&memcg->res, val);
2701 2702 2703 2704 2705 2706
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2707 2708 2709 2710 2711
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2712
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2713
						MEM_CGROUP_RECLAIM_SHRINK);
2714 2715 2716 2717 2718 2719
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2720
	}
2721 2722
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2723

2724 2725 2726
	return ret;
}

L
Li Zefan 已提交
2727 2728
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2729
{
2730
	int retry_count;
2731
	u64 memlimit, memswlimit, oldusage, curusage;
2732 2733
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2734
	int enlarge = 0;
2735

2736 2737 2738
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
2756 2757 2758
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
2759
		ret = res_counter_set_limit(&memcg->memsw, val);
2760 2761 2762 2763 2764 2765
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2766 2767 2768 2769 2770
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2771
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2772 2773
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2774
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2775
		/* Usage is reduced ? */
2776
		if (curusage >= oldusage)
2777
			retry_count--;
2778 2779
		else
			oldusage = curusage;
2780
	}
2781 2782
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2783 2784 2785
	return ret;
}

2786 2787 2788 2789 2790 2791 2792 2793 2794
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2795
	unsigned long long excess;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2848
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2849 2850 2851 2852 2853 2854 2855 2856
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2857 2858
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2877 2878 2879 2880
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2881
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2882
				int node, int zid, enum lru_list lru)
2883
{
K
KAMEZAWA Hiroyuki 已提交
2884 2885
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2886
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2887
	unsigned long flags, loop;
2888
	struct list_head *list;
2889
	int ret = 0;
2890

K
KAMEZAWA Hiroyuki 已提交
2891 2892
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2893
	list = &mz->lists[lru];
2894

2895 2896 2897 2898 2899 2900
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2901
		spin_lock_irqsave(&zone->lru_lock, flags);
2902
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2903
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2904
			break;
2905 2906 2907 2908
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2909
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2910
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2911 2912
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2913
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2914

K
KAMEZAWA Hiroyuki 已提交
2915
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2916
		if (ret == -ENOMEM)
2917
			break;
2918 2919 2920 2921 2922 2923 2924

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2925
	}
K
KAMEZAWA Hiroyuki 已提交
2926

2927 2928 2929
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2930 2931 2932 2933 2934 2935
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2936
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2937
{
2938 2939 2940
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2941
	struct cgroup *cgrp = mem->css.cgroup;
2942

2943
	css_get(&mem->css);
2944 2945

	shrink = 0;
2946 2947 2948
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2949
move_account:
2950
	do {
2951
		ret = -EBUSY;
2952 2953 2954 2955
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2956
			goto out;
2957 2958
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2959
		drain_all_stock_sync();
2960
		ret = 0;
2961
		for_each_node_state(node, N_HIGH_MEMORY) {
2962
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2963
				enum lru_list l;
2964 2965
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2966
							node, zid, l);
2967 2968 2969
					if (ret)
						break;
				}
2970
			}
2971 2972 2973
			if (ret)
				break;
		}
2974
		memcg_oom_recover(mem);
2975 2976 2977
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2978
		cond_resched();
2979 2980
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2981 2982 2983
out:
	css_put(&mem->css);
	return ret;
2984 2985

try_to_free:
2986 2987
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2988 2989 2990
		ret = -EBUSY;
		goto out;
	}
2991 2992
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2993 2994 2995 2996
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2997 2998 2999 3000 3001

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3002 3003
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3004
		if (!progress) {
3005
			nr_retries--;
3006
			/* maybe some writeback is necessary */
3007
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3008
		}
3009 3010

	}
K
KAMEZAWA Hiroyuki 已提交
3011
	lru_add_drain();
3012
	/* try move_account...there may be some *locked* pages. */
3013
	goto move_account;
3014 3015
}

3016 3017 3018 3019 3020 3021
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3040
	 * If parent's use_hierarchy is set, we can't make any modifications
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3060 3061 3062 3063 3064 3065 3066 3067 3068
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
3069
	d->val += mem_cgroup_read_stat(mem, d->idx);
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
	u64 idx_val, val;

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
	val = idx_val;
	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
	val += idx_val;

	if (swap) {
		mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
		val += idx_val;
	}

	return val << PAGE_SHIFT;
}

3109
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3110
{
3111
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3112
	u64 val;
3113 3114 3115 3116 3117 3118
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3119 3120 3121
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3122
			val = res_counter_read_u64(&mem->res, name);
3123 3124
		break;
	case _MEMSWAP:
3125 3126 3127
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3128
			val = res_counter_read_u64(&mem->memsw, name);
3129 3130 3131 3132 3133 3134
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3135
}
3136 3137 3138 3139
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3140 3141
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3142
{
3143
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3144
	int type, name;
3145 3146 3147
	unsigned long long val;
	int ret;

3148 3149 3150
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3151
	case RES_LIMIT:
3152 3153 3154 3155
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3156 3157
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3158 3159 3160
		if (ret)
			break;
		if (type == _MEM)
3161
			ret = mem_cgroup_resize_limit(memcg, val);
3162 3163
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3164
		break;
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3179 3180 3181 3182 3183
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3184 3185
}

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3214
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3215 3216
{
	struct mem_cgroup *mem;
3217
	int type, name;
3218 3219

	mem = mem_cgroup_from_cont(cont);
3220 3221 3222
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3223
	case RES_MAX_USAGE:
3224 3225 3226 3227
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3228 3229
		break;
	case RES_FAILCNT:
3230 3231 3232 3233
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3234 3235
		break;
	}
3236

3237
	return 0;
3238 3239
}

3240 3241 3242 3243 3244 3245
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3246
#ifdef CONFIG_MMU
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3265 3266 3267 3268 3269 3270 3271
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3272

K
KAMEZAWA Hiroyuki 已提交
3273 3274 3275 3276 3277

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3278
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3279 3280
	MCS_PGPGIN,
	MCS_PGPGOUT,
3281
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3292 3293
};

K
KAMEZAWA Hiroyuki 已提交
3294 3295 3296 3297 3298 3299
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3300
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3301 3302
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3303
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
3318
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3319
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3320
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3321
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3322
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3323
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3324
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3325
	s->stat[MCS_PGPGIN] += val;
3326
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3327
	s->stat[MCS_PGPGOUT] += val;
3328
	if (do_swap_account) {
3329
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3330 3331
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3353 3354
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3355 3356
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3357
	struct mcs_total_stat mystat;
3358 3359
	int i;

K
KAMEZAWA Hiroyuki 已提交
3360 3361
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3362

3363 3364 3365
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3366
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3367
	}
L
Lee Schermerhorn 已提交
3368

K
KAMEZAWA Hiroyuki 已提交
3369
	/* Hierarchical information */
3370 3371 3372 3373 3374 3375 3376
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3377

K
KAMEZAWA Hiroyuki 已提交
3378 3379
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3380 3381 3382
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3383
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3384
	}
K
KAMEZAWA Hiroyuki 已提交
3385

K
KOSAKI Motohiro 已提交
3386
#ifdef CONFIG_DEBUG_VM
3387
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3415 3416 3417
	return 0;
}

K
KOSAKI Motohiro 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3430

K
KOSAKI Motohiro 已提交
3431 3432 3433 3434 3435 3436 3437
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3438 3439 3440

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3441 3442
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3443 3444
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3445
		return -EINVAL;
3446
	}
K
KOSAKI Motohiro 已提交
3447 3448 3449 3450 3451

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3452 3453
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3454 3455 3456
	return 0;
}

3457 3458 3459 3460 3461 3462 3463 3464
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3465
		t = rcu_dereference(memcg->thresholds.primary);
3466
	else
3467
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3479
	i = t->current_threshold;
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3503
	t->current_threshold = i - 1;
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	__mem_cgroup_threshold(memcg, false);
	if (do_swap_account)
		__mem_cgroup_threshold(memcg, true);
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3539 3540
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3541 3542
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3543 3544
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3545
	int i, size, ret;
3546 3547 3548 3549 3550 3551

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3552

3553
	if (type == _MEM)
3554
		thresholds = &memcg->thresholds;
3555
	else if (type == _MEMSWAP)
3556
		thresholds = &memcg->memsw_thresholds;
3557 3558 3559 3560 3561 3562
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3563
	if (thresholds->primary)
3564 3565
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3566
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3567 3568

	/* Allocate memory for new array of thresholds */
3569
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3570
			GFP_KERNEL);
3571
	if (!new) {
3572 3573 3574
		ret = -ENOMEM;
		goto unlock;
	}
3575
	new->size = size;
3576 3577

	/* Copy thresholds (if any) to new array */
3578 3579
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3580
				sizeof(struct mem_cgroup_threshold));
3581 3582
	}

3583
	/* Add new threshold */
3584 3585
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3586 3587

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3588
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3589 3590 3591
			compare_thresholds, NULL);

	/* Find current threshold */
3592
	new->current_threshold = -1;
3593
	for (i = 0; i < size; i++) {
3594
		if (new->entries[i].threshold < usage) {
3595
			/*
3596 3597
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3598 3599
			 * it here.
			 */
3600
			++new->current_threshold;
3601 3602 3603
		}
	}

3604 3605 3606 3607 3608
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3609

3610
	/* To be sure that nobody uses thresholds */
3611 3612 3613 3614 3615 3616 3617 3618
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3619
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3620
	struct cftype *cft, struct eventfd_ctx *eventfd)
3621 3622
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3623 3624
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3625 3626
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
3627
	int i, j, size;
3628 3629 3630

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
3631
		thresholds = &memcg->thresholds;
3632
	else if (type == _MEMSWAP)
3633
		thresholds = &memcg->memsw_thresholds;
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3649 3650 3651
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3652 3653 3654
			size++;
	}

3655
	new = thresholds->spare;
3656

3657 3658
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3659 3660
		kfree(new);
		new = NULL;
3661
		goto swap_buffers;
3662 3663
	}

3664
	new->size = size;
3665 3666

	/* Copy thresholds and find current threshold */
3667 3668 3669
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3670 3671
			continue;

3672 3673
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
3674
			/*
3675
			 * new->current_threshold will not be used
3676 3677 3678
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3679
			++new->current_threshold;
3680 3681 3682 3683
		}
		j++;
	}

3684
swap_buffers:
3685 3686 3687
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
3688

3689
	/* To be sure that nobody uses thresholds */
3690 3691 3692 3693
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
3694

K
KAMEZAWA Hiroyuki 已提交
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

3720
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

/*
 */
static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
3777 3778
	if (!val)
		memcg_oom_recover(mem);
3779 3780 3781 3782
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
3783 3784
static struct cftype mem_cgroup_files[] = {
	{
3785
		.name = "usage_in_bytes",
3786
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3787
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3788 3789
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
3790
	},
3791 3792
	{
		.name = "max_usage_in_bytes",
3793
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3794
		.trigger = mem_cgroup_reset,
3795 3796
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3797
	{
3798
		.name = "limit_in_bytes",
3799
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3800
		.write_string = mem_cgroup_write,
3801
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3802
	},
3803 3804 3805 3806 3807 3808
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3809 3810
	{
		.name = "failcnt",
3811
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3812
		.trigger = mem_cgroup_reset,
3813
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3814
	},
3815 3816
	{
		.name = "stat",
3817
		.read_map = mem_control_stat_show,
3818
	},
3819 3820 3821 3822
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3823 3824 3825 3826 3827
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3828 3829 3830 3831 3832
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3833 3834 3835 3836 3837
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3838 3839
	{
		.name = "oom_control",
3840 3841
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3842 3843 3844 3845
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
3846 3847
};

3848 3849 3850 3851 3852 3853
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
3854 3855
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3891 3892 3893
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3894
	struct mem_cgroup_per_zone *mz;
3895
	enum lru_list l;
3896
	int zone, tmp = node;
3897 3898 3899 3900 3901 3902 3903 3904
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3905 3906 3907
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3908 3909
	if (!pn)
		return 1;
3910

3911 3912
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3913 3914 3915

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3916 3917
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3918
		mz->usage_in_excess = 0;
3919 3920
		mz->on_tree = false;
		mz->mem = mem;
3921
	}
3922 3923 3924
	return 0;
}

3925 3926 3927 3928 3929
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3930 3931 3932
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3933
	int size = sizeof(struct mem_cgroup);
3934

3935
	/* Can be very big if MAX_NUMNODES is very big */
3936 3937
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3938
	else
3939
		mem = vmalloc(size);
3940

3941 3942 3943 3944
	if (!mem)
		return NULL;

	memset(mem, 0, size);
3945 3946 3947 3948 3949 3950 3951 3952
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!mem->stat) {
		if (size < PAGE_SIZE)
			kfree(mem);
		else
			vfree(mem);
		mem = NULL;
	}
3953 3954 3955
	return mem;
}

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3967
static void __mem_cgroup_free(struct mem_cgroup *mem)
3968
{
K
KAMEZAWA Hiroyuki 已提交
3969 3970
	int node;

3971
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3972 3973
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3974 3975 3976
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3977 3978
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3979 3980 3981 3982 3983
		kfree(mem);
	else
		vfree(mem);
}

3984 3985 3986 3987 3988
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

3989
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3990
{
3991
	if (atomic_sub_and_test(count, &mem->refcnt)) {
3992
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3993
		__mem_cgroup_free(mem);
3994 3995 3996
		if (parent)
			mem_cgroup_put(parent);
	}
3997 3998
}

3999 4000 4001 4002 4003
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4004 4005 4006 4007 4008 4009 4010 4011 4012
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4013

4014 4015 4016
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4017
	if (!mem_cgroup_disabled() && really_do_swap_account)
4018 4019 4020 4021 4022 4023 4024 4025
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4051
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4052 4053
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4054
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4055
	long error = -ENOMEM;
4056
	int node;
B
Balbir Singh 已提交
4057

4058 4059
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4060
		return ERR_PTR(error);
4061

4062 4063 4064
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4065

4066
	/* root ? */
4067
	if (cont->parent == NULL) {
4068
		int cpu;
4069
		enable_swap_cgroup();
4070
		parent = NULL;
4071
		root_mem_cgroup = mem;
4072 4073
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4074 4075 4076 4077 4078 4079
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
4080
	} else {
4081
		parent = mem_cgroup_from_cont(cont->parent);
4082
		mem->use_hierarchy = parent->use_hierarchy;
4083
		mem->oom_kill_disable = parent->oom_kill_disable;
4084
	}
4085

4086 4087 4088
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4089 4090 4091 4092 4093 4094 4095
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4096 4097 4098 4099
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4100
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4101
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4102
	INIT_LIST_HEAD(&mem->oom_notify);
4103

K
KOSAKI Motohiro 已提交
4104 4105
	if (parent)
		mem->swappiness = get_swappiness(parent);
4106
	atomic_set(&mem->refcnt, 1);
4107
	mem->move_charge_at_immigrate = 0;
4108
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4109
	return &mem->css;
4110
free_out:
4111
	__mem_cgroup_free(mem);
4112
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4113
	return ERR_PTR(error);
B
Balbir Singh 已提交
4114 4115
}

4116
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4117 4118 4119
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4120 4121

	return mem_cgroup_force_empty(mem, false);
4122 4123
}

B
Balbir Singh 已提交
4124 4125 4126
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4127 4128 4129
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4130 4131 4132 4133 4134
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4135 4136 4137 4138 4139 4140 4141 4142
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4143 4144
}

4145
#ifdef CONFIG_MMU
4146
/* Handlers for move charge at task migration. */
4147 4148
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4149
{
4150 4151
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4152 4153
	struct mem_cgroup *mem = mc.to;

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4192
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4193 4194 4195 4196 4197
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4198 4199 4200 4201 4202 4203 4204 4205
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4206
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4207 4208 4209 4210 4211 4212
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4213 4214 4215
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4216 4217 4218 4219 4220
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4221
	swp_entry_t	ent;
4222 4223 4224 4225 4226
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4227
	MC_TARGET_SWAP,
4228 4229
};

D
Daisuke Nishimura 已提交
4230 4231
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4232
{
D
Daisuke Nishimura 已提交
4233
	struct page *page = vm_normal_page(vma, addr, ptent);
4234

D
Daisuke Nishimura 已提交
4235 4236 4237 4238 4239 4240
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4241 4242
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4261 4262
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4263
		return NULL;
4264
	}
D
Daisuke Nishimura 已提交
4265 4266 4267 4268 4269 4270
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4316 4317
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4318 4319 4320

	if (!page && !ent.val)
		return 0;
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4336 4337
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4338 4339 4340 4341
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4361 4362 4363
	return 0;
}

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4391
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4392 4393 4394 4395 4396
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
4397 4398 4399
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
4400
		memcg_oom_recover(mc.to);
4401 4402 4403 4404 4405 4406 4407 4408
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4409
		memcg_oom_recover(mc.from);
4410
	}
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
			__css_put(&mc.to->css, mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */

		mc.moved_swap = 0;
	}
4434 4435
	mc.from = NULL;
	mc.to = NULL;
4436 4437
	mc.moving_task = NULL;
	wake_up_all(&mc.waitq);
4438 4439
}

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4458 4459 4460 4461
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4462
			VM_BUG_ON(mc.moved_charge);
4463
			VM_BUG_ON(mc.moved_swap);
4464
			VM_BUG_ON(mc.moving_task);
4465 4466 4467
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
4468
			mc.moved_charge = 0;
4469
			mc.moved_swap = 0;
4470
			mc.moving_task = current;
4471 4472 4473 4474 4475

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4486
	mem_cgroup_clear_mc();
4487 4488
}

4489 4490 4491
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4492
{
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4506
		swp_entry_t ent;
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4518 4519
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
4520
				mc.precharge--;
4521 4522
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4523 4524 4525 4526 4527
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4528 4529
		case MC_TARGET_SWAP:
			ent = target.ent;
4530 4531
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4532
				mc.precharge--;
4533 4534 4535
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4536
			break;
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4551
		ret = mem_cgroup_do_precharge(1);
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
4584 4585
}

B
Balbir Singh 已提交
4586 4587 4588
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
4589 4590
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
4591
{
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
4604
}
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
4627

B
Balbir Singh 已提交
4628 4629 4630 4631
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
4632
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
4633 4634
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
4635 4636
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
4637
	.attach = mem_cgroup_move_task,
4638
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
4639
	.use_id = 1,
B
Balbir Singh 已提交
4640
};
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif