framework.py 246.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
J
Jiabin Yang 已提交
56
    '_non_static_mode',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_in_eager_mode_ = (os.environ.get('FLAGS_enable_eager_mode') == '1')
78
_global_expected_place_ = None
79
_current_device = None
80
global_prog_seed = 0
81
_current_pipeline_stage = None
82
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
83
_already_patch_varbase = False
84
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

# Some explanation of our execution system 2022.03
# For now we have 3 kinds of execution system, since we refactored dygraph mode to 
# build a fast execution system for dynamic mode. But we can't just remove all legacy
# code once we present the new system for some historical reason. That's why we have 
# these flags.
# 
# 1. _non_static_mode():
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode. 
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
# 
# They have a relation ship as below:
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in 
# dygraph mode means you are not in _in_legacy_dygraph.
# 
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
    from paddle import _C_ops
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

    assert isinstance(is_eager, bool)
    if is_eager:
        _C_ops.switch_to_eager_ops()
    else:
        _C_ops.switch_to_core_ops()

    monkey_patch_varbase()
    monkey_patch_math_varbase()


J
Jiabin Yang 已提交
128 129 130
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
131
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
132 133 134 135 136


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
137
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
181 182 183


@signature_safe_contextmanager
J
Jiabin Yang 已提交
184 185 186
def _test_eager_guard(place=None):
    _disable_legacy_dygraph()
    from paddle import _C_ops
187
    _C_ops.switch_to_eager_ops()
188
    global _already_patch_eager_tensor
J
Jiabin Yang 已提交
189 190 191
    global _already_patch_varbase
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase
192 193
    if not _already_patch_eager_tensor:
        monkey_patch_varbase()
194
        monkey_patch_math_varbase()
195 196

        # Ugly setting
197
        from paddle.tensor.manipulation import fill_, zero_, fill_diagonal_, fill_diagonal_tensor_, tolist
198 199
        setattr(core.eager.Tensor, 'fill_', fill_)
        setattr(core.eager.Tensor, 'zero_', zero_)
200 201 202 203
        setattr(core.eager.Tensor, 'fill_diagonal_', fill_diagonal_)
        setattr(core.eager.Tensor, 'fill_diagonal_tensor_',
                fill_diagonal_tensor_)
        setattr(core.eager.Tensor, 'tolist', tolist)
204

205
        _already_patch_eager_tensor = True
206
    try:
J
Jiabin Yang 已提交
207
        yield
208
    finally:
J
Jiabin Yang 已提交
209 210 211 212 213
        _enable_legacy_dygraph()
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()
            _already_patch_varbase = True
214
        _C_ops.switch_to_core_ops()
215 216


J
jianghaicheng 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is None, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
    Only if the enable_manual_shard=True, the ‘index’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` . 
    Only if the enable_pipelining=True, the ‘stage’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


383 384
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
385 386
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
387 388 389 390 391 392 393
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
394
        assert _non_static_mode(
395 396 397 398 399 400 401 402
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
403
        assert not _non_static_mode(
404
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
405 406 407 408 409
        return func(*args, **kwargs)

    return __impl__


410 411 412 413 414
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


415 416 417 418 419 420
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
421
# same base class.
422 423 424
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
425 426 427 428 429
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
430 431 432 433

    return __impl__


T
tangwei12 已提交
434 435
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


453 454
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
455
static_only = wrap_decorator(_static_only_)
456
fake_interface_only = wrap_decorator(_fake_interface_only_)
457 458


L
lujun 已提交
459 460
def _dygraph_tracer():
    return _dygraph_tracer_
461

W
Wu Yi 已提交
462

463 464 465 466
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
467
def _current_expected_place():
468 469 470
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
471 472 473 474 475 476 477 478 479 480 481
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
482 483 484 485 486 487 488 489 490 491 492 493
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
494 495 496 497 498 499 500 501 502 503 504 505
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
521
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
522 523


L
Leo Chen 已提交
524 525 526 527
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
528

L
Leo Chen 已提交
529 530 531 532 533 534 535 536 537 538 539 540
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
541
def _cpu_num():
542
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
543 544 545 546 547 548 549 550
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
551
        os.environ['CPU_NUM'] = str(1)
552
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
553 554 555 556 557 558 559 560 561 562
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
563 564


565 566 567 568 569 570 571 572 573
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


574 575 576 577 578 579 580 581 582
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


583 584 585 586 587 588 589 590 591
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
662 663 664 665
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

666
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
667 668 669 670

    Examples:
        .. code-block:: python

671
            import paddle
672
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
673 674 675 676
    """
    return core.is_compiled_with_cuda()


677 678 679 680 681 682 683 684 685 686
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
687
            support_gpu = paddle.device.is_compiled_with_rocm()
688 689 690 691
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
692
def cuda_places(device_ids=None):
L
lujun 已提交
693
    """
694 695 696 697
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
698
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
699 700

    If :code:`device_ids` is None, environment variable of
701
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
702
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
703
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
704
    If :code:`FLAGS_selected_gpus` is not set, all visible
705
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
706 707

    If :code:`device_ids` is not None, it should be the device
708
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
709
    the returned list would be 
C
Chen Weihang 已提交
710
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
711

712
    Parameters:
713
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
714 715

    Returns:
C
Chen Weihang 已提交
716
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
717 718 719 720

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
721 722
            import paddle
            import paddle.static as static
T
tangwei12 已提交
723

724 725
            # required: gpu
            
C
Chen Weihang 已提交
726 727 728
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
729 730

    """
S
sneaxiy 已提交
731 732 733
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
734
        device_ids = _cuda_ids()
S
sneaxiy 已提交
735 736 737 738 739
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


740 741 742 743
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
744 745 746 747 748 749 750 751 752 753 754
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
755 756 757 758 759 760 761
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
762

763 764
            # required: xpu

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
821
def cpu_places(device_count=None):
L
lujun 已提交
822
    """
C
Chen Weihang 已提交
823
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
824

S
add doc  
sneaxiy 已提交
825 826
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
827 828
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
829 830
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
831

832 833
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
834 835

    Returns:
C
Chen Weihang 已提交
836
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
837 838 839 840

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
841 842
            import paddle
            import paddle.static as static
T
tangwei12 已提交
843

C
Chen Weihang 已提交
844 845 846
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
847 848
    """

S
sneaxiy 已提交
849 850 851 852 853 854
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
855
    """
856
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
857 858 859

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
860 861 862 863
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
864

865 866
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
867 868

    Returns:
869
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
870 871 872 873

    Examples:
        .. code-block:: python

874
            import paddle.fluid as fluid
L
lujun 已提交
875 876 877 878 879
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
880 881 882
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
883 884
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
885 886


887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
955
@signature_safe_contextmanager
956 957
def name_scope(prefix=None):
    """
958 959
    :api_attr: Static Graph

960
    Generate hierarchical name prefix for the operators in Static Graph.
961

T
Tao Luo 已提交
962 963 964
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
965
        Don't use it in dygraph, since it will cause memory leak.
966 967

    Args:
T
Tao Luo 已提交
968
        prefix(str, optional): prefix. Default is none.
969 970 971

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
972

973 974 975
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
976
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
977
             b = a + 1
978
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
979
                c = b * 1
980
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
981
                d = c / 1
982 983 984
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
985 986 987
                g = f - 1

          # Op are created in the default main program.  
988
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1004 1005
    """
    # TODO(panyx0718): Only [0-9a-z].
1006
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1007
    if _non_static_mode():
L
Leo Chen 已提交
1008 1009
        yield
    else:
T
tianshuo78520a 已提交
1010
        assert prefix, "namescope prefix can not be empty."
1011 1012
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1013 1014 1015 1016
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1029 1030 1031
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1032 1033 1034 1035


def grad_var_name(var_name):
    """
1036 1037
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1038 1039 1040
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1041

1042
def convert_np_dtype_to_dtype_(np_dtype):
1043 1044
    """
    Convert the data type in numpy to the data type in Paddle
1045

1046
    Args:
1047
        np_dtype(np.dtype): the data type in numpy.
1048

1049 1050
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1051 1052

    """
1053 1054
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1055
        return core.VarDesc.VarType.FP32
1056
    elif dtype == np.float64:
1057
        return core.VarDesc.VarType.FP64
1058
    elif dtype == np.float16:
1059
        return core.VarDesc.VarType.FP16
1060
    elif dtype == np.int32:
1061
        return core.VarDesc.VarType.INT32
1062
    elif dtype == np.int16:
1063
        return core.VarDesc.VarType.INT16
1064
    elif dtype == np.int64:
1065
        return core.VarDesc.VarType.INT64
1066
    elif dtype == np.bool:
1067
        return core.VarDesc.VarType.BOOL
1068
    elif dtype == np.uint16:
1069 1070 1071
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1072 1073
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1074 1075
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1076 1077 1078 1079
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1080
    else:
M
minqiyang 已提交
1081
        raise ValueError("Not supported numpy dtype %s" % dtype)
1082 1083 1084


def dtype_is_floating(dtype):
1085 1086 1087
    """
    Check the data type is floating or not.
    Args:
1088
        dtype(np.dtype|core.VarDesc.VarType): data type.
1089 1090 1091 1092 1093
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1094
    if not isinstance(dtype, core.VarDesc.VarType):
1095 1096
        dtype = convert_np_dtype_to_dtype_(dtype)

1097 1098 1099 1100
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1101 1102


Y
Yang Yang(Tony) 已提交
1103
def _debug_string_(proto, throw_on_error=True):
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1115
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1116
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
1117 1118
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
1119 1120 1121
    return proto.__str__()


1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1132
    if _in_eager_mode_:
1133
        eager_tensor = core.eager.Tensor(
1134 1135 1136 1137 1138 1139
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1140 1141 1142 1143 1144
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                            list(shape) if shape else [], name, type
                            if type else core.VarDesc.VarType.LOD_TENSOR, True
                            if persistable else False)
1145 1146 1147 1148 1149 1150 1151


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1152
            return issubclass(t, core.eager.Tensor)
1153
        else:
J
Jiabin Yang 已提交
1154 1155
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1156 1157 1158 1159 1160 1161 1162 1163
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1164
            return issubclass(t, EagerParamBase)
1165
        else:
J
Jiabin Yang 已提交
1166 1167
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1168 1169 1170 1171
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1172
class Variable(object):
1173
    """
J
Jiabin Yang 已提交
1174
    **Notes**:
1175
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1176

1177 1178
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1179 1180 1181
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1182
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1183 1184
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1185

1186
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1187
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1188

T
tianshuo78520a 已提交
1189
    Most of a Variable's member variables can be set to be None. It mean
1190
    it is not available or will be specified later.
1191

1192
    Examples:
1193 1194
        In Static Graph Mode:

1195 1196
        .. code-block:: python

1197
            import paddle.fluid as fluid
1198
            cur_program = fluid.Program()
1199 1200 1201 1202
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1203

J
Jiabin Yang 已提交
1204
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1205 1206 1207 1208 1209 1210 1211 1212 1213

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1214 1215
    """

Y
Yu Yang 已提交
1216 1217
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1218
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1219 1220 1221 1222
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1223
                 capacity=None,
Q
QI JUN 已提交
1224
                 persistable=None,
F
fengjiayi 已提交
1225
                 error_clip=None,
Y
Yu Yang 已提交
1226
                 stop_gradient=False,
F
fengjiayi 已提交
1227
                 is_data=False,
H
Huihuang Zheng 已提交
1228
                 need_check_feed=False,
H
hong 已提交
1229
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1230
                 **kwargs):
Y
Yu Yang 已提交
1231 1232
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1233
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1234

Y
Yu Yang 已提交
1235
        if dtype is not None:
1236
            if not isinstance(dtype, core.VarDesc.VarType):
1237
                dtype = convert_np_dtype_to_dtype_(dtype)
1238

S
Steffy-zxf 已提交
1239 1240 1241 1242
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1243 1244
        self.belong_to_optimizer = belong_to_optimizer

1245 1246 1247 1248 1249
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1250

1251 1252 1253
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1254

1255 1256 1257
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1258 1259
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1260 1261
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1262

1263
        if shape is not None:
1264
            if is_new_var:
1265 1266 1267 1268 1269 1270
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1271 1272
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1273 1274 1275 1276 1277 1278 1279
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1280 1281
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1282 1283 1284 1285 1286 1287 1288 1289 1290
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1291 1292
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1293 1294 1295 1296 1297 1298 1299 1300 1301
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1302 1303
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1304 1305
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1306

1307 1308
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1309

1310 1311 1312 1313 1314 1315 1316
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1317

1318 1319
        self.block.vars[name] = self
        self.op = None
1320
        self.stop_gradient = stop_gradient
1321
        self.is_data = is_data
Y
Yu Yang 已提交
1322

1323 1324 1325
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1326 1327
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1328

1329
        Returns:
J
Jiabin Yang 已提交
1330
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1331 1332 1333 1334

        Examples:
            .. code-block:: python

1335
                import paddle
1336

1337 1338 1339 1340
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1341

1342 1343
                # create a detached Variable
                y = x.detach()
1344
        """
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1360

1361
    @fake_interface_only
1362
    def numpy(self):
1363
        """
J
Jiabin Yang 已提交
1364
        **Notes**:
T
tianshuo78520a 已提交
1365
            **This API is ONLY available in Dygraph mode**
1366

J
Jiabin Yang 已提交
1367
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1368 1369 1370 1371 1372

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1373
            ndarray: dtype is same as current Variable
1374 1375 1376 1377 1378 1379

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1380
                from paddle.fluid.dygraph import Linear
1381 1382 1383 1384
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1385
                    linear = Linear(32, 64)
1386
                    data = to_variable(data)
1387
                    x = linear(data)
1388 1389 1390
                    print(x.numpy())

        """
1391
        pass
1392

1393
    @fake_interface_only
1394
    def backward(self, retain_graph=False):
1395
        """
J
Jiabin Yang 已提交
1396
        **Notes**:
T
tianshuo78520a 已提交
1397
            **This API is ONLY available in Dygraph mode**
1398

1399
        Run backward of current Graph which starts from current Tensor.
1400

J
Jiabin Yang 已提交
1401
        Args:
1402 1403 1404 1405
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1406

J
Jiabin Yang 已提交
1407 1408
        Returns:
            NoneType: None
1409 1410 1411 1412 1413

        Examples:
            .. code-block:: python

                import numpy as np
1414 1415
                import paddle
                paddle.disable_static()
1416 1417

                x = np.ones([2, 2], np.float32)
1418 1419 1420 1421 1422 1423 1424
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1425 1426
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1427
                loss.backward()
1428 1429

        """
1430
        pass
1431

1432
    @fake_interface_only
1433
    def gradient(self):
1434
        """
J
Jiabin Yang 已提交
1435
        **Notes**:
T
tianshuo78520a 已提交
1436
            **This API is ONLY available in Dygraph mode**
1437 1438 1439

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1440
        Returns:
1441
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1442 1443 1444 1445 1446 1447 1448

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1449
                # example1: return ndarray
1450 1451 1452 1453 1454 1455 1456 1457 1458
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1459
                    loss2.backward()
1460 1461
                    print(loss2.gradient())

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1475
        """
1476
        pass
1477

1478
    @fake_interface_only
1479
    def clear_gradient(self):
1480
        """
J
Jiabin Yang 已提交
1481
        **Notes**:
T
tianshuo78520a 已提交
1482
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1483 1484

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1485

J
Jiabin Yang 已提交
1486
        Clear  (set to ``0`` ) the Gradient of Current Variable
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1505
                    loss2.backward()
1506 1507 1508 1509 1510
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1511
        pass
X
Xin Pan 已提交
1512

1513 1514 1515 1516
    @fake_interface_only
    def register_hook(self, hook):
        pass

1517
    def __str__(self):
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1534 1535
                import paddle
                import paddle.static as static
1536

1537 1538 1539
                paddle.enable_static()

                cur_program = static.Program()
1540 1541 1542 1543 1544 1545
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1546 1547
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1548
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1549 1550
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1551 1552
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1553
        else:
1554 1555
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1556

1557
        if self.is_parameter:
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1568
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1569
        dist_context = get_default_distributed_context()
1570 1571
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1572
            var_str += ", {name} = {value}".format(
1573
                name="dist_attr", value=dist_tensor)
1574

1575
        return var_str
Y
Yang Yang(Tony) 已提交
1576

F
update  
fengjiayi 已提交
1577
    def to_string(self, throw_on_error, with_details=False):
1578 1579 1580
        """
        Get debug string.

J
Jiabin Yang 已提交
1581 1582 1583 1584 1585
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1586

1587 1588
        Returns:
            str: The debug string.
1589 1590 1591 1592 1593

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1594
                import paddle
1595

1596
                paddle.enable_static()
1597 1598 1599 1600 1601
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1602
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1603
                print("=============with detail===============")
1604
                print(new_variable.to_string(True, True))
1605
        """
F
update  
fengjiayi 已提交
1606 1607
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1608
        protostr = self.desc.serialize_to_string()
1609
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1610 1611
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1612
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1613
            for attr_name in additional_attr:
1614 1615 1616
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1617
        return res_str
1618 1619 1620

    __repr__ = __str__

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1648
    @property
1649
    def stop_gradient(self):
J
Jiabin Yang 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1665 1666
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1667 1668 1669
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1670 1671
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1672 1673 1674 1675
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1676
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1677 1678
                assert (out1.gradient() == 0).all()
        """
1679
        return self.desc.stop_gradient()
1680

1681 1682
    @stop_gradient.setter
    def stop_gradient(self, s):
1683
        self.desc.set_stop_gradient(s)
1684

1685 1686
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1708
        return self.desc.persistable()
1709

Y
Yu Yang 已提交
1710 1711
    @persistable.setter
    def persistable(self, p):
1712
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1713

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1739 1740
    @property
    def name(self):
J
Jiabin Yang 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1757
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1758

1759 1760 1761 1762 1763 1764
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1765 1766
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1779 1780
    @name.setter
    def name(self, new_name):
1781
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1782

Y
Yu Yang 已提交
1783 1784
    @property
    def shape(self):
J
Jiabin Yang 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1802
        # convert to tuple, make it as same as numpy API.
1803
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1804 1805

    @property
F
fengjiayi 已提交
1806
    def dtype(self):
J
Jiabin Yang 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1823
        return self.desc.dtype()
Y
Yu Yang 已提交
1824 1825 1826

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1840
            import paddle
J
Jiabin Yang 已提交
1841
            import paddle.fluid as fluid
1842 1843

            paddle.enable_static()
J
Jiabin Yang 已提交
1844 1845 1846 1847 1848 1849 1850
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1851 1852
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1853 1854
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1855
        return self.desc.lod_level()
Y
Yu Yang 已提交
1856

Y
Yu Yang 已提交
1857 1858
    @property
    def type(self):
J
Jiabin Yang 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1875
        return self.desc.type()
Y
Yu Yang 已提交
1876

1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1960
    def _set_error_clip(self, error_clip):
1961 1962 1963 1964 1965 1966 1967 1968 1969
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1970 1971
        self.error_clip = error_clip

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2012
            raise ValueError("slice step can not be zero")
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2088
    def _cloneVar(self, copy=False):
2089 2090
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2091 2092
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2093 2094 2095 2096
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2097
        new_var = self._cloneVar()
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2108
        new_var = self._cloneVar()
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2119
                return self._cloneVar(True)
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2138
                return self._cloneVar(True)
2139
            index = int(item)
2140
            if (index > 0 and index >= self.shape[axis]) \
2141 2142 2143 2144 2145 2146 2147
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2148
        return _getitem_impl_(self, item)
2149

2150
    def __setitem__(self, item, value):
2151
        return _setitem_impl_(self, item, value)
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2299 2300 2301 2302
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2303 2304 2305 2306
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2307 2308 2309 2310 2311 2312 2313
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2423

F
fengjiayi 已提交
2424 2425 2426
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2427

2428 2429
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2430 2431 2432 2433
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2434
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2435 2436 2437 2438 2439
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2440 2441 2442 2443
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2453
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2454 2455 2456 2457 2458 2459
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2460 2461 2462 2463 2464 2465 2466 2467
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2468 2469
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2470 2471
        return self.op_proto_map[type]

2472 2473
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2474
        custom_op_names = []
2475 2476 2477
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2478 2479 2480
                custom_op_names.append(proto.type)

        return custom_op_names
2481

2482 2483 2484 2485
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2486
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2487
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2488 2489
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2490 2491
        }

F
fengjiayi 已提交
2492

X
Xin Pan 已提交
2493
class Operator(object):
2494
    """
2495 2496 2497 2498 2499 2500 2501
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2502
        type(str): The type of operator. Default None.
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2523
        Block.append_op or Block._prepend_op instead.
2524 2525 2526 2527

    Examples:
        .. code-block:: python

2528
            import paddle.fluid as fluid
2529
            cur_program = fluid.Program()
2530 2531 2532 2533 2534
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2535
    """
2536
    OP_WITHOUT_KERNEL_SET = {
2537 2538
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2539
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2540 2541
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2542
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2543
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2544
        'copy_cross_scope', 'c_gen_cncl_id'
2545
    }
2546

Y
Yu Yang 已提交
2547 2548
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2549
                 desc,
Y
Yu Yang 已提交
2550 2551 2552
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2553
                 attrs=None):
J
Jiabin Yang 已提交
2554
        if _non_static_mode():
2555 2556
            if type is None:
                raise ValueError(
2557
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2558
            self._type = type
M
minqiyang 已提交
2559
            self.attrs = attrs if attrs else {}
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2574
                )] = self.block.program._op_role
2575 2576 2577

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2578 2579
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2580 2581 2582 2583 2584

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2585 2586 2587 2588 2589
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2590 2591 2592
                return
            if type is None:
                raise ValueError(
2593
                    "`type` to initialized an Operator can not be None.")
2594 2595
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2596 2597 2598 2599 2600 2601 2602
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2603 2604 2605 2606 2607 2608 2609

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2621
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2622 2623 2624 2625 2626
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2627 2628 2629 2630 2631
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2632

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2646
                        if not isinstance(in_args, (list, tuple)):
2647 2648 2649 2650 2651 2652
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2653
                        for index, arg in enumerate(in_args):
2654 2655 2656 2657
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2658
                            elif isinstance(arg, (Variable, core.VarBase)):
2659
                                in_arg_names.append(cpt.to_text(arg.name))
2660
                            else:
2661 2662 2663 2664
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2665 2666
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2691 2692 2693 2694
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2695
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2696
                        if not _non_static_mode():
2697 2698 2699 2700
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2723 2724 2725 2726 2727
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2728
    def _has_kernel(self, op_type):
2729 2730
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2731
    def to_string(self, throw_on_error):
2732
        """
2733 2734
        Get debug string.

2735
        Args:
2736 2737
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2738

2739 2740
        Returns:
            str: The debug string.
2741 2742

        """
2743
        protostr = self.desc.serialize_to_string()
2744
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2745 2746
        return _debug_string_(proto, throw_on_error)

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2779
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2832
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2833
        dist_context = get_default_distributed_context()
2834 2835
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2836
            attrs_str += ", {name} = {value}".format(
2837
                name="dist_attr", value=dist_op)
2838

2839 2840
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2841 2842
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2843 2844 2845 2846 2847
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2848
    def __str__(self):
2849
        return self._to_readable_code()
2850 2851 2852

    __repr__ = __str__

F
fengjiayi 已提交
2853 2854
    @property
    def type(self):
2855
        return self.desc.type()
F
fengjiayi 已提交
2856 2857

    def input(self, name):
2858
        r"""
2859
        Get the input arguments according to the input parameter name.
2860

2861 2862
        Args:
            name(str): The input parameter name.
2863

2864 2865 2866
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2867
        """
F
fengjiayi 已提交
2868 2869
        return self.desc.input(name)

W
Wu Yi 已提交
2870
    def _rename_input(self, old_name, new_name):
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2881
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2882

W
Wu Yi 已提交
2883
    def _rename_output(self, old_name, new_name):
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2894
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2895

F
fengjiayi 已提交
2896 2897 2898 2899
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2900 2901 2902 2903 2904 2905 2906 2907
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2908
    def output(self, name):
2909
        r"""
2910
        Get output arguments by the output parameter name.
2911

2912 2913
        Args:
            name(str): The output parameter name.
2914

2915 2916 2917
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2918
        """
F
fengjiayi 已提交
2919 2920 2921 2922 2923 2924
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2925 2926 2927 2928 2929 2930 2931 2932
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2933
    def has_attr(self, name):
2934
        """
2935 2936
        Whether this Operator has the attribute with name or not.

2937
        Args:
2938
            name(str): the attribute name.
2939

2940 2941
        Returns:
            bool: True if has this attribute.
2942 2943

        """
F
fengjiayi 已提交
2944 2945 2946
        return self.desc.has_attr(name)

    def attr_type(self, name):
2947
        """
2948
        Get the type of attribute by attribute's name.
2949

2950 2951
        Args:
            name(str): the attribute name.
2952

2953 2954
        Returns:
            core.AttrType: the attribute type.
2955
        """
F
fengjiayi 已提交
2956 2957
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2958
    def _set_attr(self, name, val):
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2969 2970
        self._update_desc_attr(name, val)

2971 2972 2973
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2985 2986
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2987 2988
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2989
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2990 2991 2992 2993
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2994
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2995

F
fengjiayi 已提交
2996 2997 2998 2999 3000
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
3001
        """
3002 3003
        Get the attribute by name.

3004
        Args:
3005
            name(str): the attribute name.
3006

3007 3008
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3009 3010
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3011
        return self.desc.attr(name)
Y
Yu Yang 已提交
3012

W
Wu Yi 已提交
3013
    def _block_attr_id(self, name):
3014
        """
G
gongweibao 已提交
3015
        Get the block attribute's id by name.
3016

3017 3018
        Args:
            name(str): the attribute name.
3019

3020 3021
        Returns:
            int: the block index.
3022
        """
W
Wu Yi 已提交
3023
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3024

W
Wu Yi 已提交
3025
    def _block_attr(self, name):
G
gongweibao 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3036
        id = self._block_attr_id(name)
G
gongweibao 已提交
3037 3038 3039
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3040
    def _blocks_attr(self, name):
G
gongweibao 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3051
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3052 3053 3054 3055 3056
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3057
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3068
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3069

J
JiayiFeng 已提交
3070
    def all_attrs(self):
F
fengjiayi 已提交
3071
        """
3072 3073 3074
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3075
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3076 3077 3078 3079
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3080 3081
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3082
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3083 3084 3085
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3086
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3087 3088 3089 3090
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3091 3092
        return attr_map

3093 3094 3095
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3096 3097 3098 3099

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3100 3101 3102
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3103 3104 3105 3106 3107 3108 3109 3110

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3111 3112
            return False

3113 3114 3115 3116 3117 3118
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3144

Y
Yu Yang 已提交
3145
class Block(object):
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3160
        use `Program._create_block()` to create a block.
3161 3162 3163 3164

    Examples:
        .. code-block:: python

3165 3166 3167
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3168 3169 3170 3171 3172 3173 3174 3175 3176
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3177
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3178
        self.desc = program.desc.block(idx)
3179
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3180
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3181
        self.program = program
3182
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3183

3184
    def __str__(self):
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3219
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3231

F
fengjiayi 已提交
3232 3233
    def to_string(self, throw_on_error, with_details=False):
        """
3234 3235
        Get debug string.

F
fengjiayi 已提交
3236 3237
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3238
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3239
            with_details(bool): more details about variables and parameters
3240 3241
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3242

3243 3244
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3245 3246 3247 3248
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3249
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3250 3251
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3252
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3253
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3254
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3255
            for op in self.ops:
F
fengjiayi 已提交
3256 3257
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3258 3259 3260
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3261 3262
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3263 3264
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3265 3266 3267

    __repr__ = __str__

Y
Yu Yang 已提交
3268 3269
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3270
        return self.desc.parent
Y
Yu Yang 已提交
3271

Y
Yu Yang 已提交
3272 3273 3274 3275
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3276
    def _set_forward_block_idx(self, idx):
3277 3278 3279 3280 3281 3282 3283 3284 3285
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3286
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3287

3288 3289 3290 3291 3292 3293 3294 3295
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3296 3297
    @property
    def idx(self):
Y
Yu Yang 已提交
3298
        return self.desc.id
Y
Yu Yang 已提交
3299

Q
Qiao Longfei 已提交
3300
    def var(self, name):
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3314
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3315 3316 3317
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3318 3319
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3320
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3321
        return v
Q
Qiao Longfei 已提交
3322

X
Xin Pan 已提交
3323
    def _find_var_recursive(self, name):
3324 3325 3326 3327 3328 3329 3330
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3331
            Variable: the Variable with the giving name. Or None if not found.
3332
        """
Y
Yu Yang 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3357
        return None
Y
Yu Yang 已提交
3358

X
Xin Pan 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3378

Q
Qiao Longfei 已提交
3379
    def all_parameters(self):
3380
        return list(self.iter_parameters())
3381

3382
    def iter_parameters(self):
M
minqiyang 已提交
3383
        return (item[1] for item in six.iteritems(self.vars)
3384
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3385

Y
Yu Yang 已提交
3386
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3387
        if _non_static_mode():
L
Leo Chen 已提交
3388 3389
            var = _varbase_creator(*args, **kwargs)
        else:
3390 3391 3392
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3393
        return var
Y
Yu Yang 已提交
3394

Q
Qiao Longfei 已提交
3395 3396 3397
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3398
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3399 3400
        """
        Rename variable in vars and ops' inputs and outputs
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3413
        """
M
minqiyang 已提交
3414 3415
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3416

T
typhoonzero 已提交
3417
        if not self.has_var(name):
3418
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3419 3420
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3421
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3422 3423 3424 3425 3426 3427
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3428
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3429 3430 3431 3432
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3433
        orig_var_type = v.type
M
minqiyang 已提交
3434
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3435
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3436
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3437
        if var_type == "Parameter":
L
Leo Chen 已提交
3438
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3439
                var = EagerParamBase(
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
J
Jiabin Yang 已提交
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
                if _in_legacy_dygraph():
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
                else:
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
T
typhoonzero 已提交
3473
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3474 3475
            var = Variable(
                self,
T
typhoonzero 已提交
3476
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3477 3478 3479 3480
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3481
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3482 3483 3484
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3485
        self._sync_with_cpp()
3486
        return var
T
typhoonzero 已提交
3487

3488 3489 3490
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3491
        self.desc._remove_var(cpt.to_bytes(name))
3492 3493
        del self.vars[name]

Y
Yu Yang 已提交
3494 3495
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3496
        param = None
L
Leo Chen 已提交
3497
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3498
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3499
        else:
J
Jiabin Yang 已提交
3500 3501 3502 3503
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3504

3505
        if 'initializer' in kwargs:
3506 3507 3508 3509 3510

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3511
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3512
                        # are treated as initialization ops that cause error.
3513
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3514 3515 3516 3517 3518
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3519
                            continue
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3531
                # TODO already inited, do nothing, should log a warning
3532 3533 3534
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3535
        return param
Y
Yu Yang 已提交
3536

Y
Yu Yang 已提交
3537
    def append_op(self, *args, **kwargs):
3538 3539 3540 3541 3542 3543
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3544
        if _non_static_mode():
3545
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3546
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3547
            type = kwargs.get("type", None)
3548 3549 3550
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3551
                type=type,
M
minqiyang 已提交
3552 3553
                inputs=None,
                outputs=None,
3554
                attrs=attrs)
3555

M
minqiyang 已提交
3556 3557 3558
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3559
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3560 3561

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3562
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3563 3564
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3565 3566
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3567
        else:
3568 3569
            from paddle.fluid.dygraph.base import param_guard

3570
            op_desc = self.desc.append_op()
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3584

M
minqiyang 已提交
3585
            self.ops.append(op)
M
minqiyang 已提交
3586

3587 3588
        return op

W
Wu Yi 已提交
3589
    def _insert_op(self, index, *args, **kwargs):
3590 3591 3592 3593 3594 3595 3596 3597 3598
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3599
        self._sync_with_cpp()
F
fangshuixun007 已提交
3600
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3601

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3619 3620 3621 3622 3623 3624 3625 3626 3627
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3628 3629
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3630
        self.desc._remove_op(index, index + 1)
3631 3632
        del self.ops[index]

W
Wu Yi 已提交
3633
    def _slice_ops(self, start, end):
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3644
        return self.ops[start:end]
Y
Yancey1989 已提交
3645

W
Wu Yi 已提交
3646
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3647
        if _non_static_mode():
J
Jiabin Yang 已提交
3648 3649
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3650
            op = Operator(
J
Jiabin Yang 已提交
3651
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3652

J
Jiabin Yang 已提交
3653
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3654
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3655 3656
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3657
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3658
        else:
3659 3660 3661 3662 3663 3664 3665 3666
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3667
            self.ops.insert(0, op)
3668

Y
Yu Yang 已提交
3669 3670
        return op

W
Wu Yi 已提交
3671
    def _sync_with_cpp(self):
3672
        """
3673 3674
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3675
        """
Q
Qiao Longfei 已提交
3676 3677 3678
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3696

3697
        # sync variables removed from c++ end
3698
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3699
            if not self.desc.find_var(cpt.to_bytes(var)):
3700 3701
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3702
        # sync operators from cpp
3703 3704 3705 3706
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3723 3724 3725 3726 3727

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3728
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3729 3730 3731 3732 3733 3734 3735

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3749 3750 3751 3752
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3753
    def _copy_param_info_from(self, other):
3754
        """
3755 3756
        Copy the information of parameters from the other block.

3757
        Args:
3758 3759 3760 3761 3762
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3763 3764 3765 3766 3767

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3768 3769
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3770
        for p in other.iter_parameters():
3771 3772 3773
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3774 3775
                # if the Parameter is pruned, v may be None
                continue
3776
            assert isinstance(v, Variable)
3777
            new_p = None
L
Leo Chen 已提交
3778
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3779
                new_p = EagerParamBase(
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
J
Jiabin Yang 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
                if _in_legacy_dygraph():
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
3817 3818
            self.vars[new_p.name] = new_p

3819
    def _clone_variable(self, var, force_persistable=True):
3820 3821
        """
        Clone a variable into current block.
3822

3823 3824
        Args:
            var: the variable to be cloned.
3825 3826 3827
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3828 3829

        Returns:
3830
            Variable: the new  variable cloned from 'var' in current block.
3831 3832
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3833 3834 3835 3836 3837
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3838 3839
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3840
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3841 3842 3843 3844 3845 3846
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3847
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3848 3849
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3850 3851 3852 3853 3854 3855 3856
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3857
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3858 3859
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3860
        return ret_var
3861

Y
Yu Yang 已提交
3862

3863 3864 3865 3866 3867 3868
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3980
    def remove_input_by_id(self, node_id):
3981 3982 3983 3984 3985 3986
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3987
        self.node.remove_input(node_id)
3988

3989
    def remove_input(self, node):
3990 3991 3992 3993
        """
        Remove a node from inputs.

        Args:
3994
            node(IrNode): the node being removed.
3995
        """
3996
        self.node.remove_input(node.node)
3997

3998
    def append_input(self, node):
3999 4000 4001 4002
        """
        Append a node in inputs.

        Args:
4003
            node(IrNode): the node being appended.
4004
        """
4005
        self.node.append_input(node.node)
4006 4007 4008 4009 4010 4011 4012 4013

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4014
    def remove_output_by_id(self, node_id):
4015 4016 4017 4018 4019 4020
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4021
        self.node.remove_output(node_id)
4022

4023
    def remove_output(self, node):
4024 4025 4026 4027
        """
        Remove a node from outputs.

        Args:
4028
            node(IrNode): the node being removed.
4029
        """
4030
        self.node.remove_output(node.node)
4031

4032
    def append_output(self, node):
4033 4034 4035 4036
        """
        Append a node in outputs.

        Args:
4037
            node(IrNode): the node being appended.
4038
        """
4039
        self.node.append_output(node.node)
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4087
            "The node variable description can not be None."
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4098
            "The node variable description can not be None."
4099 4100
        return self.node.var().persistable()

4101 4102 4103 4104 4105 4106 4107 4108
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4109
            "The node variable description can not be None."
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4120
            "The node variable description can not be None."
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4131
            "The node variable description can not be None."
4132 4133
        return self.node.var().shape()

4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4181
            "The node operator description can not be None."
4182 4183
        self.node.op()._rename_input(old_input_name, new_input_name)

4184 4185 4186 4187 4188 4189 4190 4191 4192
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4193
            "The node operator description can not be None."
4194 4195
        self.node.op()._rename_output(old_output_name, new_output_name)

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4207
            "The node operator description can not be None."
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4221
            "The node operator description can not be None."
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4232
            "The node operator description can not be None."
4233 4234
        return self.node.op().set_type(new_type)

4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4250
            "The node operator description can not be None."
4251 4252 4253 4254
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4255
                all(isinstance(v, Block) for v in val):
4256 4257
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4258
                isinstance(val, core.ProgramDesc):
4259 4260 4261 4262
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4263 4264 4265 4266 4267 4268 4269 4270
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4271
            "The node operator description can not be None."
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4282
            "The node operator description can not be None."
4283 4284
        return self.node.op().output_arg_names()

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4306 4307
class IrGraph(object):
    """
4308
    Python IrGraph. Beneath it is a core.Graph, which is used for
4309
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4310 4311
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4312 4313 4314 4315
    """

    def __init__(self, graph, for_test=False):
        """
4316 4317
        Construct an IrGraph using core.Graph.

4318 4319 4320 4321 4322 4323 4324 4325 4326
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4327 4328 4329 4330
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4331 4332 4333
        Warns:
            The method only clones the graph structure, not its attributes.

4334 4335 4336
        Returns:
            IrGraph: A new and duplicated graph.
        """
4337
        g = self.graph.clone()
4338 4339
        return IrGraph(g, self._for_test)

4340
    def is_test(self):
4341 4342 4343
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4344 4345
        return self._for_test

W
WangZhen 已提交
4346
    def all_nodes(self):
4347 4348 4349
        """
        Return all nodes included in the graph as a set.
        """
4350
        return {IrNode(node) for node in self.graph.nodes()}
4351

4352
    def all_var_nodes(self):
4353 4354 4355
        """
        Return all variable nodes included in the graph as a set.
        """
4356
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4357

4358
    def all_persistable_nodes(self):
4359 4360 4361
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4362 4363 4364 4365 4366
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4367
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4368

4369
    def all_op_nodes(self):
4370 4371 4372
        """
        Return all operator nodes included in the graph as a set.
        """
4373
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4374

4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4392
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4404
            IrVarNode: the created persistable variable node.
4405
        """
4406 4407 4408 4409 4410
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4411
        return IrVarNode(self.graph.create_var_node(var_desc))
4412 4413

    def create_var_node(self, name, var_type, shape, var_dtype):
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4425
            IrVarNode: the created variable node.
4426 4427
        """

4428 4429 4430 4431
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4432
        return IrVarNode(self.graph.create_var_node(var_desc))
4433

4434 4435 4436 4437 4438 4439
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4440
    def create_var_node_from_desc(self, var_desc):
4441 4442 4443 4444 4445 4446 4447 4448
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4449
            IrVarNode: the created variable node.
4450
        """
4451
        return IrVarNode(self.graph.create_var_node(var_desc))
4452 4453

    def create_op_node(self, op_type, attrs, inputs, outputs):
4454 4455 4456 4457 4458 4459 4460
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4461
            outputs(dict): the outputs of the operator node.
4462 4463

        Returns:
4464
            IrOpNode: the created operator node.
4465
        """
4466 4467
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4468
        for attr, value in six.iteritems(attrs):
4469
            self._update_desc_attr(op_desc, attr, value)
4470
        for input_name, var_nodes in six.iteritems(inputs):
4471 4472 4473 4474
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4475
        for output_name, var_nodes in six.iteritems(outputs):
4476 4477 4478 4479
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4480
        return IrOpNode(self.graph.create_op_node(op_desc))
4481 4482

    def create_op_node_from_desc(self, op_desc):
4483 4484 4485 4486 4487 4488 4489
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4490
            IrOpNode: the created operator node.
4491
        """
4492
        return IrOpNode(self.graph.create_op_node(op_desc))
4493 4494

    def update_input_link(self, old_input_node, new_input_node, op_node):
4495 4496 4497 4498
        """
        Update the input's link of a operator node.

        Args:
4499 4500 4501
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4502
        """
4503
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4504
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4505
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4506 4507 4508 4509
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4510
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4511

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4522
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4523
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4524 4525 4526 4527 4528 4529
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4530
    def link_to(self, node_in, node_out):
4531 4532 4533 4534
        """
        Connect two nodes.

        Args:
4535 4536
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4537
        """
4538 4539 4540 4541
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4542 4543
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4544 4545

    def safe_remove_nodes(self, remove_nodes):
4546 4547 4548 4549 4550 4551 4552
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4553
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4554 4555 4556 4557
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4558 4559
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4560

Z
Zhen Wang 已提交
4561 4562 4563 4564 4565 4566 4567 4568
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4569
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4570 4571 4572 4573
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4574
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4575 4576 4577
                        ]
                    else:
                        var_nodes[each_var_name].append(
4578 4579
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4580 4581
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4582
    def has_circle(self):
4583 4584 4585 4586 4587 4588
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4589 4590 4591
        return core.has_circle(self.graph)

    def graph_num(self):
4592 4593 4594 4595 4596 4597
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4598 4599 4600
        return core.graph_num(self.graph)

    def topology_sort(self):
4601 4602 4603
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4604
        Notes: the `graph` can not contain a circle.
4605 4606

        Returns:
Z
Zhen Wang 已提交
4607
            list(IrNode): nodes in topology order.
4608
        """
4609
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4610
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4611 4612

    def build_adjacency_list(self):
4613 4614 4615 4616
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4617
            dict{IrNode: set(IrNode)}: the adjacency list.
4618
        """
4619 4620 4621 4622 4623
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4624

4625 4626 4627 4628 4629 4630 4631 4632
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4633
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4634 4635 4636 4637 4638
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4639 4640
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4641 4642 4643
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4644 4645 4646 4647 4648
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4649
        remove_ctr_vars = set()
4650
        if remove_ctr_var:
4651
            for node in self.all_var_nodes():
4652 4653 4654
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4655 4656
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4657 4658
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4659 4660 4661 4662 4663 4664
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4665 4666 4667 4668
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4669 4670
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4671 4672 4673 4674 4675 4676 4677
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4678 4679 4680
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4681
        WARN: When the graph includes backward operator nodes, the
4682 4683 4684 4685 4686 4687
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4688
        convert_pass = core.get_pass('graph_to_program_pass')
4689 4690
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4691 4692 4693 4694
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4695 4696 4697 4698 4699 4700 4701 4702
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4703 4704
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4705 4706
        return target_node

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4723
class Program(object):
D
dzhwinter 已提交
4724
    """
4725
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4726
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4727
    it will contain nested block.
4728

J
Jiabin Yang 已提交
4729 4730 4731
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4732

J
Jiabin Yang 已提交
4733
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4734
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4735 4736 4737 4738 4739 4740 4741
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4742
    **Notes**:
4743 4744 4745
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4746 4747

    Returns:
J
Jiabin Yang 已提交
4748
        Program: An empty Program.
D
dzhwinter 已提交
4749 4750

    Examples:
4751 4752
        .. code-block:: python

4753 4754 4755 4756
            import paddle
            import paddle.static as static

            paddle.enable_static()
4757

4758 4759 4760 4761 4762
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4763
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4764 4765 4766

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4767 4768 4769

    """

4770 4771
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4772 4773
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4774 4775
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4776
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4777
        self.__op_role_var = []
T
tangwei12 已提交
4778

4779 4780
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4781
        self._is_distributed = False
4782
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4783
        self._is_chief = False
4784 4785 4786
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4787
        self._endpoints = []
4788 4789 4790
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4791
        self._trainers_endpoints = []
4792
        # the distributed lookup table names
T
tangwei12 已提交
4793
        self._distributed_lookup_table = None
4794 4795 4796

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4797 4798
        self._use_lamb = False

4799 4800 4801
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4802

4803 4804 4805
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4806
        self._program_config = None
4807

H
hutuxian 已提交
4808 4809 4810
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4811 4812 4813
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4814 4815 4816
        # appending gradients times
        self._appending_grad_times = 0

4817 4818 4819 4820
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4821 4822
        # compiled program, i.e. Graph
        self._graph = None
4823 4824
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4825

4826
    def _find_var_class_kwargs(self, new_desc):
4827 4828 4829 4830 4831 4832 4833 4834
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4904
        assert block_num == self.desc.num_blocks()
4905 4906

        # clear old blocks and desc
4907 4908 4909 4910 4911 4912 4913 4914 4915
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4916

4917
        del desc
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4947 4948
                import paddle
                import paddle.static as static
4949

4950 4951 4952
                paddle.enable_static()

                prog = static.default_main_program()
4953 4954 4955 4956 4957
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4958
                prog1 = static.default_main_program()
4959 4960 4961 4962 4963 4964 4965 4966
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4967
    @property
4968
    def _op_role(self):
Y
yuyang18 已提交
4969 4970 4971 4972 4973 4974 4975 4976
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4977
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4978 4979 4980 4981
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4982 4983
        return self._current_role

4984 4985
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4986 4987 4988
        self._current_role = role

    @property
4989
    def _op_role_var(self):
Y
yuyang18 已提交
4990
        """
4991
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4992

4993
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4994 4995 4996

        Notes: This is a very low-level API. Users should not use it directly.
        """
4997
        return self.__op_role_var
Y
yuyang18 已提交
4998

4999
    @signature_safe_contextmanager
5000 5001 5002 5003 5004
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5005 5006 5007 5008
        try:
            yield
        finally:
            self._current_role = tmp_role
5009

S
rename  
sneaxiy 已提交
5010
    @signature_safe_contextmanager
W
Wu Yi 已提交
5011
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5012 5013 5014 5015 5016 5017 5018
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5019
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5020 5021 5022

        Examples:

5023
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5024
            >>> p, g = backward(...)
W
Wu Yi 已提交
5025
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5026 5027
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5028
        tmp_role = self._current_role
5029
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5030

Y
yuyang18 已提交
5031 5032
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5033
        self.__op_role_var = [
5034 5035 5036
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5037 5038 5039 5040 5041
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5042

S
rename  
sneaxiy 已提交
5043
    @signature_safe_contextmanager
X
Xin Pan 已提交
5044
    def _lr_schedule_guard(self, is_with_opt=False):
5045 5046 5047 5048 5049 5050 5051
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5052 5053 5054 5055
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5056 5057 5058

        Examples:

5059
            >>> import paddle.fluid as fluid
5060 5061 5062 5063
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5064 5065

        tmp_role = self._current_role
5066
        tmp_var = self.__op_role_var
5067

5068 5069
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5070 5071
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5072
        # TODO(typhoonzero): how to set target learning rate var
5073
        self.__op_role_var = []
5074 5075 5076 5077 5078
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5079

5080
    def __str__(self):
Y
yuyang18 已提交
5081 5082 5083 5084 5085 5086 5087 5088 5089
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5110 5111
            import paddle
            import paddle.static as static
5112

5113 5114 5115
            paddle.enable_static()

            cur_program = static.Program()
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5127
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5128 5129 5130 5131
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5132
            program_str += '\n'
5133
        return program_str
Y
Yang Yang(Tony) 已提交
5134

F
fengjiayi 已提交
5135 5136 5137
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5138

J
Jiabin Yang 已提交
5139 5140 5141
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5142

J
Jiabin Yang 已提交
5143
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5144

H
haowang101779990 已提交
5145
        Returns:
J
Jiabin Yang 已提交
5146
            str: The debug string describe current Program.
Y
yuyang18 已提交
5147 5148

        Raises:
J
Jiabin Yang 已提交
5149
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5150

5151 5152 5153
        Examples:
            .. code-block:: python

5154 5155 5156 5157
                import paddle
                import paddle.static as static

                paddle.enable_static()
5158

5159 5160 5161
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5162
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5163
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5164
                print("program string without detail: {}".format(prog_string))
5165
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5166
        """
5167 5168 5169 5170 5171 5172 5173 5174 5175
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5176 5177 5178 5179 5180 5181
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5182 5183
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5184 5185
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5186

W
Wu Yi 已提交
5187
    def _get_desc(self):
Y
yuyang18 已提交
5188 5189 5190 5191 5192 5193 5194
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5195 5196
        return self.desc

X
version  
Xin Pan 已提交
5197 5198 5199
    def _version(self):
        return self.desc._version()

5200
    def clone(self, for_test=False):
Y
yuyang18 已提交
5201
        """
5202 5203 5204 5205
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5206

5207
        Create a new Program with forward content of original one when ``for_test=True``.
5208
        Create a new Program as same as the original one when ``for_test=False``.
5209

5210
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5211 5212 5213
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5214

5215 5216
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5217 5218
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5219
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5220

J
Jiabin Yang 已提交
5221
        For Example:
5222
          ::
L
Luo Tao 已提交
5223

5224 5225 5226 5227 5228 5229
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5230
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5231
            loss = paddle.mean(pred)
5232
            # Here we use clone before Momentum
5233 5234
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5235
            optimizer.minimize(loss)
5236

J
Jiabin Yang 已提交
5237
        Args:
5238

5239 5240
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5241

J
Jiabin Yang 已提交
5242
        Returns:
5243
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5244

Y
yuyang18 已提交
5245 5246 5247

        Examples:

5248 5249 5250 5251 5252 5253 5254
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5271
            1. To clone a test program, the sample code is:
5272 5273 5274
                .. code-block:: python

                    import six
5275 5276 5277 5278 5279 5280
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5293 5294
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5295 5296 5297

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5298 5299 5300
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5301
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5302 5303
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5304
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5305 5306
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5307
                            test_program = train_program.clone(for_test=True)
5308
                    print_prog(test_program)
J
Jiabin Yang 已提交
5309 5310 5311 5312

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5313
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5314 5315 5316 5317
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5318 5319 5320
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5321 5322 5323
                            sgd.minimize(avg_loss)


5324
            2. The clone method can be avoid if you create program for training and program for testing individually.
5325 5326 5327
                .. code-block:: python

                    import six
5328 5329 5330 5331 5332 5333
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5345

5346
                    def network():
5347
                        img = static.data(name='image', shape=[None, 784])
5348
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5349 5350
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5351
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5352 5353
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5354 5355
                        return avg_loss

5356 5357 5358 5359 5360
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5361
                            avg_loss = network()
5362
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5363
                            sgd.minimize(avg_loss)
5364
                    # the test startup program is not used.
5365 5366
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5367 5368
                            avg_loss = network()
                    print_prog(test_program_2)
5369

5370
            The two code snippets above will generate and print same programs.
5371
        """
5372

T
tangwei12 已提交
5373
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5374 5375 5376
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5377
        pruned_origin_block_id_map = None
5378
        if for_test:
5379 5380 5381 5382 5383 5384 5385 5386 5387
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5388
        else:
5389
            p = Program()
G
gongweibao 已提交
5390 5391
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5392
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5393 5394 5395
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5396 5397

            p._current_role = self._current_role
5398
            p.__op_role_var = self.__op_role_var
5399
            p._appending_grad_times = self._appending_grad_times
5400 5401
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5402

T
tangwei12 已提交
5403
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5404
            # its desc.
W
Wu Yi 已提交
5405
            p._sync_with_cpp()
5406

W
Wu Yi 已提交
5407
        p._copy_param_info_from(self)
5408
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5409
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5410
        return p
5411

5412
    def _prune(self, targets):
Y
yuyang18 已提交
5413 5414 5415 5416 5417 5418 5419 5420
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5421
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5422 5423 5424 5425
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5426
        """
5427
        return self._prune_with_input([], targets)
5428 5429

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5430
        """
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5441
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5442 5443 5444 5445 5446 5447
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5448
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5449 5450 5451
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5452 5453
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5454 5455
        if not isinstance(targets, list):
            targets = [targets]
5456 5457 5458

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5459 5460 5461
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5462

5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5479 5480 5481 5482
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5483 5484 5485
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5486
                else:
5487 5488 5489
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5490 5491 5492 5493 5494 5495

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5496 5497 5498
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5499

5500 5501 5502 5503 5504 5505 5506 5507 5508
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5509
                        # Skip optimize op except for optimize op in targets,
5510 5511 5512 5513 5514
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5515

5516
                if target_op is not None:
5517 5518 5519
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5520

5521
        res = Program()
5522 5523 5524
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5525 5526 5527
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5528
        res._sync_with_cpp()
5529 5530 5531 5532 5533

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5534 5535
        return res

X
Xin Pan 已提交
5536
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5537
        """
F
fengjiayi 已提交
5538 5539 5540 5541 5542
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5543
        3. change the :code:`is_test`
Y
yuyang18 已提交
5544 5545 5546
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5547
        Args:
X
Xin Pan 已提交
5548 5549
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5550

Y
yuyang18 已提交
5551 5552 5553 5554 5555 5556
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5557
        res = Program()
5558
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5559 5560 5561 5562

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5563
        if prune_read_op:
5564 5565 5566 5567 5568 5569 5570 5571 5572
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5573
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5574 5575

        # change all `is_test` attributes to True
M
minqiyang 已提交
5576
        for i in six.moves.range(res.desc.num_blocks()):
5577
            block = res.desc.block(i)
M
minqiyang 已提交
5578
            for j in six.moves.range(block.op_size()):
5579 5580
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5581
                    op._set_attr('is_test', True)
5582 5583 5584
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5585 5586 5587
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5588
        res._sync_with_cpp()
5589 5590
        return res

5591
    def _remove_training_info(self, clip_extra=True):
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5681 5682
        return res

5683 5684
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5685
        """
5686 5687 5688
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5689

5690 5691
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5692

J
Jiabin Yang 已提交
5693
        Args:
Y
yuyang18 已提交
5694

J
Jiabin Yang 已提交
5695
            binary_str_type (str): the binary prootbuf string.
5696

J
Jiabin Yang 已提交
5697 5698
        Returns:
            Program: A deserialized Program.
5699 5700 5701 5702

        Examples:
            .. code-block:: python

5703 5704 5705 5706
                import paddle
                import paddle.static as static

                paddle.enable_static()
5707

5708 5709 5710 5711
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5712

5713
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5714

5715
                    z = paddle.matmul(x=x, y=y)
5716

5717 5718
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5719

5720
                    print(static.default_main_program())
5721
                    print(prog_restored)
Y
yuyang18 已提交
5722
        """
5723 5724
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5725
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5726
        p._sync_with_cpp()
5727
        return p
Y
Yu Yang 已提交
5728

5729
    @staticmethod
5730
    def _construct_from_desc(desc):
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5746 5747
    @property
    def random_seed(self):
Y
yuyang18 已提交
5748
        """
J
Jiabin Yang 已提交
5749
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5750 5751
        the random seed from random device.

5752 5753
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5754 5755 5756

        Returns:
            int64: Random seed in current Program
5757

5758 5759 5760 5761

        Examples:
            .. code-block:: python

5762 5763 5764
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5765

5766 5767 5768
                paddle.enable_static()

                prog = static.default_main_program()
5769
                random_seed = prog.random_seed
5770
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5771 5772 5773
                print(random_seed)
                ## 0
                ## the default random seed is 0
5774

5775
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5776
                prog.random_seed = 1
5777
                z_var = F.dropout(x_var, 0.7)
5778

5779
                print(prog.random_seed)
5780 5781
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5782
        """
D
dzhwinter 已提交
5783 5784
        return self._seed

Q
qiaolongfei 已提交
5785 5786
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5787
        """
5788 5789
        The number of :ref:`api_guide_Block_en`  in this Program.

5790 5791
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5792 5793 5794

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5795

5796 5797 5798 5799

        Examples:
            .. code-block:: python

5800 5801 5802 5803
                import paddle
                import paddle.static as static

                paddle.enable_static()
5804

5805
                prog = static.default_main_program()
5806 5807
                num_blocks = prog.num_blocks
                print(num_blocks)
5808

5809 5810
                # print result:
                # 1
Y
yuyang18 已提交
5811
        """
Q
qiaolongfei 已提交
5812 5813
        return self.desc.num_blocks()

D
dzhwinter 已提交
5814 5815 5816
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5817 5818 5819
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5820 5821
        self._seed = seed

Y
Yu Yang 已提交
5822
    def __repr__(self):
5823
        return self.__str__()
5824

Y
Yu Yang 已提交
5825
    def global_block(self):
Y
yuyang18 已提交
5826
        """
5827 5828
        .. note::
            This API has no effect in Dygraph mode.
5829 5830 5831

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5832 5833
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5834

5835 5836 5837 5838

        Examples:
            .. code-block:: python

5839 5840 5841 5842
                import paddle
                import paddle.static as static

                paddle.enable_static()
5843

5844
                prog = static.default_main_program()
5845 5846
                gb_block = prog.global_block()
                print(gb_block)
5847

Y
yuyang18 已提交
5848
        """
Y
Yu Yang 已提交
5849 5850
        return self.blocks[0]

Q
Qiao Longfei 已提交
5851
    def block(self, index):
Y
yuyang18 已提交
5852
        """
5853 5854
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5855

5856 5857
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5858 5859
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5860

J
Jiabin Yang 已提交
5861 5862
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5863 5864 5865 5866

        Examples:
            .. code-block:: python

5867 5868 5869 5870
                import paddle
                import paddle.static as static

                paddle.enable_static()
5871

5872
                prog = static.default_main_program()
5873 5874
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5875
        """
Q
Qiao Longfei 已提交
5876 5877
        return self.blocks[index]

Y
Yu Yang 已提交
5878
    def current_block(self):
Y
yuyang18 已提交
5879
        """
5880 5881
        .. note::
            This API has no effect in Dygraph mode.
5882

J
Jiabin Yang 已提交
5883 5884
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5885

J
Jiabin Yang 已提交
5886 5887
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5888

5889 5890 5891
        Examples:
            .. code-block:: python

5892 5893 5894 5895
                import paddle
                import paddle.static as static

                paddle.enable_static()
5896

5897
                prog = static.default_main_program()
5898 5899
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5900
        """
Y
Yu Yang 已提交
5901 5902
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5903
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5904 5905 5906 5907 5908
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5909

Y
yuyang18 已提交
5910 5911 5912 5913 5914
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5915
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5916 5917 5918
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5919 5920 5921 5922
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5923
    def _rollback(self):
Y
yuyang18 已提交
5924 5925 5926 5927 5928
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5929 5930
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5931
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5942 5943 5944
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5945
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5946

W
Wu Yi 已提交
5947
    def _copy_param_info_from(self, other):
5948
        """
5949
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5950

Y
yuyang18 已提交
5951 5952 5953
        Notes: This is a very low level API. Users should not invoke it
        directly.

5954 5955 5956 5957 5958 5959 5960
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5961 5962 5963
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5964

W
Wu Yi 已提交
5965
        self.global_block()._copy_param_info_from(other.global_block())
5966

5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5978 5979 5980
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5981 5982
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5983
        self._parameters_on_pservers = other._parameters_on_pservers
5984
        self._endpoints = other._endpoints
5985
        self._ps_endpoint = other._ps_endpoint
5986 5987
        self._distributed_lookup_table = other._distributed_lookup_table

5988
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5989 5990
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5991

Y
yuyang18 已提交
5992 5993 5994
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5995 5996
        Args:
            other(Program): Other program
5997 5998 5999 6000
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6001 6002 6003 6004 6005

        Returns:
            None
        """
        if not isinstance(other, Program):
6006 6007 6008
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
6009

6010 6011 6012 6013 6014
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
6015 6016 6017

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6018 6019
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6020
            for var in list(block.vars.values()):
6021 6022 6023 6024 6025 6026 6027
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6028

6029
    def list_vars(self):
Y
yuyang18 已提交
6030
        """
6031
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6032

J
Jiabin Yang 已提交
6033
        Returns:
6034
            iterable Tensors: The Generator will yield every Tensor in this program.
6035 6036 6037 6038

        Examples:
            .. code-block:: python

6039 6040
                import paddle
                import paddle.static as static
6041

6042 6043 6044 6045 6046
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6047 6048
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6049

6050 6051
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
6052
        """
6053
        for each_block in self.blocks:
6054
            for each_var in list(each_block.vars.values()):
6055 6056
                yield each_var

6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6067 6068 6069 6070
                import paddle
                import paddle.static as static

                paddle.enable_static()
6071

6072 6073
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6074
                hidden = static.nn.fc(x=data, size=10)
6075 6076
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6077 6078 6079 6080 6081 6082 6083

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6084 6085
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6263

6264
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6265
class Parameter(Variable):
6266
    """
6267
    Parameter is derived from Variable. A parameter is a persistable
6268
    Variable, and will be updated by optimizers after each iteration.
6269
    The training of a neural network is essentially the updating of
6270 6271
    its parameters.

6272
    Relative to a general Variable, a Parameter has several its own
6273 6274
    member variables:

6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6285 6286
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6287 6288
    """

6289 6290 6291 6292 6293 6294
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6295 6296 6297 6298 6299
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6300
        if len(shape) == 0:
6301 6302
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6303 6304 6305

        for each in shape:
            if each < 0:
6306 6307 6308
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6309 6310

        Variable.__init__(
6311 6312 6313 6314 6315 6316 6317
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6318 6319 6320 6321
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6322 6323
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6324
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6325

6326 6327
        self.need_clip = kwargs.get('need_clip', True)

6328 6329
        self.is_distributed = False

6330 6331
        self.is_parameter = True

F
fengjiayi 已提交
6332
    def __str__(self):
6333
        return self._to_readable_code()
F
fengjiayi 已提交
6334

F
update  
fengjiayi 已提交
6335 6336 6337
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6338

F
update  
fengjiayi 已提交
6339 6340 6341 6342 6343 6344 6345 6346
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6347 6348 6349 6350 6351 6352 6353 6354 6355
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6356 6357 6358 6359 6360 6361
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6362
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6363
            for attr_name in additional_attr:
6364 6365
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6366 6367
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6368 6369 6370 6371
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6372

6373 6374
class ParamBase(core.VarBase):
    """
6375 6376 6377
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6378 6379 6380
    The training of a neural network is essentially the updating of
    its ParamBase.

6381
    Relative to a general Tensor, a ParamBase has several its own
6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6394 6395
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6426 6427
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6428 6429 6430 6431 6432 6433 6434

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6435 6436
        self.need_clip = kwargs.get('need_clip', True)

6437
        self.is_distributed = kwargs.get('is_distributed', False)
6438
        # self.block = default_main_program().global_block()
6439

6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6453
    def __str__(self):
6454
        """
6455
        Convert a ParamBase object to a readable string.
6456

6457
        Returns(str): A readable string.
6458 6459 6460 6461

        Examples:
            .. code-block:: python

6462
                import paddle
6463 6464 6465 6466 6467 6468 6469
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6470
        """
6471 6472
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6473

6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6485

6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6504 6505 6506 6507
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6508 6509 6510 6511 6512 6513
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6514
    _core_eager_eagertensor = core.eager.Tensor
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6655 6656
        return new_param

6657 6658 6659
    __repr__ = __str__


Y
Yu Yang 已提交
6660
# program is a global instance.
Y
Yu Yang 已提交
6661 6662
_main_program_ = Program()
_startup_program_ = Program()
6663
_startup_program_._is_start_up_program_ = True
6664

6665

6666
def default_startup_program():
Y
Yu Yang 已提交
6667
    """
Y
yuyang18 已提交
6668 6669
    Get default/global startup program.

6670 6671
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6672

6673 6674
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6675

6676 6677
    Returns:
        Program: current default startup program.
6678

6679
    Returns type: 
6680 6681 6682 6683

    Examples:
        .. code-block:: python

6684
            import paddle
6685

6686
            paddle.enable_static()
6687 6688 6689 6690
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6691
    """
Y
Yu Yang 已提交
6692
    return _startup_program_
6693

6694

6695
def default_main_program():
Y
Yu Yang 已提交
6696
    """
6697
    This API can be used to get ``default main program`` which store the 
6698
    descriptions of Ops and tensors.
T
tangwei12 已提交
6699

6700
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6701
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6702

6703 6704
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6705
    :code:`default_main_program` when the program is not specified.
6706

6707
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6708

Y
Yu Yang 已提交
6709
    Returns:
6710
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6711 6712 6713 6714

    Examples:
        ..  code-block:: python

6715
            import paddle
6716

6717
            paddle.enable_static()
6718
            # Sample Network:
6719 6720 6721
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6722

6723 6724 6725
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6726
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6727
    """
Y
Yu Yang 已提交
6728
    return _main_program_
Y
Yu Yang 已提交
6729 6730 6731 6732 6733


def switch_main_program(program):
    """
    Switch the main program to a new program.
6734

Y
Yu Yang 已提交
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6749
    Switch the startup program to a new program
Y
Yu Yang 已提交
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6762
@signature_safe_contextmanager
Y
Yu Yang 已提交
6763 6764
def program_guard(main_program, startup_program=None):
    """
6765 6766
    :api_attr: Static Graph

6767 6768 6769
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6770

G
guofei 已提交
6771
    Args:
6772 6773
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6774 6775 6776 6777
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6778
    Examples:
6779
       .. code-block:: python
T
tangwei12 已提交
6780

6781
          import paddle
Y
yuyang18 已提交
6782

6783 6784 6785 6786 6787
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6788
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6789 6790 6791

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6792

Y
Yu Yang 已提交
6793
    Examples:
6794
       .. code-block:: python
Y
yuyang18 已提交
6795

6796
          import paddle
6797

6798 6799 6800 6801 6802
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6803

Y
Yu Yang 已提交
6804
    """
6805
    from .data_feeder import check_type
6806 6807
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6808 6809
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6810
        check_type(startup_program, 'startup_program', Program,
6811
                   'paddle.static.program_guard')
6812 6813
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6814
        startup_program = switch_startup_program(startup_program)
6815 6816 6817 6818 6819 6820
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6821 6822


W
Wu Yi 已提交
6823
def _get_var(name, program=None):
X
xuwei06 已提交
6824
    """
Y
yuyang18 已提交
6825
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6826

X
xuwei06 已提交
6827 6828 6829
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6830
        If None, default_global_program() will be used.
X
xuwei06 已提交
6831 6832 6833 6834 6835 6836 6837

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6838
    assert isinstance(program, Program)
X
xuwei06 已提交
6839 6840

    return program.global_block().var(name)
6841 6842


S
rename  
sneaxiy 已提交
6843
@signature_safe_contextmanager
L
lujun 已提交
6844 6845
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6846
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6847
    _dygraph_tracer_ = tracer
6848
    core._switch_tracer(tracer)
M
minqiyang 已提交
6849

6850 6851 6852
    try:
        yield
    finally:
6853 6854
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6855 6856


S
rename  
sneaxiy 已提交
6857
@signature_safe_contextmanager
L
lujun 已提交
6858
def _dygraph_place_guard(place):
6859 6860 6861
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
6862 6863
    _set_dygraph_tracer_expected_place(place)

6864 6865 6866
    try:
        yield
    finally:
6867
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6868
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6869 6870


6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6887 6888
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6889 6890 6891 6892 6893 6894 6895 6896 6897
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6898
            import paddle
6899

Z
Zhang Ting 已提交
6900 6901 6902
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6903
            if support_gpu:
Z
Zhang Ting 已提交
6904
                place = paddle.CUDAPlace(0)
6905 6906

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6907 6908 6909
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6910

Z
Zhang Ting 已提交
6911
            with paddle.static.device_guard("cpu"):
6912
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6913 6914
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6915
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6916
                out = paddle.reshape(data1, shape=shape)
6917

Z
Zhang Ting 已提交
6918 6919
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6920 6921 6922
            result = exe.run(fetch_list=[out])
    """

6923 6924 6925 6926 6927
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6928
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6929
        raise ValueError(
6930
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6931
            "when there is no need to specify device. But received %s" % device)
6932 6933
    if index:
        device = ":".join([device, index])
6934
    pre_device = switch_device(device)
6935 6936 6937 6938
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6939 6940 6941 6942 6943


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6944
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6945 6946 6947 6948 6949 6950 6951

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6952 6953
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6954 6955 6956 6957
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6958 6959
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6960 6961 6962 6963 6964 6965 6966 6967
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6968
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6979
            import paddle
G
guofei 已提交
6980 6981

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6982
            res = paddle.get_flags(flags)
G
guofei 已提交
6983 6984 6985 6986 6987 6988
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6989 6990
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6991 6992 6993 6994 6995 6996 6997
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6998 6999
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
7000 7001 7002 7003 7004 7005 7006 7007
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7008 7009 7010 7011 7012 7013 7014


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
7015
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
7016
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
7017 7018 7019 7020 7021 7022 7023 7024 7025
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
7026

7027 7028 7029
    if (place == "device"):
        return core.Place()

7030
    # GPU
7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7046 7047

    # XPU
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7095
    raise ValueError(
J
jianghaicheng 已提交
7096
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".
7097
        format(place))
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret