memcontrol.c 187.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
57
#include "internal.h"
G
Glauber Costa 已提交
58
#include <net/sock.h>
M
Michal Hocko 已提交
59
#include <net/ip.h>
G
Glauber Costa 已提交
60
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
61

62 63
#include <asm/uaccess.h>

64 65
#include <trace/events/vmscan.h>

66
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 68
EXPORT_SYMBOL(mem_cgroup_subsys);

69
#define MEM_CGROUP_RECLAIM_RETRIES	5
70
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
71

A
Andrew Morton 已提交
72
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
73
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74
int do_swap_account __read_mostly;
75 76

/* for remember boot option*/
A
Andrew Morton 已提交
77
#ifdef CONFIG_MEMCG_SWAP_ENABLED
78 79 80 81 82
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

83
#else
84
#define do_swap_account		0
85 86 87
#endif


88 89 90
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
91
	"rss_huge",
92
	"mapped_file",
93
	"writeback",
94 95 96
	"swap",
};

97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

112 113 114 115 116 117 118 119
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

120 121 122 123 124 125 126 127
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
128
	MEM_CGROUP_TARGET_SOFTLIMIT,
129
	MEM_CGROUP_TARGET_NUMAINFO,
130 131
	MEM_CGROUP_NTARGETS,
};
132 133 134
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
135

136
struct mem_cgroup_stat_cpu {
137
	long count[MEM_CGROUP_STAT_NSTATS];
138
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
139
	unsigned long nr_page_events;
140
	unsigned long targets[MEM_CGROUP_NTARGETS];
141 142
};

143
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
144 145 146 147
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
148
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
149 150
	unsigned long last_dead_count;

151 152 153 154
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

155 156 157 158
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
159
	struct lruvec		lruvec;
160
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
161

162 163
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

164 165 166 167
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
168
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
169
						/* use container_of	   */
170 171 172 173 174 175
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

196 197 198 199 200
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
201
/* For threshold */
202
struct mem_cgroup_threshold_ary {
203
	/* An array index points to threshold just below or equal to usage. */
204
	int current_threshold;
205 206 207 208 209
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
210 211 212 213 214 215 216 217 218 219 220 221

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
222 223 224 225 226
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
227

228 229
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
230

B
Balbir Singh 已提交
231 232 233 234 235 236 237
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
238 239 240
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
241 242 243 244 245 246 247
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
248

249 250 251
	/* vmpressure notifications */
	struct vmpressure vmpressure;

252 253 254 255
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
256

257 258 259 260
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
261 262 263 264
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
265
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
266 267 268

	bool		oom_lock;
	atomic_t	under_oom;
269
	atomic_t	oom_wakeups;
270

271
	int	swappiness;
272 273
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
274

275 276 277
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

278 279 280 281
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
282
	struct mem_cgroup_thresholds thresholds;
283

284
	/* thresholds for mem+swap usage. RCU-protected */
285
	struct mem_cgroup_thresholds memsw_thresholds;
286

K
KAMEZAWA Hiroyuki 已提交
287 288
	/* For oom notifier event fd */
	struct list_head oom_notify;
289

290 291 292 293
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
294
	unsigned long move_charge_at_immigrate;
295 296 297 298
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
299 300
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
301
	/*
302
	 * percpu counter.
303
	 */
304
	struct mem_cgroup_stat_cpu __percpu *stat;
305 306 307 308 309 310
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
311

M
Michal Hocko 已提交
312
	atomic_t	dead_count;
M
Michal Hocko 已提交
313
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
314 315
	struct tcp_memcontrol tcp_mem;
#endif
316 317 318 319 320 321 322 323
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
324 325 326 327 328 329 330

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
331

332 333
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
334 335
};

336 337 338 339 340 341
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

342 343 344
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
345
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
346
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
347 348
};

349 350 351
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
352 353 354 355 356 357

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
358 359 360 361 362 363

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

364 365 366 367 368
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

369 370 371 372 373
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

374 375
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
376 377 378 379 380
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
381 382 383 384 385 386 387 388 389
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
390 391
#endif

392 393
/* Stuffs for move charges at task migration. */
/*
394 395
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
396 397
 */
enum move_type {
398
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
399
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
400 401 402
	NR_MOVE_TYPE,
};

403 404
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
405
	spinlock_t	  lock; /* for from, to */
406 407
	struct mem_cgroup *from;
	struct mem_cgroup *to;
408
	unsigned long immigrate_flags;
409
	unsigned long precharge;
410
	unsigned long moved_charge;
411
	unsigned long moved_swap;
412 413 414
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
415
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
416 417
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
418

D
Daisuke Nishimura 已提交
419 420
static bool move_anon(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
422 423
}

424 425
static bool move_file(void)
{
426
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
427 428
}

429 430 431 432
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
433
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
434
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
435

436 437
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
438
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
439
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
440
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
441 442 443
	NR_CHARGE_TYPE,
};

444
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
445 446 447 448
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
449
	_KMEM,
G
Glauber Costa 已提交
450 451
};

452 453
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
454
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
455 456
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
457

458 459 460 461 462 463 464 465
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

466 467 468 469 470 471 472
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

473 474
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
475
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
476 477
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

496 497 498 499 500
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
501
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
502
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
503 504 505

void sock_update_memcg(struct sock *sk)
{
506
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
507
		struct mem_cgroup *memcg;
508
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
509 510 511

		BUG_ON(!sk->sk_prot->proto_cgroup);

512 513 514 515 516 517 518 519 520 521
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
522
			css_get(&sk->sk_cgrp->memcg->css);
523 524 525
			return;
		}

G
Glauber Costa 已提交
526 527
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
528
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
529 530
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
531
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
532 533 534 535 536 537 538 539
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
540
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
541 542 543
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
544
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
545 546
	}
}
G
Glauber Costa 已提交
547 548 549 550 551 552 553 554 555

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
556

557 558 559 560 561 562 563 564 565 566 567 568
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

569
#ifdef CONFIG_MEMCG_KMEM
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
588 589
int memcg_limited_groups_array_size;

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

605 606 607 608 609 610
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
611
struct static_key memcg_kmem_enabled_key;
612
EXPORT_SYMBOL(memcg_kmem_enabled_key);
613 614 615

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
616
	if (memcg_kmem_is_active(memcg)) {
617
		static_key_slow_dec(&memcg_kmem_enabled_key);
618 619
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
620 621 622 623 624
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
625 626 627 628 629 630 631 632 633 634 635 636 637
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

638
static void drain_all_stock_async(struct mem_cgroup *memcg);
639

640
static struct mem_cgroup_per_zone *
641
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
642
{
643
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
644
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
645 646
}

647
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
648
{
649
	return &memcg->css;
650 651
}

652
static struct mem_cgroup_per_zone *
653
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
654
{
655 656
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
657

658
	return mem_cgroup_zoneinfo(memcg, nid, zid);
659 660
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
838
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
839
				 enum mem_cgroup_stat_index idx)
840
{
841
	long val = 0;
842 843
	int cpu;

844 845
	get_online_cpus();
	for_each_online_cpu(cpu)
846
		val += per_cpu(memcg->stat->count[idx], cpu);
847
#ifdef CONFIG_HOTPLUG_CPU
848 849 850
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
851 852
#endif
	put_online_cpus();
853 854 855
	return val;
}

856
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
857 858 859
					 bool charge)
{
	int val = (charge) ? 1 : -1;
860
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
861 862
}

863
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
864 865 866 867 868 869
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
870
		val += per_cpu(memcg->stat->events[idx], cpu);
871
#ifdef CONFIG_HOTPLUG_CPU
872 873 874
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
875 876 877 878
#endif
	return val;
}

879
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
880
					 struct page *page,
881
					 bool anon, int nr_pages)
882
{
883 884
	preempt_disable();

885 886 887 888 889 890
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
891
				nr_pages);
892
	else
893
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
894
				nr_pages);
895

896 897 898 899
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

900 901
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
902
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
903
	else {
904
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
905 906
		nr_pages = -nr_pages; /* for event */
	}
907

908
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
909

910
	preempt_enable();
911 912
}

913
unsigned long
914
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
915 916 917 918 919 920 921 922
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
923
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
924
			unsigned int lru_mask)
925 926
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
927
	enum lru_list lru;
928 929
	unsigned long ret = 0;

930
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
931

H
Hugh Dickins 已提交
932 933 934
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
935 936 937 938 939
	}
	return ret;
}

static unsigned long
940
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
941 942
			int nid, unsigned int lru_mask)
{
943 944 945
	u64 total = 0;
	int zid;

946
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
947 948
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
949

950 951
	return total;
}
952

953
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
954
			unsigned int lru_mask)
955
{
956
	int nid;
957 958
	u64 total = 0;

959
	for_each_node_state(nid, N_MEMORY)
960
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
961
	return total;
962 963
}

964 965
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
966 967 968
{
	unsigned long val, next;

969
	val = __this_cpu_read(memcg->stat->nr_page_events);
970
	next = __this_cpu_read(memcg->stat->targets[target]);
971
	/* from time_after() in jiffies.h */
972 973 974 975 976
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
977 978 979
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
980 981 982 983 984 985 986 987
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
988
	}
989
	return false;
990 991 992 993 994 995
}

/*
 * Check events in order.
 *
 */
996
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
997
{
998
	preempt_disable();
999
	/* threshold event is triggered in finer grain than soft limit */
1000 1001
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1002
		bool do_softlimit;
1003
		bool do_numainfo __maybe_unused;
1004

1005 1006
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1007 1008 1009 1010 1011 1012
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1013
		mem_cgroup_threshold(memcg);
1014 1015
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1016
#if MAX_NUMNODES > 1
1017
		if (unlikely(do_numainfo))
1018
			atomic_inc(&memcg->numainfo_events);
1019
#endif
1020 1021
	} else
		preempt_enable();
1022 1023
}

1024
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1025
{
1026 1027 1028 1029 1030 1031 1032 1033
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1034
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1035 1036
}

1037
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1038
{
1039
	struct mem_cgroup *memcg = NULL;
1040 1041 1042

	if (!mm)
		return NULL;
1043 1044 1045 1046 1047 1048 1049
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1050 1051
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1052
			break;
1053
	} while (!css_tryget(&memcg->css));
1054
	rcu_read_unlock();
1055
	return memcg;
1056 1057
}

1058 1059 1060 1061 1062 1063 1064
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1065
		struct mem_cgroup *last_visited)
1066
{
1067
	struct cgroup_subsys_state *prev_css, *next_css;
1068

1069
	prev_css = last_visited ? &last_visited->css : NULL;
1070
skip_node:
1071
	next_css = css_next_descendant_pre(prev_css, &root->css);
1072 1073 1074 1075 1076 1077 1078 1079

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1080 1081 1082
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1083 1084 1085
		if (css_tryget(&mem->css))
			return mem;
		else {
1086
			prev_css = next_css;
1087 1088 1089 1090 1091 1092 1093
			goto skip_node;
		}
	}

	return NULL;
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1163
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1164
				   struct mem_cgroup *prev,
1165
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1166
{
1167
	struct mem_cgroup *memcg = NULL;
1168
	struct mem_cgroup *last_visited = NULL;
1169

1170 1171
	if (mem_cgroup_disabled())
		return NULL;
1172

1173 1174
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1175

1176
	if (prev && !reclaim)
1177
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1178

1179 1180
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1181
			goto out_css_put;
1182
		return root;
1183
	}
K
KAMEZAWA Hiroyuki 已提交
1184

1185
	rcu_read_lock();
1186
	while (!memcg) {
1187
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1188
		int uninitialized_var(seq);
1189

1190 1191 1192 1193 1194 1195 1196
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1197
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1198
				iter->last_visited = NULL;
1199 1200
				goto out_unlock;
			}
M
Michal Hocko 已提交
1201

1202
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1203
		}
K
KAMEZAWA Hiroyuki 已提交
1204

1205
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1206

1207
		if (reclaim) {
1208
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1209

M
Michal Hocko 已提交
1210
			if (!memcg)
1211 1212 1213 1214
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1215

1216
		if (prev && !memcg)
1217
			goto out_unlock;
1218
	}
1219 1220
out_unlock:
	rcu_read_unlock();
1221 1222 1223 1224
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1225
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1226
}
K
KAMEZAWA Hiroyuki 已提交
1227

1228 1229 1230 1231 1232 1233 1234
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1235 1236 1237 1238 1239 1240
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1241

1242 1243 1244 1245 1246 1247
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1248
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1249
	     iter != NULL;				\
1250
	     iter = mem_cgroup_iter(root, iter, NULL))
1251

1252
#define for_each_mem_cgroup(iter)			\
1253
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1254
	     iter != NULL;				\
1255
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1256

1257
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1258
{
1259
	struct mem_cgroup *memcg;
1260 1261

	rcu_read_lock();
1262 1263
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1264 1265 1266 1267
		goto out;

	switch (idx) {
	case PGFAULT:
1268 1269 1270 1271
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1272 1273 1274 1275 1276 1277 1278
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1279
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1280

1281 1282 1283
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1284
 * @memcg: memcg of the wanted lruvec
1285 1286 1287 1288 1289 1290 1291 1292 1293
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1294
	struct lruvec *lruvec;
1295

1296 1297 1298 1299
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1300 1301

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1312 1313
}

K
KAMEZAWA Hiroyuki 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1327

1328
/**
1329
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1330
 * @page: the page
1331
 * @zone: zone of the page
1332
 */
1333
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1334 1335
{
	struct mem_cgroup_per_zone *mz;
1336 1337
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1338
	struct lruvec *lruvec;
1339

1340 1341 1342 1343
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1344

K
KAMEZAWA Hiroyuki 已提交
1345
	pc = lookup_page_cgroup(page);
1346
	memcg = pc->mem_cgroup;
1347 1348

	/*
1349
	 * Surreptitiously switch any uncharged offlist page to root:
1350 1351 1352 1353 1354 1355 1356
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1357
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1358 1359
		pc->mem_cgroup = memcg = root_mem_cgroup;

1360
	mz = page_cgroup_zoneinfo(memcg, page);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1371
}
1372

1373
/**
1374 1375 1376 1377
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1378
 *
1379 1380
 * This function must be called when a page is added to or removed from an
 * lru list.
1381
 */
1382 1383
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1384 1385
{
	struct mem_cgroup_per_zone *mz;
1386
	unsigned long *lru_size;
1387 1388 1389 1390

	if (mem_cgroup_disabled())
		return;

1391 1392 1393 1394
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1395
}
1396

1397
/*
1398
 * Checks whether given mem is same or in the root_mem_cgroup's
1399 1400
 * hierarchy subtree
 */
1401 1402
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1403
{
1404 1405
	if (root_memcg == memcg)
		return true;
1406
	if (!root_memcg->use_hierarchy || !memcg)
1407
		return false;
1408 1409 1410 1411 1412 1413 1414 1415
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1416
	rcu_read_lock();
1417
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1418 1419
	rcu_read_unlock();
	return ret;
1420 1421
}

1422 1423
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1424
{
1425
	struct mem_cgroup *curr = NULL;
1426
	struct task_struct *p;
1427
	bool ret;
1428

1429
	p = find_lock_task_mm(task);
1430 1431 1432 1433 1434 1435 1436 1437 1438
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1439
		rcu_read_lock();
1440 1441 1442
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1443
		rcu_read_unlock();
1444
	}
1445
	if (!curr)
1446
		return false;
1447
	/*
1448
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1449
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1450 1451
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1452
	 */
1453
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1454
	css_put(&curr->css);
1455 1456 1457
	return ret;
}

1458
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1459
{
1460
	unsigned long inactive_ratio;
1461
	unsigned long inactive;
1462
	unsigned long active;
1463
	unsigned long gb;
1464

1465 1466
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1467

1468 1469 1470 1471 1472 1473
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1474
	return inactive * inactive_ratio < active;
1475 1476
}

1477 1478 1479
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1480
/**
1481
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1482
 * @memcg: the memory cgroup
1483
 *
1484
 * Returns the maximum amount of memory @mem can be charged with, in
1485
 * pages.
1486
 */
1487
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1488
{
1489 1490
	unsigned long long margin;

1491
	margin = res_counter_margin(&memcg->res);
1492
	if (do_swap_account)
1493
		margin = min(margin, res_counter_margin(&memcg->memsw));
1494
	return margin >> PAGE_SHIFT;
1495 1496
}

1497
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1498 1499
{
	/* root ? */
T
Tejun Heo 已提交
1500
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1501 1502
		return vm_swappiness;

1503
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1504 1505
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1520 1521 1522 1523

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1524
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1525
{
1526
	atomic_inc(&memcg_moving);
1527
	atomic_inc(&memcg->moving_account);
1528 1529 1530
	synchronize_rcu();
}

1531
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1532
{
1533 1534 1535 1536
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1537 1538
	if (memcg) {
		atomic_dec(&memcg_moving);
1539
		atomic_dec(&memcg->moving_account);
1540
	}
1541
}
1542

1543 1544 1545
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1546 1547
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1548 1549 1550 1551 1552 1553 1554
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1555
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1556 1557
{
	VM_BUG_ON(!rcu_read_lock_held());
1558
	return atomic_read(&memcg->moving_account) > 0;
1559
}
1560

1561
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1562
{
1563 1564
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1565
	bool ret = false;
1566 1567 1568 1569 1570 1571 1572 1573 1574
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1575

1576 1577
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1578 1579
unlock:
	spin_unlock(&mc.lock);
1580 1581 1582
	return ret;
}

1583
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1584 1585
{
	if (mc.moving_task && current != mc.moving_task) {
1586
		if (mem_cgroup_under_move(memcg)) {
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1599 1600 1601 1602
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1603
 * see mem_cgroup_stolen(), too.
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1617
#define K(x) ((x) << (PAGE_SHIFT-10))
1618
/**
1619
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1637 1638
	struct mem_cgroup *iter;
	unsigned int i;
1639

1640
	if (!p)
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1659
	pr_info("Task in %s killed", memcg_name);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1672
	pr_cont(" as a result of limit of %s\n", memcg_name);
1673 1674
done:

1675
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1676 1677 1678
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1679
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1680 1681 1682
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1683
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1684 1685 1686
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1711 1712
}

1713 1714 1715 1716
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1717
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1718 1719
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1720 1721
	struct mem_cgroup *iter;

1722
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1723
		num++;
1724 1725 1726
	return num;
}

D
David Rientjes 已提交
1727 1728 1729
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1730
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1731 1732 1733
{
	u64 limit;

1734 1735
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1736
	/*
1737
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1738
	 */
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1753 1754
}

1755 1756
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1757 1758 1759 1760 1761 1762 1763
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1764
	/*
1765 1766 1767
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1768
	 */
1769
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1770 1771 1772 1773 1774
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1775 1776
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1777
		struct css_task_iter it;
1778 1779
		struct task_struct *task;

1780 1781
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1794
				css_task_iter_end(&it);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1811
		css_task_iter_end(&it);
1812 1813 1814 1815 1816 1817 1818 1819 1820
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1857 1858
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1859
 * @memcg: the target memcg
1860 1861 1862 1863 1864 1865 1866
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1867
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1868 1869
		int nid, bool noswap)
{
1870
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1871 1872 1873
		return true;
	if (noswap || !total_swap_pages)
		return false;
1874
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1875 1876 1877 1878
		return true;
	return false;

}
1879
#if MAX_NUMNODES > 1
1880 1881 1882 1883 1884 1885 1886

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1887
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1888 1889
{
	int nid;
1890 1891 1892 1893
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1894
	if (!atomic_read(&memcg->numainfo_events))
1895
		return;
1896
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1897 1898 1899
		return;

	/* make a nodemask where this memcg uses memory from */
1900
	memcg->scan_nodes = node_states[N_MEMORY];
1901

1902
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1903

1904 1905
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1906
	}
1907

1908 1909
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1924
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1925 1926 1927
{
	int node;

1928 1929
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1930

1931
	node = next_node(node, memcg->scan_nodes);
1932
	if (node == MAX_NUMNODES)
1933
		node = first_node(memcg->scan_nodes);
1934 1935 1936 1937 1938 1939 1940 1941 1942
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1943
	memcg->last_scanned_node = node;
1944 1945 1946
	return node;
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1982
#else
1983
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1984 1985 1986
{
	return 0;
}
1987

1988 1989 1990 1991
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1992 1993
#endif

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2042
	}
2043 2044
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2045 2046
}

2047 2048
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2049 2050 2051 2052
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2053
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2054
{
2055
	struct mem_cgroup *iter, *failed = NULL;
2056

2057 2058
	spin_lock(&memcg_oom_lock);

2059
	for_each_mem_cgroup_tree(iter, memcg) {
2060
		if (iter->oom_lock) {
2061 2062 2063 2064 2065
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2066 2067
			mem_cgroup_iter_break(memcg, iter);
			break;
2068 2069
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2070
	}
K
KAMEZAWA Hiroyuki 已提交
2071

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2083 2084
		}
	}
2085 2086 2087 2088

	spin_unlock(&memcg_oom_lock);

	return !failed;
2089
}
2090

2091
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2092
{
K
KAMEZAWA Hiroyuki 已提交
2093 2094
	struct mem_cgroup *iter;

2095
	spin_lock(&memcg_oom_lock);
2096
	for_each_mem_cgroup_tree(iter, memcg)
2097
		iter->oom_lock = false;
2098
	spin_unlock(&memcg_oom_lock);
2099 2100
}

2101
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2102 2103 2104
{
	struct mem_cgroup *iter;

2105
	for_each_mem_cgroup_tree(iter, memcg)
2106 2107 2108
		atomic_inc(&iter->under_oom);
}

2109
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2110 2111 2112
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2113 2114 2115 2116 2117
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2118
	for_each_mem_cgroup_tree(iter, memcg)
2119
		atomic_add_unless(&iter->under_oom, -1, 0);
2120 2121
}

K
KAMEZAWA Hiroyuki 已提交
2122 2123
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2124
struct oom_wait_info {
2125
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2126 2127 2128 2129 2130 2131
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2132 2133
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2134 2135 2136
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2137
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2138 2139

	/*
2140
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2141 2142
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2143 2144
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2145 2146 2147 2148
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2149
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2150
{
2151
	atomic_inc(&memcg->oom_wakeups);
2152 2153
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2154 2155
}

2156
static void memcg_oom_recover(struct mem_cgroup *memcg)
2157
{
2158 2159
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2160 2161
}

K
KAMEZAWA Hiroyuki 已提交
2162
/*
2163
 * try to call OOM killer
K
KAMEZAWA Hiroyuki 已提交
2164
 */
2165
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2166
{
2167
	bool locked;
2168
	int wakeups;
K
KAMEZAWA Hiroyuki 已提交
2169

2170 2171 2172 2173
	if (!current->memcg_oom.may_oom)
		return;

	current->memcg_oom.in_memcg_oom = 1;
2174

K
KAMEZAWA Hiroyuki 已提交
2175
	/*
2176 2177 2178 2179 2180
	 * As with any blocking lock, a contender needs to start
	 * listening for wakeups before attempting the trylock,
	 * otherwise it can miss the wakeup from the unlock and sleep
	 * indefinitely.  This is just open-coded because our locking
	 * is so particular to memcg hierarchies.
K
KAMEZAWA Hiroyuki 已提交
2181
	 */
2182
	wakeups = atomic_read(&memcg->oom_wakeups);
2183 2184 2185 2186
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

2187
	if (locked)
2188
		mem_cgroup_oom_notify(memcg);
K
KAMEZAWA Hiroyuki 已提交
2189

2190 2191
	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
2192
		mem_cgroup_out_of_memory(memcg, mask, order);
2193 2194 2195 2196 2197 2198 2199
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
2200
	} else {
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
		/*
		 * A system call can just return -ENOMEM, but if this
		 * is a page fault and somebody else is handling the
		 * OOM already, we need to sleep on the OOM waitqueue
		 * for this memcg until the situation is resolved.
		 * Which can take some time because it might be
		 * handled by a userspace task.
		 *
		 * However, this is the charge context, which means
		 * that we may sit on a large call stack and hold
		 * various filesystem locks, the mmap_sem etc. and we
		 * don't want the OOM handler to deadlock on them
		 * while we sit here and wait.  Store the current OOM
		 * context in the task_struct, then return -ENOMEM.
		 * At the end of the page fault handler, with the
		 * stack unwound, pagefault_out_of_memory() will check
		 * back with us by calling
		 * mem_cgroup_oom_synchronize(), possibly putting the
		 * task to sleep.
		 */
		current->memcg_oom.oom_locked = locked;
		current->memcg_oom.wakeups = wakeups;
		css_get(&memcg->css);
		current->memcg_oom.wait_on_memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2225
	}
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 *
 * This has to be called at the end of a page fault if the the memcg
 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
 *
 * Memcg supports userspace OOM handling, so failed allocations must
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 * the end of the page fault to put the task to sleep and clean up the
 * OOM state.
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
 * finalized, %false otherwise.
 */
bool mem_cgroup_oom_synchronize(void)
{
	struct oom_wait_info owait;
	struct mem_cgroup *memcg;

	/* OOM is global, do not handle */
	if (!current->memcg_oom.in_memcg_oom)
		return false;

	/*
	 * We invoked the OOM killer but there is a chance that a kill
	 * did not free up any charges.  Everybody else might already
	 * be sleeping, so restart the fault and keep the rampage
	 * going until some charges are released.
	 */
	memcg = current->memcg_oom.wait_on_memcg;
	if (!memcg)
		goto out;

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		goto out_memcg;

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2272

2273 2274 2275 2276 2277 2278 2279 2280
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	/* Only sleep if we didn't miss any wakeups since OOM */
	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
		schedule();
	finish_wait(&memcg_oom_waitq, &owait.wait);
out_memcg:
	mem_cgroup_unmark_under_oom(memcg);
	if (current->memcg_oom.oom_locked) {
2281 2282 2283 2284 2285 2286 2287 2288
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2289 2290 2291 2292
	css_put(&memcg->css);
	current->memcg_oom.wait_on_memcg = NULL;
out:
	current->memcg_oom.in_memcg_oom = 0;
K
KAMEZAWA Hiroyuki 已提交
2293
	return true;
2294 2295
}

2296 2297 2298
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2316 2317
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2318
 */
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2333
	 * need to take move_lock_mem_cgroup(). Because we already hold
2334
	 * rcu_read_lock(), any calls to move_account will be delayed until
2335
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2336
	 */
2337
	if (!mem_cgroup_stolen(memcg))
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2355
	 * should take move_lock_mem_cgroup().
2356 2357 2358 2359
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2360
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2361
				 enum mem_cgroup_stat_index idx, int val)
2362
{
2363
	struct mem_cgroup *memcg;
2364
	struct page_cgroup *pc = lookup_page_cgroup(page);
2365
	unsigned long uninitialized_var(flags);
2366

2367
	if (mem_cgroup_disabled())
2368
		return;
2369

2370
	VM_BUG_ON(!rcu_read_lock_held());
2371 2372
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2373
		return;
2374

2375
	this_cpu_add(memcg->stat->count[idx], val);
2376
}
2377

2378 2379 2380 2381
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2382
#define CHARGE_BATCH	32U
2383 2384
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2385
	unsigned int nr_pages;
2386
	struct work_struct work;
2387
	unsigned long flags;
2388
#define FLUSHING_CACHED_CHARGE	0
2389 2390
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2391
static DEFINE_MUTEX(percpu_charge_mutex);
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2403
 */
2404
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2405 2406 2407 2408
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2409 2410 2411
	if (nr_pages > CHARGE_BATCH)
		return false;

2412
	stock = &get_cpu_var(memcg_stock);
2413 2414
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2428 2429 2430 2431
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2432
		if (do_swap_account)
2433 2434
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2447
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2461 2462
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2463
 * This will be consumed by consume_stock() function, later.
2464
 */
2465
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2466 2467 2468
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2469
	if (stock->cached != memcg) { /* reset if necessary */
2470
		drain_stock(stock);
2471
		stock->cached = memcg;
2472
	}
2473
	stock->nr_pages += nr_pages;
2474 2475 2476 2477
	put_cpu_var(memcg_stock);
}

/*
2478
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2479 2480
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2481
 */
2482
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2483
{
2484
	int cpu, curcpu;
2485

2486 2487
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2488
	curcpu = get_cpu();
2489 2490
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2491
		struct mem_cgroup *memcg;
2492

2493 2494
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2495
			continue;
2496
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2497
			continue;
2498 2499 2500 2501 2502 2503
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2504
	}
2505
	put_cpu();
2506 2507 2508 2509 2510 2511

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2512
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2513 2514 2515
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2516
	put_online_cpus();
2517 2518 2519 2520 2521 2522 2523 2524
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2525
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2526
{
2527 2528 2529 2530 2531
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2532
	drain_all_stock(root_memcg, false);
2533
	mutex_unlock(&percpu_charge_mutex);
2534 2535 2536
}

/* This is a synchronous drain interface. */
2537
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2538 2539
{
	/* called when force_empty is called */
2540
	mutex_lock(&percpu_charge_mutex);
2541
	drain_all_stock(root_memcg, true);
2542
	mutex_unlock(&percpu_charge_mutex);
2543 2544
}

2545 2546 2547 2548
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2549
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2550 2551 2552
{
	int i;

2553
	spin_lock(&memcg->pcp_counter_lock);
2554
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2555
		long x = per_cpu(memcg->stat->count[i], cpu);
2556

2557 2558
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2559
	}
2560
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2561
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2562

2563 2564
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2565
	}
2566
	spin_unlock(&memcg->pcp_counter_lock);
2567 2568
}

2569
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2570 2571 2572 2573 2574
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2575
	struct mem_cgroup *iter;
2576

2577
	if (action == CPU_ONLINE)
2578 2579
		return NOTIFY_OK;

2580
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2581
		return NOTIFY_OK;
2582

2583
	for_each_mem_cgroup(iter)
2584 2585
		mem_cgroup_drain_pcp_counter(iter, cpu);

2586 2587 2588 2589 2590
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2591 2592 2593 2594 2595 2596 2597 2598 2599

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2600
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2601
				unsigned int nr_pages, unsigned int min_pages,
2602
				bool invoke_oom)
2603
{
2604
	unsigned long csize = nr_pages * PAGE_SIZE;
2605 2606 2607 2608 2609
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2610
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2611 2612 2613 2614

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2615
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2616 2617 2618
		if (likely(!ret))
			return CHARGE_OK;

2619
		res_counter_uncharge(&memcg->res, csize);
2620 2621 2622 2623
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2624 2625 2626 2627
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2628
	if (nr_pages > min_pages)
2629 2630 2631 2632 2633
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2634 2635 2636
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2637
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2638
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2639
		return CHARGE_RETRY;
2640
	/*
2641 2642 2643 2644 2645 2646 2647
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2648
	 */
2649
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2650 2651 2652 2653 2654 2655 2656 2657 2658
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2659 2660
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2661

2662
	return CHARGE_NOMEM;
2663 2664
}

2665
/*
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2685
 */
2686
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2687
				   gfp_t gfp_mask,
2688
				   unsigned int nr_pages,
2689
				   struct mem_cgroup **ptr,
2690
				   bool oom)
2691
{
2692
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2693
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2694
	struct mem_cgroup *memcg = NULL;
2695
	int ret;
2696

K
KAMEZAWA Hiroyuki 已提交
2697 2698 2699 2700 2701 2702 2703 2704
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2705

2706
	/*
2707 2708
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2709
	 * thread group leader migrates. It's possible that mm is not
2710
	 * set, if so charge the root memcg (happens for pagecache usage).
2711
	 */
2712
	if (!*ptr && !mm)
2713
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2714
again:
2715 2716 2717
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2718
			goto done;
2719
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2720
			goto done;
2721
		css_get(&memcg->css);
2722
	} else {
K
KAMEZAWA Hiroyuki 已提交
2723
		struct task_struct *p;
2724

K
KAMEZAWA Hiroyuki 已提交
2725 2726 2727
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2728
		 * Because we don't have task_lock(), "p" can exit.
2729
		 * In that case, "memcg" can point to root or p can be NULL with
2730 2731 2732 2733 2734 2735
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2736
		 */
2737
		memcg = mem_cgroup_from_task(p);
2738 2739 2740
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2741 2742 2743
			rcu_read_unlock();
			goto done;
		}
2744
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2757
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2758 2759 2760 2761 2762
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2763

2764
	do {
2765
		bool invoke_oom = oom && !nr_oom_retries;
2766

2767
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2768
		if (fatal_signal_pending(current)) {
2769
			css_put(&memcg->css);
2770
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2771
		}
2772

2773 2774
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2775 2776 2777 2778
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2779
			batch = nr_pages;
2780 2781
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2782
			goto again;
2783
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2784
			css_put(&memcg->css);
2785 2786
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2787
			if (!oom || invoke_oom) {
2788
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2789
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2790
			}
2791 2792
			nr_oom_retries--;
			break;
2793
		}
2794 2795
	} while (ret != CHARGE_OK);

2796
	if (batch > nr_pages)
2797 2798
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2799
done:
2800
	*ptr = memcg;
2801 2802
	return 0;
nomem:
2803
	*ptr = NULL;
2804
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2805
bypass:
2806 2807
	*ptr = root_mem_cgroup;
	return -EINTR;
2808
}
2809

2810 2811 2812 2813 2814
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2815
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2816
				       unsigned int nr_pages)
2817
{
2818
	if (!mem_cgroup_is_root(memcg)) {
2819 2820
		unsigned long bytes = nr_pages * PAGE_SIZE;

2821
		res_counter_uncharge(&memcg->res, bytes);
2822
		if (do_swap_account)
2823
			res_counter_uncharge(&memcg->memsw, bytes);
2824
	}
2825 2826
}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2845 2846
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2847 2848 2849
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2861
	return mem_cgroup_from_css(css);
2862 2863
}

2864
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2865
{
2866
	struct mem_cgroup *memcg = NULL;
2867
	struct page_cgroup *pc;
2868
	unsigned short id;
2869 2870
	swp_entry_t ent;

2871 2872 2873
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2874
	lock_page_cgroup(pc);
2875
	if (PageCgroupUsed(pc)) {
2876 2877 2878
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2879
	} else if (PageSwapCache(page)) {
2880
		ent.val = page_private(page);
2881
		id = lookup_swap_cgroup_id(ent);
2882
		rcu_read_lock();
2883 2884 2885
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2886
		rcu_read_unlock();
2887
	}
2888
	unlock_page_cgroup(pc);
2889
	return memcg;
2890 2891
}

2892
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2893
				       struct page *page,
2894
				       unsigned int nr_pages,
2895 2896
				       enum charge_type ctype,
				       bool lrucare)
2897
{
2898
	struct page_cgroup *pc = lookup_page_cgroup(page);
2899
	struct zone *uninitialized_var(zone);
2900
	struct lruvec *lruvec;
2901
	bool was_on_lru = false;
2902
	bool anon;
2903

2904
	lock_page_cgroup(pc);
2905
	VM_BUG_ON(PageCgroupUsed(pc));
2906 2907 2908 2909
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2910 2911 2912 2913 2914 2915 2916 2917 2918

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2919
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2920
			ClearPageLRU(page);
2921
			del_page_from_lru_list(page, lruvec, page_lru(page));
2922 2923 2924 2925
			was_on_lru = true;
		}
	}

2926
	pc->mem_cgroup = memcg;
2927 2928 2929 2930 2931 2932
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2933
	 */
K
KAMEZAWA Hiroyuki 已提交
2934
	smp_wmb();
2935
	SetPageCgroupUsed(pc);
2936

2937 2938
	if (lrucare) {
		if (was_on_lru) {
2939
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2940 2941
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2942
			add_page_to_lru_list(page, lruvec, page_lru(page));
2943 2944 2945 2946
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2947
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2948 2949 2950 2951
		anon = true;
	else
		anon = false;

2952
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2953
	unlock_page_cgroup(pc);
2954

2955
	/*
2956 2957 2958
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2959
	 */
2960
	memcg_check_events(memcg, page);
2961
}
2962

2963 2964
static DEFINE_MUTEX(set_limit_mutex);

2965 2966 2967 2968 2969 2970 2971
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2985
#ifdef CONFIG_SLABINFO
2986 2987
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2988
{
2989
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3059 3060 3061 3062 3063

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3064 3065 3066 3067 3068 3069 3070 3071
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3072
	if (memcg_kmem_test_and_clear_dead(memcg))
3073
		css_put(&memcg->css);
3074 3075
}

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3159 3160
static void kmem_cache_destroy_work_func(struct work_struct *w);

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3172
		size += offsetof(struct memcg_cache_params, memcg_caches);
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3212 3213
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3214
{
3215
	size_t size;
3216 3217 3218 3219

	if (!memcg_kmem_enabled())
		return 0;

3220 3221
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3222
		size += memcg_limited_groups_array_size * sizeof(void *);
3223 3224
	} else
		size = sizeof(struct memcg_cache_params);
3225

3226 3227 3228 3229
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3230
	if (memcg) {
3231
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3232
		s->memcg_params->root_cache = root_cache;
3233 3234
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3235 3236 3237
	} else
		s->memcg_params->is_root_cache = true;

3238 3239 3240 3241 3242
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3267
	css_put(&memcg->css);
3268
out:
3269 3270 3271
	kfree(s->memcg_params);
}

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3303 3304 3305 3306 3307 3308 3309 3310 3311
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3333 3334 3335 3336 3337 3338 3339 3340
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3361 3362 3363 3364 3365 3366 3367
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3368 3369 3370 3371 3372 3373 3374 3375 3376
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3377

3378 3379 3380
/*
 * Called with memcg_cache_mutex held
 */
3381 3382 3383 3384
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3385
	static char *tmp_name = NULL;
3386

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3405

3406
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3407
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3408

3409 3410 3411
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3427 3428
	if (new_cachep) {
		css_put(&memcg->css);
3429
		goto out;
3430
	}
3431 3432 3433 3434

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3435
		css_put(&memcg->css);
3436 3437 3438
		goto out;
	}

G
Glauber Costa 已提交
3439
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3491
		cancel_work_sync(&c->memcg_params->destroy);
3492 3493 3494 3495 3496
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3497 3498 3499 3500 3501 3502
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3532 3533
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3534 3535 3536 3537
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3538 3539
	if (cw == NULL) {
		css_put(&memcg->css);
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3590 3591 3592
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3593 3594 3595 3596
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3597
		goto out;
3598 3599 3600 3601 3602 3603 3604 3605

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3606 3607 3608
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3609 3610
	}

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3638 3639 3640
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3677 3678 3679
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3764 3765 3766 3767
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3768 3769
#endif /* CONFIG_MEMCG_KMEM */

3770 3771
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3772
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3773 3774
/*
 * Because tail pages are not marked as "used", set it. We're under
3775 3776 3777
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3778
 */
3779
void mem_cgroup_split_huge_fixup(struct page *head)
3780 3781
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3782
	struct page_cgroup *pc;
3783
	struct mem_cgroup *memcg;
3784
	int i;
3785

3786 3787
	if (mem_cgroup_disabled())
		return;
3788 3789

	memcg = head_pc->mem_cgroup;
3790 3791
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3792
		pc->mem_cgroup = memcg;
3793 3794 3795
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3796 3797
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3798
}
3799
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3800

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
	__this_cpu_add(from->stat->count[idx], -nr_pages);
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3815
/**
3816
 * mem_cgroup_move_account - move account of the page
3817
 * @page: the page
3818
 * @nr_pages: number of regular pages (>1 for huge pages)
3819 3820 3821 3822 3823
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3824
 * - page is not on LRU (isolate_page() is useful.)
3825
 * - compound_lock is held when nr_pages > 1
3826
 *
3827 3828
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3829
 */
3830 3831 3832 3833
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3834
				   struct mem_cgroup *to)
3835
{
3836 3837
	unsigned long flags;
	int ret;
3838
	bool anon = PageAnon(page);
3839

3840
	VM_BUG_ON(from == to);
3841
	VM_BUG_ON(PageLRU(page));
3842 3843 3844 3845 3846 3847 3848
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3849
	if (nr_pages > 1 && !PageTransHuge(page))
3850 3851 3852 3853 3854 3855 3856 3857
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3858
	move_lock_mem_cgroup(from, &flags);
3859

3860 3861 3862 3863 3864 3865 3866 3867
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3868
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3869

3870
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3871
	pc->mem_cgroup = to;
3872
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3873
	move_unlock_mem_cgroup(from, &flags);
3874 3875
	ret = 0;
unlock:
3876
	unlock_page_cgroup(pc);
3877 3878 3879
	/*
	 * check events
	 */
3880 3881
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3882
out:
3883 3884 3885
	return ret;
}

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3906
 */
3907 3908
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3909
				  struct mem_cgroup *child)
3910 3911
{
	struct mem_cgroup *parent;
3912
	unsigned int nr_pages;
3913
	unsigned long uninitialized_var(flags);
3914 3915
	int ret;

3916
	VM_BUG_ON(mem_cgroup_is_root(child));
3917

3918 3919 3920 3921 3922
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3923

3924
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3925

3926 3927 3928 3929 3930 3931
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3932

3933 3934
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3935
		flags = compound_lock_irqsave(page);
3936
	}
3937

3938
	ret = mem_cgroup_move_account(page, nr_pages,
3939
				pc, child, parent);
3940 3941
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3942

3943
	if (nr_pages > 1)
3944
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3945
	putback_lru_page(page);
3946
put:
3947
	put_page(page);
3948
out:
3949 3950 3951
	return ret;
}

3952 3953 3954 3955 3956 3957 3958
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3959
				gfp_t gfp_mask, enum charge_type ctype)
3960
{
3961
	struct mem_cgroup *memcg = NULL;
3962
	unsigned int nr_pages = 1;
3963
	bool oom = true;
3964
	int ret;
A
Andrea Arcangeli 已提交
3965

A
Andrea Arcangeli 已提交
3966
	if (PageTransHuge(page)) {
3967
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3968
		VM_BUG_ON(!PageTransHuge(page));
3969 3970 3971 3972 3973
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3974
	}
3975

3976
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3977
	if (ret == -ENOMEM)
3978
		return ret;
3979
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3980 3981 3982
	return 0;
}

3983 3984
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3985
{
3986
	if (mem_cgroup_disabled())
3987
		return 0;
3988 3989 3990
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3991
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3992
					MEM_CGROUP_CHARGE_TYPE_ANON);
3993 3994
}

3995 3996 3997
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3998
 * struct page_cgroup is acquired. This refcnt will be consumed by
3999 4000
 * "commit()" or removed by "cancel()"
 */
4001 4002 4003 4004
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
4005
{
4006
	struct mem_cgroup *memcg;
4007
	struct page_cgroup *pc;
4008
	int ret;
4009

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
4020 4021
	if (!do_swap_account)
		goto charge_cur_mm;
4022 4023
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
4024
		goto charge_cur_mm;
4025 4026
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4027
	css_put(&memcg->css);
4028 4029
	if (ret == -EINTR)
		ret = 0;
4030
	return ret;
4031
charge_cur_mm:
4032 4033 4034 4035
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4036 4037
}

4038 4039 4040 4041 4042 4043
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4058 4059 4060
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4061 4062 4063 4064 4065 4066 4067 4068 4069
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4070
static void
4071
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4072
					enum charge_type ctype)
4073
{
4074
	if (mem_cgroup_disabled())
4075
		return;
4076
	if (!memcg)
4077
		return;
4078

4079
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4080 4081 4082
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4083 4084 4085
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4086
	 */
4087
	if (do_swap_account && PageSwapCache(page)) {
4088
		swp_entry_t ent = {.val = page_private(page)};
4089
		mem_cgroup_uncharge_swap(ent);
4090
	}
4091 4092
}

4093 4094
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4095
{
4096
	__mem_cgroup_commit_charge_swapin(page, memcg,
4097
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4098 4099
}

4100 4101
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4102
{
4103 4104 4105 4106
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4107
	if (mem_cgroup_disabled())
4108 4109 4110 4111 4112 4113 4114
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4115 4116
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4117 4118 4119 4120
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4121 4122
}

4123
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4124 4125
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4126 4127 4128
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4129

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4141
		batch->memcg = memcg;
4142 4143
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4144
	 * In those cases, all pages freed continuously can be expected to be in
4145 4146 4147 4148 4149 4150 4151 4152
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4153
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4154 4155
		goto direct_uncharge;

4156 4157 4158 4159 4160
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4161
	if (batch->memcg != memcg)
4162 4163
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4164
	batch->nr_pages++;
4165
	if (uncharge_memsw)
4166
		batch->memsw_nr_pages++;
4167 4168
	return;
direct_uncharge:
4169
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4170
	if (uncharge_memsw)
4171 4172 4173
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4174
}
4175

4176
/*
4177
 * uncharge if !page_mapped(page)
4178
 */
4179
static struct mem_cgroup *
4180 4181
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4182
{
4183
	struct mem_cgroup *memcg = NULL;
4184 4185
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4186
	bool anon;
4187

4188
	if (mem_cgroup_disabled())
4189
		return NULL;
4190

A
Andrea Arcangeli 已提交
4191
	if (PageTransHuge(page)) {
4192
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4193 4194
		VM_BUG_ON(!PageTransHuge(page));
	}
4195
	/*
4196
	 * Check if our page_cgroup is valid
4197
	 */
4198
	pc = lookup_page_cgroup(page);
4199
	if (unlikely(!PageCgroupUsed(pc)))
4200
		return NULL;
4201

4202
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4203

4204
	memcg = pc->mem_cgroup;
4205

K
KAMEZAWA Hiroyuki 已提交
4206 4207 4208
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4209 4210
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4211
	switch (ctype) {
4212
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4213 4214 4215 4216 4217
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4218 4219
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4220
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4221
		/* See mem_cgroup_prepare_migration() */
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4243
	}
K
KAMEZAWA Hiroyuki 已提交
4244

4245
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4246

4247
	ClearPageCgroupUsed(pc);
4248 4249 4250 4251 4252 4253
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4254

4255
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4256
	/*
4257
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4258
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4259
	 */
4260
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4261
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4262
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4263
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4264
	}
4265 4266 4267 4268 4269 4270
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4271
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4272

4273
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4274 4275 4276

unlock_out:
	unlock_page_cgroup(pc);
4277
	return NULL;
4278 4279
}

4280 4281
void mem_cgroup_uncharge_page(struct page *page)
{
4282 4283 4284
	/* early check. */
	if (page_mapped(page))
		return;
4285
	VM_BUG_ON(page->mapping && !PageAnon(page));
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4298 4299
	if (PageSwapCache(page))
		return;
4300
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4301 4302 4303 4304 4305
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4306
	VM_BUG_ON(page->mapping);
4307
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4308 4309
}

4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4324 4325
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4346 4347 4348 4349 4350 4351
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4352
	memcg_oom_recover(batch->memcg);
4353 4354 4355 4356
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4357
#ifdef CONFIG_SWAP
4358
/*
4359
 * called after __delete_from_swap_cache() and drop "page" account.
4360 4361
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4362 4363
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4364 4365
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4366 4367 4368 4369 4370
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4371
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4372

K
KAMEZAWA Hiroyuki 已提交
4373 4374
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4375
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4376 4377
	 */
	if (do_swap_account && swapout && memcg)
4378
		swap_cgroup_record(ent, css_id(&memcg->css));
4379
}
4380
#endif
4381

A
Andrew Morton 已提交
4382
#ifdef CONFIG_MEMCG_SWAP
4383 4384 4385 4386 4387
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4388
{
4389
	struct mem_cgroup *memcg;
4390
	unsigned short id;
4391 4392 4393 4394

	if (!do_swap_account)
		return;

4395 4396 4397
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4398
	if (memcg) {
4399 4400 4401 4402
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4403
		if (!mem_cgroup_is_root(memcg))
4404
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4405
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4406
		css_put(&memcg->css);
4407
	}
4408
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4409
}
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4426
				struct mem_cgroup *from, struct mem_cgroup *to)
4427 4428 4429 4430 4431 4432 4433 4434
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4435
		mem_cgroup_swap_statistics(to, true);
4436
		/*
4437 4438 4439
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4440 4441 4442 4443 4444 4445
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4446
		 */
L
Li Zefan 已提交
4447
		css_get(&to->css);
4448 4449 4450 4451 4452 4453
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4454
				struct mem_cgroup *from, struct mem_cgroup *to)
4455 4456 4457
{
	return -EINVAL;
}
4458
#endif
K
KAMEZAWA Hiroyuki 已提交
4459

4460
/*
4461 4462
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4463
 */
4464 4465
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4466
{
4467
	struct mem_cgroup *memcg = NULL;
4468
	unsigned int nr_pages = 1;
4469
	struct page_cgroup *pc;
4470
	enum charge_type ctype;
4471

4472
	*memcgp = NULL;
4473

4474
	if (mem_cgroup_disabled())
4475
		return;
4476

4477 4478 4479
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4480 4481 4482
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4483 4484
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4516
	}
4517
	unlock_page_cgroup(pc);
4518 4519 4520 4521
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4522
	if (!memcg)
4523
		return;
4524

4525
	*memcgp = memcg;
4526 4527 4528 4529 4530 4531 4532
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4533
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4534
	else
4535
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4536 4537 4538 4539 4540
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4541
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4542
}
4543

4544
/* remove redundant charge if migration failed*/
4545
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4546
	struct page *oldpage, struct page *newpage, bool migration_ok)
4547
{
4548
	struct page *used, *unused;
4549
	struct page_cgroup *pc;
4550
	bool anon;
4551

4552
	if (!memcg)
4553
		return;
4554

4555
	if (!migration_ok) {
4556 4557
		used = oldpage;
		unused = newpage;
4558
	} else {
4559
		used = newpage;
4560 4561
		unused = oldpage;
	}
4562
	anon = PageAnon(used);
4563 4564 4565 4566
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4567
	css_put(&memcg->css);
4568
	/*
4569 4570 4571
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4572
	 */
4573 4574 4575 4576 4577
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4578
	/*
4579 4580 4581 4582 4583 4584
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4585
	 */
4586
	if (anon)
4587
		mem_cgroup_uncharge_page(used);
4588
}
4589

4590 4591 4592 4593 4594 4595 4596 4597
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4598
	struct mem_cgroup *memcg = NULL;
4599 4600 4601 4602 4603 4604 4605 4606 4607
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4608 4609
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4610
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4611 4612
		ClearPageCgroupUsed(pc);
	}
4613 4614
	unlock_page_cgroup(pc);

4615 4616 4617 4618 4619 4620
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4621 4622 4623 4624 4625
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4626
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4627 4628
}

4629 4630 4631 4632 4633 4634
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4635 4636 4637 4638 4639
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4659 4660
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4661 4662 4663 4664
	}
}
#endif

4665
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4666
				unsigned long long val)
4667
{
4668
	int retry_count;
4669
	u64 memswlimit, memlimit;
4670
	int ret = 0;
4671 4672
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4673
	int enlarge;
4674 4675 4676 4677 4678 4679 4680 4681 4682

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4683

4684
	enlarge = 0;
4685
	while (retry_count) {
4686 4687 4688 4689
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4690 4691 4692
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4693
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4694 4695 4696 4697 4698 4699
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4700 4701
			break;
		}
4702 4703 4704 4705 4706

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4707
		ret = res_counter_set_limit(&memcg->res, val);
4708 4709 4710 4711 4712 4713
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4714 4715 4716 4717 4718
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4719 4720
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4721 4722
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4723
		if (curusage >= oldusage)
4724 4725 4726
			retry_count--;
		else
			oldusage = curusage;
4727
	}
4728 4729
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4730

4731 4732 4733
	return ret;
}

L
Li Zefan 已提交
4734 4735
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4736
{
4737
	int retry_count;
4738
	u64 memlimit, memswlimit, oldusage, curusage;
4739 4740
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4741
	int enlarge = 0;
4742

4743
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4744
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4745
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4746 4747 4748 4749 4750 4751 4752 4753
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4754
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4755 4756 4757 4758 4759 4760 4761 4762
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4763 4764 4765
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4766
		ret = res_counter_set_limit(&memcg->memsw, val);
4767 4768 4769 4770 4771 4772
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4773 4774 4775 4776 4777
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4778 4779 4780
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4781
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4782
		/* Usage is reduced ? */
4783
		if (curusage >= oldusage)
4784
			retry_count--;
4785 4786
		else
			oldusage = curusage;
4787
	}
4788 4789
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4790 4791 4792
	return ret;
}

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4885 4886 4887 4888 4889 4890 4891
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4892
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4893 4894
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4895
 */
4896
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4897
				int node, int zid, enum lru_list lru)
4898
{
4899
	struct lruvec *lruvec;
4900
	unsigned long flags;
4901
	struct list_head *list;
4902 4903
	struct page *busy;
	struct zone *zone;
4904

K
KAMEZAWA Hiroyuki 已提交
4905
	zone = &NODE_DATA(node)->node_zones[zid];
4906 4907
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4908

4909
	busy = NULL;
4910
	do {
4911
		struct page_cgroup *pc;
4912 4913
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4914
		spin_lock_irqsave(&zone->lru_lock, flags);
4915
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4916
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4917
			break;
4918
		}
4919 4920 4921
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4922
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4923
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4924 4925
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4926
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4927

4928
		pc = lookup_page_cgroup(page);
4929

4930
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4931
			/* found lock contention or "pc" is obsolete. */
4932
			busy = page;
4933 4934 4935
			cond_resched();
		} else
			busy = NULL;
4936
	} while (!list_empty(list));
4937 4938 4939
}

/*
4940 4941
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4942
 * This enables deleting this mem_cgroup.
4943 4944
 *
 * Caller is responsible for holding css reference on the memcg.
4945
 */
4946
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4947
{
4948
	int node, zid;
4949
	u64 usage;
4950

4951
	do {
4952 4953
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4954 4955
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4956
		for_each_node_state(node, N_MEMORY) {
4957
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4958 4959
				enum lru_list lru;
				for_each_lru(lru) {
4960
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4961
							node, zid, lru);
4962
				}
4963
			}
4964
		}
4965 4966
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4967
		cond_resched();
4968

4969
		/*
4970 4971 4972 4973 4974
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4975 4976 4977 4978 4979 4980
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4981 4982 4983
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4984 4985
}

4986 4987 4988 4989 4990 4991 4992
/*
 * This mainly exists for tests during the setting of set of use_hierarchy.
 * Since this is the very setting we are changing, the current hierarchy value
 * is meaningless
 */
static inline bool __memcg_has_children(struct mem_cgroup *memcg)
{
4993
	struct cgroup_subsys_state *pos;
4994 4995

	/* bounce at first found */
4996
	css_for_each_child(pos, &memcg->css)
4997 4998 4999 5000 5001
		return true;
	return false;
}

/*
5002 5003
 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
 * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
5004 5005 5006 5007 5008 5009 5010 5011 5012
 * from mem_cgroup_count_children(), in the sense that we don't really care how
 * many children we have; we only need to know if we have any.  It also counts
 * any memcg without hierarchy as infertile.
 */
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
	return memcg->use_hierarchy && __memcg_has_children(memcg);
}

5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
5023

5024
	/* returns EBUSY if there is a task or if we come here twice. */
5025 5026 5027
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

5028 5029
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
5030
	/* try to free all pages in this cgroup */
5031
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5032
		int progress;
5033

5034 5035 5036
		if (signal_pending(current))
			return -EINTR;

5037
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5038
						false);
5039
		if (!progress) {
5040
			nr_retries--;
5041
			/* maybe some writeback is necessary */
5042
			congestion_wait(BLK_RW_ASYNC, HZ/10);
5043
		}
5044 5045

	}
K
KAMEZAWA Hiroyuki 已提交
5046
	lru_add_drain();
5047 5048 5049
	mem_cgroup_reparent_charges(memcg);

	return 0;
5050 5051
}

5052 5053
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5054
{
5055
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5056

5057 5058
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5059
	return mem_cgroup_force_empty(memcg);
5060 5061
}

5062 5063
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5064
{
5065
	return mem_cgroup_from_css(css)->use_hierarchy;
5066 5067
}

5068 5069
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5070 5071
{
	int retval = 0;
5072
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5073
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5074

5075
	mutex_lock(&memcg_create_mutex);
5076 5077 5078 5079

	if (memcg->use_hierarchy == val)
		goto out;

5080
	/*
5081
	 * If parent's use_hierarchy is set, we can't make any modifications
5082 5083 5084 5085 5086 5087
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5088
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5089
				(val == 1 || val == 0)) {
5090
		if (!__memcg_has_children(memcg))
5091
			memcg->use_hierarchy = val;
5092 5093 5094 5095
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5096 5097

out:
5098
	mutex_unlock(&memcg_create_mutex);
5099 5100 5101 5102

	return retval;
}

5103

5104
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5105
					       enum mem_cgroup_stat_index idx)
5106
{
K
KAMEZAWA Hiroyuki 已提交
5107
	struct mem_cgroup *iter;
5108
	long val = 0;
5109

5110
	/* Per-cpu values can be negative, use a signed accumulator */
5111
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5112 5113 5114 5115 5116
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5117 5118
}

5119
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5120
{
K
KAMEZAWA Hiroyuki 已提交
5121
	u64 val;
5122

5123
	if (!mem_cgroup_is_root(memcg)) {
5124
		if (!swap)
5125
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5126
		else
5127
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5128 5129
	}

5130 5131 5132 5133
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5134 5135
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5136

K
KAMEZAWA Hiroyuki 已提交
5137
	if (swap)
5138
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5139 5140 5141 5142

	return val << PAGE_SHIFT;
}

5143 5144 5145
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5146
{
5147
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5148
	char str[64];
5149
	u64 val;
G
Glauber Costa 已提交
5150 5151
	int name, len;
	enum res_type type;
5152 5153 5154

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5155

5156 5157
	switch (type) {
	case _MEM:
5158
		if (name == RES_USAGE)
5159
			val = mem_cgroup_usage(memcg, false);
5160
		else
5161
			val = res_counter_read_u64(&memcg->res, name);
5162 5163
		break;
	case _MEMSWAP:
5164
		if (name == RES_USAGE)
5165
			val = mem_cgroup_usage(memcg, true);
5166
		else
5167
			val = res_counter_read_u64(&memcg->memsw, name);
5168
		break;
5169 5170 5171
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5172 5173 5174
	default:
		BUG();
	}
5175 5176 5177

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5178
}
5179

5180
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5181 5182 5183
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5184
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5197
	mutex_lock(&memcg_create_mutex);
5198
	mutex_lock(&set_limit_mutex);
5199
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5200
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5201 5202 5203 5204 5205 5206
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5207 5208
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5209
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5210 5211
			goto out;
		}
5212 5213 5214 5215 5216 5217
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5218 5219 5220 5221
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5222
	mutex_unlock(&memcg_create_mutex);
5223 5224 5225 5226
#endif
	return ret;
}

5227
#ifdef CONFIG_MEMCG_KMEM
5228
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5229
{
5230
	int ret = 0;
5231 5232
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5233 5234
		goto out;

5235
	memcg->kmem_account_flags = parent->kmem_account_flags;
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5246 5247 5248 5249
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5250 5251 5252
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5253 5254 5255 5256
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5257
	memcg_stop_kmem_account();
5258
	ret = memcg_update_cache_sizes(memcg);
5259
	memcg_resume_kmem_account();
5260 5261 5262
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5263
}
5264
#endif /* CONFIG_MEMCG_KMEM */
5265

5266 5267 5268 5269
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5270
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5271
			    const char *buffer)
B
Balbir Singh 已提交
5272
{
5273
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5274 5275
	enum res_type type;
	int name;
5276 5277 5278
	unsigned long long val;
	int ret;

5279 5280
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5281

5282
	switch (name) {
5283
	case RES_LIMIT:
5284 5285 5286 5287
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5288 5289
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5290 5291 5292
		if (ret)
			break;
		if (type == _MEM)
5293
			ret = mem_cgroup_resize_limit(memcg, val);
5294
		else if (type == _MEMSWAP)
5295
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5296
		else if (type == _KMEM)
5297
			ret = memcg_update_kmem_limit(css, val);
5298 5299
		else
			return -EINVAL;
5300
		break;
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5315 5316 5317 5318 5319
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5320 5321
}

5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5332 5333
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5346
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5347
{
5348
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5349 5350
	int name;
	enum res_type type;
5351

5352 5353
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5354

5355
	switch (name) {
5356
	case RES_MAX_USAGE:
5357
		if (type == _MEM)
5358
			res_counter_reset_max(&memcg->res);
5359
		else if (type == _MEMSWAP)
5360
			res_counter_reset_max(&memcg->memsw);
5361 5362 5363 5364
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5365 5366
		break;
	case RES_FAILCNT:
5367
		if (type == _MEM)
5368
			res_counter_reset_failcnt(&memcg->res);
5369
		else if (type == _MEMSWAP)
5370
			res_counter_reset_failcnt(&memcg->memsw);
5371 5372 5373 5374
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5375 5376
		break;
	}
5377

5378
	return 0;
5379 5380
}

5381
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5382 5383
					struct cftype *cft)
{
5384
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5385 5386
}

5387
#ifdef CONFIG_MMU
5388
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5389 5390
					struct cftype *cft, u64 val)
{
5391
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5392 5393 5394

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5395

5396
	/*
5397 5398 5399 5400
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5401
	 */
5402
	memcg->move_charge_at_immigrate = val;
5403 5404
	return 0;
}
5405
#else
5406
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5407 5408 5409 5410 5411
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5412

5413
#ifdef CONFIG_NUMA
5414 5415
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5416 5417 5418 5419
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5420
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5421

5422
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5423
	seq_printf(m, "total=%lu", total_nr);
5424
	for_each_node_state(nid, N_MEMORY) {
5425
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5426 5427 5428 5429
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5430
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5431
	seq_printf(m, "file=%lu", file_nr);
5432
	for_each_node_state(nid, N_MEMORY) {
5433
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5434
				LRU_ALL_FILE);
5435 5436 5437 5438
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5439
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5440
	seq_printf(m, "anon=%lu", anon_nr);
5441
	for_each_node_state(nid, N_MEMORY) {
5442
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5443
				LRU_ALL_ANON);
5444 5445 5446 5447
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5448
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5449
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5450
	for_each_node_state(nid, N_MEMORY) {
5451
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5452
				BIT(LRU_UNEVICTABLE));
5453 5454 5455 5456 5457 5458 5459
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5460 5461 5462 5463 5464
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5465
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5466
				 struct seq_file *m)
5467
{
5468
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5469 5470
	struct mem_cgroup *mi;
	unsigned int i;
5471

5472
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5473
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5474
			continue;
5475 5476
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5477
	}
L
Lee Schermerhorn 已提交
5478

5479 5480 5481 5482 5483 5484 5485 5486
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5487
	/* Hierarchical information */
5488 5489
	{
		unsigned long long limit, memsw_limit;
5490
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5491
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5492
		if (do_swap_account)
5493 5494
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5495
	}
K
KOSAKI Motohiro 已提交
5496

5497 5498 5499
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5500
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5501
			continue;
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5522
	}
K
KAMEZAWA Hiroyuki 已提交
5523

K
KOSAKI Motohiro 已提交
5524 5525 5526 5527
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5528
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5529 5530 5531 5532 5533
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5534
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5535
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5536

5537 5538 5539 5540
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5541
			}
5542 5543 5544 5545
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5546 5547 5548
	}
#endif

5549 5550 5551
	return 0;
}

5552 5553
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5554
{
5555
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5556

5557
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5558 5559
}

5560 5561
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5562
{
5563
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5564
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5565

T
Tejun Heo 已提交
5566
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5567 5568
		return -EINVAL;

5569
	mutex_lock(&memcg_create_mutex);
5570

K
KOSAKI Motohiro 已提交
5571
	/* If under hierarchy, only empty-root can set this value */
5572
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5573
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5574
		return -EINVAL;
5575
	}
K
KOSAKI Motohiro 已提交
5576 5577 5578

	memcg->swappiness = val;

5579
	mutex_unlock(&memcg_create_mutex);
5580

K
KOSAKI Motohiro 已提交
5581 5582 5583
	return 0;
}

5584 5585 5586 5587 5588 5589 5590 5591
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5592
		t = rcu_dereference(memcg->thresholds.primary);
5593
	else
5594
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5595 5596 5597 5598 5599 5600 5601

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5602
	 * current_threshold points to threshold just below or equal to usage.
5603 5604 5605
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5606
	i = t->current_threshold;
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5630
	t->current_threshold = i - 1;
5631 5632 5633 5634 5635 5636
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5637 5638 5639 5640 5641 5642 5643
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5644 5645 5646 5647 5648 5649 5650
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5651 5652 5653 5654 5655 5656 5657
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5658 5659
}

5660
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5661 5662 5663
{
	struct mem_cgroup_eventfd_list *ev;

5664
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5665 5666 5667 5668
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5669
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5670
{
K
KAMEZAWA Hiroyuki 已提交
5671 5672
	struct mem_cgroup *iter;

5673
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5674
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5675 5676
}

5677
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5678
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5679
{
5680
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5681 5682
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5683
	enum res_type type = MEMFILE_TYPE(cft->private);
5684
	u64 threshold, usage;
5685
	int i, size, ret;
5686 5687 5688 5689 5690 5691

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5692

5693
	if (type == _MEM)
5694
		thresholds = &memcg->thresholds;
5695
	else if (type == _MEMSWAP)
5696
		thresholds = &memcg->memsw_thresholds;
5697 5698 5699 5700 5701 5702
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5703
	if (thresholds->primary)
5704 5705
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5706
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5707 5708

	/* Allocate memory for new array of thresholds */
5709
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5710
			GFP_KERNEL);
5711
	if (!new) {
5712 5713 5714
		ret = -ENOMEM;
		goto unlock;
	}
5715
	new->size = size;
5716 5717

	/* Copy thresholds (if any) to new array */
5718 5719
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5720
				sizeof(struct mem_cgroup_threshold));
5721 5722
	}

5723
	/* Add new threshold */
5724 5725
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5726 5727

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5728
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5729 5730 5731
			compare_thresholds, NULL);

	/* Find current threshold */
5732
	new->current_threshold = -1;
5733
	for (i = 0; i < size; i++) {
5734
		if (new->entries[i].threshold <= usage) {
5735
			/*
5736 5737
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5738 5739
			 * it here.
			 */
5740
			++new->current_threshold;
5741 5742
		} else
			break;
5743 5744
	}

5745 5746 5747 5748 5749
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5750

5751
	/* To be sure that nobody uses thresholds */
5752 5753 5754 5755 5756 5757 5758 5759
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5760
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5761
	struct cftype *cft, struct eventfd_ctx *eventfd)
5762
{
5763
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5764 5765
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5766
	enum res_type type = MEMFILE_TYPE(cft->private);
5767
	u64 usage;
5768
	int i, j, size;
5769 5770 5771

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5772
		thresholds = &memcg->thresholds;
5773
	else if (type == _MEMSWAP)
5774
		thresholds = &memcg->memsw_thresholds;
5775 5776 5777
	else
		BUG();

5778 5779 5780
	if (!thresholds->primary)
		goto unlock;

5781 5782 5783 5784 5785 5786
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5787 5788 5789
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5790 5791 5792
			size++;
	}

5793
	new = thresholds->spare;
5794

5795 5796
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5797 5798
		kfree(new);
		new = NULL;
5799
		goto swap_buffers;
5800 5801
	}

5802
	new->size = size;
5803 5804

	/* Copy thresholds and find current threshold */
5805 5806 5807
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5808 5809
			continue;

5810
		new->entries[j] = thresholds->primary->entries[i];
5811
		if (new->entries[j].threshold <= usage) {
5812
			/*
5813
			 * new->current_threshold will not be used
5814 5815 5816
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5817
			++new->current_threshold;
5818 5819 5820 5821
		}
		j++;
	}

5822
swap_buffers:
5823 5824
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5825 5826 5827 5828 5829 5830
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5831
	rcu_assign_pointer(thresholds->primary, new);
5832

5833
	/* To be sure that nobody uses thresholds */
5834
	synchronize_rcu();
5835
unlock:
5836 5837
	mutex_unlock(&memcg->thresholds_lock);
}
5838

5839
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5840 5841
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5842
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5843
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5844
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5845 5846 5847 5848 5849 5850

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5851
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5852 5853 5854 5855 5856

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5857
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5858
		eventfd_signal(eventfd, 1);
5859
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5860 5861 5862 5863

	return 0;
}

5864
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5865 5866
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5867
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5868
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5869
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5870 5871 5872

	BUG_ON(type != _OOM_TYPE);

5873
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5874

5875
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5876 5877 5878 5879 5880 5881
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5882
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5883 5884
}

5885
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5886 5887
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5888
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5889

5890
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5891

5892
	if (atomic_read(&memcg->under_oom))
5893 5894 5895 5896 5897 5898
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5899
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5900 5901
	struct cftype *cft, u64 val)
{
5902
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5903
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5904 5905

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5906
	if (!parent || !((val == 0) || (val == 1)))
5907 5908
		return -EINVAL;

5909
	mutex_lock(&memcg_create_mutex);
5910
	/* oom-kill-disable is a flag for subhierarchy. */
5911
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5912
		mutex_unlock(&memcg_create_mutex);
5913 5914
		return -EINVAL;
	}
5915
	memcg->oom_kill_disable = val;
5916
	if (!val)
5917
		memcg_oom_recover(memcg);
5918
	mutex_unlock(&memcg_create_mutex);
5919 5920 5921
	return 0;
}

A
Andrew Morton 已提交
5922
#ifdef CONFIG_MEMCG_KMEM
5923
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5924
{
5925 5926
	int ret;

5927
	memcg->kmemcg_id = -1;
5928 5929 5930
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5931

5932
	return mem_cgroup_sockets_init(memcg, ss);
5933
}
5934

5935
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5936
{
5937
	mem_cgroup_sockets_destroy(memcg);
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5964 5965 5966 5967 5968 5969 5970

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5971
		css_put(&memcg->css);
G
Glauber Costa 已提交
5972
}
5973
#else
5974
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5975 5976 5977
{
	return 0;
}
G
Glauber Costa 已提交
5978

5979 5980 5981 5982 5983
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5984 5985
{
}
5986 5987
#endif

B
Balbir Singh 已提交
5988 5989
static struct cftype mem_cgroup_files[] = {
	{
5990
		.name = "usage_in_bytes",
5991
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5992
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5993 5994
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5995
	},
5996 5997
	{
		.name = "max_usage_in_bytes",
5998
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5999
		.trigger = mem_cgroup_reset,
6000
		.read = mem_cgroup_read,
6001
	},
B
Balbir Singh 已提交
6002
	{
6003
		.name = "limit_in_bytes",
6004
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6005
		.write_string = mem_cgroup_write,
6006
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6007
	},
6008 6009 6010 6011
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
6012
		.read = mem_cgroup_read,
6013
	},
B
Balbir Singh 已提交
6014 6015
	{
		.name = "failcnt",
6016
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6017
		.trigger = mem_cgroup_reset,
6018
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
6019
	},
6020 6021
	{
		.name = "stat",
6022
		.read_seq_string = memcg_stat_show,
6023
	},
6024 6025 6026 6027
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6028 6029
	{
		.name = "use_hierarchy",
6030
		.flags = CFTYPE_INSANE,
6031 6032 6033
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
6034 6035 6036 6037 6038
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6039 6040 6041 6042 6043
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6044 6045
	{
		.name = "oom_control",
6046 6047
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6048 6049 6050 6051
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6052 6053 6054 6055 6056
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6057 6058 6059
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6060
		.read_seq_string = memcg_numa_stat_show,
6061 6062
	},
#endif
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6087 6088 6089 6090 6091 6092
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6093
#endif
6094
	{ },	/* terminate */
6095
};
6096

6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6127
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6128 6129
{
	struct mem_cgroup_per_node *pn;
6130
	struct mem_cgroup_per_zone *mz;
6131
	int zone, tmp = node;
6132 6133 6134 6135 6136 6137 6138 6139
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6140 6141
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6142
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6143 6144
	if (!pn)
		return 1;
6145 6146 6147

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6148
		lruvec_init(&mz->lruvec);
6149 6150
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6151
		mz->memcg = memcg;
6152
	}
6153
	memcg->nodeinfo[node] = pn;
6154 6155 6156
	return 0;
}

6157
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6158
{
6159
	kfree(memcg->nodeinfo[node]);
6160 6161
}

6162 6163
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6164
	struct mem_cgroup *memcg;
6165
	size_t size = memcg_size();
6166

6167
	/* Can be very big if nr_node_ids is very big */
6168
	if (size < PAGE_SIZE)
6169
		memcg = kzalloc(size, GFP_KERNEL);
6170
	else
6171
		memcg = vzalloc(size);
6172

6173
	if (!memcg)
6174 6175
		return NULL;

6176 6177
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6178
		goto out_free;
6179 6180
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6181 6182 6183

out_free:
	if (size < PAGE_SIZE)
6184
		kfree(memcg);
6185
	else
6186
		vfree(memcg);
6187
	return NULL;
6188 6189
}

6190
/*
6191 6192 6193 6194 6195 6196 6197 6198
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6199
 */
6200 6201

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6202
{
6203
	int node;
6204
	size_t size = memcg_size();
6205

6206
	mem_cgroup_remove_from_trees(memcg);
6207 6208 6209 6210 6211 6212 6213
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6225
	disarm_static_keys(memcg);
6226 6227 6228 6229
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6230
}
6231

6232 6233 6234
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6235
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6236
{
6237
	if (!memcg->res.parent)
6238
		return NULL;
6239
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6240
}
G
Glauber Costa 已提交
6241
EXPORT_SYMBOL(parent_mem_cgroup);
6242

6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6266
static struct cgroup_subsys_state * __ref
6267
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6268
{
6269
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6270
	long error = -ENOMEM;
6271
	int node;
B
Balbir Singh 已提交
6272

6273 6274
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6275
		return ERR_PTR(error);
6276

B
Bob Liu 已提交
6277
	for_each_node(node)
6278
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6279
			goto free_out;
6280

6281
	/* root ? */
6282
	if (parent_css == NULL) {
6283
		root_mem_cgroup = memcg;
6284 6285 6286
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6287
	}
6288

6289 6290 6291 6292 6293
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6294
	vmpressure_init(&memcg->vmpressure);
6295 6296 6297 6298 6299 6300 6301 6302 6303

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6304
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6305
{
6306 6307
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6308 6309
	int error = 0;

T
Tejun Heo 已提交
6310
	if (!parent)
6311 6312
		return 0;

6313
	mutex_lock(&memcg_create_mutex);
6314 6315 6316 6317 6318 6319

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6320 6321
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6322
		res_counter_init(&memcg->kmem, &parent->kmem);
6323

6324
		/*
6325 6326
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6327
		 */
6328
	} else {
6329 6330
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6331
		res_counter_init(&memcg->kmem, NULL);
6332 6333 6334 6335 6336
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6337
		if (parent != root_mem_cgroup)
6338
			mem_cgroup_subsys.broken_hierarchy = true;
6339
	}
6340 6341

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6342
	mutex_unlock(&memcg_create_mutex);
6343
	return error;
B
Balbir Singh 已提交
6344 6345
}

M
Michal Hocko 已提交
6346 6347 6348 6349 6350 6351 6352 6353
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6354
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6355 6356 6357 6358 6359 6360

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6361
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6362 6363
}

6364
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6365
{
6366
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6367

6368 6369
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6370
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6371
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6372
	mem_cgroup_destroy_all_caches(memcg);
6373
	vmpressure_cleanup(&memcg->vmpressure);
6374 6375
}

6376
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6377
{
6378
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6379

6380
	memcg_destroy_kmem(memcg);
6381
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6382 6383
}

6384
#ifdef CONFIG_MMU
6385
/* Handlers for move charge at task migration. */
6386 6387
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6388
{
6389 6390
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6391
	struct mem_cgroup *memcg = mc.to;
6392

6393
	if (mem_cgroup_is_root(memcg)) {
6394 6395 6396 6397 6398 6399 6400 6401
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6402
		 * "memcg" cannot be under rmdir() because we've already checked
6403 6404 6405 6406
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6407
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6408
			goto one_by_one;
6409
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6410
						PAGE_SIZE * count, &dummy)) {
6411
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6428 6429
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6430
		if (ret)
6431
			/* mem_cgroup_clear_mc() will do uncharge later */
6432
			return ret;
6433 6434
		mc.precharge++;
	}
6435 6436 6437 6438
	return ret;
}

/**
6439
 * get_mctgt_type - get target type of moving charge
6440 6441 6442
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6443
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6444 6445 6446 6447 6448 6449
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6450 6451 6452
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6453 6454 6455 6456 6457
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6458
	swp_entry_t	ent;
6459 6460 6461
};

enum mc_target_type {
6462
	MC_TARGET_NONE = 0,
6463
	MC_TARGET_PAGE,
6464
	MC_TARGET_SWAP,
6465 6466
};

D
Daisuke Nishimura 已提交
6467 6468
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6469
{
D
Daisuke Nishimura 已提交
6470
	struct page *page = vm_normal_page(vma, addr, ptent);
6471

D
Daisuke Nishimura 已提交
6472 6473 6474 6475
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6476
		if (!move_anon())
D
Daisuke Nishimura 已提交
6477
			return NULL;
6478 6479
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6480 6481 6482 6483 6484 6485 6486
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6487
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6488 6489 6490 6491 6492 6493 6494 6495
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6496 6497 6498 6499
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6500
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6501 6502 6503 6504 6505
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6506 6507 6508 6509 6510 6511 6512
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6513

6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6533 6534 6535 6536 6537 6538
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6539
		if (do_swap_account)
6540
			*entry = swap;
6541
		page = find_get_page(swap_address_space(swap), swap.val);
6542
	}
6543
#endif
6544 6545 6546
	return page;
}

6547
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6548 6549 6550 6551
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6552
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6553 6554 6555 6556 6557 6558
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6559 6560
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6561 6562

	if (!page && !ent.val)
6563
		return ret;
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6579 6580
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6581
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6582 6583 6584
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6585 6586 6587 6588
	}
	return ret;
}

6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6624 6625 6626 6627 6628 6629 6630 6631
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6632 6633 6634 6635
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6636
		return 0;
6637
	}
6638

6639 6640
	if (pmd_trans_unstable(pmd))
		return 0;
6641 6642
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6643
		if (get_mctgt_type(vma, addr, *pte, NULL))
6644 6645 6646 6647
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6648 6649 6650
	return 0;
}

6651 6652 6653 6654 6655
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6656
	down_read(&mm->mmap_sem);
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6668
	up_read(&mm->mmap_sem);
6669 6670 6671 6672 6673 6674 6675 6676 6677

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6678 6679 6680 6681 6682
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6683 6684
}

6685 6686
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6687
{
6688 6689
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6690
	int i;
6691

6692
	/* we must uncharge all the leftover precharges from mc.to */
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6704
	}
6705 6706 6707 6708 6709 6710
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6711 6712 6713

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6714 6715 6716 6717 6718 6719 6720 6721 6722

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6723
		/* we've already done css_get(mc.to) */
6724 6725
		mc.moved_swap = 0;
	}
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6741
	spin_lock(&mc.lock);
6742 6743
	mc.from = NULL;
	mc.to = NULL;
6744
	spin_unlock(&mc.lock);
6745
	mem_cgroup_end_move(from);
6746 6747
}

6748
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6749
				 struct cgroup_taskset *tset)
6750
{
6751
	struct task_struct *p = cgroup_taskset_first(tset);
6752
	int ret = 0;
6753
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6754
	unsigned long move_charge_at_immigrate;
6755

6756 6757 6758 6759 6760 6761 6762
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6763 6764 6765
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6766
		VM_BUG_ON(from == memcg);
6767 6768 6769 6770 6771

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6772 6773 6774 6775
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6776
			VM_BUG_ON(mc.moved_charge);
6777
			VM_BUG_ON(mc.moved_swap);
6778
			mem_cgroup_start_move(from);
6779
			spin_lock(&mc.lock);
6780
			mc.from = from;
6781
			mc.to = memcg;
6782
			mc.immigrate_flags = move_charge_at_immigrate;
6783
			spin_unlock(&mc.lock);
6784
			/* We set mc.moving_task later */
6785 6786 6787 6788

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6789 6790
		}
		mmput(mm);
6791 6792 6793 6794
	}
	return ret;
}

6795
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6796
				     struct cgroup_taskset *tset)
6797
{
6798
	mem_cgroup_clear_mc();
6799 6800
}

6801 6802 6803
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6804
{
6805 6806 6807 6808
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6809 6810 6811 6812
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6813

6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6825
		if (mc.precharge < HPAGE_PMD_NR) {
6826 6827 6828 6829 6830 6831 6832 6833 6834
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6835
							pc, mc.from, mc.to)) {
6836 6837 6838 6839 6840 6841 6842 6843
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6844
		return 0;
6845 6846
	}

6847 6848
	if (pmd_trans_unstable(pmd))
		return 0;
6849 6850 6851 6852
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6853
		swp_entry_t ent;
6854 6855 6856 6857

		if (!mc.precharge)
			break;

6858
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6859 6860 6861 6862 6863
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6864
			if (!mem_cgroup_move_account(page, 1, pc,
6865
						     mc.from, mc.to)) {
6866
				mc.precharge--;
6867 6868
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6869 6870
			}
			putback_lru_page(page);
6871
put:			/* get_mctgt_type() gets the page */
6872 6873
			put_page(page);
			break;
6874 6875
		case MC_TARGET_SWAP:
			ent = target.ent;
6876
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6877
				mc.precharge--;
6878 6879 6880
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6881
			break;
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6896
		ret = mem_cgroup_do_precharge(1);
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6940
	up_read(&mm->mmap_sem);
6941 6942
}

6943
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6944
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6945
{
6946
	struct task_struct *p = cgroup_taskset_first(tset);
6947
	struct mm_struct *mm = get_task_mm(p);
6948 6949

	if (mm) {
6950 6951
		if (mc.to)
			mem_cgroup_move_charge(mm);
6952 6953
		mmput(mm);
	}
6954 6955
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6956
}
6957
#else	/* !CONFIG_MMU */
6958
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6959
				 struct cgroup_taskset *tset)
6960 6961 6962
{
	return 0;
}
6963
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6964
				     struct cgroup_taskset *tset)
6965 6966
{
}
6967
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6968
				 struct cgroup_taskset *tset)
6969 6970 6971
{
}
#endif
B
Balbir Singh 已提交
6972

6973 6974 6975 6976
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6977
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6978 6979 6980 6981 6982 6983
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6984 6985
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6986 6987
}

B
Balbir Singh 已提交
6988 6989 6990
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6991
	.css_alloc = mem_cgroup_css_alloc,
6992
	.css_online = mem_cgroup_css_online,
6993 6994
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6995 6996
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6997
	.attach = mem_cgroup_move_task,
6998
	.bind = mem_cgroup_bind,
6999
	.base_cftypes = mem_cgroup_files,
7000
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
7001
	.use_id = 1,
B
Balbir Singh 已提交
7002
};
7003

A
Andrew Morton 已提交
7004
#ifdef CONFIG_MEMCG_SWAP
7005 7006
static int __init enable_swap_account(char *s)
{
7007
	if (!strcmp(s, "1"))
7008
		really_do_swap_account = 1;
7009
	else if (!strcmp(s, "0"))
7010 7011 7012
		really_do_swap_account = 0;
	return 1;
}
7013
__setup("swapaccount=", enable_swap_account);
7014

7015 7016
static void __init memsw_file_init(void)
{
7017 7018 7019 7020 7021 7022 7023 7024 7025
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7026
}
7027

7028
#else
7029
static void __init enable_swap_cgroup(void)
7030 7031
{
}
7032
#endif
7033 7034

/*
7035 7036 7037 7038 7039 7040
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7041 7042 7043 7044
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7045
	enable_swap_cgroup();
7046
	mem_cgroup_soft_limit_tree_init();
7047
	memcg_stock_init();
7048 7049 7050
	return 0;
}
subsys_initcall(mem_cgroup_init);