framework.py 242.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
J
jianghaicheng 已提交
51
    'ipu_shard_guard',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
55
    'mlu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_global_expected_place_ = None
78
_current_device = None
79
global_prog_seed = 0
80
_current_pipeline_stage = None
81
_already_patch_eager_tensor = False
82
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
83
core._disable_eager_mode()
84 85 86


@signature_safe_contextmanager
87
def _test_eager_guard(tracer=None):
J
Jiabin Yang 已提交
88
    core._enable_eager_mode()
89
    _C_ops.switch_to_eager_ops()
90 91 92 93
    global _already_patch_eager_tensor
    if not _already_patch_eager_tensor:
        from .dygraph.varbase_patch_methods import monkey_patch_varbase
        monkey_patch_varbase()
94 95
        from .dygraph import monkey_patch_math_varbase
        monkey_patch_math_varbase()
96
        _already_patch_eager_tensor = True
97 98 99 100
    if tracer is None:
        core._set_eager_tracer(_dygraph_tracer_)
    else:
        core._set_eager_tracer(tracer)
101
    try:
J
Jiabin Yang 已提交
102
        yield
103
    finally:
J
Jiabin Yang 已提交
104
        core._disable_eager_mode()
105
        _C_ops.switch_to_core_ops()
106 107


J
jianghaicheng 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is None, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
    Only if the enable_manual_shard=True, the ‘index’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` . 
    Only if the enable_pipelining=True, the ‘stage’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
274
def in_dygraph_mode():
L
lujun 已提交
275
    """
276

277 278 279 280 281 282 283
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
284 285

    Returns:
286
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
287 288 289 290

    Examples:
        .. code-block:: python

291 292 293 294 295 296 297 298
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
299 300

    """
L
lujun 已提交
301
    return _dygraph_tracer_ is not None
302 303


J
Jiabin Yang 已提交
304 305 306 307
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


308 309 310
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
311
        ), "We don't support %s in imperative mode" % func.__name__
312 313 314 315 316 317 318 319
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
320 321 322 323 324 325 326 327 328
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
329
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
330 331 332 333 334
        return func(*args, **kwargs)

    return __impl__


335 336 337 338 339
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


340 341 342 343 344 345
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
346
# same base class.
347 348 349
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
350 351 352 353 354
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
355 356 357 358

    return __impl__


T
tangwei12 已提交
359 360
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


378 379
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
380
static_only = wrap_decorator(_static_only_)
381
fake_interface_only = wrap_decorator(_fake_interface_only_)
382 383


L
lujun 已提交
384 385
def _dygraph_tracer():
    return _dygraph_tracer_
386

W
Wu Yi 已提交
387

388 389 390 391
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
392
def _current_expected_place():
393 394 395
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
396 397 398 399 400 401 402 403 404 405 406
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
407 408 409 410 411 412 413 414 415 416 417 418
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
419 420 421 422 423 424 425 426 427 428 429 430
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
446
    if _in_eager_mode():
447
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
448
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
449 450


L
Leo Chen 已提交
451 452 453 454
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
455

L
Leo Chen 已提交
456 457 458 459 460 461 462 463 464 465 466 467
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
468
def _cpu_num():
469
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
470 471 472 473 474 475 476 477
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
478
        os.environ['CPU_NUM'] = str(1)
479
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
480 481 482 483 484 485 486 487 488 489
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
490 491


492 493 494 495 496 497 498 499 500
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


501 502 503 504 505 506 507 508 509
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


510 511 512 513 514 515 516 517 518
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
589 590 591 592
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

593
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
594 595 596 597

    Examples:
        .. code-block:: python

598
            import paddle
599
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
600 601 602 603
    """
    return core.is_compiled_with_cuda()


604 605 606 607 608 609 610 611 612 613
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
614
            support_gpu = paddle.device.is_compiled_with_rocm()
615 616 617 618
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
619
def cuda_places(device_ids=None):
L
lujun 已提交
620
    """
621 622 623 624
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
625
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
626 627

    If :code:`device_ids` is None, environment variable of
628
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
629
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
630
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
631
    If :code:`FLAGS_selected_gpus` is not set, all visible
632
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
633 634

    If :code:`device_ids` is not None, it should be the device
635
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
636
    the returned list would be 
C
Chen Weihang 已提交
637
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
638

639
    Parameters:
640
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
641 642

    Returns:
C
Chen Weihang 已提交
643
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
644 645 646 647

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
648 649
            import paddle
            import paddle.static as static
T
tangwei12 已提交
650

651 652
            # required: gpu
            
C
Chen Weihang 已提交
653 654 655
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
656 657

    """
S
sneaxiy 已提交
658 659 660
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
661
        device_ids = _cuda_ids()
S
sneaxiy 已提交
662 663 664 665 666
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


667 668 669 670
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
671 672 673 674 675 676 677 678 679 680 681
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
682 683 684 685 686 687 688
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
689

690 691
            # required: xpu

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
748
def cpu_places(device_count=None):
L
lujun 已提交
749
    """
C
Chen Weihang 已提交
750
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
751

S
add doc  
sneaxiy 已提交
752 753
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
754 755
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
756 757
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
758

759 760
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
761 762

    Returns:
C
Chen Weihang 已提交
763
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
764 765 766 767

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
768 769
            import paddle
            import paddle.static as static
T
tangwei12 已提交
770

C
Chen Weihang 已提交
771 772 773
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
774 775
    """

S
sneaxiy 已提交
776 777 778 779 780 781
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
782
    """
783
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
784 785 786

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
787 788 789 790
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
791

792 793
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
794 795

    Returns:
796
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
797 798 799 800

    Examples:
        .. code-block:: python

801
            import paddle.fluid as fluid
L
lujun 已提交
802 803 804 805 806
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
807 808 809
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
810 811
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
812 813


814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
882
@signature_safe_contextmanager
883 884
def name_scope(prefix=None):
    """
885 886
    :api_attr: Static Graph

887
    Generate hierarchical name prefix for the operators in Static Graph.
888

T
Tao Luo 已提交
889 890 891
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
892
        Don't use it in dygraph, since it will cause memory leak.
893 894

    Args:
T
Tao Luo 已提交
895
        prefix(str, optional): prefix. Default is none.
896 897 898

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
899

900 901 902
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
903
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
904
             b = a + 1
905
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
906
                c = b * 1
907
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
908
                d = c / 1
909 910 911
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
912 913 914
                g = f - 1

          # Op are created in the default main program.  
915
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
931 932
    """
    # TODO(panyx0718): Only [0-9a-z].
933
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
934 935 936
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
937
        assert prefix, "namescope prefix can not be empty."
938 939
        global _name_scope
        _name_scope = _name_scope.child(prefix)
940 941 942 943
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
944 945 946 947 948 949 950 951 952 953 954 955


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
956 957 958
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
959 960 961 962


def grad_var_name(var_name):
    """
963 964
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
965 966 967
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
968

969
def convert_np_dtype_to_dtype_(np_dtype):
970 971
    """
    Convert the data type in numpy to the data type in Paddle
972

973
    Args:
974
        np_dtype(np.dtype): the data type in numpy.
975

976 977
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
978 979

    """
980 981
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
982
        return core.VarDesc.VarType.FP32
983
    elif dtype == np.float64:
984
        return core.VarDesc.VarType.FP64
985
    elif dtype == np.float16:
986
        return core.VarDesc.VarType.FP16
987
    elif dtype == np.int32:
988
        return core.VarDesc.VarType.INT32
989
    elif dtype == np.int16:
990
        return core.VarDesc.VarType.INT16
991
    elif dtype == np.int64:
992
        return core.VarDesc.VarType.INT64
993
    elif dtype == np.bool:
994
        return core.VarDesc.VarType.BOOL
995
    elif dtype == np.uint16:
996 997 998
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
999 1000
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1001 1002
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1003 1004 1005 1006
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1007
    else:
M
minqiyang 已提交
1008
        raise ValueError("Not supported numpy dtype %s" % dtype)
1009 1010 1011


def dtype_is_floating(dtype):
1012 1013 1014
    """
    Check the data type is floating or not.
    Args:
1015
        dtype(np.dtype|core.VarDesc.VarType): data type.
1016 1017 1018 1019 1020
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1021
    if not isinstance(dtype, core.VarDesc.VarType):
1022 1023
        dtype = convert_np_dtype_to_dtype_(dtype)

1024 1025 1026 1027
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1028 1029


Y
Yang Yang(Tony) 已提交
1030
def _debug_string_(proto, throw_on_error=True):
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1042
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1043
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
1044 1045
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
1046 1047 1048
    return proto.__str__()


1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

1059 1060 1061 1062 1063 1064 1065 1066
    if _in_eager_mode():
        eager_tensor = core.eager.EagerTensor(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1078 1079
            if _in_eager_mode():
                return issubclass(t, core.eager.EagerTensor)
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
1090 1091
            if _in_eager_mode():
                return issubclass(t, EagerParamBase)
1092 1093 1094 1095 1096 1097
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1098
class Variable(object):
1099
    """
J
Jiabin Yang 已提交
1100
    **Notes**:
1101
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1102

1103 1104
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1105 1106 1107
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1108
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1109 1110
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1111

1112
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1113
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1114

T
tianshuo78520a 已提交
1115
    Most of a Variable's member variables can be set to be None. It mean
1116
    it is not available or will be specified later.
1117

1118
    Examples:
1119 1120
        In Static Graph Mode:

1121 1122
        .. code-block:: python

1123
            import paddle.fluid as fluid
1124
            cur_program = fluid.Program()
1125 1126 1127 1128
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1129

J
Jiabin Yang 已提交
1130
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1131 1132 1133 1134 1135 1136 1137 1138 1139

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1140 1141
    """

Y
Yu Yang 已提交
1142 1143
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1144
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1145 1146 1147 1148
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1149
                 capacity=None,
Q
QI JUN 已提交
1150
                 persistable=None,
F
fengjiayi 已提交
1151
                 error_clip=None,
Y
Yu Yang 已提交
1152
                 stop_gradient=False,
F
fengjiayi 已提交
1153
                 is_data=False,
H
Huihuang Zheng 已提交
1154
                 need_check_feed=False,
H
hong 已提交
1155
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1156
                 **kwargs):
Y
Yu Yang 已提交
1157 1158
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1159
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1160

Y
Yu Yang 已提交
1161
        if dtype is not None:
1162
            if not isinstance(dtype, core.VarDesc.VarType):
1163
                dtype = convert_np_dtype_to_dtype_(dtype)
1164

S
Steffy-zxf 已提交
1165 1166 1167 1168
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1169 1170
        self.belong_to_optimizer = belong_to_optimizer

1171 1172 1173 1174 1175
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1176

1177 1178 1179
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1180

1181 1182 1183
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1184 1185
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1186 1187
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1188

1189
        if shape is not None:
1190
            if is_new_var:
1191 1192 1193 1194 1195 1196
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1197 1198
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1199 1200 1201 1202 1203 1204 1205
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1206 1207
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1208 1209 1210 1211 1212 1213 1214 1215 1216
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1217 1218
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1219 1220 1221 1222 1223 1224 1225 1226 1227
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1228 1229
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1230 1231
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1232

1233 1234
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1235

1236 1237 1238 1239 1240 1241 1242
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1243

1244 1245
        self.block.vars[name] = self
        self.op = None
1246
        self.stop_gradient = stop_gradient
1247
        self.is_data = is_data
Y
Yu Yang 已提交
1248

1249 1250 1251
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1252 1253
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1254

1255
        Returns:
J
Jiabin Yang 已提交
1256
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1257 1258 1259 1260

        Examples:
            .. code-block:: python

1261
                import paddle
1262

1263 1264 1265 1266
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1267

1268 1269
                # create a detached Variable
                y = x.detach()
1270
        """
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1286

1287
    @fake_interface_only
1288
    def numpy(self):
1289
        """
J
Jiabin Yang 已提交
1290
        **Notes**:
T
tianshuo78520a 已提交
1291
            **This API is ONLY available in Dygraph mode**
1292

J
Jiabin Yang 已提交
1293
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1294 1295 1296 1297 1298

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1299
            ndarray: dtype is same as current Variable
1300 1301 1302 1303 1304 1305

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1306
                from paddle.fluid.dygraph import Linear
1307 1308 1309 1310
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1311
                    linear = Linear(32, 64)
1312
                    data = to_variable(data)
1313
                    x = linear(data)
1314 1315 1316
                    print(x.numpy())

        """
1317
        pass
1318

1319
    @fake_interface_only
1320
    def backward(self, retain_graph=False):
1321
        """
J
Jiabin Yang 已提交
1322
        **Notes**:
T
tianshuo78520a 已提交
1323
            **This API is ONLY available in Dygraph mode**
1324

1325
        Run backward of current Graph which starts from current Tensor.
1326

J
Jiabin Yang 已提交
1327
        Args:
1328 1329 1330 1331
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1332

J
Jiabin Yang 已提交
1333 1334
        Returns:
            NoneType: None
1335 1336 1337 1338 1339

        Examples:
            .. code-block:: python

                import numpy as np
1340 1341
                import paddle
                paddle.disable_static()
1342 1343

                x = np.ones([2, 2], np.float32)
1344 1345 1346 1347 1348 1349 1350
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1351 1352
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1353
                loss.backward()
1354 1355

        """
1356
        pass
1357

1358
    @fake_interface_only
1359
    def gradient(self):
1360
        """
J
Jiabin Yang 已提交
1361
        **Notes**:
T
tianshuo78520a 已提交
1362
            **This API is ONLY available in Dygraph mode**
1363 1364 1365

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1366
        Returns:
1367
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1368 1369 1370 1371 1372 1373 1374

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1375
                # example1: return ndarray
1376 1377 1378 1379 1380 1381 1382 1383 1384
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1385
                    loss2.backward()
1386 1387
                    print(loss2.gradient())

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1401
        """
1402
        pass
1403

1404
    @fake_interface_only
1405
    def clear_gradient(self):
1406
        """
J
Jiabin Yang 已提交
1407
        **Notes**:
T
tianshuo78520a 已提交
1408
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1409 1410

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1411

J
Jiabin Yang 已提交
1412
        Clear  (set to ``0`` ) the Gradient of Current Variable
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1431
                    loss2.backward()
1432 1433 1434 1435 1436
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1437
        pass
X
Xin Pan 已提交
1438

1439 1440 1441 1442
    @fake_interface_only
    def register_hook(self, hook):
        pass

1443
    def __str__(self):
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1460 1461
                import paddle
                import paddle.static as static
1462

1463 1464 1465
                paddle.enable_static()

                cur_program = static.Program()
1466 1467 1468 1469 1470 1471
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1472 1473
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1474
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1475 1476
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1477 1478
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1479
        else:
1480 1481
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1482

1483
        if self.is_parameter:
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1494
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1495
        dist_context = get_default_distributed_context()
1496 1497
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1498
            var_str += ", {name} = {value}".format(
1499
                name="dist_attr", value=dist_tensor)
1500

1501
        return var_str
Y
Yang Yang(Tony) 已提交
1502

F
update  
fengjiayi 已提交
1503
    def to_string(self, throw_on_error, with_details=False):
1504 1505 1506
        """
        Get debug string.

J
Jiabin Yang 已提交
1507 1508 1509 1510 1511
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1512

1513 1514
        Returns:
            str: The debug string.
1515 1516 1517 1518 1519

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1520
                import paddle
1521

1522
                paddle.enable_static()
1523 1524 1525 1526 1527
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1528
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1529
                print("=============with detail===============")
1530
                print(new_variable.to_string(True, True))
1531
        """
F
update  
fengjiayi 已提交
1532 1533
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1534
        protostr = self.desc.serialize_to_string()
1535
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1536 1537
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1538
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1539
            for attr_name in additional_attr:
1540 1541 1542
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1543
        return res_str
1544 1545 1546

    __repr__ = __str__

1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1574
    @property
1575
    def stop_gradient(self):
J
Jiabin Yang 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1591 1592
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1593 1594 1595
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1596 1597
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1598 1599 1600 1601
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1602
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1603 1604
                assert (out1.gradient() == 0).all()
        """
1605
        return self.desc.stop_gradient()
1606

1607 1608
    @stop_gradient.setter
    def stop_gradient(self, s):
1609
        self.desc.set_stop_gradient(s)
1610

1611 1612
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1634
        return self.desc.persistable()
1635

Y
Yu Yang 已提交
1636 1637
    @persistable.setter
    def persistable(self, p):
1638
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1639

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1665 1666
    @property
    def name(self):
J
Jiabin Yang 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1683
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1684

1685 1686 1687 1688 1689 1690
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1691 1692
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1705 1706
    @name.setter
    def name(self, new_name):
1707
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1708

Y
Yu Yang 已提交
1709 1710
    @property
    def shape(self):
J
Jiabin Yang 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1728
        # convert to tuple, make it as same as numpy API.
1729
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1730 1731

    @property
F
fengjiayi 已提交
1732
    def dtype(self):
J
Jiabin Yang 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1749
        return self.desc.dtype()
Y
Yu Yang 已提交
1750 1751 1752

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1766
            import paddle
J
Jiabin Yang 已提交
1767
            import paddle.fluid as fluid
1768 1769

            paddle.enable_static()
J
Jiabin Yang 已提交
1770 1771 1772 1773 1774 1775 1776
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1777 1778
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1779 1780
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1781
        return self.desc.lod_level()
Y
Yu Yang 已提交
1782

Y
Yu Yang 已提交
1783 1784
    @property
    def type(self):
J
Jiabin Yang 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1801
        return self.desc.type()
Y
Yu Yang 已提交
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1886
    def _set_error_clip(self, error_clip):
1887 1888 1889 1890 1891 1892 1893 1894 1895
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1896 1897
        self.error_clip = error_clip

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1938
            raise ValueError("slice step can not be zero")
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2014
    def _cloneVar(self, copy=False):
2015 2016
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2017 2018
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2019 2020 2021 2022
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2023
        new_var = self._cloneVar()
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2034
        new_var = self._cloneVar()
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2045
                return self._cloneVar(True)
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2064
                return self._cloneVar(True)
2065
            index = int(item)
2066
            if (index > 0 and index >= self.shape[axis]) \
2067 2068 2069 2070 2071 2072 2073
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2074
        return _getitem_impl_(self, item)
2075

2076
    def __setitem__(self, item, value):
2077
        return _setitem_impl_(self, item, value)
2078

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2225 2226 2227 2228
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2229 2230 2231 2232
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2233 2234 2235 2236 2237 2238 2239
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2349

F
fengjiayi 已提交
2350 2351 2352
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2353

2354 2355
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2356 2357 2358 2359
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2360
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2361 2362 2363 2364 2365
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2366 2367 2368 2369
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2379
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2380 2381 2382 2383 2384 2385
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2386 2387 2388 2389 2390 2391 2392 2393
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2394 2395
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2396 2397
        return self.op_proto_map[type]

2398 2399
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2400
        custom_op_names = []
2401 2402 2403
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2404 2405 2406
                custom_op_names.append(proto.type)

        return custom_op_names
2407

2408 2409 2410 2411
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2412
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2413
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2414 2415
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2416 2417
        }

F
fengjiayi 已提交
2418

X
Xin Pan 已提交
2419
class Operator(object):
2420
    """
2421 2422 2423 2424 2425 2426 2427
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2428
        type(str): The type of operator. Default None.
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2449
        Block.append_op or Block._prepend_op instead.
2450 2451 2452 2453

    Examples:
        .. code-block:: python

2454
            import paddle.fluid as fluid
2455
            cur_program = fluid.Program()
2456 2457 2458 2459 2460
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2461
    """
2462
    OP_WITHOUT_KERNEL_SET = {
2463 2464
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2465
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2466 2467
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2468
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2469
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2470
        'copy_cross_scope', 'c_gen_cncl_id'
2471
    }
2472

Y
Yu Yang 已提交
2473 2474
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2475
                 desc,
Y
Yu Yang 已提交
2476 2477 2478
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2479
                 attrs=None):
L
lujun 已提交
2480
        if in_dygraph_mode():
2481 2482
            if type is None:
                raise ValueError(
2483
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2484
            self._type = type
M
minqiyang 已提交
2485
            self.attrs = attrs if attrs else {}
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2500
                )] = self.block.program._op_role
2501 2502 2503

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2504 2505
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2506 2507 2508 2509 2510

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2511 2512 2513 2514 2515
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2516 2517 2518
                return
            if type is None:
                raise ValueError(
2519
                    "`type` to initialized an Operator can not be None.")
2520 2521
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2522 2523 2524 2525 2526 2527 2528
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2529 2530 2531 2532 2533 2534 2535

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2553 2554 2555 2556 2557
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2558

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2572
                        if not isinstance(in_args, (list, tuple)):
2573 2574 2575 2576 2577 2578
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2579
                        for index, arg in enumerate(in_args):
2580 2581 2582 2583
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2584
                            elif isinstance(arg, (Variable, core.VarBase)):
2585
                                in_arg_names.append(cpt.to_text(arg.name))
2586
                            else:
2587 2588 2589 2590
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2591 2592
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2617 2618 2619 2620
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2621
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2622
                        if not in_dygraph_mode():
2623 2624 2625 2626
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2649 2650 2651 2652 2653
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2654
    def _has_kernel(self, op_type):
2655 2656
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2657
    def to_string(self, throw_on_error):
2658
        """
2659 2660
        Get debug string.

2661
        Args:
2662 2663
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2664

2665 2666
        Returns:
            str: The debug string.
2667 2668

        """
2669
        protostr = self.desc.serialize_to_string()
2670
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2671 2672
        return _debug_string_(proto, throw_on_error)

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2705
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2758
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2759
        dist_context = get_default_distributed_context()
2760 2761
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2762
            attrs_str += ", {name} = {value}".format(
2763
                name="dist_attr", value=dist_op)
2764

2765 2766
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2767 2768
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2769 2770 2771 2772 2773
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2774
    def __str__(self):
2775
        return self._to_readable_code()
2776 2777 2778

    __repr__ = __str__

F
fengjiayi 已提交
2779 2780
    @property
    def type(self):
2781
        return self.desc.type()
F
fengjiayi 已提交
2782 2783

    def input(self, name):
2784
        r"""
2785
        Get the input arguments according to the input parameter name.
2786

2787 2788
        Args:
            name(str): The input parameter name.
2789

2790 2791 2792
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2793
        """
F
fengjiayi 已提交
2794 2795
        return self.desc.input(name)

W
Wu Yi 已提交
2796
    def _rename_input(self, old_name, new_name):
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2807
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2808

W
Wu Yi 已提交
2809
    def _rename_output(self, old_name, new_name):
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2820
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2821

F
fengjiayi 已提交
2822 2823 2824 2825
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2826 2827 2828 2829 2830 2831 2832 2833
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2834
    def output(self, name):
2835
        r"""
2836
        Get output arguments by the output parameter name.
2837

2838 2839
        Args:
            name(str): The output parameter name.
2840

2841 2842 2843
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2844
        """
F
fengjiayi 已提交
2845 2846 2847 2848 2849 2850
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2851 2852 2853 2854 2855 2856 2857 2858
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2859
    def has_attr(self, name):
2860
        """
2861 2862
        Whether this Operator has the attribute with name or not.

2863
        Args:
2864
            name(str): the attribute name.
2865

2866 2867
        Returns:
            bool: True if has this attribute.
2868 2869

        """
F
fengjiayi 已提交
2870 2871 2872
        return self.desc.has_attr(name)

    def attr_type(self, name):
2873
        """
2874
        Get the type of attribute by attribute's name.
2875

2876 2877
        Args:
            name(str): the attribute name.
2878

2879 2880
        Returns:
            core.AttrType: the attribute type.
2881
        """
F
fengjiayi 已提交
2882 2883
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2884
    def _set_attr(self, name, val):
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2895 2896
        self._update_desc_attr(name, val)

2897 2898 2899
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2911 2912
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2913 2914
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2915
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2916 2917 2918 2919
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2920
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2921

F
fengjiayi 已提交
2922 2923 2924 2925 2926
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2927
        """
2928 2929
        Get the attribute by name.

2930
        Args:
2931
            name(str): the attribute name.
2932

2933 2934
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2935 2936
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2937
        return self.desc.attr(name)
Y
Yu Yang 已提交
2938

W
Wu Yi 已提交
2939
    def _block_attr_id(self, name):
2940
        """
G
gongweibao 已提交
2941
        Get the block attribute's id by name.
2942

2943 2944
        Args:
            name(str): the attribute name.
2945

2946 2947
        Returns:
            int: the block index.
2948
        """
W
Wu Yi 已提交
2949
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2950

W
Wu Yi 已提交
2951
    def _block_attr(self, name):
G
gongweibao 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2962
        id = self._block_attr_id(name)
G
gongweibao 已提交
2963 2964 2965
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2966
    def _blocks_attr(self, name):
G
gongweibao 已提交
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2977
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2978 2979 2980 2981 2982
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2983
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2994
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2995

J
JiayiFeng 已提交
2996
    def all_attrs(self):
F
fengjiayi 已提交
2997
        """
2998 2999 3000
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3001
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3002 3003 3004 3005
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3006 3007
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3008
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3009 3010 3011
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3012
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3013 3014 3015 3016
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3017 3018
        return attr_map

3019 3020 3021
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3022 3023 3024 3025

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3026 3027 3028
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3029 3030 3031 3032 3033 3034 3035 3036

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3037 3038
            return False

3039 3040 3041 3042 3043 3044
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3070

Y
Yu Yang 已提交
3071
class Block(object):
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3086
        use `Program._create_block()` to create a block.
3087 3088 3089 3090

    Examples:
        .. code-block:: python

3091 3092 3093
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3094 3095 3096 3097 3098 3099 3100 3101 3102
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3103
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3104
        self.desc = program.desc.block(idx)
3105
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3106
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3107
        self.program = program
3108
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3109

3110
    def __str__(self):
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3145
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3157

F
fengjiayi 已提交
3158 3159
    def to_string(self, throw_on_error, with_details=False):
        """
3160 3161
        Get debug string.

F
fengjiayi 已提交
3162 3163
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3164
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3165
            with_details(bool): more details about variables and parameters
3166 3167
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3168

3169 3170
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3171 3172 3173 3174
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3175
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3176 3177
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3178
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3179
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3180
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3181
            for op in self.ops:
F
fengjiayi 已提交
3182 3183
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3184 3185 3186
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3187 3188
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3189 3190
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3191 3192 3193

    __repr__ = __str__

Y
Yu Yang 已提交
3194 3195
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3196
        return self.desc.parent
Y
Yu Yang 已提交
3197

Y
Yu Yang 已提交
3198 3199 3200 3201
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3202
    def _set_forward_block_idx(self, idx):
3203 3204 3205 3206 3207 3208 3209 3210 3211
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3212
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3213

3214 3215 3216 3217 3218 3219 3220 3221
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3222 3223
    @property
    def idx(self):
Y
Yu Yang 已提交
3224
        return self.desc.id
Y
Yu Yang 已提交
3225

Q
Qiao Longfei 已提交
3226
    def var(self, name):
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3240
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3241 3242 3243
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3244 3245
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3246
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3247
        return v
Q
Qiao Longfei 已提交
3248

X
Xin Pan 已提交
3249
    def _find_var_recursive(self, name):
3250 3251 3252 3253 3254 3255 3256
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3257
            Variable: the Variable with the giving name. Or None if not found.
3258
        """
Y
Yu Yang 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3283
        return None
Y
Yu Yang 已提交
3284

X
Xin Pan 已提交
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3304

Q
Qiao Longfei 已提交
3305
    def all_parameters(self):
3306
        return list(self.iter_parameters())
3307

3308
    def iter_parameters(self):
M
minqiyang 已提交
3309
        return (item[1] for item in six.iteritems(self.vars)
3310
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3311

Y
Yu Yang 已提交
3312
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3313 3314 3315
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3316 3317 3318
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3319
        return var
Y
Yu Yang 已提交
3320

Q
Qiao Longfei 已提交
3321 3322 3323
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3324
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3325 3326
        """
        Rename variable in vars and ops' inputs and outputs
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3339
        """
M
minqiyang 已提交
3340 3341
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3342

T
typhoonzero 已提交
3343
        if not self.has_var(name):
3344
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3345 3346
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3347
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3348 3349 3350 3351 3352 3353
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3354
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3355 3356 3357 3358
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3359
        orig_var_type = v.type
M
minqiyang 已提交
3360
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3361
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3362
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3363
        if var_type == "Parameter":
L
Leo Chen 已提交
3364 3365
            if in_dygraph_mode():
                var = ParamBase(
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3376 3377
                var = Parameter(
                    self,
3378 3379 3380 3381 3382 3383 3384 3385 3386
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3387
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3388 3389
            var = Variable(
                self,
T
typhoonzero 已提交
3390
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3391 3392 3393 3394
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3395
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3396 3397 3398
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3399
        self._sync_with_cpp()
3400
        return var
T
typhoonzero 已提交
3401

3402 3403 3404
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3405
        self.desc._remove_var(cpt.to_bytes(name))
3406 3407
        del self.vars[name]

Y
Yu Yang 已提交
3408 3409
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3410
        param = None
L
Leo Chen 已提交
3411
        if in_dygraph_mode():
3412 3413 3414 3415
            if _in_eager_mode():
                param = EagerParamBase(*args, **kwargs)
            else:
                param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3416 3417
        else:
            param = Parameter(global_block, *args, **kwargs)
3418

3419
        if 'initializer' in kwargs:
3420 3421 3422 3423 3424

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3425
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3426
                        # are treated as initialization ops that cause error.
3427
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3428 3429 3430 3431 3432
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3433
                            continue
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3445
                # TODO already inited, do nothing, should log a warning
3446 3447 3448
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3449
        return param
Y
Yu Yang 已提交
3450

Y
Yu Yang 已提交
3451
    def append_op(self, *args, **kwargs):
3452 3453 3454 3455 3456 3457
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3458
        if in_dygraph_mode():
3459
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3460
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3461
            type = kwargs.get("type", None)
3462 3463 3464
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3465
                type=type,
M
minqiyang 已提交
3466 3467
                inputs=None,
                outputs=None,
3468
                attrs=attrs)
3469

M
minqiyang 已提交
3470 3471 3472
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3473
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3474 3475

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3476
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3477 3478
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3479 3480
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3481
        else:
3482 3483
            from paddle.fluid.dygraph.base import param_guard

3484
            op_desc = self.desc.append_op()
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3498

M
minqiyang 已提交
3499
            self.ops.append(op)
M
minqiyang 已提交
3500

3501 3502
        return op

W
Wu Yi 已提交
3503
    def _insert_op(self, index, *args, **kwargs):
3504 3505 3506 3507 3508 3509 3510 3511 3512
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3513
        self._sync_with_cpp()
F
fangshuixun007 已提交
3514
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3515

3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3533 3534 3535 3536 3537 3538 3539 3540 3541
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3542 3543
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3544
        self.desc._remove_op(index, index + 1)
3545 3546
        del self.ops[index]

W
Wu Yi 已提交
3547
    def _slice_ops(self, start, end):
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3558
        return self.ops[start:end]
Y
Yancey1989 已提交
3559

W
Wu Yi 已提交
3560
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3561
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3562 3563
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3564
            op = Operator(
J
Jiabin Yang 已提交
3565
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3566

J
Jiabin Yang 已提交
3567
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3568
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3569 3570
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3571
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3572
        else:
3573 3574 3575 3576 3577 3578 3579 3580
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3581
            self.ops.insert(0, op)
3582

Y
Yu Yang 已提交
3583 3584
        return op

W
Wu Yi 已提交
3585
    def _sync_with_cpp(self):
3586
        """
3587 3588
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3589
        """
Q
Qiao Longfei 已提交
3590 3591 3592
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3610

3611
        # sync variables removed from c++ end
3612
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3613
            if not self.desc.find_var(cpt.to_bytes(var)):
3614 3615
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3616
        # sync operators from cpp
3617 3618 3619 3620
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3637 3638 3639 3640 3641

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3642
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3643 3644 3645 3646 3647 3648 3649

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3663 3664 3665 3666
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3667
    def _copy_param_info_from(self, other):
3668
        """
3669 3670
        Copy the information of parameters from the other block.

3671
        Args:
3672 3673 3674 3675 3676
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3677 3678 3679 3680 3681

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3682 3683
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3684
        for p in other.iter_parameters():
3685 3686 3687
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3688 3689
                # if the Parameter is pruned, v may be None
                continue
3690
            assert isinstance(v, Variable)
3691
            new_p = None
L
Leo Chen 已提交
3692 3693
            if in_dygraph_mode():
                new_p = ParamBase(
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3705 3706
                new_p = Parameter(
                    block=self,
3707 3708 3709
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3710 3711
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3712 3713 3714 3715 3716 3717
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3718 3719
            self.vars[new_p.name] = new_p

3720
    def _clone_variable(self, var, force_persistable=True):
3721 3722
        """
        Clone a variable into current block.
3723

3724 3725
        Args:
            var: the variable to be cloned.
3726 3727 3728
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3729 3730

        Returns:
3731
            Variable: the new  variable cloned from 'var' in current block.
3732 3733
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3734 3735 3736 3737 3738
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3739 3740
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3741
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3742 3743 3744 3745 3746 3747
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3748
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3749 3750
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3751 3752 3753 3754 3755 3756 3757
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3758
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3759 3760
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3761
        return ret_var
3762

Y
Yu Yang 已提交
3763

3764 3765 3766 3767 3768 3769
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3881
    def remove_input_by_id(self, node_id):
3882 3883 3884 3885 3886 3887
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3888
        self.node.remove_input(node_id)
3889

3890
    def remove_input(self, node):
3891 3892 3893 3894
        """
        Remove a node from inputs.

        Args:
3895
            node(IrNode): the node being removed.
3896
        """
3897
        self.node.remove_input(node.node)
3898

3899
    def append_input(self, node):
3900 3901 3902 3903
        """
        Append a node in inputs.

        Args:
3904
            node(IrNode): the node being appended.
3905
        """
3906
        self.node.append_input(node.node)
3907 3908 3909 3910 3911 3912 3913 3914

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3915
    def remove_output_by_id(self, node_id):
3916 3917 3918 3919 3920 3921
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3922
        self.node.remove_output(node_id)
3923

3924
    def remove_output(self, node):
3925 3926 3927 3928
        """
        Remove a node from outputs.

        Args:
3929
            node(IrNode): the node being removed.
3930
        """
3931
        self.node.remove_output(node.node)
3932

3933
    def append_output(self, node):
3934 3935 3936 3937
        """
        Append a node in outputs.

        Args:
3938
            node(IrNode): the node being appended.
3939
        """
3940
        self.node.append_output(node.node)
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3988
            "The node variable description can not be None."
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3999
            "The node variable description can not be None."
4000 4001
        return self.node.var().persistable()

4002 4003 4004 4005 4006 4007 4008 4009
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4010
            "The node variable description can not be None."
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4021
            "The node variable description can not be None."
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4032
            "The node variable description can not be None."
4033 4034
        return self.node.var().shape()

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4082
            "The node operator description can not be None."
4083 4084
        self.node.op()._rename_input(old_input_name, new_input_name)

4085 4086 4087 4088 4089 4090 4091 4092 4093
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4094
            "The node operator description can not be None."
4095 4096
        self.node.op()._rename_output(old_output_name, new_output_name)

4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4108
            "The node operator description can not be None."
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4122
            "The node operator description can not be None."
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4133
            "The node operator description can not be None."
4134 4135
        return self.node.op().set_type(new_type)

4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4151
            "The node operator description can not be None."
4152 4153 4154 4155
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4156
                all(isinstance(v, Block) for v in val):
4157 4158
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4159
                isinstance(val, core.ProgramDesc):
4160 4161 4162 4163
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4164 4165 4166 4167 4168 4169 4170 4171
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4172
            "The node operator description can not be None."
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4183
            "The node operator description can not be None."
4184 4185
        return self.node.op().output_arg_names()

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4207 4208
class IrGraph(object):
    """
4209
    Python IrGraph. Beneath it is a core.Graph, which is used for
4210
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4211 4212
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4213 4214 4215 4216
    """

    def __init__(self, graph, for_test=False):
        """
4217 4218
        Construct an IrGraph using core.Graph.

4219 4220 4221 4222 4223 4224 4225 4226 4227
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4228 4229 4230 4231
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4232 4233 4234
        Warns:
            The method only clones the graph structure, not its attributes.

4235 4236 4237
        Returns:
            IrGraph: A new and duplicated graph.
        """
4238
        g = self.graph.clone()
4239 4240
        return IrGraph(g, self._for_test)

4241
    def is_test(self):
4242 4243 4244
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4245 4246
        return self._for_test

W
WangZhen 已提交
4247
    def all_nodes(self):
4248 4249 4250
        """
        Return all nodes included in the graph as a set.
        """
4251
        return {IrNode(node) for node in self.graph.nodes()}
4252

4253
    def all_var_nodes(self):
4254 4255 4256
        """
        Return all variable nodes included in the graph as a set.
        """
4257
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4258

4259
    def all_persistable_nodes(self):
4260 4261 4262
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4263 4264 4265 4266 4267
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4268
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4269

4270
    def all_op_nodes(self):
4271 4272 4273
        """
        Return all operator nodes included in the graph as a set.
        """
4274
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4275

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4293
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4305
            IrVarNode: the created persistable variable node.
4306
        """
4307 4308 4309 4310 4311
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4312
        return IrVarNode(self.graph.create_var_node(var_desc))
4313 4314

    def create_var_node(self, name, var_type, shape, var_dtype):
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4326
            IrVarNode: the created variable node.
4327 4328
        """

4329 4330 4331 4332
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4333
        return IrVarNode(self.graph.create_var_node(var_desc))
4334

4335 4336 4337 4338 4339 4340
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4341
    def create_var_node_from_desc(self, var_desc):
4342 4343 4344 4345 4346 4347 4348 4349
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4350
            IrVarNode: the created variable node.
4351
        """
4352
        return IrVarNode(self.graph.create_var_node(var_desc))
4353 4354

    def create_op_node(self, op_type, attrs, inputs, outputs):
4355 4356 4357 4358 4359 4360 4361
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4362
            outputs(dict): the outputs of the operator node.
4363 4364

        Returns:
4365
            IrOpNode: the created operator node.
4366
        """
4367 4368
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4369
        for attr, value in six.iteritems(attrs):
4370
            self._update_desc_attr(op_desc, attr, value)
4371
        for input_name, var_nodes in six.iteritems(inputs):
4372 4373 4374 4375
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4376
        for output_name, var_nodes in six.iteritems(outputs):
4377 4378 4379 4380
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4381
        return IrOpNode(self.graph.create_op_node(op_desc))
4382 4383

    def create_op_node_from_desc(self, op_desc):
4384 4385 4386 4387 4388 4389 4390
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4391
            IrOpNode: the created operator node.
4392
        """
4393
        return IrOpNode(self.graph.create_op_node(op_desc))
4394 4395

    def update_input_link(self, old_input_node, new_input_node, op_node):
4396 4397 4398 4399
        """
        Update the input's link of a operator node.

        Args:
4400 4401 4402
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4403
        """
4404
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4405
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4406
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4407 4408 4409 4410
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4411
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4412

4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4423
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4424
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4425 4426 4427 4428 4429 4430
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4431
    def link_to(self, node_in, node_out):
4432 4433 4434 4435
        """
        Connect two nodes.

        Args:
4436 4437
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4438
        """
4439 4440 4441 4442
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4443 4444
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4445 4446

    def safe_remove_nodes(self, remove_nodes):
4447 4448 4449 4450 4451 4452 4453
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4454
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4455 4456 4457 4458
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4459 4460
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4461

Z
Zhen Wang 已提交
4462 4463 4464 4465 4466 4467 4468 4469
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4470
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4471 4472 4473 4474
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4475
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4476 4477 4478
                        ]
                    else:
                        var_nodes[each_var_name].append(
4479 4480
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4481 4482
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4483
    def has_circle(self):
4484 4485 4486 4487 4488 4489
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4490 4491 4492
        return core.has_circle(self.graph)

    def graph_num(self):
4493 4494 4495 4496 4497 4498
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4499 4500 4501
        return core.graph_num(self.graph)

    def topology_sort(self):
4502 4503 4504
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4505
        Notes: the `graph` can not contain a circle.
4506 4507

        Returns:
Z
Zhen Wang 已提交
4508
            list(IrNode): nodes in topology order.
4509
        """
4510
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4511
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4512 4513

    def build_adjacency_list(self):
4514 4515 4516 4517
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4518
            dict{IrNode: set(IrNode)}: the adjacency list.
4519
        """
4520 4521 4522 4523 4524
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4525

4526 4527 4528 4529 4530 4531 4532 4533
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4534
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4535 4536 4537 4538 4539
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4540 4541
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4542 4543 4544
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4545 4546 4547 4548 4549
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4550
        remove_ctr_vars = set()
4551
        if remove_ctr_var:
4552
            for node in self.all_var_nodes():
4553 4554 4555
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4556 4557
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4558 4559
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4560 4561 4562 4563 4564 4565
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4566 4567 4568 4569
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4570 4571
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4572 4573 4574 4575 4576 4577 4578
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4579 4580 4581
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4582
        WARN: When the graph includes backward operator nodes, the
4583 4584 4585 4586 4587 4588
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4589
        convert_pass = core.get_pass('graph_to_program_pass')
4590 4591
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4592 4593 4594 4595
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4596 4597 4598 4599 4600 4601 4602 4603
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4604 4605
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4606 4607
        return target_node

4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4624
class Program(object):
D
dzhwinter 已提交
4625
    """
4626
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4627
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4628
    it will contain nested block.
4629

J
Jiabin Yang 已提交
4630 4631 4632
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4633

J
Jiabin Yang 已提交
4634
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4635
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4636 4637 4638 4639 4640 4641 4642
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4643
    **Notes**:
4644 4645 4646
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4647 4648

    Returns:
J
Jiabin Yang 已提交
4649
        Program: An empty Program.
D
dzhwinter 已提交
4650 4651

    Examples:
4652 4653
        .. code-block:: python

4654 4655 4656 4657
            import paddle
            import paddle.static as static

            paddle.enable_static()
4658

4659 4660 4661 4662 4663
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4664
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4665 4666 4667

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4668 4669 4670

    """

4671 4672
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4673 4674
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4675 4676
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4677
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4678
        self.__op_role_var = []
T
tangwei12 已提交
4679

4680 4681
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4682
        self._is_distributed = False
4683
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4684
        self._is_chief = False
4685 4686 4687
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4688
        self._endpoints = []
4689 4690 4691
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4692
        self._trainers_endpoints = []
4693
        # the distributed lookup table names
T
tangwei12 已提交
4694
        self._distributed_lookup_table = None
4695 4696 4697

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4698 4699
        self._use_lamb = False

4700 4701 4702
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4703

4704 4705 4706
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4707
        self._program_config = None
4708

H
hutuxian 已提交
4709 4710 4711
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4712 4713 4714
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4715 4716 4717
        # appending gradients times
        self._appending_grad_times = 0

4718 4719 4720 4721
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4722 4723
        # compiled program, i.e. Graph
        self._graph = None
4724 4725
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4726

4727
    def _find_var_class_kwargs(self, new_desc):
4728 4729 4730 4731 4732 4733 4734 4735
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4805
        assert block_num == self.desc.num_blocks()
4806 4807

        # clear old blocks and desc
4808 4809 4810 4811 4812 4813 4814 4815 4816
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4817

4818
        del desc
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4838 4839 4840 4841 4842 4843 4844 4845 4846 4847
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4848 4849
                import paddle
                import paddle.static as static
4850

4851 4852 4853
                paddle.enable_static()

                prog = static.default_main_program()
4854 4855 4856 4857 4858
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4859
                prog1 = static.default_main_program()
4860 4861 4862 4863 4864 4865 4866 4867
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4868
    @property
4869
    def _op_role(self):
Y
yuyang18 已提交
4870 4871 4872 4873 4874 4875 4876 4877
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4878
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4879 4880 4881 4882
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4883 4884
        return self._current_role

4885 4886
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4887 4888 4889
        self._current_role = role

    @property
4890
    def _op_role_var(self):
Y
yuyang18 已提交
4891
        """
4892
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4893

4894
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4895 4896 4897

        Notes: This is a very low-level API. Users should not use it directly.
        """
4898
        return self.__op_role_var
Y
yuyang18 已提交
4899

4900
    @signature_safe_contextmanager
4901 4902 4903 4904 4905
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4906 4907 4908 4909
        try:
            yield
        finally:
            self._current_role = tmp_role
4910

S
rename  
sneaxiy 已提交
4911
    @signature_safe_contextmanager
W
Wu Yi 已提交
4912
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4913 4914 4915 4916 4917 4918 4919
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4920
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4921 4922 4923

        Examples:

4924
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4925
            >>> p, g = backward(...)
W
Wu Yi 已提交
4926
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4927 4928
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4929
        tmp_role = self._current_role
4930
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4931

Y
yuyang18 已提交
4932 4933
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4934
        self.__op_role_var = [
4935 4936 4937
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4938 4939 4940 4941 4942
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4943

S
rename  
sneaxiy 已提交
4944
    @signature_safe_contextmanager
X
Xin Pan 已提交
4945
    def _lr_schedule_guard(self, is_with_opt=False):
4946 4947 4948 4949 4950 4951 4952
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4953 4954 4955 4956
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4957 4958 4959

        Examples:

4960
            >>> import paddle.fluid as fluid
4961 4962 4963 4964
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4965 4966

        tmp_role = self._current_role
4967
        tmp_var = self.__op_role_var
4968

4969 4970
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4971 4972
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4973
        # TODO(typhoonzero): how to set target learning rate var
4974
        self.__op_role_var = []
4975 4976 4977 4978 4979
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4980

4981
    def __str__(self):
Y
yuyang18 已提交
4982 4983 4984 4985 4986 4987 4988 4989 4990
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5011 5012
            import paddle
            import paddle.static as static
5013

5014 5015 5016
            paddle.enable_static()

            cur_program = static.Program()
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5028
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5029 5030 5031 5032
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5033
            program_str += '\n'
5034
        return program_str
Y
Yang Yang(Tony) 已提交
5035

F
fengjiayi 已提交
5036 5037 5038
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5039

J
Jiabin Yang 已提交
5040 5041 5042
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5043

J
Jiabin Yang 已提交
5044
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5045

H
haowang101779990 已提交
5046
        Returns:
J
Jiabin Yang 已提交
5047
            str: The debug string describe current Program.
Y
yuyang18 已提交
5048 5049

        Raises:
J
Jiabin Yang 已提交
5050
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5051

5052 5053 5054
        Examples:
            .. code-block:: python

5055 5056 5057 5058
                import paddle
                import paddle.static as static

                paddle.enable_static()
5059

5060 5061 5062
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5063
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5064
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5065
                print("program string without detail: {}".format(prog_string))
5066
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5067
        """
5068 5069 5070 5071 5072 5073 5074 5075 5076
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5077 5078 5079 5080 5081 5082
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5083 5084
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5085 5086
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5087

W
Wu Yi 已提交
5088
    def _get_desc(self):
Y
yuyang18 已提交
5089 5090 5091 5092 5093 5094 5095
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5096 5097
        return self.desc

X
version  
Xin Pan 已提交
5098 5099 5100
    def _version(self):
        return self.desc._version()

5101
    def clone(self, for_test=False):
Y
yuyang18 已提交
5102
        """
5103 5104 5105 5106
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5107

5108
        Create a new Program with forward content of original one when ``for_test=True``.
5109
        Create a new Program as same as the original one when ``for_test=False``.
5110

5111
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5112 5113 5114
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5115

5116 5117
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5118 5119
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5120
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5121

J
Jiabin Yang 已提交
5122
        For Example:
5123
          ::
L
Luo Tao 已提交
5124

5125 5126 5127 5128 5129 5130
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5131
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5132
            loss = paddle.mean(pred)
5133
            # Here we use clone before Momentum
5134 5135
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5136
            optimizer.minimize(loss)
5137

J
Jiabin Yang 已提交
5138
        Args:
5139

5140 5141
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5142

J
Jiabin Yang 已提交
5143
        Returns:
5144
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5145

Y
yuyang18 已提交
5146 5147 5148

        Examples:

5149 5150 5151 5152 5153 5154 5155
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5172
            1. To clone a test program, the sample code is:
5173 5174 5175
                .. code-block:: python

                    import six
5176 5177 5178 5179 5180 5181
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5194 5195
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5196 5197 5198

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5199 5200 5201
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5202
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5203 5204
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5205
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5206 5207
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5208
                            test_program = train_program.clone(for_test=True)
5209
                    print_prog(test_program)
J
Jiabin Yang 已提交
5210 5211 5212 5213

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5214
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5215 5216 5217 5218
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5219 5220 5221
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5222 5223 5224
                            sgd.minimize(avg_loss)


5225
            2. The clone method can be avoid if you create program for training and program for testing individually.
5226 5227 5228
                .. code-block:: python

                    import six
5229 5230 5231 5232 5233 5234
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5246

5247
                    def network():
5248
                        img = static.data(name='image', shape=[None, 784])
5249
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5250 5251
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5252
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5253 5254
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5255 5256
                        return avg_loss

5257 5258 5259 5260 5261
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5262
                            avg_loss = network()
5263
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5264
                            sgd.minimize(avg_loss)
5265
                    # the test startup program is not used.
5266 5267
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5268 5269
                            avg_loss = network()
                    print_prog(test_program_2)
5270

5271
            The two code snippets above will generate and print same programs.
5272
        """
5273

T
tangwei12 已提交
5274
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5275 5276 5277
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5278
        pruned_origin_block_id_map = None
5279
        if for_test:
5280 5281 5282 5283 5284 5285 5286 5287 5288
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5289
        else:
5290
            p = Program()
G
gongweibao 已提交
5291 5292
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5293
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5294 5295 5296
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5297 5298

            p._current_role = self._current_role
5299
            p.__op_role_var = self.__op_role_var
5300
            p._appending_grad_times = self._appending_grad_times
5301 5302
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5303

T
tangwei12 已提交
5304
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5305
            # its desc.
W
Wu Yi 已提交
5306
            p._sync_with_cpp()
5307

W
Wu Yi 已提交
5308
        p._copy_param_info_from(self)
5309
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5310
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5311
        return p
5312

5313
    def _prune(self, targets):
Y
yuyang18 已提交
5314 5315 5316 5317 5318 5319 5320 5321
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5322
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5323 5324 5325 5326
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5327
        """
5328
        return self._prune_with_input([], targets)
5329 5330

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5331
        """
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5342
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5343 5344 5345 5346 5347 5348
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5349
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5350 5351 5352
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5353 5354
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5355 5356
        if not isinstance(targets, list):
            targets = [targets]
5357 5358 5359

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5360 5361 5362
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5363

5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5380 5381 5382 5383
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5384 5385 5386
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5387
                else:
5388 5389 5390
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5391 5392 5393 5394 5395 5396

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5397 5398 5399
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5400

5401 5402 5403 5404 5405 5406 5407 5408 5409
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5410
                        # Skip optimize op except for optimize op in targets,
5411 5412 5413 5414 5415
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5416

5417
                if target_op is not None:
5418 5419 5420
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5421

5422
        res = Program()
5423 5424 5425
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5426 5427 5428
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5429
        res._sync_with_cpp()
5430 5431 5432 5433 5434

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5435 5436
        return res

X
Xin Pan 已提交
5437
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5438
        """
F
fengjiayi 已提交
5439 5440 5441 5442 5443
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5444
        3. change the :code:`is_test`
Y
yuyang18 已提交
5445 5446 5447
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5448
        Args:
X
Xin Pan 已提交
5449 5450
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5451

Y
yuyang18 已提交
5452 5453 5454 5455 5456 5457
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5458
        res = Program()
5459
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5460 5461 5462 5463

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5464
        if prune_read_op:
5465 5466 5467 5468 5469 5470 5471 5472 5473
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5474
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5475 5476

        # change all `is_test` attributes to True
M
minqiyang 已提交
5477
        for i in six.moves.range(res.desc.num_blocks()):
5478
            block = res.desc.block(i)
M
minqiyang 已提交
5479
            for j in six.moves.range(block.op_size()):
5480 5481
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5482
                    op._set_attr('is_test', True)
5483 5484 5485
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5486 5487 5488
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5489
        res._sync_with_cpp()
5490 5491
        return res

5492
    def _remove_training_info(self, clip_extra=True):
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5582 5583
        return res

5584 5585
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5586
        """
5587 5588 5589
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5590

5591 5592
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5593

J
Jiabin Yang 已提交
5594
        Args:
Y
yuyang18 已提交
5595

J
Jiabin Yang 已提交
5596
            binary_str_type (str): the binary prootbuf string.
5597

J
Jiabin Yang 已提交
5598 5599
        Returns:
            Program: A deserialized Program.
5600 5601 5602 5603

        Examples:
            .. code-block:: python

5604 5605 5606 5607
                import paddle
                import paddle.static as static

                paddle.enable_static()
5608

5609 5610 5611 5612
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5613

5614
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5615

5616
                    z = paddle.matmul(x=x, y=y)
5617

5618 5619
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5620

5621
                    print(static.default_main_program())
5622
                    print(prog_restored)
Y
yuyang18 已提交
5623
        """
5624 5625
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5626
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5627
        p._sync_with_cpp()
5628
        return p
Y
Yu Yang 已提交
5629

5630
    @staticmethod
5631
    def _construct_from_desc(desc):
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5647 5648
    @property
    def random_seed(self):
Y
yuyang18 已提交
5649
        """
J
Jiabin Yang 已提交
5650
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5651 5652
        the random seed from random device.

5653 5654
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5655 5656 5657

        Returns:
            int64: Random seed in current Program
5658

5659 5660 5661 5662

        Examples:
            .. code-block:: python

5663 5664 5665
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5666

5667 5668 5669
                paddle.enable_static()

                prog = static.default_main_program()
5670
                random_seed = prog.random_seed
5671
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5672 5673 5674
                print(random_seed)
                ## 0
                ## the default random seed is 0
5675

5676
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5677
                prog.random_seed = 1
5678
                z_var = F.dropout(x_var, 0.7)
5679

5680
                print(prog.random_seed)
5681 5682
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5683
        """
D
dzhwinter 已提交
5684 5685
        return self._seed

Q
qiaolongfei 已提交
5686 5687
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5688
        """
5689 5690
        The number of :ref:`api_guide_Block_en`  in this Program.

5691 5692
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5693 5694 5695

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5696

5697 5698 5699 5700

        Examples:
            .. code-block:: python

5701 5702 5703 5704
                import paddle
                import paddle.static as static

                paddle.enable_static()
5705

5706
                prog = static.default_main_program()
5707 5708
                num_blocks = prog.num_blocks
                print(num_blocks)
5709

5710 5711
                # print result:
                # 1
Y
yuyang18 已提交
5712
        """
Q
qiaolongfei 已提交
5713 5714
        return self.desc.num_blocks()

D
dzhwinter 已提交
5715 5716 5717
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5718 5719 5720
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5721 5722
        self._seed = seed

Y
Yu Yang 已提交
5723
    def __repr__(self):
5724
        return self.__str__()
5725

Y
Yu Yang 已提交
5726
    def global_block(self):
Y
yuyang18 已提交
5727
        """
5728 5729
        .. note::
            This API has no effect in Dygraph mode.
5730 5731 5732

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5733 5734
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5735

5736 5737 5738 5739

        Examples:
            .. code-block:: python

5740 5741 5742 5743
                import paddle
                import paddle.static as static

                paddle.enable_static()
5744

5745
                prog = static.default_main_program()
5746 5747
                gb_block = prog.global_block()
                print(gb_block)
5748

Y
yuyang18 已提交
5749
        """
Y
Yu Yang 已提交
5750 5751
        return self.blocks[0]

Q
Qiao Longfei 已提交
5752
    def block(self, index):
Y
yuyang18 已提交
5753
        """
5754 5755
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5756

5757 5758
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5759 5760
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5761

J
Jiabin Yang 已提交
5762 5763
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5764 5765 5766 5767

        Examples:
            .. code-block:: python

5768 5769 5770 5771
                import paddle
                import paddle.static as static

                paddle.enable_static()
5772

5773
                prog = static.default_main_program()
5774 5775
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5776
        """
Q
Qiao Longfei 已提交
5777 5778
        return self.blocks[index]

Y
Yu Yang 已提交
5779
    def current_block(self):
Y
yuyang18 已提交
5780
        """
5781 5782
        .. note::
            This API has no effect in Dygraph mode.
5783

J
Jiabin Yang 已提交
5784 5785
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5786

J
Jiabin Yang 已提交
5787 5788
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5789

5790 5791 5792
        Examples:
            .. code-block:: python

5793 5794 5795 5796
                import paddle
                import paddle.static as static

                paddle.enable_static()
5797

5798
                prog = static.default_main_program()
5799 5800
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5801
        """
Y
Yu Yang 已提交
5802 5803
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5804
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5805 5806 5807 5808 5809
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5810

Y
yuyang18 已提交
5811 5812 5813 5814 5815
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5816
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5817 5818 5819
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5820 5821 5822 5823
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5824
    def _rollback(self):
Y
yuyang18 已提交
5825 5826 5827 5828 5829
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5830 5831
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5832
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5843 5844 5845
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5846
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5847

W
Wu Yi 已提交
5848
    def _copy_param_info_from(self, other):
5849
        """
5850
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5851

Y
yuyang18 已提交
5852 5853 5854
        Notes: This is a very low level API. Users should not invoke it
        directly.

5855 5856 5857 5858 5859 5860 5861
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5862 5863 5864
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5865

W
Wu Yi 已提交
5866
        self.global_block()._copy_param_info_from(other.global_block())
5867

5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5879 5880 5881
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5882 5883
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5884
        self._parameters_on_pservers = other._parameters_on_pservers
5885
        self._endpoints = other._endpoints
5886
        self._ps_endpoint = other._ps_endpoint
5887 5888
        self._distributed_lookup_table = other._distributed_lookup_table

5889
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5890 5891
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5892

Y
yuyang18 已提交
5893 5894 5895
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5896 5897
        Args:
            other(Program): Other program
5898 5899 5900 5901
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5902 5903 5904 5905 5906

        Returns:
            None
        """
        if not isinstance(other, Program):
5907 5908 5909
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5910

5911 5912 5913 5914 5915
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5916 5917 5918

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5919 5920
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5921
            for var in list(block.vars.values()):
5922 5923 5924 5925 5926 5927 5928
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5929

5930
    def list_vars(self):
Y
yuyang18 已提交
5931
        """
5932
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5933

J
Jiabin Yang 已提交
5934
        Returns:
5935
            iterable Tensors: The Generator will yield every Tensor in this program.
5936 5937 5938 5939

        Examples:
            .. code-block:: python

5940 5941
                import paddle
                import paddle.static as static
5942

5943 5944 5945 5946 5947
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5948 5949
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5950

5951 5952
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5953
        """
5954
        for each_block in self.blocks:
5955
            for each_var in list(each_block.vars.values()):
5956 5957
                yield each_var

5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5968 5969 5970 5971
                import paddle
                import paddle.static as static

                paddle.enable_static()
5972

5973 5974
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5975
                hidden = static.nn.fc(x=data, size=10)
5976 5977
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5978 5979 5980 5981 5982 5983 5984

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5985 5986
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6164

6165
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6166
class Parameter(Variable):
6167
    """
6168
    Parameter is derived from Variable. A parameter is a persistable
6169
    Variable, and will be updated by optimizers after each iteration.
6170
    The training of a neural network is essentially the updating of
6171 6172
    its parameters.

6173
    Relative to a general Variable, a Parameter has several its own
6174 6175
    member variables:

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6186 6187
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6188 6189
    """

6190 6191 6192 6193 6194 6195
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6196 6197 6198 6199 6200
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6201
        if len(shape) == 0:
6202 6203
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6204 6205 6206

        for each in shape:
            if each < 0:
6207 6208 6209
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6210 6211

        Variable.__init__(
6212 6213 6214 6215 6216 6217 6218
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6219 6220 6221 6222
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6223 6224
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6225
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6226

6227 6228
        self.need_clip = kwargs.get('need_clip', True)

6229 6230
        self.is_distributed = False

6231 6232
        self.is_parameter = True

F
fengjiayi 已提交
6233
    def __str__(self):
6234
        return self._to_readable_code()
F
fengjiayi 已提交
6235

F
update  
fengjiayi 已提交
6236 6237 6238
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6239

F
update  
fengjiayi 已提交
6240 6241 6242 6243 6244 6245 6246 6247
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6248 6249 6250 6251 6252 6253 6254 6255 6256
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6257 6258 6259 6260 6261 6262
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6263
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6264
            for attr_name in additional_attr:
6265 6266
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6267 6268
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6269 6270 6271 6272
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6273

6274 6275
class ParamBase(core.VarBase):
    """
6276 6277 6278
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6279 6280 6281
    The training of a neural network is essentially the updating of
    its ParamBase.

6282
    Relative to a general Tensor, a ParamBase has several its own
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6295 6296
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6327 6328
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6329 6330 6331 6332 6333 6334 6335

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6336 6337
        self.need_clip = kwargs.get('need_clip', True)

6338
        self.is_distributed = kwargs.get('is_distributed', False)
6339
        # self.block = default_main_program().global_block()
6340

6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6354
    def __str__(self):
6355
        """
6356
        Convert a ParamBase object to a readable string.
6357

6358
        Returns(str): A readable string.
6359 6360 6361 6362

        Examples:
            .. code-block:: python

6363
                import paddle
6364 6365 6366 6367 6368 6369 6370
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6371
        """
6372 6373
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6374

6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6386

6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6405 6406 6407 6408
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
    _core_eager_eagertensor = core.eager.EagerTensor
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6556 6557
        return new_param

6558 6559 6560
    __repr__ = __str__


Y
Yu Yang 已提交
6561
# program is a global instance.
Y
Yu Yang 已提交
6562 6563
_main_program_ = Program()
_startup_program_ = Program()
6564
_startup_program_._is_start_up_program_ = True
6565

6566

6567
def default_startup_program():
Y
Yu Yang 已提交
6568
    """
Y
yuyang18 已提交
6569 6570
    Get default/global startup program.

6571 6572
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6573

6574 6575
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6576

6577 6578
    Returns:
        Program: current default startup program.
6579

6580
    Returns type: 
6581 6582 6583 6584

    Examples:
        .. code-block:: python

6585
            import paddle
6586

6587
            paddle.enable_static()
6588 6589 6590 6591
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6592
    """
Y
Yu Yang 已提交
6593
    return _startup_program_
6594

6595

6596
def default_main_program():
Y
Yu Yang 已提交
6597
    """
6598
    This API can be used to get ``default main program`` which store the 
6599
    descriptions of Ops and tensors.
T
tangwei12 已提交
6600

6601
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6602
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6603

6604 6605
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6606
    :code:`default_main_program` when the program is not specified.
6607

6608
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6609

Y
Yu Yang 已提交
6610
    Returns:
6611
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6612 6613 6614 6615

    Examples:
        ..  code-block:: python

6616
            import paddle
6617

6618
            paddle.enable_static()
6619
            # Sample Network:
6620 6621 6622
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6623

6624 6625 6626
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6627
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6628
    """
Y
Yu Yang 已提交
6629
    return _main_program_
Y
Yu Yang 已提交
6630 6631 6632 6633 6634


def switch_main_program(program):
    """
    Switch the main program to a new program.
6635

Y
Yu Yang 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6650
    Switch the startup program to a new program
Y
Yu Yang 已提交
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6663
@signature_safe_contextmanager
Y
Yu Yang 已提交
6664 6665
def program_guard(main_program, startup_program=None):
    """
6666 6667
    :api_attr: Static Graph

6668 6669 6670
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6671

G
guofei 已提交
6672
    Args:
6673 6674
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6675 6676 6677 6678
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6679
    Examples:
6680
       .. code-block:: python
T
tangwei12 已提交
6681

6682
          import paddle
Y
yuyang18 已提交
6683

6684 6685 6686 6687 6688
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6689
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6690 6691 6692

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6693

Y
Yu Yang 已提交
6694
    Examples:
6695
       .. code-block:: python
Y
yuyang18 已提交
6696

6697
          import paddle
6698

6699 6700 6701 6702 6703
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6704

Y
Yu Yang 已提交
6705
    """
6706
    from .data_feeder import check_type
6707 6708
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6709 6710
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6711
        check_type(startup_program, 'startup_program', Program,
6712
                   'paddle.static.program_guard')
6713 6714
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6715
        startup_program = switch_startup_program(startup_program)
6716 6717 6718 6719 6720 6721
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6722 6723


W
Wu Yi 已提交
6724
def _get_var(name, program=None):
X
xuwei06 已提交
6725
    """
Y
yuyang18 已提交
6726
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6727

X
xuwei06 已提交
6728 6729 6730
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6731
        If None, default_global_program() will be used.
X
xuwei06 已提交
6732 6733 6734 6735 6736 6737 6738

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6739
    assert isinstance(program, Program)
X
xuwei06 已提交
6740 6741

    return program.global_block().var(name)
6742 6743


S
rename  
sneaxiy 已提交
6744
@signature_safe_contextmanager
L
lujun 已提交
6745 6746
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6747
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6748
    _dygraph_tracer_ = tracer
6749
    core._switch_tracer(tracer)
M
minqiyang 已提交
6750

6751 6752 6753
    try:
        yield
    finally:
6754 6755
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6756 6757


S
rename  
sneaxiy 已提交
6758
@signature_safe_contextmanager
L
lujun 已提交
6759
def _dygraph_place_guard(place):
6760 6761 6762
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6763 6764
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6765 6766
    _set_dygraph_tracer_expected_place(place)

6767 6768 6769
    try:
        yield
    finally:
6770
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6771 6772 6773
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6774 6775


6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6792 6793
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6794 6795 6796 6797 6798 6799 6800 6801 6802
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6803
            import paddle
6804

Z
Zhang Ting 已提交
6805 6806 6807
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6808
            if support_gpu:
Z
Zhang Ting 已提交
6809
                place = paddle.CUDAPlace(0)
6810 6811

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6812 6813 6814
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6815

Z
Zhang Ting 已提交
6816
            with paddle.static.device_guard("cpu"):
6817
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6818 6819
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6820
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6821
                out = paddle.reshape(data1, shape=shape)
6822

Z
Zhang Ting 已提交
6823 6824
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6825 6826 6827
            result = exe.run(fetch_list=[out])
    """

6828 6829 6830 6831 6832
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6833
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6834
        raise ValueError(
6835
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6836
            "when there is no need to specify device. But received %s" % device)
6837 6838
    if index:
        device = ":".join([device, index])
6839
    pre_device = switch_device(device)
6840 6841 6842 6843
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6844 6845 6846 6847 6848


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6849
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6850 6851 6852 6853 6854 6855 6856

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6857 6858
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6859 6860 6861 6862
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6863 6864
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6865 6866 6867 6868 6869 6870 6871 6872
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6873
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6884
            import paddle
G
guofei 已提交
6885 6886

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6887
            res = paddle.get_flags(flags)
G
guofei 已提交
6888 6889 6890 6891 6892 6893
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6894 6895
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6896 6897 6898 6899 6900 6901 6902
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6903 6904
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6905 6906 6907 6908 6909 6910 6911 6912
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6913 6914 6915 6916 6917 6918 6919


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6920
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
6921
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
6922 6923 6924 6925 6926 6927 6928 6929 6930
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6931

6932 6933 6934
    if (place == "device"):
        return core.Place()

6935
    # GPU
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6951 6952

    # XPU
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7000
    raise ValueError(
J
jianghaicheng 已提交
7001
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".
7002
        format(place))
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret