memcontrol.c 139.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75 76
#else
#define do_swap_account		(0)
#endif


77 78 79 80 81 82 83 84
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
85
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
86
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
87
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
88
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
89
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
90 91 92
	MEM_CGROUP_STAT_NSTATS,
};

93 94 95 96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
	MEM_CGROUP_EVENTS_NSTATS,
};
99 100 101 102 103 104 105 106 107 108 109 110 111
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
112

113
struct mem_cgroup_stat_cpu {
114
	long count[MEM_CGROUP_STAT_NSTATS];
115
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
116
	unsigned long targets[MEM_CGROUP_NTARGETS];
117 118
};

119 120 121 122
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
123 124 125
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
126 127
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
128 129

	struct zone_reclaim_stat reclaim_stat;
130 131 132 133
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
134 135
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
136 137 138 139 140 141 142 143 144 145 146 147
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

168 169 170 171 172
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
173
/* For threshold */
174 175
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
176
	int current_threshold;
177 178 179 180 181
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
182 183 184 185 186 187 188 189 190 191 192 193

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
194 195 196 197 198
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
199 200

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
201
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
202

B
Balbir Singh 已提交
203 204 205 206 207 208 209
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
210 211 212
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
213 214 215 216 217 218 219
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
220 221 222 223
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
224 225 226 227
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
228
	struct mem_cgroup_lru_info info;
229
	/*
230
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
231
	 * reclaimed from.
232
	 */
K
KAMEZAWA Hiroyuki 已提交
233
	int last_scanned_child;
234 235 236 237 238
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	unsigned long   next_scan_node_update;
#endif
239 240 241 242
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
243
	atomic_t	oom_lock;
244
	atomic_t	refcnt;
245

K
KOSAKI Motohiro 已提交
246
	unsigned int	swappiness;
247 248
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
249

250 251 252
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

253 254 255 256
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
257
	struct mem_cgroup_thresholds thresholds;
258

259
	/* thresholds for mem+swap usage. RCU-protected */
260
	struct mem_cgroup_thresholds memsw_thresholds;
261

K
KAMEZAWA Hiroyuki 已提交
262 263 264
	/* For oom notifier event fd */
	struct list_head oom_notify;

265 266 267 268 269
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
270
	/*
271
	 * percpu counter.
272
	 */
273
	struct mem_cgroup_stat_cpu *stat;
274 275 276 277 278 279
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
280 281
};

282 283 284 285 286 287
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
288
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
289
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
290 291 292
	NR_MOVE_TYPE,
};

293 294
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
295
	spinlock_t	  lock; /* for from, to */
296 297 298
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
299
	unsigned long moved_charge;
300
	unsigned long moved_swap;
301 302 303
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
304
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
305 306
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
307

D
Daisuke Nishimura 已提交
308 309 310 311 312 313
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

314 315 316 317 318 319
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

320 321 322 323 324 325 326
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

327 328 329
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
330
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
331
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
332
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
333
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
334 335 336
	NR_CHARGE_TYPE,
};

337 338 339
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
340
#define _OOM_TYPE		(2)
341 342 343
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
344 345
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
346

347 348 349 350 351 352 353
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 355
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356

357 358
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
359
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360
static void drain_all_stock_async(void);
361

362 363 364 365 366 367
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

368 369 370 371 372
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

373
static struct mem_cgroup_per_zone *
374
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
375
{
376 377
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
398
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
399
				struct mem_cgroup_per_zone *mz,
400 401
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
402 403 404 405 406 407 408 409
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

410 411 412
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
429 430 431 432 433 434 435 436 437 438 439 440 441
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

442 443 444 445 446 447
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
448
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
449 450 451 452 453 454
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
455
	unsigned long long excess;
456 457
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
458 459
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
460 461 462
	mctz = soft_limit_tree_from_page(page);

	/*
463 464
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
465
	 */
466 467
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
468
		excess = res_counter_soft_limit_excess(&mem->res);
469 470 471 472
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
473
		if (excess || mz->on_tree) {
474 475 476 477 478
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
479 480
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
481
			 */
482
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
483 484
			spin_unlock(&mctz->lock);
		}
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

503 504 505 506
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
507
	struct mem_cgroup_per_zone *mz;
508 509

retry:
510
	mz = NULL;
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
559 560
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
561
{
562
	long val = 0;
563 564
	int cpu;

565 566
	get_online_cpus();
	for_each_online_cpu(cpu)
567
		val += per_cpu(mem->stat->count[idx], cpu);
568 569 570 571 572 573
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
574 575 576
	return val;
}

577
static long mem_cgroup_local_usage(struct mem_cgroup *mem)
578
{
579
	long ret;
580 581 582 583 584 585

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

586 587 588 589
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
590
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
591 592
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

609
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
610
					 bool file, int nr_pages)
611
{
612 613
	preempt_disable();

614 615
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
616
	else
617
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
618

619 620
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
621
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
622
	else {
623
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
624 625
		nr_pages = -nr_pages; /* for event */
	}
626

627
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
628

629
	preempt_enable();
630 631
}

632 633 634 635 636 637 638 639 640 641 642 643 644
static unsigned long
mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
{
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
		total += MEM_CGROUP_ZSTAT(mz, idx);
	}
	return total;
}
K
KAMEZAWA Hiroyuki 已提交
645
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
646
					enum lru_list idx)
647
{
648
	int nid;
649 650 651
	u64 total = 0;

	for_each_online_node(nid)
652
		total += mem_cgroup_get_zonestat_node(mem, nid, idx);
653
	return total;
654 655
}

656 657 658 659 660 661 662 663 664 665 666
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
667
{
668
	unsigned long val, next;
669

670
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
671

672 673 674 675 676 677 678 679 680 681 682 683
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
684 685 686 687 688 689 690 691 692
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
693
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
694
		mem_cgroup_threshold(mem);
695 696 697
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_SOFTLIMIT))){
698
			mem_cgroup_update_tree(mem, page);
699 700 701
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_SOFTLIMIT);
		}
702 703 704
	}
}

705
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
706 707 708 709 710 711
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

712
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
713
{
714 715 716 717 718 719 720 721
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

722 723 724 725
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

726 727 728
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
729 730 731

	if (!mm)
		return NULL;
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
747 748
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
749
{
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
772 773 774 775 776 777 778 779 780
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
781 782
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
783
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
784

K
KAMEZAWA Hiroyuki 已提交
785
	css_put(&iter->css);
786 787
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
788
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
789

790 791 792
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
793 794
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
795
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
796 797 798

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
799
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
800
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
801
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
802
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
803
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
804
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
805

K
KAMEZAWA Hiroyuki 已提交
806
	return iter;
K
KAMEZAWA Hiroyuki 已提交
807
}
K
KAMEZAWA Hiroyuki 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

821 822 823
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
824

825 826 827 828 829
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
843

K
KAMEZAWA Hiroyuki 已提交
844 845 846 847
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
848

849
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
850 851 852
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
853
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
854
		return;
855
	VM_BUG_ON(!pc->mem_cgroup);
856 857 858 859
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
860
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
861 862
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
863 864 865
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
866
	list_del_init(&pc->lru);
867 868
}

K
KAMEZAWA Hiroyuki 已提交
869
void mem_cgroup_del_lru(struct page *page)
870
{
K
KAMEZAWA Hiroyuki 已提交
871 872
	mem_cgroup_del_lru_list(page, page_lru(page));
}
873

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
896
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
897 898 899
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
900 901 902 903
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
904

905
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
906
		return;
907

K
KAMEZAWA Hiroyuki 已提交
908
	pc = lookup_page_cgroup(page);
909
	/* unused or root page is not rotated. */
910 911 912 913 914
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
915
		return;
916
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
917
	list_move(&pc->lru, &mz->lists[lru]);
918 919
}

K
KAMEZAWA Hiroyuki 已提交
920
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
921
{
K
KAMEZAWA Hiroyuki 已提交
922 923
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
924

925
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
926 927
		return;
	pc = lookup_page_cgroup(page);
928
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
929
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
930
		return;
931 932
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
933
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
934 935
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
936 937 938
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
939 940
	list_add(&pc->lru, &mz->lists[lru]);
}
941

K
KAMEZAWA Hiroyuki 已提交
942
/*
943 944 945 946
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
947
 */
948
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
949
{
950 951 952 953
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

954 955 956 957 958 959 960 961 962 963 964
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

965 966 967 968 969 970 971 972
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
973 974
}

975
static void mem_cgroup_lru_add_after_commit(struct page *page)
976 977 978 979 980
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

981 982 983
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
984 985
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
986
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
987 988 989 990 991
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
992 993 994
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
995
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
996 997 998
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
999 1000
}

1001 1002 1003
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1004
	struct mem_cgroup *curr = NULL;
1005
	struct task_struct *p;
1006

1007 1008 1009 1010 1011
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1012 1013
	if (!curr)
		return 0;
1014 1015 1016 1017 1018 1019 1020
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1021 1022 1023 1024
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1025 1026 1027
	return ret;
}

1028
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1029 1030 1031
{
	unsigned long active;
	unsigned long inactive;
1032 1033
	unsigned long gb;
	unsigned long inactive_ratio;
1034

K
KAMEZAWA Hiroyuki 已提交
1035 1036
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1065 1066 1067 1068 1069
		return 1;

	return 0;
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1081 1082 1083
unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
						struct zone *zone,
						enum lru_list lru)
1084
{
1085
	int nid = zone_to_nid(zone);
1086 1087 1088 1089 1090 1091
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
#ifdef CONFIG_NUMA
static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);

	return ret;
}

static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);

	return ret;
}

static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);

	return total;
}

static unsigned long
mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
{
	return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
}

static unsigned long
mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	enum lru_list l;
	u64 total = 0;

	for_each_lru(l)
		total += mem_cgroup_get_zonestat_node(memcg, nid, l);

	return total;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(memcg, nid);

	return total;
}
#endif /* CONFIG_NUMA */

K
KOSAKI Motohiro 已提交
1179 1180 1181
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1182
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1199 1200
	if (!PageCgroupUsed(pc))
		return NULL;
1201 1202
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1203
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1204 1205 1206
	return &mz->reclaim_stat;
}

1207 1208 1209 1210 1211
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1212
					int active, int file)
1213 1214 1215 1216 1217 1218
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1219
	struct page_cgroup *pc, *tmp;
1220
	int nid = zone_to_nid(z);
1221 1222
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1223
	int lru = LRU_FILE * file + active;
1224
	int ret;
1225

1226
	BUG_ON(!mem_cont);
1227
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1228
	src = &mz->lists[lru];
1229

1230 1231
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1232
		if (scan >= nr_to_scan)
1233
			break;
K
KAMEZAWA Hiroyuki 已提交
1234

1235 1236
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1237

1238
		page = lookup_cgroup_page(pc);
1239

H
Hugh Dickins 已提交
1240
		if (unlikely(!PageLRU(page)))
1241 1242
			continue;

H
Hugh Dickins 已提交
1243
		scan++;
1244 1245 1246
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1247
			list_move(&page->lru, dst);
1248
			mem_cgroup_del_lru(page);
1249
			nr_taken += hpage_nr_pages(page);
1250 1251 1252 1253 1254 1255 1256
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1257 1258 1259 1260
		}
	}

	*scanned = scan;
1261 1262 1263 1264

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1265 1266 1267
	return nr_taken;
}

1268 1269 1270
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1271
/**
1272 1273
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1274
 *
1275
 * Returns the maximum amount of memory @mem can be charged with, in
1276
 * pages.
1277
 */
1278
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1279
{
1280 1281 1282 1283 1284
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1285
	return margin >> PAGE_SHIFT;
1286 1287
}

K
KOSAKI Motohiro 已提交
1288 1289 1290 1291 1292 1293 1294 1295
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1296
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1297 1298
}

1299 1300 1301
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1302 1303 1304 1305

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1306
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1307 1308 1309
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1320 1321 1322
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1323
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1324 1325 1326
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1345 1346 1347

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1348 1349
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1350
	bool ret = false;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1385
/**
1386
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1405
	if (!memcg || !p)
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1452 1453 1454 1455 1456 1457 1458
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1459 1460 1461 1462
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1463 1464 1465
	return num;
}

D
David Rientjes 已提交
1466 1467 1468 1469 1470 1471 1472 1473
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1474 1475 1476
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1477 1478 1479 1480 1481 1482 1483 1484
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1485
/*
K
KAMEZAWA Hiroyuki 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;

	if (time_after(mem->next_scan_node_update, jiffies))
		return;

	mem->next_scan_node_update = jiffies + 10*HZ;
	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

		if (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_FILE) ||
		    mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_FILE))
			continue;

		if (total_swap_pages &&
		    (mem_cgroup_get_zonestat_node(mem, nid, LRU_INACTIVE_ANON) ||
		     mem_cgroup_get_zonestat_node(mem, nid, LRU_ACTIVE_ANON)))
			continue;
		node_clear(nid, mem->scan_nodes);
	}
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
#endif

K
KAMEZAWA Hiroyuki 已提交
1597 1598 1599 1600
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1601 1602
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1603 1604 1605
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1606 1607
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1608 1609
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1610
						struct zone *zone,
1611
						gfp_t gfp_mask,
1612 1613
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1614
{
K
KAMEZAWA Hiroyuki 已提交
1615 1616 1617
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1618 1619
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1620
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1621
	unsigned long excess;
1622
	unsigned long nr_scanned;
1623 1624

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1625

1626 1627 1628 1629
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1630
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1631
		victim = mem_cgroup_select_victim(root_mem);
1632
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1633
			loop++;
1634 1635
			if (loop >= 1)
				drain_all_stock_async();
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1647
				 * We want to do more targeted reclaim.
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1659
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1660 1661
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1662 1663
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1664
		/* we use swappiness of local cgroup */
1665
		if (check_soft) {
1666
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1667 1668 1669 1670
				noswap, get_swappiness(victim), zone,
				&nr_scanned);
			*total_scanned += nr_scanned;
		} else
1671 1672
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1673
		css_put(&victim->css);
1674 1675 1676 1677 1678 1679 1680
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1681
		total += ret;
1682
		if (check_soft) {
1683
			if (!res_counter_soft_limit_excess(&root_mem->res))
1684
				return total;
1685
		} else if (mem_cgroup_margin(root_mem))
1686
			return total;
1687
	}
K
KAMEZAWA Hiroyuki 已提交
1688
	return total;
1689 1690
}

K
KAMEZAWA Hiroyuki 已提交
1691 1692 1693 1694 1695 1696
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1697 1698
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1699

K
KAMEZAWA Hiroyuki 已提交
1700 1701 1702 1703
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1704 1705 1706 1707

	if (lock_count == 1)
		return true;
	return false;
1708
}
1709

K
KAMEZAWA Hiroyuki 已提交
1710
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1711
{
K
KAMEZAWA Hiroyuki 已提交
1712 1713
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1714 1715 1716 1717 1718
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1719 1720
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1721 1722 1723
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1724 1725 1726 1727

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1764 1765
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1766
	if (mem && atomic_read(&mem->oom_lock))
1767 1768 1769
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1770 1771 1772 1773
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1774
{
K
KAMEZAWA Hiroyuki 已提交
1775
	struct oom_wait_info owait;
1776
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1777

K
KAMEZAWA Hiroyuki 已提交
1778 1779 1780 1781 1782
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1783
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1784 1785 1786 1787 1788 1789 1790 1791
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1792 1793 1794 1795
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1796
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1797 1798
	mutex_unlock(&memcg_oom_mutex);

1799 1800
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1801
		mem_cgroup_out_of_memory(mem, mask);
1802
	} else {
K
KAMEZAWA Hiroyuki 已提交
1803
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1804
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1805 1806 1807
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1808
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1809 1810 1811 1812 1813 1814 1815
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1816 1817
}

1818 1819 1820
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1840
 */
1841

1842 1843
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1844 1845
{
	struct mem_cgroup *mem;
1846 1847
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1848
	unsigned long uninitialized_var(flags);
1849 1850 1851 1852

	if (unlikely(!pc))
		return;

1853
	rcu_read_lock();
1854
	mem = pc->mem_cgroup;
1855 1856 1857
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1858
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1859
		/* take a lock against to access pc->mem_cgroup */
1860
		move_lock_page_cgroup(pc, &flags);
1861 1862 1863 1864 1865
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1866 1867

	switch (idx) {
1868
	case MEMCG_NR_FILE_MAPPED:
1869 1870 1871
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1872
			ClearPageCgroupFileMapped(pc);
1873
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1874 1875 1876
		break;
	default:
		BUG();
1877
	}
1878

1879 1880
	this_cpu_add(mem->stat->count[idx], val);

1881 1882
out:
	if (unlikely(need_unlock))
1883
		move_unlock_page_cgroup(pc, &flags);
1884 1885
	rcu_read_unlock();
	return;
1886
}
1887
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1888

1889 1890 1891 1892
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1893
#define CHARGE_BATCH	32U
1894 1895
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1896
	unsigned int nr_pages;
1897 1898 1899 1900 1901 1902
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
1903
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1914 1915
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1929 1930 1931 1932
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1933
		if (do_swap_account)
1934 1935
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1952
 * This will be consumed by consume_stock() function, later.
1953
 */
1954
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
1955 1956 1957 1958 1959 1960 1961
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
1962
	stock->nr_pages += nr_pages;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2014
		long x = per_cpu(mem->stat->count[i], cpu);
2015 2016 2017 2018

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2019 2020 2021 2022 2023 2024
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2036 2037 2038 2039
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2040 2041 2042 2043 2044
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2045
	struct mem_cgroup *iter;
2046

2047 2048 2049 2050 2051 2052
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2053
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2054
		return NOTIFY_OK;
2055 2056 2057 2058

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2059 2060 2061 2062 2063
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2074 2075
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2076
{
2077
	unsigned long csize = nr_pages * PAGE_SIZE;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2092
		res_counter_uncharge(&mem->res, csize);
2093 2094 2095 2096
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2097
	/*
2098 2099
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2100 2101 2102 2103
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2104
	if (nr_pages == CHARGE_BATCH)
2105 2106 2107 2108 2109 2110
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2111
					      gfp_mask, flags, NULL);
2112
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2113
		return CHARGE_RETRY;
2114
	/*
2115 2116 2117 2118 2119 2120 2121
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2122
	 */
2123
	if (nr_pages == 1 && ret)
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2143 2144 2145
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2146
 */
2147
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2148
				   gfp_t gfp_mask,
2149 2150 2151
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2152
{
2153
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2154 2155 2156
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2157

K
KAMEZAWA Hiroyuki 已提交
2158 2159 2160 2161 2162 2163 2164 2165
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2166

2167
	/*
2168 2169
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2170 2171 2172
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2173 2174 2175 2176
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2177
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2178 2179 2180
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2181
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2182
			goto done;
2183 2184
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2185
		struct task_struct *p;
2186

K
KAMEZAWA Hiroyuki 已提交
2187 2188 2189
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2190 2191 2192 2193 2194 2195 2196 2197
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2198 2199
		 */
		mem = mem_cgroup_from_task(p);
2200
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2201 2202 2203
			rcu_read_unlock();
			goto done;
		}
2204
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2223

2224 2225
	do {
		bool oom_check;
2226

2227
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2228 2229
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2230
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2231
		}
2232

2233 2234 2235 2236
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2237
		}
2238

2239
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2240 2241 2242 2243
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2244
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2245 2246 2247
			css_put(&mem->css);
			mem = NULL;
			goto again;
2248
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2249
			css_put(&mem->css);
2250 2251
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2252 2253
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2254
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2255
			}
2256 2257 2258 2259
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2260
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2261
			goto bypass;
2262
		}
2263 2264
	} while (ret != CHARGE_OK);

2265 2266
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2267
	css_put(&mem->css);
2268
done:
K
KAMEZAWA Hiroyuki 已提交
2269
	*memcg = mem;
2270 2271
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2272
	*memcg = NULL;
2273
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2274 2275 2276
bypass:
	*memcg = NULL;
	return 0;
2277
}
2278

2279 2280 2281 2282 2283
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2284
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2285
				       unsigned int nr_pages)
2286 2287
{
	if (!mem_cgroup_is_root(mem)) {
2288 2289 2290
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2291
		if (do_swap_account)
2292
			res_counter_uncharge(&mem->memsw, bytes);
2293
	}
2294 2295
}

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2315
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2316
{
2317
	struct mem_cgroup *mem = NULL;
2318
	struct page_cgroup *pc;
2319
	unsigned short id;
2320 2321
	swp_entry_t ent;

2322 2323 2324
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2325
	lock_page_cgroup(pc);
2326
	if (PageCgroupUsed(pc)) {
2327
		mem = pc->mem_cgroup;
2328 2329
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2330
	} else if (PageSwapCache(page)) {
2331
		ent.val = page_private(page);
2332 2333 2334 2335 2336 2337
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2338
	}
2339
	unlock_page_cgroup(pc);
2340 2341 2342
	return mem;
}

2343
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2344
				       struct page *page,
2345
				       unsigned int nr_pages,
2346
				       struct page_cgroup *pc,
2347
				       enum charge_type ctype)
2348
{
2349 2350 2351
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2352
		__mem_cgroup_cancel_charge(mem, nr_pages);
2353 2354 2355 2356 2357 2358
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2359
	pc->mem_cgroup = mem;
2360 2361 2362 2363 2364 2365 2366
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2367
	smp_wmb();
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2381

2382
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2383
	unlock_page_cgroup(pc);
2384 2385 2386 2387 2388
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2389
	memcg_check_events(mem, page);
2390
}
2391

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2406 2407
	if (mem_cgroup_disabled())
		return;
2408
	/*
2409
	 * We have no races with charge/uncharge but will have races with
2410 2411 2412 2413 2414 2415
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2426
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2427 2428
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2429 2430 2431 2432 2433
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2434
/**
2435
 * mem_cgroup_move_account - move account of the page
2436
 * @page: the page
2437
 * @nr_pages: number of regular pages (>1 for huge pages)
2438 2439 2440
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2441
 * @uncharge: whether we should call uncharge and css_put against @from.
2442 2443
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2444
 * - page is not on LRU (isolate_page() is useful.)
2445
 * - compound_lock is held when nr_pages > 1
2446
 *
2447
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2448
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2449 2450
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2451
 */
2452 2453 2454 2455 2456 2457
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2458
{
2459 2460
	unsigned long flags;
	int ret;
2461

2462
	VM_BUG_ON(from == to);
2463
	VM_BUG_ON(PageLRU(page));
2464 2465 2466 2467 2468 2469 2470
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2471
	if (nr_pages > 1 && !PageTransHuge(page))
2472 2473 2474 2475 2476 2477 2478 2479 2480
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2481

2482
	if (PageCgroupFileMapped(pc)) {
2483 2484 2485 2486 2487
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2488
	}
2489
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2490 2491
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2492
		__mem_cgroup_cancel_charge(from, nr_pages);
2493

2494
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2495
	pc->mem_cgroup = to;
2496
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2497 2498 2499
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2500
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2501
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2502
	 * status here.
2503
	 */
2504 2505 2506
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2507
	unlock_page_cgroup(pc);
2508 2509 2510
	/*
	 * check events
	 */
2511 2512
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2513
out:
2514 2515 2516 2517 2518 2519 2520
	return ret;
}

/*
 * move charges to its parent.
 */

2521 2522
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2523 2524 2525 2526 2527 2528
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2529
	unsigned int nr_pages;
2530
	unsigned long uninitialized_var(flags);
2531 2532 2533 2534 2535 2536
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2537 2538 2539 2540 2541
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2542

2543
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2544

2545
	parent = mem_cgroup_from_cont(pcg);
2546
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2547
	if (ret || !parent)
2548
		goto put_back;
2549

2550
	if (nr_pages > 1)
2551 2552
		flags = compound_lock_irqsave(page);

2553
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2554
	if (ret)
2555
		__mem_cgroup_cancel_charge(parent, nr_pages);
2556

2557
	if (nr_pages > 1)
2558
		compound_unlock_irqrestore(page, flags);
2559
put_back:
K
KAMEZAWA Hiroyuki 已提交
2560
	putback_lru_page(page);
2561
put:
2562
	put_page(page);
2563
out:
2564 2565 2566
	return ret;
}

2567 2568 2569 2570 2571 2572 2573
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2574
				gfp_t gfp_mask, enum charge_type ctype)
2575
{
2576
	struct mem_cgroup *mem = NULL;
2577
	unsigned int nr_pages = 1;
2578
	struct page_cgroup *pc;
2579
	bool oom = true;
2580
	int ret;
A
Andrea Arcangeli 已提交
2581

A
Andrea Arcangeli 已提交
2582
	if (PageTransHuge(page)) {
2583
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2584
		VM_BUG_ON(!PageTransHuge(page));
2585 2586 2587 2588 2589
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2590
	}
2591 2592

	pc = lookup_page_cgroup(page);
2593
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2594

2595
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2596
	if (ret || !mem)
2597 2598
		return ret;

2599
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2600 2601 2602
	return 0;
}

2603 2604
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2605
{
2606
	if (mem_cgroup_disabled())
2607
		return 0;
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2619
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2620
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2621 2622
}

D
Daisuke Nishimura 已提交
2623 2624 2625 2626
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2643 2644
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2645
{
2646
	struct mem_cgroup *mem = NULL;
2647 2648
	int ret;

2649
	if (mem_cgroup_disabled())
2650
		return 0;
2651 2652
	if (PageCompound(page))
		return 0;
2653 2654 2655 2656 2657 2658 2659 2660
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2661 2662
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2663 2664 2665 2666
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2667 2668 2669 2670 2671 2672
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2673 2674
			return 0;
		}
2675
		unlock_page_cgroup(pc);
2676 2677
	}

2678
	if (unlikely(!mm))
2679
		mm = &init_mm;
2680

2681 2682 2683 2684
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2685

2686 2687 2688 2689 2690 2691 2692 2693 2694
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2695 2696 2697 2698 2699 2700 2701 2702
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2703
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2704 2705

	return ret;
2706 2707
}

2708 2709 2710
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2711
 * struct page_cgroup is acquired. This refcnt will be consumed by
2712 2713
 * "commit()" or removed by "cancel()"
 */
2714 2715 2716 2717 2718
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2719
	int ret;
2720

2721 2722
	*ptr = NULL;

2723
	if (mem_cgroup_disabled())
2724 2725 2726 2727 2728 2729
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2730 2731 2732
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2733 2734
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2735
		goto charge_cur_mm;
2736
	mem = try_get_mem_cgroup_from_page(page);
2737 2738
	if (!mem)
		goto charge_cur_mm;
2739
	*ptr = mem;
2740
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2741 2742
	css_put(&mem->css);
	return ret;
2743 2744 2745
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2746
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2747 2748
}

D
Daisuke Nishimura 已提交
2749 2750 2751
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2752
{
2753
	if (mem_cgroup_disabled())
2754 2755 2756
		return;
	if (!ptr)
		return;
2757
	cgroup_exclude_rmdir(&ptr->css);
2758 2759

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2760 2761 2762
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2763 2764 2765
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2766
	 */
2767
	if (do_swap_account && PageSwapCache(page)) {
2768
		swp_entry_t ent = {.val = page_private(page)};
2769
		unsigned short id;
2770
		struct mem_cgroup *memcg;
2771 2772 2773 2774

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2775
		if (memcg) {
2776 2777 2778 2779
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2780
			if (!mem_cgroup_is_root(memcg))
2781
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2782
			mem_cgroup_swap_statistics(memcg, false);
2783 2784
			mem_cgroup_put(memcg);
		}
2785
		rcu_read_unlock();
2786
	}
2787 2788 2789 2790 2791 2792
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2793 2794
}

D
Daisuke Nishimura 已提交
2795 2796 2797 2798 2799 2800
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2801 2802
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2803
	if (mem_cgroup_disabled())
2804 2805 2806
		return;
	if (!mem)
		return;
2807
	__mem_cgroup_cancel_charge(mem, 1);
2808 2809
}

2810 2811 2812
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2813 2814 2815
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2816

2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2829 2830
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2831
	 * In those cases, all pages freed continuously can be expected to be in
2832 2833 2834 2835 2836 2837 2838 2839
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2840
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2841 2842
		goto direct_uncharge;

2843 2844 2845 2846 2847 2848 2849 2850
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2851
	batch->nr_pages++;
2852
	if (uncharge_memsw)
2853
		batch->memsw_nr_pages++;
2854 2855
	return;
direct_uncharge:
2856
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2857
	if (uncharge_memsw)
2858
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2859 2860
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2861 2862
	return;
}
2863

2864
/*
2865
 * uncharge if !page_mapped(page)
2866
 */
2867
static struct mem_cgroup *
2868
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2869
{
2870
	struct mem_cgroup *mem = NULL;
2871 2872
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2873

2874
	if (mem_cgroup_disabled())
2875
		return NULL;
2876

K
KAMEZAWA Hiroyuki 已提交
2877
	if (PageSwapCache(page))
2878
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2879

A
Andrea Arcangeli 已提交
2880
	if (PageTransHuge(page)) {
2881
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2882 2883
		VM_BUG_ON(!PageTransHuge(page));
	}
2884
	/*
2885
	 * Check if our page_cgroup is valid
2886
	 */
2887 2888
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2889
		return NULL;
2890

2891
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2892

2893 2894
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2895 2896 2897 2898 2899
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2900
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2901 2902
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2914
	}
K
KAMEZAWA Hiroyuki 已提交
2915

2916
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2917

2918
	ClearPageCgroupUsed(pc);
2919 2920 2921 2922 2923 2924
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2925

2926
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2927 2928 2929 2930
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2931
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2932 2933 2934 2935 2936
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
2937
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
2938

2939
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2940 2941 2942

unlock_out:
	unlock_page_cgroup(pc);
2943
	return NULL;
2944 2945
}

2946 2947
void mem_cgroup_uncharge_page(struct page *page)
{
2948 2949 2950 2951 2952
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2953 2954 2955 2956 2957 2958
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2959
	VM_BUG_ON(page->mapping);
2960 2961 2962
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
2977 2978
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
2999 3000 3001 3002 3003 3004
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3005
	memcg_oom_recover(batch->memcg);
3006 3007 3008 3009
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3010
#ifdef CONFIG_SWAP
3011
/*
3012
 * called after __delete_from_swap_cache() and drop "page" account.
3013 3014
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3015 3016
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3017 3018
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3019 3020 3021 3022 3023 3024
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3025

K
KAMEZAWA Hiroyuki 已提交
3026 3027 3028 3029 3030
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3031
		swap_cgroup_record(ent, css_id(&memcg->css));
3032
}
3033
#endif
3034 3035 3036 3037 3038 3039 3040

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3041
{
3042
	struct mem_cgroup *memcg;
3043
	unsigned short id;
3044 3045 3046 3047

	if (!do_swap_account)
		return;

3048 3049 3050
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3051
	if (memcg) {
3052 3053 3054 3055
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3056
		if (!mem_cgroup_is_root(memcg))
3057
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3058
		mem_cgroup_swap_statistics(memcg, false);
3059 3060
		mem_cgroup_put(memcg);
	}
3061
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3062
}
3063 3064 3065 3066 3067 3068

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3069
 * @need_fixup: whether we should fixup res_counters and refcounts.
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3080
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3081 3082 3083 3084 3085 3086 3087 3088
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3089
		mem_cgroup_swap_statistics(to, true);
3090
		/*
3091 3092 3093 3094 3095 3096
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3097 3098
		 */
		mem_cgroup_get(to);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3110 3111 3112 3113 3114 3115
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3116
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3117 3118 3119
{
	return -EINVAL;
}
3120
#endif
K
KAMEZAWA Hiroyuki 已提交
3121

3122
/*
3123 3124
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3125
 */
3126
int mem_cgroup_prepare_migration(struct page *page,
3127
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3128
{
3129
	struct mem_cgroup *mem = NULL;
3130
	struct page_cgroup *pc;
3131
	enum charge_type ctype;
3132
	int ret = 0;
3133

3134 3135
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3136
	VM_BUG_ON(PageTransHuge(page));
3137
	if (mem_cgroup_disabled())
3138 3139
		return 0;

3140 3141 3142
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3143 3144
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3176
	}
3177
	unlock_page_cgroup(pc);
3178 3179 3180 3181 3182 3183
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3184

A
Andrea Arcangeli 已提交
3185
	*ptr = mem;
3186
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3199
	}
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3213
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3214
	return ret;
3215
}
3216

3217
/* remove redundant charge if migration failed*/
3218
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3219
	struct page *oldpage, struct page *newpage, bool migration_ok)
3220
{
3221
	struct page *used, *unused;
3222 3223 3224 3225
	struct page_cgroup *pc;

	if (!mem)
		return;
3226
	/* blocks rmdir() */
3227
	cgroup_exclude_rmdir(&mem->css);
3228
	if (!migration_ok) {
3229 3230
		used = oldpage;
		unused = newpage;
3231
	} else {
3232
		used = newpage;
3233 3234
		unused = oldpage;
	}
3235
	/*
3236 3237 3238
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3239
	 */
3240 3241 3242 3243
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3244

3245 3246
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3247
	/*
3248 3249 3250 3251 3252 3253
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3254
	 */
3255 3256
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3257
	/*
3258 3259
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3260 3261 3262 3263
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3264
}
3265

3266
/*
3267 3268 3269 3270 3271 3272
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3273
 */
3274
int mem_cgroup_shmem_charge_fallback(struct page *page,
3275 3276
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3277
{
3278
	struct mem_cgroup *mem;
3279
	int ret;
3280

3281
	if (mem_cgroup_disabled())
3282
		return 0;
3283

3284 3285 3286
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3287

3288
	return ret;
3289 3290
}

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3337 3338
static DEFINE_MUTEX(set_limit_mutex);

3339
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3340
				unsigned long long val)
3341
{
3342
	int retry_count;
3343
	u64 memswlimit, memlimit;
3344
	int ret = 0;
3345 3346
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3347
	int enlarge;
3348 3349 3350 3351 3352 3353 3354 3355 3356

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3357

3358
	enlarge = 0;
3359
	while (retry_count) {
3360 3361 3362 3363
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3374 3375
			break;
		}
3376 3377 3378 3379 3380

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3381
		ret = res_counter_set_limit(&memcg->res, val);
3382 3383 3384 3385 3386 3387
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3388 3389 3390 3391 3392
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3393
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3394 3395
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3396 3397 3398 3399 3400 3401
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3402
	}
3403 3404
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3405

3406 3407 3408
	return ret;
}

L
Li Zefan 已提交
3409 3410
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3411
{
3412
	int retry_count;
3413
	u64 memlimit, memswlimit, oldusage, curusage;
3414 3415
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3416
	int enlarge = 0;
3417

3418 3419 3420
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3438 3439 3440
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3441
		ret = res_counter_set_limit(&memcg->memsw, val);
3442 3443 3444 3445 3446 3447
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3448 3449 3450 3451 3452
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3453
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3454
						MEM_CGROUP_RECLAIM_NOSWAP |
3455 3456
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3457
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3458
		/* Usage is reduced ? */
3459
		if (curusage >= oldusage)
3460
			retry_count--;
3461 3462
		else
			oldusage = curusage;
3463
	}
3464 3465
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3466 3467 3468
	return ret;
}

3469
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3470 3471
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3472 3473 3474 3475 3476 3477
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3478
	unsigned long long excess;
3479
	unsigned long nr_scanned;
3480 3481 3482 3483

	if (order > 0)
		return 0;

3484
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3498
		nr_scanned = 0;
3499 3500
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3501 3502
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3503
		nr_reclaimed += reclaimed;
3504
		*total_scanned += nr_scanned;
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3527
				if (next_mz == mz)
3528
					css_put(&next_mz->mem->css);
3529
				else /* next_mz == NULL or other memcg */
3530 3531 3532 3533
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3534
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3535 3536 3537 3538 3539 3540 3541 3542
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3543 3544
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3563 3564 3565 3566
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3567
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3568
				int node, int zid, enum lru_list lru)
3569
{
K
KAMEZAWA Hiroyuki 已提交
3570 3571
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3572
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3573
	unsigned long flags, loop;
3574
	struct list_head *list;
3575
	int ret = 0;
3576

K
KAMEZAWA Hiroyuki 已提交
3577 3578
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3579
	list = &mz->lists[lru];
3580

3581 3582 3583 3584 3585
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3586 3587
		struct page *page;

3588
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3589
		spin_lock_irqsave(&zone->lru_lock, flags);
3590
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3591
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3592
			break;
3593 3594 3595 3596
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3597
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3598
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3599 3600
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3601
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3602

3603
		page = lookup_cgroup_page(pc);
3604 3605

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3606
		if (ret == -ENOMEM)
3607
			break;
3608 3609 3610 3611 3612 3613 3614

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3615
	}
K
KAMEZAWA Hiroyuki 已提交
3616

3617 3618 3619
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3620 3621 3622 3623 3624 3625
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3626
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3627
{
3628 3629 3630
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3631
	struct cgroup *cgrp = mem->css.cgroup;
3632

3633
	css_get(&mem->css);
3634 3635

	shrink = 0;
3636 3637 3638
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3639
move_account:
3640
	do {
3641
		ret = -EBUSY;
3642 3643 3644 3645
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3646
			goto out;
3647 3648
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3649
		drain_all_stock_sync();
3650
		ret = 0;
3651
		mem_cgroup_start_move(mem);
3652
		for_each_node_state(node, N_HIGH_MEMORY) {
3653
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3654
				enum lru_list l;
3655 3656
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3657
							node, zid, l);
3658 3659 3660
					if (ret)
						break;
				}
3661
			}
3662 3663 3664
			if (ret)
				break;
		}
3665
		mem_cgroup_end_move(mem);
3666
		memcg_oom_recover(mem);
3667 3668 3669
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3670
		cond_resched();
3671 3672
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3673 3674 3675
out:
	css_put(&mem->css);
	return ret;
3676 3677

try_to_free:
3678 3679
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3680 3681 3682
		ret = -EBUSY;
		goto out;
	}
3683 3684
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3685 3686 3687 3688
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3689 3690 3691 3692 3693

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3694 3695
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3696
		if (!progress) {
3697
			nr_retries--;
3698
			/* maybe some writeback is necessary */
3699
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3700
		}
3701 3702

	}
K
KAMEZAWA Hiroyuki 已提交
3703
	lru_add_drain();
3704
	/* try move_account...there may be some *locked* pages. */
3705
	goto move_account;
3706 3707
}

3708 3709 3710 3711 3712 3713
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3732
	 * If parent's use_hierarchy is set, we can't make any modifications
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3752

3753 3754
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3755
{
K
KAMEZAWA Hiroyuki 已提交
3756
	struct mem_cgroup *iter;
3757
	long val = 0;
3758

3759
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3760 3761 3762 3763 3764 3765
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3766 3767
}

3768 3769
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3770
	u64 val;
3771 3772 3773 3774 3775 3776 3777 3778

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3779 3780
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3781

K
KAMEZAWA Hiroyuki 已提交
3782
	if (swap)
3783
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3784 3785 3786 3787

	return val << PAGE_SHIFT;
}

3788
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3789
{
3790
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791
	u64 val;
3792 3793 3794 3795 3796 3797
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3798 3799 3800
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3801
			val = res_counter_read_u64(&mem->res, name);
3802 3803
		break;
	case _MEMSWAP:
3804 3805 3806
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3807
			val = res_counter_read_u64(&mem->memsw, name);
3808 3809 3810 3811 3812 3813
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3814
}
3815 3816 3817 3818
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3819 3820
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3821
{
3822
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3823
	int type, name;
3824 3825 3826
	unsigned long long val;
	int ret;

3827 3828 3829
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3830
	case RES_LIMIT:
3831 3832 3833 3834
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3835 3836
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3837 3838 3839
		if (ret)
			break;
		if (type == _MEM)
3840
			ret = mem_cgroup_resize_limit(memcg, val);
3841 3842
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3843
		break;
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3858 3859 3860 3861 3862
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3863 3864
}

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3893
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3894 3895
{
	struct mem_cgroup *mem;
3896
	int type, name;
3897 3898

	mem = mem_cgroup_from_cont(cont);
3899 3900 3901
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3902
	case RES_MAX_USAGE:
3903 3904 3905 3906
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3907 3908
		break;
	case RES_FAILCNT:
3909 3910 3911 3912
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3913 3914
		break;
	}
3915

3916
	return 0;
3917 3918
}

3919 3920 3921 3922 3923 3924
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3925
#ifdef CONFIG_MMU
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3944 3945 3946 3947 3948 3949 3950
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3951

K
KAMEZAWA Hiroyuki 已提交
3952 3953 3954 3955 3956

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3957
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3958 3959
	MCS_PGPGIN,
	MCS_PGPGOUT,
3960
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3971 3972
};

K
KAMEZAWA Hiroyuki 已提交
3973 3974 3975 3976 3977 3978
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3979
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3980 3981
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3982
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3983 3984 3985 3986 3987 3988 3989 3990
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3991 3992
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3993 3994 3995 3996
{
	s64 val;

	/* per cpu stat */
3997
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3998
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3999
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4000
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4001
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4002
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4003
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4004
	s->stat[MCS_PGPGIN] += val;
4005
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4006
	s->stat[MCS_PGPGOUT] += val;
4007
	if (do_swap_account) {
4008
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4009 4010
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4028 4029 4030 4031
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4032 4033
}

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

	total_nr = mem_cgroup_nr_lru_pages(mem_cont);
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
									nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4079 4080
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4081 4082
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4083
	struct mcs_total_stat mystat;
4084 4085
	int i;

K
KAMEZAWA Hiroyuki 已提交
4086 4087
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4088

4089

4090 4091 4092
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4093
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4094
	}
L
Lee Schermerhorn 已提交
4095

K
KAMEZAWA Hiroyuki 已提交
4096
	/* Hierarchical information */
4097 4098 4099 4100 4101 4102 4103
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4104

K
KAMEZAWA Hiroyuki 已提交
4105 4106
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4107 4108 4109
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4110
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4111
	}
K
KAMEZAWA Hiroyuki 已提交
4112

K
KOSAKI Motohiro 已提交
4113
#ifdef CONFIG_DEBUG_VM
4114
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4142 4143 4144
	return 0;
}

K
KOSAKI Motohiro 已提交
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4157

K
KOSAKI Motohiro 已提交
4158 4159 4160 4161 4162 4163 4164
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4165 4166 4167

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4168 4169
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4170 4171
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4172
		return -EINVAL;
4173
	}
K
KOSAKI Motohiro 已提交
4174 4175 4176

	memcg->swappiness = val;

4177 4178
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4179 4180 4181
	return 0;
}

4182 4183 4184 4185 4186 4187 4188 4189
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4190
		t = rcu_dereference(memcg->thresholds.primary);
4191
	else
4192
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4204
	i = t->current_threshold;
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4228
	t->current_threshold = i - 1;
4229 4230 4231 4232 4233 4234
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4235 4236 4237 4238 4239 4240 4241
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4252
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4263 4264 4265 4266
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4267 4268 4269 4270
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4271 4272
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4273 4274
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4275 4276
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4277
	int i, size, ret;
4278 4279 4280 4281 4282 4283

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4284

4285
	if (type == _MEM)
4286
		thresholds = &memcg->thresholds;
4287
	else if (type == _MEMSWAP)
4288
		thresholds = &memcg->memsw_thresholds;
4289 4290 4291 4292 4293 4294
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4295
	if (thresholds->primary)
4296 4297
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4298
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4299 4300

	/* Allocate memory for new array of thresholds */
4301
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4302
			GFP_KERNEL);
4303
	if (!new) {
4304 4305 4306
		ret = -ENOMEM;
		goto unlock;
	}
4307
	new->size = size;
4308 4309

	/* Copy thresholds (if any) to new array */
4310 4311
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4312
				sizeof(struct mem_cgroup_threshold));
4313 4314
	}

4315
	/* Add new threshold */
4316 4317
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4318 4319

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4320
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4321 4322 4323
			compare_thresholds, NULL);

	/* Find current threshold */
4324
	new->current_threshold = -1;
4325
	for (i = 0; i < size; i++) {
4326
		if (new->entries[i].threshold < usage) {
4327
			/*
4328 4329
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4330 4331
			 * it here.
			 */
4332
			++new->current_threshold;
4333 4334 4335
		}
	}

4336 4337 4338 4339 4340
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4341

4342
	/* To be sure that nobody uses thresholds */
4343 4344 4345 4346 4347 4348 4349 4350
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4351
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4352
	struct cftype *cft, struct eventfd_ctx *eventfd)
4353 4354
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4355 4356
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4357 4358
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4359
	int i, j, size;
4360 4361 4362

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4363
		thresholds = &memcg->thresholds;
4364
	else if (type == _MEMSWAP)
4365
		thresholds = &memcg->memsw_thresholds;
4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4381 4382 4383
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4384 4385 4386
			size++;
	}

4387
	new = thresholds->spare;
4388

4389 4390
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4391 4392
		kfree(new);
		new = NULL;
4393
		goto swap_buffers;
4394 4395
	}

4396
	new->size = size;
4397 4398

	/* Copy thresholds and find current threshold */
4399 4400 4401
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4402 4403
			continue;

4404 4405
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4406
			/*
4407
			 * new->current_threshold will not be used
4408 4409 4410
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4411
			++new->current_threshold;
4412 4413 4414 4415
		}
		j++;
	}

4416
swap_buffers:
4417 4418 4419
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4420

4421
	/* To be sure that nobody uses thresholds */
4422 4423 4424 4425
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4426

K
KAMEZAWA Hiroyuki 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4452
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4507 4508
	if (!val)
		memcg_oom_recover(mem);
4509 4510 4511 4512
	cgroup_unlock();
	return 0;
}

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4529 4530
static struct cftype mem_cgroup_files[] = {
	{
4531
		.name = "usage_in_bytes",
4532
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4533
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4534 4535
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4536
	},
4537 4538
	{
		.name = "max_usage_in_bytes",
4539
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4540
		.trigger = mem_cgroup_reset,
4541 4542
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4543
	{
4544
		.name = "limit_in_bytes",
4545
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4546
		.write_string = mem_cgroup_write,
4547
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4548
	},
4549 4550 4551 4552 4553 4554
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4555 4556
	{
		.name = "failcnt",
4557
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4558
		.trigger = mem_cgroup_reset,
4559
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4560
	},
4561 4562
	{
		.name = "stat",
4563
		.read_map = mem_control_stat_show,
4564
	},
4565 4566 4567 4568
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4569 4570 4571 4572 4573
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4574 4575 4576 4577 4578
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4579 4580 4581 4582 4583
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4584 4585
	{
		.name = "oom_control",
4586 4587
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4588 4589 4590 4591
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4592 4593 4594 4595 4596 4597
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
	},
#endif
B
Balbir Singh 已提交
4598 4599
};

4600 4601 4602 4603 4604 4605
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4606 4607
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4643 4644 4645
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4646
	struct mem_cgroup_per_zone *mz;
4647
	enum lru_list l;
4648
	int zone, tmp = node;
4649 4650 4651 4652 4653 4654 4655 4656
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4657 4658
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4659
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4660 4661
	if (!pn)
		return 1;
4662

4663
	mem->info.nodeinfo[node] = pn;
4664 4665
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4666 4667
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4668
		mz->usage_in_excess = 0;
4669 4670
		mz->on_tree = false;
		mz->mem = mem;
4671
	}
4672 4673 4674
	return 0;
}

4675 4676 4677 4678 4679
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4680 4681 4682
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4683
	int size = sizeof(struct mem_cgroup);
4684

4685
	/* Can be very big if MAX_NUMNODES is very big */
4686
	if (size < PAGE_SIZE)
4687
		mem = kzalloc(size, GFP_KERNEL);
4688
	else
4689
		mem = vzalloc(size);
4690

4691 4692 4693
	if (!mem)
		return NULL;

4694
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4695 4696
	if (!mem->stat)
		goto out_free;
4697
	spin_lock_init(&mem->pcp_counter_lock);
4698
	return mem;
4699 4700 4701 4702 4703 4704 4705

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4706 4707
}

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4719
static void __mem_cgroup_free(struct mem_cgroup *mem)
4720
{
K
KAMEZAWA Hiroyuki 已提交
4721 4722
	int node;

4723
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4724 4725
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4726 4727 4728
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4729 4730
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4731 4732 4733 4734 4735
		kfree(mem);
	else
		vfree(mem);
}

4736 4737 4738 4739 4740
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4741
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4742
{
4743
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4744
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4745
		__mem_cgroup_free(mem);
4746 4747 4748
		if (parent)
			mem_cgroup_put(parent);
	}
4749 4750
}

4751 4752 4753 4754 4755
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4756 4757 4758 4759 4760 4761 4762 4763 4764
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4765

4766 4767 4768
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4769
	if (!mem_cgroup_disabled() && really_do_swap_account)
4770 4771 4772 4773 4774 4775 4776 4777
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4803
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4804 4805
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4806
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4807
	long error = -ENOMEM;
4808
	int node;
B
Balbir Singh 已提交
4809

4810 4811
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4812
		return ERR_PTR(error);
4813

4814 4815 4816
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4817

4818
	/* root ? */
4819
	if (cont->parent == NULL) {
4820
		int cpu;
4821
		enable_swap_cgroup();
4822
		parent = NULL;
4823
		root_mem_cgroup = mem;
4824 4825
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4826 4827 4828 4829 4830
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4831
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4832
	} else {
4833
		parent = mem_cgroup_from_cont(cont->parent);
4834
		mem->use_hierarchy = parent->use_hierarchy;
4835
		mem->oom_kill_disable = parent->oom_kill_disable;
4836
	}
4837

4838 4839 4840
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4841 4842 4843 4844 4845 4846 4847
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4848 4849 4850 4851
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4852
	mem->last_scanned_child = 0;
4853
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4854
	INIT_LIST_HEAD(&mem->oom_notify);
4855

K
KOSAKI Motohiro 已提交
4856 4857
	if (parent)
		mem->swappiness = get_swappiness(parent);
4858
	atomic_set(&mem->refcnt, 1);
4859
	mem->move_charge_at_immigrate = 0;
4860
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4861
	return &mem->css;
4862
free_out:
4863
	__mem_cgroup_free(mem);
4864
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4865
	return ERR_PTR(error);
B
Balbir Singh 已提交
4866 4867
}

4868
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4869 4870 4871
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4872 4873

	return mem_cgroup_force_empty(mem, false);
4874 4875
}

B
Balbir Singh 已提交
4876 4877 4878
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4879 4880 4881
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4882 4883 4884 4885 4886
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4887 4888 4889 4890 4891 4892 4893 4894
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4895 4896
}

4897
#ifdef CONFIG_MMU
4898
/* Handlers for move charge at task migration. */
4899 4900
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4901
{
4902 4903
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4904 4905
	struct mem_cgroup *mem = mc.to;

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
4941
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
4942 4943 4944 4945 4946
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4947 4948 4949 4950 4951 4952 4953 4954
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4955
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4956 4957 4958 4959 4960 4961
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4962 4963 4964
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4965 4966 4967 4968 4969
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4970
	swp_entry_t	ent;
4971 4972 4973 4974 4975
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4976
	MC_TARGET_SWAP,
4977 4978
};

D
Daisuke Nishimura 已提交
4979 4980
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4981
{
D
Daisuke Nishimura 已提交
4982
	struct page *page = vm_normal_page(vma, addr, ptent);
4983

D
Daisuke Nishimura 已提交
4984 4985 4986 4987 4988 4989
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4990 4991
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5010 5011
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5012
		return NULL;
5013
	}
D
Daisuke Nishimura 已提交
5014 5015 5016 5017 5018 5019
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5065 5066
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5067 5068 5069

	if (!page && !ent.val)
		return 0;
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5085 5086
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5087 5088 5089 5090
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5103 5104
	split_huge_page_pmd(walk->mm, pmd);

5105 5106 5107 5108 5109 5110 5111
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5112 5113 5114
	return 0;
}

5115 5116 5117 5118 5119
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5120
	down_read(&mm->mmap_sem);
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5132
	up_read(&mm->mmap_sem);
5133 5134 5135 5136 5137 5138 5139 5140 5141

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5142 5143 5144 5145 5146
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5147 5148
}

5149 5150
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5151
{
5152 5153 5154
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5155
	/* we must uncharge all the leftover precharges from mc.to */
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5167
	}
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5202
	spin_lock(&mc.lock);
5203 5204
	mc.from = NULL;
	mc.to = NULL;
5205
	spin_unlock(&mc.lock);
5206
	mem_cgroup_end_move(from);
5207 5208
}

5209 5210
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5211
				struct task_struct *p)
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5226 5227 5228 5229
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5230
			VM_BUG_ON(mc.moved_charge);
5231
			VM_BUG_ON(mc.moved_swap);
5232
			mem_cgroup_start_move(from);
5233
			spin_lock(&mc.lock);
5234 5235
			mc.from = from;
			mc.to = mem;
5236
			spin_unlock(&mc.lock);
5237
			/* We set mc.moving_task later */
5238 5239 5240 5241

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5242 5243
		}
		mmput(mm);
5244 5245 5246 5247 5248 5249
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5250
				struct task_struct *p)
5251
{
5252
	mem_cgroup_clear_mc();
5253 5254
}

5255 5256 5257
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5258
{
5259 5260 5261 5262 5263
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5264
	split_huge_page_pmd(walk->mm, pmd);
5265 5266 5267 5268 5269 5270 5271 5272
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5273
		swp_entry_t ent;
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5285 5286
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5287
				mc.precharge--;
5288 5289
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5290 5291 5292 5293 5294
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5295 5296
		case MC_TARGET_SWAP:
			ent = target.ent;
5297 5298
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5299
				mc.precharge--;
5300 5301 5302
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5303
			break;
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5318
		ret = mem_cgroup_do_precharge(1);
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5362
	up_read(&mm->mmap_sem);
5363 5364
}

B
Balbir Singh 已提交
5365 5366 5367
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5368
				struct task_struct *p)
B
Balbir Singh 已提交
5369
{
5370 5371 5372
	struct mm_struct *mm;

	if (!mc.to)
5373 5374 5375
		/* no need to move charge */
		return;

5376 5377 5378 5379 5380
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
5381
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5382
}
5383 5384 5385
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5386
				struct task_struct *p)
5387 5388 5389 5390 5391
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5392
				struct task_struct *p)
5393 5394 5395 5396 5397
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5398
				struct task_struct *p)
5399 5400 5401
{
}
#endif
B
Balbir Singh 已提交
5402

B
Balbir Singh 已提交
5403 5404 5405 5406
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5407
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5408 5409
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5410 5411
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5412
	.attach = mem_cgroup_move_task,
5413
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5414
	.use_id = 1,
B
Balbir Singh 已提交
5415
};
5416 5417

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5418 5419 5420
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5421
	if (!strcmp(s, "1"))
5422
		really_do_swap_account = 1;
5423
	else if (!strcmp(s, "0"))
5424 5425 5426
		really_do_swap_account = 0;
	return 1;
}
5427
__setup("swapaccount=", enable_swap_account);
5428 5429

#endif