memcontrol.c 95.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
B
Balbir Singh 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
23
#include <linux/mm.h>
24
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
25
#include <linux/pagemap.h>
26
#include <linux/smp.h>
27
#include <linux/page-flags.h>
28
#include <linux/backing-dev.h>
29 30
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
31
#include <linux/limits.h>
32
#include <linux/mutex.h>
33
#include <linux/rbtree.h>
34
#include <linux/slab.h>
35 36 37
#include <linux/swap.h>
#include <linux/spinlock.h>
#include <linux/fs.h>
38
#include <linux/seq_file.h>
39
#include <linux/vmalloc.h>
40
#include <linux/mm_inline.h>
41
#include <linux/page_cgroup.h>
42
#include <linux/cpu.h>
K
KAMEZAWA Hiroyuki 已提交
43
#include "internal.h"
B
Balbir Singh 已提交
44

45 46
#include <asm/uaccess.h>

47 48
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
49
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
50

51
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
52
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
53 54 55 56 57 58
int do_swap_account __read_mostly;
static int really_do_swap_account __initdata = 1; /* for remember boot option*/
#else
#define do_swap_account		(0)
#endif

59
#define SOFTLIMIT_EVENTS_THRESH (1000)
60

61 62 63 64 65 66 67 68
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
69
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
70
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
71 72
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
73
	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */
74
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
75 76 77 78 79 80 81 82 83

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
} ____cacheline_aligned_in_smp;

struct mem_cgroup_stat {
84
	struct mem_cgroup_stat_cpu cpustat[0];
85 86
};

87 88 89 90 91 92 93 94 95 96 97 98 99 100
static inline void
__mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	stat->count[idx] = 0;
}

static inline s64
__mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
				enum mem_cgroup_stat_index idx)
{
	return stat->count[idx];
}

101 102 103
/*
 * For accounting under irq disable, no need for increment preempt count.
 */
104
static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
105 106
		enum mem_cgroup_stat_index idx, int val)
{
107
	stat->count[idx] += val;
108 109 110 111 112 113 114 115 116 117 118 119
}

static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 ret = 0;
	for_each_possible_cpu(cpu)
		ret += stat->cpustat[cpu].count[idx];
	return ret;
}

K
KAMEZAWA Hiroyuki 已提交
120 121 122 123 124 125 126 127 128
static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
{
	s64 ret;

	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
	return ret;
}

129 130 131 132
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
133 134 135
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
136 137
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
138 139

	struct zone_reclaim_stat reclaim_stat;
140 141 142 143
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
144 145
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
146 147 148 149 150 151 152 153 154 155 156 157
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

B
Balbir Singh 已提交
178 179 180 181 182 183 184
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
185 186 187
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
188 189 190 191 192 193 194
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
195 196 197 198
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
199 200 201 202
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
203
	struct mem_cgroup_lru_info info;
204

K
KOSAKI Motohiro 已提交
205 206 207 208 209
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

210
	int	prev_priority;	/* for recording reclaim priority */
211 212

	/*
213
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
214
	 * reclaimed from.
215
	 */
K
KAMEZAWA Hiroyuki 已提交
216
	int last_scanned_child;
217 218 219 220
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
221
	unsigned long	last_oom_jiffies;
222
	atomic_t	refcnt;
223

K
KOSAKI Motohiro 已提交
224 225
	unsigned int	swappiness;

226 227 228
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

229 230 231 232 233 234
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;

235
	/*
236
	 * statistics. This must be placed at the end of memcg.
237 238
	 */
	struct mem_cgroup_stat stat;
B
Balbir Singh 已提交
239 240
};

241 242 243 244 245 246
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
247
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
248 249 250
	NR_MOVE_TYPE,
};

251 252 253 254 255
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
256
	unsigned long moved_charge;
257 258
} mc;

259 260 261 262 263 264 265
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

266 267 268
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
269
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
270
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
271
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
272
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
273 274 275
	NR_CHARGE_TYPE,
};

276 277 278 279
/* only for here (for easy reading.) */
#define PCGF_CACHE	(1UL << PCG_CACHE)
#define PCGF_USED	(1UL << PCG_USED)
#define PCGF_LOCK	(1UL << PCG_LOCK)
280 281
/* Not used, but added here for completeness */
#define PCGF_ACCT	(1UL << PCG_ACCT)
282

283 284 285 286 287 288 289
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

290 291 292 293 294 295 296
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
297 298
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
299

300 301
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
302
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
303
static void drain_all_stock_async(void);
304

305 306 307 308 309 310
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

311 312 313 314 315
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
345
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
346
				struct mem_cgroup_per_zone *mz,
347 348
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
349 350 351 352 353 354 355 356
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

357 358 359
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
376 377 378 379 380 381 382 383 384 385 386 387 388
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

389 390 391 392 393 394
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
395
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	spin_unlock(&mctz->lock);
}

static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
{
	bool ret = false;
	int cpu;
	s64 val;
	struct mem_cgroup_stat_cpu *cpustat;

	cpu = get_cpu();
	cpustat = &mem->stat.cpustat[cpu];
	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
		ret = true;
	}
	put_cpu();
	return ret;
}

static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
419
	unsigned long long excess;
420 421
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
422 423
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
424 425 426
	mctz = soft_limit_tree_from_page(page);

	/*
427 428
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
429
	 */
430 431
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
432
		excess = res_counter_soft_limit_excess(&mem->res);
433 434 435 436
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
437
		if (excess || mz->on_tree) {
438 439 440 441 442
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
443 444
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
445
			 */
446
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
447 448
			spin_unlock(&mctz->lock);
		}
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

467 468 469 470 471 472 473 474 475
static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
{
	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
476
	struct mem_cgroup_per_zone *mz;
477 478

retry:
479
	mz = NULL;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

509 510 511 512 513 514 515 516 517 518 519 520 521
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
	struct mem_cgroup_stat *stat = &mem->stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu = get_cpu();

	cpustat = &stat->cpustat[cpu];
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
	put_cpu();
}

522 523 524
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
					 struct page_cgroup *pc,
					 bool charge)
525
{
526
	int val = (charge) ? 1 : -1;
527
	struct mem_cgroup_stat *stat = &mem->stat;
528
	struct mem_cgroup_stat_cpu *cpustat;
K
KAMEZAWA Hiroyuki 已提交
529
	int cpu = get_cpu();
530

K
KAMEZAWA Hiroyuki 已提交
531
	cpustat = &stat->cpustat[cpu];
532
	if (PageCgroupCache(pc))
533
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
534
	else
535
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
536 537

	if (charge)
538
		__mem_cgroup_stat_add_safe(cpustat,
539 540
				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
	else
541
		__mem_cgroup_stat_add_safe(cpustat,
542
				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
543
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
K
KAMEZAWA Hiroyuki 已提交
544
	put_cpu();
545 546
}

K
KAMEZAWA Hiroyuki 已提交
547
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
548
					enum lru_list idx)
549 550 551 552 553 554 555 556 557 558 559
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
560 561
}

562
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
563 564 565 566 567 568
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

569
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
570
{
571 572 573 574 575 576 577 578
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

579 580 581 582
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

583 584 585
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
586 587 588

	if (!mm)
		return NULL;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
/*
 * Call callback function against all cgroup under hierarchy tree.
 */
static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
			  int (*func)(struct mem_cgroup *, void *))
{
	int found, ret, nextid;
	struct cgroup_subsys_state *css;
	struct mem_cgroup *mem;

	if (!root->use_hierarchy)
		return (*func)(root, data);

	nextid = 1;
	do {
		ret = 0;
		mem = NULL;

		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
				   &found);
		if (css && css_tryget(css))
			mem = container_of(css, struct mem_cgroup, css);
		rcu_read_unlock();

		if (mem) {
			ret = (*func)(mem, data);
			css_put(&mem->css);
		}
		nextid = found + 1;
	} while (!ret && css);

	return ret;
}

639 640 641 642 643
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
657

K
KAMEZAWA Hiroyuki 已提交
658 659 660 661
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
662

663
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
664 665 666
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
667
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
668
		return;
669
	VM_BUG_ON(!pc->mem_cgroup);
670 671 672 673
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
674
	mz = page_cgroup_zoneinfo(pc);
675
	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
676 677 678
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
679 680
	list_del_init(&pc->lru);
	return;
681 682
}

K
KAMEZAWA Hiroyuki 已提交
683
void mem_cgroup_del_lru(struct page *page)
684
{
K
KAMEZAWA Hiroyuki 已提交
685 686
	mem_cgroup_del_lru_list(page, page_lru(page));
}
687

K
KAMEZAWA Hiroyuki 已提交
688 689 690 691
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
692

693
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
694
		return;
695

K
KAMEZAWA Hiroyuki 已提交
696
	pc = lookup_page_cgroup(page);
697 698 699 700
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
701
	smp_rmb();
702 703
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
704 705 706
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
707 708
}

K
KAMEZAWA Hiroyuki 已提交
709
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
710
{
K
KAMEZAWA Hiroyuki 已提交
711 712
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
713

714
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
715 716
		return;
	pc = lookup_page_cgroup(page);
717
	VM_BUG_ON(PageCgroupAcctLRU(pc));
718 719 720 721
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
722 723
	smp_rmb();
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
724
		return;
725

K
KAMEZAWA Hiroyuki 已提交
726
	mz = page_cgroup_zoneinfo(pc);
727
	MEM_CGROUP_ZSTAT(mz, lru) += 1;
728 729 730
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
731 732
	list_add(&pc->lru, &mz->lists[lru]);
}
733

K
KAMEZAWA Hiroyuki 已提交
734
/*
735 736 737 738 739
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
740
 */
741
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
742
{
743 744 745 746 747 748 749 750 751 752 753 754
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
755 756
}

757 758 759 760 761 762 763 764
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
765
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
766 767 768 769 770
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
771 772 773
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
774
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
775 776 777
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
778 779
}

780 781 782
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
783
	struct mem_cgroup *curr = NULL;
784 785

	task_lock(task);
786 787 788
	rcu_read_lock();
	curr = try_get_mem_cgroup_from_mm(task->mm);
	rcu_read_unlock();
789
	task_unlock(task);
790 791
	if (!curr)
		return 0;
792 793 794 795 796 797 798
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
799 800 801 802
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
803 804 805
	return ret;
}

806 807 808 809 810
/*
 * prev_priority control...this will be used in memory reclaim path.
 */
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
K
KOSAKI Motohiro 已提交
811 812 813 814 815 816 817
	int prev_priority;

	spin_lock(&mem->reclaim_param_lock);
	prev_priority = mem->prev_priority;
	spin_unlock(&mem->reclaim_param_lock);

	return prev_priority;
818 819 820 821
}

void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
822
	spin_lock(&mem->reclaim_param_lock);
823 824
	if (priority < mem->prev_priority)
		mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
825
	spin_unlock(&mem->reclaim_param_lock);
826 827 828 829
}

void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
K
KOSAKI Motohiro 已提交
830
	spin_lock(&mem->reclaim_param_lock);
831
	mem->prev_priority = priority;
K
KOSAKI Motohiro 已提交
832
	spin_unlock(&mem->reclaim_param_lock);
833 834
}

835
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
836 837 838
{
	unsigned long active;
	unsigned long inactive;
839 840
	unsigned long gb;
	unsigned long inactive_ratio;
841

K
KAMEZAWA Hiroyuki 已提交
842 843
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
844

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
872 873 874 875 876
		return 1;

	return 0;
}

877 878 879 880 881 882 883 884 885 886 887
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

888 889 890 891 892 893 894 895 896 897 898
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
	int nid = zone->zone_pgdat->node_id;
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
919 920 921 922 923 924 925 926
	/*
	 * Used bit is set without atomic ops but after smp_wmb().
	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
	 */
	smp_rmb();
	if (!PageCgroupUsed(pc))
		return NULL;

K
KOSAKI Motohiro 已提交
927 928 929 930 931 932 933
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

934 935 936 937 938
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
939
					int active, int file)
940 941 942 943 944 945
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
946
	struct page_cgroup *pc, *tmp;
947 948 949
	int nid = z->zone_pgdat->node_id;
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
950
	int lru = LRU_FILE * file + active;
951
	int ret;
952

953
	BUG_ON(!mem_cont);
954
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
955
	src = &mz->lists[lru];
956

957 958
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
959
		if (scan >= nr_to_scan)
960
			break;
K
KAMEZAWA Hiroyuki 已提交
961 962

		page = pc->page;
963 964
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
965
		if (unlikely(!PageLRU(page)))
966 967
			continue;

H
Hugh Dickins 已提交
968
		scan++;
969 970 971
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
972
			list_move(&page->lru, dst);
973
			mem_cgroup_del_lru(page);
974
			nr_taken++;
975 976 977 978 979 980 981
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
982 983 984 985 986 987 988
		}
	}

	*scanned = scan;
	return nr_taken;
}

989 990 991
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

992 993 994 995 996 997 998 999 1000 1001 1002 1003
static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
{
	if (do_swap_account) {
		if (res_counter_check_under_limit(&mem->res) &&
			res_counter_check_under_limit(&mem->memsw))
			return true;
	} else
		if (res_counter_check_under_limit(&mem->res))
			return true;
	return false;
}

K
KOSAKI Motohiro 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1020 1021 1022 1023 1024 1025
static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
{
	int *val = data;
	(*val)++;
	return 0;
}
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

/**
 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1047
	if (!memcg || !p)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
 	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
	return num;
}

1105
/*
K
KAMEZAWA Hiroyuki 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1148 1149
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1150 1151 1152
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1153 1154
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1155 1156
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1157
						struct zone *zone,
1158 1159
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1160
{
K
KAMEZAWA Hiroyuki 已提交
1161 1162 1163
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1164 1165
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1166 1167
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
	unsigned long excess = mem_cgroup_get_excess(root_mem);
K
KAMEZAWA Hiroyuki 已提交
1168

1169 1170 1171 1172
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1173
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1174
		victim = mem_cgroup_select_victim(root_mem);
1175
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1176
			loop++;
1177 1178
			if (loop >= 1)
				drain_all_stock_async();
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
K
KAMEZAWA Hiroyuki 已提交
1202 1203 1204
		if (!mem_cgroup_local_usage(&victim->stat)) {
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1205 1206
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1207
		/* we use swappiness of local cgroup */
1208 1209 1210 1211 1212 1213 1214
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
				noswap, get_swappiness(victim), zone,
				zone->zone_pgdat->node_id);
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1215
		css_put(&victim->css);
1216 1217 1218 1219 1220 1221 1222
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1223
		total += ret;
1224 1225 1226 1227
		if (check_soft) {
			if (res_counter_check_under_soft_limit(&root_mem->res))
				return total;
		} else if (mem_cgroup_check_under_limit(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1228
			return 1 + total;
1229
	}
K
KAMEZAWA Hiroyuki 已提交
1230
	return total;
1231 1232
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
bool mem_cgroup_oom_called(struct task_struct *task)
{
	bool ret = false;
	struct mem_cgroup *mem;
	struct mm_struct *mm;

	rcu_read_lock();
	mm = task->mm;
	if (!mm)
		mm = &init_mm;
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
		ret = true;
	rcu_read_unlock();
	return ret;
}
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260

static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
{
	mem->last_oom_jiffies = jiffies;
	return 0;
}

static void record_last_oom(struct mem_cgroup *mem)
{
	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
}

1261 1262 1263 1264
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
 */
1265
void mem_cgroup_update_file_mapped(struct page *page, int val)
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
{
	struct mem_cgroup *mem;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
	int cpu;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (unlikely(!pc))
		return;

	lock_page_cgroup(pc);
	mem = pc->mem_cgroup;
	if (!mem)
		goto done;

	if (!PageCgroupUsed(pc))
		goto done;

	/*
	 * Preemption is already disabled, we don't need get_cpu()
	 */
	cpu = smp_processor_id();
	stat = &mem->stat;
	cpustat = &stat->cpustat[cpu];

1292
	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
1293 1294 1295
done:
	unlock_page_cgroup(pc);
}
1296

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
 * This will be consumed by consumt_stock() function, later.
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

	if (action != CPU_DEAD)
		return NOTIFY_OK;
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1424 1425 1426
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1427
 */
1428
static int __mem_cgroup_try_charge(struct mm_struct *mm,
1429
			gfp_t gfp_mask, struct mem_cgroup **memcg,
1430
			bool oom, struct page *page)
1431
{
1432
	struct mem_cgroup *mem, *mem_over_limit;
1433
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1434
	struct res_counter *fail_res;
1435
	int csize = CHARGE_SIZE;
1436 1437 1438 1439 1440 1441 1442

	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
		/* Don't account this! */
		*memcg = NULL;
		return 0;
	}

1443
	/*
1444 1445
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1446 1447 1448
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
1449 1450 1451
	mem = *memcg;
	if (likely(!mem)) {
		mem = try_get_mem_cgroup_from_mm(mm);
1452
		*memcg = mem;
1453
	} else {
1454
		css_get(&mem->css);
1455
	}
1456 1457 1458
	if (unlikely(!mem))
		return 0;

1459
	VM_BUG_ON(css_is_removed(&mem->css));
1460 1461
	if (mem_cgroup_is_root(mem))
		goto done;
1462

1463
	while (1) {
1464
		int ret = 0;
1465
		unsigned long flags = 0;
1466

1467 1468 1469 1470
		if (consume_stock(mem))
			goto charged;

		ret = res_counter_charge(&mem->res, csize, &fail_res);
1471 1472 1473
		if (likely(!ret)) {
			if (!do_swap_account)
				break;
1474
			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1475 1476 1477
			if (likely(!ret))
				break;
			/* mem+swap counter fails */
1478
			res_counter_uncharge(&mem->res, csize);
1479
			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1480 1481 1482 1483 1484 1485 1486
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									memsw);
		} else
			/* mem counter fails */
			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
									res);

1487 1488 1489 1490 1491
		/* reduce request size and retry */
		if (csize > PAGE_SIZE) {
			csize = PAGE_SIZE;
			continue;
		}
1492
		if (!(gfp_mask & __GFP_WAIT))
1493
			goto nomem;
1494

1495 1496
		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
						gfp_mask, flags);
1497 1498
		if (ret)
			continue;
1499 1500

		/*
1501 1502 1503 1504 1505
		 * try_to_free_mem_cgroup_pages() might not give us a full
		 * picture of reclaim. Some pages are reclaimed and might be
		 * moved to swap cache or just unmapped from the cgroup.
		 * Check the limit again to see if the reclaim reduced the
		 * current usage of the cgroup before giving up
1506
		 *
1507
		 */
1508 1509
		if (mem_cgroup_check_under_limit(mem_over_limit))
			continue;
1510 1511

		if (!nr_retries--) {
1512
			if (oom) {
1513
				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1514
				record_last_oom(mem_over_limit);
1515
			}
1516
			goto nomem;
1517
		}
1518
	}
1519 1520 1521
	if (csize > PAGE_SIZE)
		refill_stock(mem, csize - PAGE_SIZE);
charged:
1522
	/*
1523 1524
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
1525
	 */
1526
	if (page && mem_cgroup_soft_limit_check(mem))
1527
		mem_cgroup_update_tree(mem, page);
1528
done:
1529 1530 1531 1532 1533
	return 0;
nomem:
	css_put(&mem->css);
	return -ENOMEM;
}
1534

1535 1536 1537 1538 1539
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
1540 1541
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
1542 1543
{
	if (!mem_cgroup_is_root(mem)) {
1544
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1545
		if (do_swap_account)
1546 1547 1548 1549
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_put(&mem->css, (int)count);
1550
	}
1551 1552 1553 1554 1555 1556
	/* we don't need css_put for root */
}

static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
{
	__mem_cgroup_cancel_charge(mem, 1);
1557 1558
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

1578
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1579
{
1580
	struct mem_cgroup *mem = NULL;
1581
	struct page_cgroup *pc;
1582
	unsigned short id;
1583 1584
	swp_entry_t ent;

1585 1586 1587
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
1588
	lock_page_cgroup(pc);
1589
	if (PageCgroupUsed(pc)) {
1590
		mem = pc->mem_cgroup;
1591 1592
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
1593
	} else if (PageSwapCache(page)) {
1594
		ent.val = page_private(page);
1595 1596 1597 1598 1599 1600
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
1601
	}
1602
	unlock_page_cgroup(pc);
1603 1604 1605
	return mem;
}

1606
/*
1607
 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
 * USED state. If already USED, uncharge and return.
 */

static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				     struct page_cgroup *pc,
				     enum charge_type ctype)
{
	/* try_charge() can return NULL to *memcg, taking care of it. */
	if (!mem)
		return;
1618 1619 1620 1621

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
1622
		mem_cgroup_cancel_charge(mem);
1623
		return;
1624
	}
1625

1626
	pc->mem_cgroup = mem;
1627 1628 1629 1630 1631 1632 1633
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
1634
	smp_wmb();
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
1648

K
KAMEZAWA Hiroyuki 已提交
1649
	mem_cgroup_charge_statistics(mem, pc, true);
1650 1651

	unlock_page_cgroup(pc);
1652
}
1653

1654
/**
1655
 * __mem_cgroup_move_account - move account of the page
1656 1657 1658
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
1659
 * @uncharge: whether we should call uncharge and css_put against @from.
1660 1661
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
1662
 * - page is not on LRU (isolate_page() is useful.)
1663
 * - the pc is locked, used, and ->mem_cgroup points to @from.
1664
 *
1665 1666 1667 1668
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
1669 1670
 */

1671
static void __mem_cgroup_move_account(struct page_cgroup *pc,
1672
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1673
{
1674 1675 1676 1677
	struct page *page;
	int cpu;
	struct mem_cgroup_stat *stat;
	struct mem_cgroup_stat_cpu *cpustat;
1678 1679

	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
1680
	VM_BUG_ON(PageLRU(pc->page));
1681 1682 1683
	VM_BUG_ON(!PageCgroupLocked(pc));
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
1684

1685
	page = pc->page;
1686
	if (page_mapped(page) && !PageAnon(page)) {
1687 1688 1689 1690
		cpu = smp_processor_id();
		/* Update mapped_file data for mem_cgroup "from" */
		stat = &from->stat;
		cpustat = &stat->cpustat[cpu];
1691
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1692 1693 1694 1695 1696
						-1);

		/* Update mapped_file data for mem_cgroup "to" */
		stat = &to->stat;
		cpustat = &stat->cpustat[cpu];
1697
		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1698 1699
						1);
	}
1700 1701 1702 1703
	mem_cgroup_charge_statistics(from, pc, false);
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
		mem_cgroup_cancel_charge(from);
1704

1705
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
1706 1707
	pc->mem_cgroup = to;
	mem_cgroup_charge_statistics(to, pc, true);
1708 1709 1710
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
1711 1712 1713
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
1714
	 */
1715 1716 1717 1718 1719 1720 1721
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
1722
		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1723 1724 1725 1726
{
	int ret = -EINVAL;
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1727
		__mem_cgroup_move_account(pc, from, to, uncharge);
1728 1729 1730
		ret = 0;
	}
	unlock_page_cgroup(pc);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
1742
	struct page *page = pc->page;
1743 1744 1745 1746 1747 1748 1749 1750 1751
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

1752 1753 1754 1755 1756
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
K
KAMEZAWA Hiroyuki 已提交
1757

1758
	parent = mem_cgroup_from_cont(pcg);
1759
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1760
	if (ret || !parent)
1761
		goto put_back;
1762

1763 1764 1765
	ret = mem_cgroup_move_account(pc, child, parent, true);
	if (ret)
		mem_cgroup_cancel_charge(parent);
1766
put_back:
K
KAMEZAWA Hiroyuki 已提交
1767
	putback_lru_page(page);
1768
put:
1769
	put_page(page);
1770
out:
1771 1772 1773
	return ret;
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask, enum charge_type ctype,
				struct mem_cgroup *memcg)
{
	struct mem_cgroup *mem;
	struct page_cgroup *pc;
	int ret;

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

	mem = memcg;
1795
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1796
	if (ret || !mem)
1797 1798 1799
		return ret;

	__mem_cgroup_commit_charge(mem, pc, ctype);
1800 1801 1802
	return 0;
}

1803 1804
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
1805
{
1806
	if (mem_cgroup_disabled())
1807
		return 0;
1808 1809
	if (PageCompound(page))
		return 0;
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
1821
	return mem_cgroup_charge_common(page, mm, gfp_mask,
1822
				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1823 1824
}

D
Daisuke Nishimura 已提交
1825 1826 1827 1828
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

1829 1830
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
1831
{
1832 1833 1834
	struct mem_cgroup *mem = NULL;
	int ret;

1835
	if (mem_cgroup_disabled())
1836
		return 0;
1837 1838
	if (PageCompound(page))
		return 0;
1839 1840 1841 1842 1843 1844 1845 1846
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
1847 1848
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
1849 1850 1851 1852
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

1853 1854 1855 1856 1857 1858 1859

		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
1860 1861
			return 0;
		}
1862
		unlock_page_cgroup(pc);
1863 1864
	}

1865
	if (unlikely(!mm && !mem))
1866
		mm = &init_mm;
1867

1868 1869
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
1870
				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1871

D
Daisuke Nishimura 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1881 1882

	return ret;
1883 1884
}

1885 1886 1887
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
1888
 * struct page_cgroup is acquired. This refcnt will be consumed by
1889 1890
 * "commit()" or removed by "cancel()"
 */
1891 1892 1893 1894 1895
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
1896
	int ret;
1897

1898
	if (mem_cgroup_disabled())
1899 1900 1901 1902 1903 1904
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
1905 1906 1907
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
1908 1909
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
1910
		goto charge_cur_mm;
1911
	mem = try_get_mem_cgroup_from_page(page);
1912 1913
	if (!mem)
		goto charge_cur_mm;
1914
	*ptr = mem;
1915
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1916 1917 1918
	/* drop extra refcnt from tryget */
	css_put(&mem->css);
	return ret;
1919 1920 1921
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
1922
	return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1923 1924
}

D
Daisuke Nishimura 已提交
1925 1926 1927
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
1928 1929 1930
{
	struct page_cgroup *pc;

1931
	if (mem_cgroup_disabled())
1932 1933 1934
		return;
	if (!ptr)
		return;
1935
	cgroup_exclude_rmdir(&ptr->css);
1936
	pc = lookup_page_cgroup(page);
1937
	mem_cgroup_lru_del_before_commit_swapcache(page);
D
Daisuke Nishimura 已提交
1938
	__mem_cgroup_commit_charge(ptr, pc, ctype);
1939
	mem_cgroup_lru_add_after_commit_swapcache(page);
1940 1941 1942
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
1943 1944 1945
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
1946
	 */
1947
	if (do_swap_account && PageSwapCache(page)) {
1948
		swp_entry_t ent = {.val = page_private(page)};
1949
		unsigned short id;
1950
		struct mem_cgroup *memcg;
1951 1952 1953 1954

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
1955
		if (memcg) {
1956 1957 1958 1959
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
1960
			if (!mem_cgroup_is_root(memcg))
1961
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1962
			mem_cgroup_swap_statistics(memcg, false);
1963 1964
			mem_cgroup_put(memcg);
		}
1965
		rcu_read_unlock();
1966
	}
1967 1968 1969 1970 1971 1972
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
1973 1974
}

D
Daisuke Nishimura 已提交
1975 1976 1977 1978 1979 1980
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

1981 1982
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
1983
	if (mem_cgroup_disabled())
1984 1985 1986
		return;
	if (!mem)
		return;
1987
	mem_cgroup_cancel_charge(mem);
1988 1989
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
static void
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */
	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
	res_counter_uncharge(&mem->res, PAGE_SIZE);
	if (uncharge_memsw)
		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
	return;
}
2034

2035
/*
2036
 * uncharge if !page_mapped(page)
2037
 */
2038
static struct mem_cgroup *
2039
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2040
{
H
Hugh Dickins 已提交
2041
	struct page_cgroup *pc;
2042
	struct mem_cgroup *mem = NULL;
2043
	struct mem_cgroup_per_zone *mz;
2044

2045
	if (mem_cgroup_disabled())
2046
		return NULL;
2047

K
KAMEZAWA Hiroyuki 已提交
2048
	if (PageSwapCache(page))
2049
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2050

2051
	/*
2052
	 * Check if our page_cgroup is valid
2053
	 */
2054 2055
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2056
		return NULL;
2057

2058
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2059

2060 2061
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2062 2063 2064 2065 2066
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2067
	case MEM_CGROUP_CHARGE_TYPE_DROP:
K
KAMEZAWA Hiroyuki 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		if (page_mapped(page))
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2080
	}
K
KAMEZAWA Hiroyuki 已提交
2081

2082 2083
	if (!mem_cgroup_is_root(mem))
		__do_uncharge(mem, ctype);
2084 2085
	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		mem_cgroup_swap_statistics(mem, true);
K
KAMEZAWA Hiroyuki 已提交
2086
	mem_cgroup_charge_statistics(mem, pc, false);
K
KAMEZAWA Hiroyuki 已提交
2087

2088
	ClearPageCgroupUsed(pc);
2089 2090 2091 2092 2093 2094
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2095

2096
	mz = page_cgroup_zoneinfo(pc);
2097
	unlock_page_cgroup(pc);
H
Hugh Dickins 已提交
2098

2099
	if (mem_cgroup_soft_limit_check(mem))
2100
		mem_cgroup_update_tree(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2101 2102 2103
	/* at swapout, this memcg will be accessed to record to swap */
	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		css_put(&mem->css);
2104

2105
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2106 2107 2108

unlock_out:
	unlock_page_cgroup(pc);
2109
	return NULL;
2110 2111
}

2112 2113
void mem_cgroup_uncharge_page(struct page *page)
{
2114 2115 2116 2117 2118
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2119 2120 2121 2122 2123 2124
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2125
	VM_BUG_ON(page->mapping);
2126 2127 2128
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2173
#ifdef CONFIG_SWAP
2174
/*
2175
 * called after __delete_from_swap_cache() and drop "page" account.
2176 2177
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2178 2179
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2180 2181
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2182 2183 2184 2185 2186 2187
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2188 2189

	/* record memcg information */
K
KAMEZAWA Hiroyuki 已提交
2190
	if (do_swap_account && swapout && memcg) {
2191
		swap_cgroup_record(ent, css_id(&memcg->css));
2192 2193
		mem_cgroup_get(memcg);
	}
K
KAMEZAWA Hiroyuki 已提交
2194
	if (swapout && memcg)
K
KAMEZAWA Hiroyuki 已提交
2195
		css_put(&memcg->css);
2196
}
2197
#endif
2198 2199 2200 2201 2202 2203 2204

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2205
{
2206
	struct mem_cgroup *memcg;
2207
	unsigned short id;
2208 2209 2210 2211

	if (!do_swap_account)
		return;

2212 2213 2214
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2215
	if (memcg) {
2216 2217 2218 2219
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2220
		if (!mem_cgroup_is_root(memcg))
2221
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2222
		mem_cgroup_swap_statistics(memcg, false);
2223 2224
		mem_cgroup_put(memcg);
	}
2225
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2226
}
2227
#endif
K
KAMEZAWA Hiroyuki 已提交
2228

2229
/*
2230 2231
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2232
 */
2233
int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2234 2235
{
	struct page_cgroup *pc;
2236 2237
	struct mem_cgroup *mem = NULL;
	int ret = 0;
2238

2239
	if (mem_cgroup_disabled())
2240 2241
		return 0;

2242 2243 2244
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2245 2246 2247
		mem = pc->mem_cgroup;
		css_get(&mem->css);
	}
2248
	unlock_page_cgroup(pc);
2249

2250
	if (mem) {
2251 2252
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
						page);
2253 2254
		css_put(&mem->css);
	}
2255
	*ptr = mem;
2256
	return ret;
2257
}
2258

2259
/* remove redundant charge if migration failed*/
2260 2261
void mem_cgroup_end_migration(struct mem_cgroup *mem,
		struct page *oldpage, struct page *newpage)
2262
{
2263 2264 2265 2266 2267 2268
	struct page *target, *unused;
	struct page_cgroup *pc;
	enum charge_type ctype;

	if (!mem)
		return;
2269
	cgroup_exclude_rmdir(&mem->css);
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
	/* at migration success, oldpage->mapping is NULL. */
	if (oldpage->mapping) {
		target = oldpage;
		unused = NULL;
	} else {
		target = newpage;
		unused = oldpage;
	}

	if (PageAnon(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(target))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/* unused page is not on radix-tree now. */
K
KAMEZAWA Hiroyuki 已提交
2287
	if (unused)
2288 2289 2290
		__mem_cgroup_uncharge_common(unused, ctype);

	pc = lookup_page_cgroup(target);
2291
	/*
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
	 * So, double-counting is effectively avoided.
	 */
	__mem_cgroup_commit_charge(mem, pc, ctype);

	/*
	 * Both of oldpage and newpage are still under lock_page().
	 * Then, we don't have to care about race in radix-tree.
	 * But we have to be careful that this page is unmapped or not.
	 *
	 * There is a case for !page_mapped(). At the start of
	 * migration, oldpage was mapped. But now, it's zapped.
	 * But we know *target* page is not freed/reused under us.
	 * mem_cgroup_uncharge_page() does all necessary checks.
2306
	 */
2307 2308
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		mem_cgroup_uncharge_page(target);
2309 2310 2311 2312 2313 2314
	/*
	 * At migration, we may charge account against cgroup which has no tasks
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
2315
}
2316

2317
/*
2318 2319 2320 2321 2322 2323
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
2324
 */
2325
int mem_cgroup_shmem_charge_fallback(struct page *page,
2326 2327
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
2328
{
2329
	struct mem_cgroup *mem = NULL;
2330
	int ret;
2331

2332
	if (mem_cgroup_disabled())
2333
		return 0;
2334

2335 2336 2337
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2338

2339
	return ret;
2340 2341
}

2342 2343
static DEFINE_MUTEX(set_limit_mutex);

2344
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2345
				unsigned long long val)
2346
{
2347
	int retry_count;
2348
	u64 memswlimit;
2349
	int ret = 0;
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2361

2362
	while (retry_count) {
2363 2364 2365 2366
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
2377 2378
			break;
		}
2379
		ret = res_counter_set_limit(&memcg->res, val);
2380 2381 2382 2383 2384 2385
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2386 2387 2388 2389 2390
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2391
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2392
						MEM_CGROUP_RECLAIM_SHRINK);
2393 2394 2395 2396 2397 2398
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
2399
	}
2400

2401 2402 2403
	return ret;
}

L
Li Zefan 已提交
2404 2405
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
2406
{
2407
	int retry_count;
2408
	u64 memlimit, oldusage, curusage;
2409 2410
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
2411

2412 2413 2414
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
		ret = res_counter_set_limit(&memcg->memsw, val);
2433 2434 2435 2436 2437 2438
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
2439 2440 2441 2442 2443
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

2444
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2445 2446
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
2447
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2448
		/* Usage is reduced ? */
2449
		if (curusage >= oldusage)
2450
			retry_count--;
2451 2452
		else
			oldusage = curusage;
2453 2454 2455 2456
	}
	return ret;
}

2457 2458 2459 2460 2461 2462 2463 2464 2465
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
						gfp_t gfp_mask, int nid,
						int zid)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2466
	unsigned long long excess;
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(nid, zid);
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2519
		excess = res_counter_soft_limit_excess(&mz->mem->res);
2520 2521 2522 2523 2524 2525 2526 2527
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
2528 2529
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

2548 2549 2550 2551
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
2552
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
2553
				int node, int zid, enum lru_list lru)
2554
{
K
KAMEZAWA Hiroyuki 已提交
2555 2556
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
2557
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
2558
	unsigned long flags, loop;
2559
	struct list_head *list;
2560
	int ret = 0;
2561

K
KAMEZAWA Hiroyuki 已提交
2562 2563
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
2564
	list = &mz->lists[lru];
2565

2566 2567 2568 2569 2570 2571
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
2572
		spin_lock_irqsave(&zone->lru_lock, flags);
2573
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
2574
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2575
			break;
2576 2577 2578 2579
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
2580
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
2581
			spin_unlock_irqrestore(&zone->lru_lock, flags);
2582 2583
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
2584
		spin_unlock_irqrestore(&zone->lru_lock, flags);
2585

K
KAMEZAWA Hiroyuki 已提交
2586
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2587
		if (ret == -ENOMEM)
2588
			break;
2589 2590 2591 2592 2593 2594 2595

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
2596
	}
K
KAMEZAWA Hiroyuki 已提交
2597

2598 2599 2600
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
2601 2602 2603 2604 2605 2606
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
2607
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2608
{
2609 2610 2611
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2612
	struct cgroup *cgrp = mem->css.cgroup;
2613

2614
	css_get(&mem->css);
2615 2616

	shrink = 0;
2617 2618 2619
	/* should free all ? */
	if (free_all)
		goto try_to_free;
2620
move_account:
2621
	do {
2622
		ret = -EBUSY;
2623 2624 2625 2626
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
2627
			goto out;
2628 2629
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
2630
		drain_all_stock_sync();
2631
		ret = 0;
2632
		for_each_node_state(node, N_HIGH_MEMORY) {
2633
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2634
				enum lru_list l;
2635 2636
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
2637
							node, zid, l);
2638 2639 2640
					if (ret)
						break;
				}
2641
			}
2642 2643 2644 2645 2646 2647
			if (ret)
				break;
		}
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
2648
		cond_resched();
2649 2650
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
2651 2652 2653
out:
	css_put(&mem->css);
	return ret;
2654 2655

try_to_free:
2656 2657
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2658 2659 2660
		ret = -EBUSY;
		goto out;
	}
2661 2662
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2663 2664 2665 2666
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
2667 2668 2669 2670 2671

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
2672 2673
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
2674
		if (!progress) {
2675
			nr_retries--;
2676
			/* maybe some writeback is necessary */
2677
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2678
		}
2679 2680

	}
K
KAMEZAWA Hiroyuki 已提交
2681
	lru_add_drain();
2682
	/* try move_account...there may be some *locked* pages. */
2683
	goto move_account;
2684 2685
}

2686 2687 2688 2689 2690 2691
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
2710
	 * If parent's use_hierarchy is set, we can't make any modifications
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
struct mem_cgroup_idx_data {
	s64 val;
	enum mem_cgroup_stat_index idx;
};

static int
mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
{
	struct mem_cgroup_idx_data *d = data;
	d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
	return 0;
}

static void
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx, s64 *val)
{
	struct mem_cgroup_idx_data d;
	d.idx = idx;
	d.val = 0;
	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
	*val = d.val;
}

2754
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
2755
{
2756
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2757
	u64 idx_val, val;
2758 2759 2760 2761 2762 2763
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->res, name);
2774 2775
		break;
	case _MEMSWAP:
2776 2777 2778 2779 2780 2781 2782 2783 2784
		if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_CACHE, &idx_val);
			val = idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_RSS, &idx_val);
			val += idx_val;
			mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2785
			val += idx_val;
2786 2787 2788
			val <<= PAGE_SHIFT;
		} else
			val = res_counter_read_u64(&mem->memsw, name);
2789 2790 2791 2792 2793 2794
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
2795
}
2796 2797 2798 2799
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2800 2801
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
2802
{
2803
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2804
	int type, name;
2805 2806 2807
	unsigned long long val;
	int ret;

2808 2809 2810
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
2811
	case RES_LIMIT:
2812 2813 2814 2815
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2816 2817
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
2818 2819 2820
		if (ret)
			break;
		if (type == _MEM)
2821
			ret = mem_cgroup_resize_limit(memcg, val);
2822 2823
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
2824
		break;
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
2839 2840 2841 2842 2843
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
2844 2845
}

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

2874
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2875 2876
{
	struct mem_cgroup *mem;
2877
	int type, name;
2878 2879

	mem = mem_cgroup_from_cont(cont);
2880 2881 2882
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
2883
	case RES_MAX_USAGE:
2884 2885 2886 2887
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
2888 2889
		break;
	case RES_FAILCNT:
2890 2891 2892 2893
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
2894 2895
		break;
	}
2896

2897
	return 0;
2898 2899
}

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
2925 2926 2927 2928 2929

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
2930
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
2931 2932
	MCS_PGPGIN,
	MCS_PGPGOUT,
2933
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
2944 2945
};

K
KAMEZAWA Hiroyuki 已提交
2946 2947 2948 2949 2950 2951
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
2952
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
2953 2954
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
2955
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
{
	struct mcs_total_stat *s = data;
	s64 val;

	/* per cpu stat */
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
	s->stat[MCS_RSS] += val * PAGE_SIZE;
2974 2975
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2976 2977 2978 2979
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
	s->stat[MCS_PGPGIN] += val;
	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
	s->stat[MCS_PGPGOUT] += val;
2980 2981 2982 2983
	if (do_swap_account) {
		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
	return 0;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
}

3005 3006
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3007 3008
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3009
	struct mcs_total_stat mystat;
3010 3011
	int i;

K
KAMEZAWA Hiroyuki 已提交
3012 3013
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3014

3015 3016 3017
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3018
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3019
	}
L
Lee Schermerhorn 已提交
3020

K
KAMEZAWA Hiroyuki 已提交
3021
	/* Hierarchical information */
3022 3023 3024 3025 3026 3027 3028
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3029

K
KAMEZAWA Hiroyuki 已提交
3030 3031
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3032 3033 3034
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3035
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3036
	}
K
KAMEZAWA Hiroyuki 已提交
3037

K
KOSAKI Motohiro 已提交
3038
#ifdef CONFIG_DEBUG_VM
3039
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3067 3068 3069
	return 0;
}

K
KOSAKI Motohiro 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3082

K
KOSAKI Motohiro 已提交
3083 3084 3085 3086 3087 3088 3089
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3090 3091 3092

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3093 3094
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3095 3096
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3097
		return -EINVAL;
3098
	}
K
KOSAKI Motohiro 已提交
3099 3100 3101 3102 3103

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3104 3105
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3106 3107 3108
	return 0;
}

3109

B
Balbir Singh 已提交
3110 3111
static struct cftype mem_cgroup_files[] = {
	{
3112
		.name = "usage_in_bytes",
3113
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3114
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3115
	},
3116 3117
	{
		.name = "max_usage_in_bytes",
3118
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3119
		.trigger = mem_cgroup_reset,
3120 3121
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3122
	{
3123
		.name = "limit_in_bytes",
3124
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3125
		.write_string = mem_cgroup_write,
3126
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3127
	},
3128 3129 3130 3131 3132 3133
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
3134 3135
	{
		.name = "failcnt",
3136
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3137
		.trigger = mem_cgroup_reset,
3138
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
3139
	},
3140 3141
	{
		.name = "stat",
3142
		.read_map = mem_control_stat_show,
3143
	},
3144 3145 3146 3147
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
3148 3149 3150 3151 3152
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
3153 3154 3155 3156 3157
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3158 3159 3160 3161 3162
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
B
Balbir Singh 已提交
3163 3164
};

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

3206 3207 3208
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
3209
	struct mem_cgroup_per_zone *mz;
3210
	enum lru_list l;
3211
	int zone, tmp = node;
3212 3213 3214 3215 3216 3217 3218 3219
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
3220 3221 3222
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3223 3224
	if (!pn)
		return 1;
3225

3226 3227
	mem->info.nodeinfo[node] = pn;
	memset(pn, 0, sizeof(*pn));
3228 3229 3230

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
3231 3232
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
3233
		mz->usage_in_excess = 0;
3234 3235
		mz->on_tree = false;
		mz->mem = mem;
3236
	}
3237 3238 3239
	return 0;
}

3240 3241 3242 3243 3244
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

3245 3246 3247 3248 3249 3250
static int mem_cgroup_size(void)
{
	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
	return sizeof(struct mem_cgroup) + cpustat_size;
}

3251 3252 3253
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
3254
	int size = mem_cgroup_size();
3255

3256 3257
	if (size < PAGE_SIZE)
		mem = kmalloc(size, GFP_KERNEL);
3258
	else
3259
		mem = vmalloc(size);
3260 3261

	if (mem)
3262
		memset(mem, 0, size);
3263 3264 3265
	return mem;
}

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

3277
static void __mem_cgroup_free(struct mem_cgroup *mem)
3278
{
K
KAMEZAWA Hiroyuki 已提交
3279 3280
	int node;

3281
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
3282 3283
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
3284 3285 3286
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

3287
	if (mem_cgroup_size() < PAGE_SIZE)
3288 3289 3290 3291 3292
		kfree(mem);
	else
		vfree(mem);
}

3293 3294 3295 3296 3297 3298 3299
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

static void mem_cgroup_put(struct mem_cgroup *mem)
{
3300 3301
	if (atomic_dec_and_test(&mem->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3302
		__mem_cgroup_free(mem);
3303 3304 3305
		if (parent)
			mem_cgroup_put(parent);
	}
3306 3307
}

3308 3309 3310 3311 3312 3313 3314 3315 3316
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
3317

3318 3319 3320
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
3321
	if (!mem_cgroup_disabled() && really_do_swap_account)
3322 3323 3324 3325 3326 3327 3328 3329
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
3355
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
3356 3357
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
3358
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
3359
	long error = -ENOMEM;
3360
	int node;
B
Balbir Singh 已提交
3361

3362 3363
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
3364
		return ERR_PTR(error);
3365

3366 3367 3368
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
3369

3370
	/* root ? */
3371
	if (cont->parent == NULL) {
3372
		int cpu;
3373
		enable_swap_cgroup();
3374
		parent = NULL;
3375
		root_mem_cgroup = mem;
3376 3377
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
3378 3379 3380 3381 3382 3383
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3384

3385
	} else {
3386
		parent = mem_cgroup_from_cont(cont->parent);
3387 3388
		mem->use_hierarchy = parent->use_hierarchy;
	}
3389

3390 3391 3392
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
3393 3394 3395 3396 3397 3398 3399
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
3400 3401 3402 3403
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
3404
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
3405
	spin_lock_init(&mem->reclaim_param_lock);
3406

K
KOSAKI Motohiro 已提交
3407 3408
	if (parent)
		mem->swappiness = get_swappiness(parent);
3409
	atomic_set(&mem->refcnt, 1);
3410
	mem->move_charge_at_immigrate = 0;
B
Balbir Singh 已提交
3411
	return &mem->css;
3412
free_out:
3413
	__mem_cgroup_free(mem);
3414
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
3415
	return ERR_PTR(error);
B
Balbir Singh 已提交
3416 3417
}

3418
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3419 3420 3421
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3422 3423

	return mem_cgroup_force_empty(mem, false);
3424 3425
}

B
Balbir Singh 已提交
3426 3427 3428
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3429 3430 3431
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
3432 3433 3434 3435 3436
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
3437 3438 3439 3440 3441 3442 3443 3444
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
3445 3446
}

3447
/* Handlers for move charge at task migration. */
3448 3449
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
3450
{
3451 3452
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
3453 3454
	struct mem_cgroup *mem = mc.to;

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
		WARN_ON_ONCE(count > INT_MAX);
		__css_get(&mem->css, (int)count);
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem,
								false, NULL);
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *
 * Called with pte lock held.
 */
/* We add a new member later. */
union mc_target {
	struct page	*page;
};

/* We add a new type later. */
enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
};

static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page;
	struct page_cgroup *pc;
	int ret = 0;
	bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);

	if (!pte_present(ptent))
		return 0;

	page = vm_normal_page(vma, addr, ptent);
	if (!page || !page_mapped(page))
		return 0;
	/*
	 * TODO: We don't move charges of file(including shmem/tmpfs) pages for
	 * now.
	 */
	if (!move_anon || !PageAnon(page))
		return 0;
	/*
	 * TODO: We don't move charges of shared(used by multiple processes)
	 * pages for now.
	 */
	if (page_mapcount(page) > 1)
		return 0;
	if (!get_page_unless_zero(page))
		return 0;

	pc = lookup_page_cgroup(page);
	/*
	 * Do only loose check w/o page_cgroup lock. mem_cgroup_move_account()
	 * checks the pc is valid or not under the lock.
	 */
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target)
			target->page = page;
	}

	if (!ret || !target)
		put_page(page);

	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

3591 3592 3593
	return 0;
}

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
	up_read(&mm->mmap_sem);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
3624
	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
3625 3626 3627 3628 3629
}

static void mem_cgroup_clear_mc(void)
{
	/* we must uncharge all the leftover precharges from mc.to */
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
3641 3642 3643 3644 3645
	}
	mc.from = NULL;
	mc.to = NULL;
}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
3664 3665 3666 3667
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
3668
			VM_BUG_ON(mc.moved_charge);
3669 3670 3671
			mc.from = from;
			mc.to = mem;
			mc.precharge = 0;
3672
			mc.moved_charge = 0;
3673 3674 3675 3676 3677

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
		}
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		mmput(mm);
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
3688
	mem_cgroup_clear_mc();
3689 3690
}

3691 3692 3693
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
3694
{
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
3719 3720
			if (!mem_cgroup_move_account(pc,
						mc.from, mc.to, false)) {
3721
				mc.precharge--;
3722 3723
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
3743
		ret = mem_cgroup_do_precharge(1);
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
		if (vma->vm_flags & VM_SHARED)
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
	up_read(&mm->mmap_sem);
3779 3780
}

B
Balbir Singh 已提交
3781 3782 3783
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
3784 3785
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
3786
{
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
	struct mm_struct *mm;

	if (!mc.to)
		/* no need to move charge */
		return;

	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
3799 3800
}

B
Balbir Singh 已提交
3801 3802 3803 3804
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
3805
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
3806 3807
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
3808 3809
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
3810
	.attach = mem_cgroup_move_task,
3811
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
3812
	.use_id = 1,
B
Balbir Singh 已提交
3813
};
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP

static int __init disable_swap_account(char *s)
{
	really_do_swap_account = 0;
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif