framework.py 229.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
49 50
    'eager_guard',
    'in_eager_mode',
51
    'program_guard',
52
    'name_scope',
S
sneaxiy 已提交
53 54
    'cuda_places',
    'cpu_places',
55
    'xpu_places',
S
sneaxiy 已提交
56
    'cuda_pinned_places',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
77
_global_expected_place_ = None
78
_current_device = None
79
global_prog_seed = 0
80
_current_pipeline_stage = None
81
_global_flags_ = core.globals()
82 83 84 85
_eager_mode_ = False


@signature_safe_contextmanager
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
def eager_mode_place_guard(place):
    if place is not None:
        expected_place = _get_paddle_place(place)
    else:
        expected_place = _current_expected_place()

    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = expected_place

    _set_expected_place(expected_place)

    try:
        yield
    finally:
        _global_expected_place_ = tmp_place
        _set_expected_place(tmp_place)


@signature_safe_contextmanager
def eager_guard(place=None):
107 108
    global _eager_mode_
    _eager_mode_ = True
109
    _C_ops.switch_to_eager_ops()
110
    try:
111 112
        with eager_mode_place_guard(place):
            yield
113 114
    finally:
        _eager_mode_ = False
115
        _C_ops.switch_to_core_ops()
116 117 118 119


def in_eager_mode():
    return _eager_mode_
120

121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
229
def in_dygraph_mode():
L
lujun 已提交
230
    """
231

232 233 234 235 236 237 238
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
239 240

    Returns:
241
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
242 243 244 245

    Examples:
        .. code-block:: python

246 247 248 249 250 251 252 253
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
254 255

    """
L
lujun 已提交
256
    return _dygraph_tracer_ is not None
257 258


259 260 261
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
262
        ), "We don't support %s in imperative mode" % func.__name__
263 264 265 266 267 268 269 270
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
271 272 273 274 275 276 277 278 279
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
280
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
281 282 283 284 285
        return func(*args, **kwargs)

    return __impl__


286 287 288 289 290
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


291 292 293 294 295 296
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
297
# same base class.
298 299 300
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
301 302 303 304 305
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
306 307 308 309

    return __impl__


T
tangwei12 已提交
310 311
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


329 330
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
331
static_only = wrap_decorator(_static_only_)
332
fake_interface_only = wrap_decorator(_fake_interface_only_)
333 334


L
lujun 已提交
335 336
def _dygraph_tracer():
    return _dygraph_tracer_
337

W
Wu Yi 已提交
338

339 340 341 342
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
343
def _current_expected_place():
344 345 346
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
347 348 349 350 351 352 353 354 355 356 357
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
358 359 360 361 362 363 364 365 366 367 368 369
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
385 386 387 388
    if in_eager_mode():
        return core.eager._set_expected_place(place)
    else:
        _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
389 390


L
Leo Chen 已提交
391 392 393 394
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
395

L
Leo Chen 已提交
396 397 398 399 400 401 402 403 404 405 406 407
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
408
def _cpu_num():
409
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
410 411 412 413 414 415 416 417
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
418
        os.environ['CPU_NUM'] = str(1)
419
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
420 421 422 423 424 425 426 427 428 429
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
430 431


432 433 434 435 436 437 438 439 440
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


441 442 443 444 445 446 447 448 449
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
520 521 522 523
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

524
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
525 526 527 528

    Examples:
        .. code-block:: python

529
            import paddle
530
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
531 532 533 534
    """
    return core.is_compiled_with_cuda()


535 536 537 538 539 540 541 542 543 544
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
545
            support_gpu = paddle.device.is_compiled_with_rocm()
546 547 548 549
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
550
def cuda_places(device_ids=None):
L
lujun 已提交
551
    """
552 553 554 555
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
556
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
557 558

    If :code:`device_ids` is None, environment variable of
559
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
560
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
561
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
562
    If :code:`FLAGS_selected_gpus` is not set, all visible
563
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
564 565

    If :code:`device_ids` is not None, it should be the device
566
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
567
    the returned list would be 
C
Chen Weihang 已提交
568
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
569

570
    Parameters:
571
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
572 573

    Returns:
C
Chen Weihang 已提交
574
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
575 576 577 578

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
579 580
            import paddle
            import paddle.static as static
T
tangwei12 已提交
581

582 583
            # required: gpu
            
C
Chen Weihang 已提交
584 585 586
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
587 588

    """
S
sneaxiy 已提交
589 590 591
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
592
        device_ids = _cuda_ids()
S
sneaxiy 已提交
593 594 595 596 597
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


598 599 600 601
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
602 603 604 605 606 607 608 609 610 611 612
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
613 614 615 616 617 618 619
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
620

621 622
            # required: xpu

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
679
def cpu_places(device_count=None):
L
lujun 已提交
680
    """
C
Chen Weihang 已提交
681
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
682

S
add doc  
sneaxiy 已提交
683 684
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
685 686
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
687 688
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
689

690 691
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
692 693

    Returns:
C
Chen Weihang 已提交
694
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
695 696 697 698

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
699 700
            import paddle
            import paddle.static as static
T
tangwei12 已提交
701

C
Chen Weihang 已提交
702 703 704
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
705 706
    """

S
sneaxiy 已提交
707 708 709 710 711 712
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
713
    """
714
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
715 716 717

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
718 719 720 721
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
722

723 724
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
725 726

    Returns:
727
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
728 729 730 731

    Examples:
        .. code-block:: python

732
            import paddle.fluid as fluid
L
lujun 已提交
733 734 735 736 737
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
738 739 740
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
741 742
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
743 744


745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
771
@signature_safe_contextmanager
772 773
def name_scope(prefix=None):
    """
774 775
    :api_attr: Static Graph

776
    Generate hierarchical name prefix for the operators in Static Graph.
777

T
Tao Luo 已提交
778 779 780
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
781
        Don't use it in dygraph, since it will cause memory leak.
782 783

    Args:
T
Tao Luo 已提交
784
        prefix(str, optional): prefix. Default is none.
785 786 787

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
788

789 790 791
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
792
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
793
             b = a + 1
794
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
795
                c = b * 1
796
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
797
                d = c / 1
798 799 800
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
801 802 803
                g = f - 1

          # Op are created in the default main program.  
804
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
820 821
    """
    # TODO(panyx0718): Only [0-9a-z].
822
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
823 824 825
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
826
        assert prefix, "namescope prefix can not be empty."
827 828
        global _name_scope
        _name_scope = _name_scope.child(prefix)
829 830 831 832
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
833 834 835 836 837 838 839 840 841 842 843 844


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
845 846 847
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
848 849 850 851


def grad_var_name(var_name):
    """
852 853
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
854 855 856
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
857

858
def convert_np_dtype_to_dtype_(np_dtype):
859 860
    """
    Convert the data type in numpy to the data type in Paddle
861

862
    Args:
863
        np_dtype(np.dtype): the data type in numpy.
864

865 866
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
867 868

    """
869 870
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
871
        return core.VarDesc.VarType.FP32
872
    elif dtype == np.float64:
873
        return core.VarDesc.VarType.FP64
874
    elif dtype == np.float16:
875
        return core.VarDesc.VarType.FP16
876
    elif dtype == np.int32:
877
        return core.VarDesc.VarType.INT32
878
    elif dtype == np.int16:
879
        return core.VarDesc.VarType.INT16
880
    elif dtype == np.int64:
881
        return core.VarDesc.VarType.INT64
882
    elif dtype == np.bool:
883
        return core.VarDesc.VarType.BOOL
884
    elif dtype == np.uint16:
885 886 887
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
888 889
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
890 891
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
892 893 894 895
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
896
    else:
M
minqiyang 已提交
897
        raise ValueError("Not supported numpy dtype %s" % dtype)
898 899 900


def dtype_is_floating(dtype):
901 902 903
    """
    Check the data type is floating or not.
    Args:
904
        dtype(np.dtype|core.VarDesc.VarType): data type.
905 906 907 908 909
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
910
    if not isinstance(dtype, core.VarDesc.VarType):
911 912
        dtype = convert_np_dtype_to_dtype_(dtype)

913 914 915 916
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
917 918


Y
Yang Yang(Tony) 已提交
919
def _debug_string_(proto, throw_on_error=True):
920 921 922 923 924 925 926 927 928 929 930
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
931
    error_fields = list()
Y
Yang Yang(Tony) 已提交
932
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
933 934
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
935 936 937
    return proto.__str__()


938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
975
class Variable(object):
976
    """
J
Jiabin Yang 已提交
977
    **Notes**:
978
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
979

980 981
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
982 983 984
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
985
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
986 987
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
988

989
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
990
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
991

T
tianshuo78520a 已提交
992
    Most of a Variable's member variables can be set to be None. It mean
993
    it is not available or will be specified later.
994

995
    Examples:
996 997
        In Static Graph Mode:

998 999
        .. code-block:: python

1000
            import paddle.fluid as fluid
1001
            cur_program = fluid.Program()
1002 1003 1004 1005
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1006

J
Jiabin Yang 已提交
1007
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1008 1009 1010 1011 1012 1013 1014 1015 1016

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1017 1018
    """

Y
Yu Yang 已提交
1019 1020
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1021
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1022 1023 1024 1025
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1026
                 capacity=None,
Q
QI JUN 已提交
1027
                 persistable=None,
F
fengjiayi 已提交
1028
                 error_clip=None,
Y
Yu Yang 已提交
1029
                 stop_gradient=False,
F
fengjiayi 已提交
1030
                 is_data=False,
H
Huihuang Zheng 已提交
1031
                 need_check_feed=False,
H
hong 已提交
1032
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1033
                 **kwargs):
Y
Yu Yang 已提交
1034 1035
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1036
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1037

Y
Yu Yang 已提交
1038
        if dtype is not None:
1039
            if not isinstance(dtype, core.VarDesc.VarType):
1040
                dtype = convert_np_dtype_to_dtype_(dtype)
1041

S
Steffy-zxf 已提交
1042 1043 1044 1045
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1046 1047
        self.belong_to_optimizer = belong_to_optimizer

1048 1049 1050 1051 1052
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1053

1054 1055 1056
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1057

1058 1059 1060
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1061 1062
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1063 1064
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1065

1066
        if shape is not None:
1067
            if is_new_var:
1068 1069 1070 1071 1072 1073
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1074 1075
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1076 1077 1078 1079 1080 1081 1082
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1083 1084
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1085 1086 1087 1088 1089 1090 1091 1092 1093
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1094 1095
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1096 1097 1098 1099 1100 1101 1102 1103 1104
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1105 1106
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1107 1108
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1109

1110 1111
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1112

1113 1114 1115 1116 1117 1118 1119
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1120

1121 1122
        self.block.vars[name] = self
        self.op = None
1123
        self.stop_gradient = stop_gradient
1124
        self.is_data = is_data
Y
Yu Yang 已提交
1125

1126 1127 1128
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1129 1130
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1131

1132
        Returns:
J
Jiabin Yang 已提交
1133
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1134 1135 1136 1137

        Examples:
            .. code-block:: python

1138
                import paddle
1139

1140 1141 1142 1143
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1144

1145 1146
                # create a detached Variable
                y = x.detach()
1147
        """
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1163

1164
    @fake_interface_only
1165
    def numpy(self):
1166
        """
J
Jiabin Yang 已提交
1167
        **Notes**:
T
tianshuo78520a 已提交
1168
            **This API is ONLY available in Dygraph mode**
1169

J
Jiabin Yang 已提交
1170
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1171 1172 1173 1174 1175

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1176
            ndarray: dtype is same as current Variable
1177 1178 1179 1180 1181 1182

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1183
                from paddle.fluid.dygraph import Linear
1184 1185 1186 1187
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1188
                    linear = Linear(32, 64)
1189
                    data = to_variable(data)
1190
                    x = linear(data)
1191 1192 1193
                    print(x.numpy())

        """
1194
        pass
1195

1196
    @fake_interface_only
1197
    def backward(self, retain_graph=False):
1198
        """
J
Jiabin Yang 已提交
1199
        **Notes**:
T
tianshuo78520a 已提交
1200
            **This API is ONLY available in Dygraph mode**
1201

1202
        Run backward of current Graph which starts from current Tensor.
1203

J
Jiabin Yang 已提交
1204
        Args:
1205 1206 1207 1208
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1209

J
Jiabin Yang 已提交
1210 1211
        Returns:
            NoneType: None
1212 1213 1214 1215 1216

        Examples:
            .. code-block:: python

                import numpy as np
1217 1218
                import paddle
                paddle.disable_static()
1219 1220

                x = np.ones([2, 2], np.float32)
1221 1222 1223 1224 1225 1226 1227
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1228 1229
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1230
                loss.backward()
1231 1232

        """
1233
        pass
1234

1235
    @fake_interface_only
1236
    def gradient(self):
1237
        """
J
Jiabin Yang 已提交
1238
        **Notes**:
T
tianshuo78520a 已提交
1239
            **This API is ONLY available in Dygraph mode**
1240 1241 1242

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1243
        Returns:
1244
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1245 1246 1247 1248 1249 1250 1251

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1252
                # example1: return ndarray
1253 1254 1255 1256 1257 1258 1259 1260 1261
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1262
                    loss2.backward()
1263 1264
                    print(loss2.gradient())

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1278
        """
1279
        pass
1280

1281
    @fake_interface_only
1282
    def clear_gradient(self):
1283
        """
J
Jiabin Yang 已提交
1284
        **Notes**:
T
tianshuo78520a 已提交
1285
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1286 1287

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1288

J
Jiabin Yang 已提交
1289
        Clear  (set to ``0`` ) the Gradient of Current Variable
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1308
                    loss2.backward()
1309 1310 1311 1312 1313
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1314
        pass
X
Xin Pan 已提交
1315

1316 1317 1318 1319
    @fake_interface_only
    def register_hook(self, hook):
        pass

1320
    def __str__(self):
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1337 1338
                import paddle
                import paddle.static as static
1339

1340 1341 1342
                paddle.enable_static()

                cur_program = static.Program()
1343 1344 1345 1346 1347 1348
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1349 1350
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1351
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1352 1353
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1354 1355
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1356
        else:
1357 1358
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1359

1360
        if self.is_parameter:
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1371
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1372
        dist_context = get_default_distributed_context()
1373 1374
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1375
            var_str += ", {name} = {value}".format(
1376
                name="dist_attr", value=dist_tensor)
1377

1378
        return var_str
Y
Yang Yang(Tony) 已提交
1379

F
update  
fengjiayi 已提交
1380
    def to_string(self, throw_on_error, with_details=False):
1381 1382 1383
        """
        Get debug string.

J
Jiabin Yang 已提交
1384 1385 1386 1387 1388
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1389

1390 1391
        Returns:
            str: The debug string.
1392 1393 1394 1395 1396

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1397
                import paddle
1398

1399
                paddle.enable_static()
1400 1401 1402 1403 1404
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1405
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1406
                print("=============with detail===============")
1407
                print(new_variable.to_string(True, True))
1408
        """
F
update  
fengjiayi 已提交
1409 1410
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1411
        protostr = self.desc.serialize_to_string()
1412
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1413 1414
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1415
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1416
            for attr_name in additional_attr:
1417 1418 1419
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1420
        return res_str
1421 1422 1423

    __repr__ = __str__

1424
    @property
1425
    def stop_gradient(self):
J
Jiabin Yang 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1441 1442
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1443 1444 1445
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1446 1447
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1448 1449 1450 1451
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1452
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1453 1454
                assert (out1.gradient() == 0).all()
        """
1455
        return self.desc.stop_gradient()
1456

1457 1458
    @stop_gradient.setter
    def stop_gradient(self, s):
1459
        self.desc.set_stop_gradient(s)
1460

1461 1462
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1484
        return self.desc.persistable()
1485

Y
Yu Yang 已提交
1486 1487
    @persistable.setter
    def persistable(self, p):
1488
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1489

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1515 1516
    @property
    def name(self):
J
Jiabin Yang 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1533
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1534

1535 1536 1537 1538 1539 1540
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1541 1542
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1555 1556
    @name.setter
    def name(self, new_name):
1557
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1558

Y
Yu Yang 已提交
1559 1560
    @property
    def shape(self):
J
Jiabin Yang 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1578
        # convert to tuple, make it as same as numpy API.
1579
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1580 1581

    @property
F
fengjiayi 已提交
1582
    def dtype(self):
J
Jiabin Yang 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1599
        return self.desc.dtype()
Y
Yu Yang 已提交
1600 1601 1602

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1624 1625 1626
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1627
        return self.desc.lod_level()
Y
Yu Yang 已提交
1628

Y
Yu Yang 已提交
1629 1630
    @property
    def type(self):
J
Jiabin Yang 已提交
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1647
        return self.desc.type()
Y
Yu Yang 已提交
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1732
    def _set_error_clip(self, error_clip):
1733 1734 1735 1736 1737 1738 1739 1740 1741
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1742 1743
        self.error_clip = error_clip

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1784
            raise ValueError("slice step can not be zero")
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1860
    def _cloneVar(self, copy=False):
1861 1862
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1863 1864
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1865 1866 1867 1868
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1869
        new_var = self._cloneVar()
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1880
        new_var = self._cloneVar()
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1891
                return self._cloneVar(True)
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1910
                return self._cloneVar(True)
1911
            index = int(item)
1912
            if (index > 0 and index >= self.shape[axis]) \
1913 1914 1915 1916 1917 1918 1919
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1920
        return _getitem_impl_(self, item)
1921

1922
    def __setitem__(self, item, value):
1923
        return _setitem_impl_(self, item, value)
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2071 2072 2073 2074
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2075 2076 2077 2078 2079 2080 2081
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2191

F
fengjiayi 已提交
2192 2193 2194
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2195

2196 2197
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2198 2199 2200 2201
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2202
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2203 2204 2205 2206 2207
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2208 2209 2210 2211
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2221
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2222 2223 2224 2225 2226 2227
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2228 2229 2230 2231 2232 2233 2234 2235
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2236 2237
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2238 2239
        return self.op_proto_map[type]

2240 2241
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2242
        custom_op_names = []
2243 2244 2245
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2246 2247 2248
                custom_op_names.append(proto.type)

        return custom_op_names
2249

2250 2251 2252 2253
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2254
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2255
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2256 2257
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2258 2259
        }

F
fengjiayi 已提交
2260

X
Xin Pan 已提交
2261
class Operator(object):
2262
    """
2263 2264 2265 2266 2267 2268 2269
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2270
        type(str): The type of operator. Default None.
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2291
        Block.append_op or Block._prepend_op instead.
2292 2293 2294 2295

    Examples:
        .. code-block:: python

2296
            import paddle.fluid as fluid
2297
            cur_program = fluid.Program()
2298 2299 2300 2301 2302
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2303
    """
2304
    OP_WITHOUT_KERNEL_SET = {
2305 2306
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2307
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2308 2309
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2310
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2311 2312
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2313
    }
2314

Y
Yu Yang 已提交
2315 2316
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2317
                 desc,
Y
Yu Yang 已提交
2318 2319 2320
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2321
                 attrs=None):
L
lujun 已提交
2322
        if in_dygraph_mode():
2323 2324
            if type is None:
                raise ValueError(
2325
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2326
            self._type = type
M
minqiyang 已提交
2327
            self.attrs = attrs if attrs else {}
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2342
                )] = self.block.program._op_role
2343 2344 2345

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2346 2347
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2348 2349 2350 2351 2352

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2353 2354 2355 2356 2357
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2358 2359 2360
                return
            if type is None:
                raise ValueError(
2361
                    "`type` to initialized an Operator can not be None.")
2362 2363
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2364 2365 2366 2367 2368 2369 2370
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2371 2372 2373 2374 2375 2376 2377

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2395 2396 2397 2398 2399
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2400

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2414
                        if not isinstance(in_args, (list, tuple)):
2415 2416 2417 2418 2419 2420
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2421
                        for index, arg in enumerate(in_args):
2422 2423 2424 2425
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2426
                            elif isinstance(arg, (Variable, core.VarBase)):
2427
                                in_arg_names.append(cpt.to_text(arg.name))
2428
                            else:
2429 2430 2431 2432
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2433 2434
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2459 2460 2461 2462
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2463
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2464
                        if not in_dygraph_mode():
2465 2466 2467 2468
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2487
    def _has_kernel(self, op_type):
2488 2489
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2490
    def to_string(self, throw_on_error):
2491
        """
2492 2493
        Get debug string.

2494
        Args:
2495 2496
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2497

2498 2499
        Returns:
            str: The debug string.
2500 2501

        """
2502
        protostr = self.desc.serialize_to_string()
2503
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2504 2505
        return _debug_string_(proto, throw_on_error)

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2538
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2591
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2592
        dist_context = get_default_distributed_context()
2593 2594
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2595
            attrs_str += ", {name} = {value}".format(
2596
                name="dist_attr", value=dist_op)
2597

2598 2599
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2600 2601
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2602 2603 2604 2605 2606
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2607
    def __str__(self):
2608
        return self._to_readable_code()
2609 2610 2611

    __repr__ = __str__

F
fengjiayi 已提交
2612 2613
    @property
    def type(self):
2614
        return self.desc.type()
F
fengjiayi 已提交
2615 2616

    def input(self, name):
2617
        r"""
2618
        Get the input arguments according to the input parameter name.
2619

2620 2621
        Args:
            name(str): The input parameter name.
2622

2623 2624 2625
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2626
        """
F
fengjiayi 已提交
2627 2628
        return self.desc.input(name)

W
Wu Yi 已提交
2629
    def _rename_input(self, old_name, new_name):
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2640
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2641

W
Wu Yi 已提交
2642
    def _rename_output(self, old_name, new_name):
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2653
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2654

F
fengjiayi 已提交
2655 2656 2657 2658
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2659 2660 2661 2662 2663 2664 2665 2666
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2667
    def output(self, name):
2668
        r"""
2669
        Get output arguments by the output parameter name.
2670

2671 2672
        Args:
            name(str): The output parameter name.
2673

2674 2675 2676
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2677
        """
F
fengjiayi 已提交
2678 2679 2680 2681 2682 2683
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2684 2685 2686 2687 2688 2689 2690 2691
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2692
    def has_attr(self, name):
2693
        """
2694 2695
        Whether this Operator has the attribute with name or not.

2696
        Args:
2697
            name(str): the attribute name.
2698

2699 2700
        Returns:
            bool: True if has this attribute.
2701 2702

        """
F
fengjiayi 已提交
2703 2704 2705
        return self.desc.has_attr(name)

    def attr_type(self, name):
2706
        """
2707
        Get the type of attribute by attribute's name.
2708

2709 2710
        Args:
            name(str): the attribute name.
2711

2712 2713
        Returns:
            core.AttrType: the attribute type.
2714
        """
F
fengjiayi 已提交
2715 2716
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2717
    def _set_attr(self, name, val):
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2728 2729
        self._update_desc_attr(name, val)

2730 2731 2732
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2744 2745
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2746 2747
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2748
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2749 2750 2751 2752
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2753
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2754

F
fengjiayi 已提交
2755 2756 2757 2758 2759
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2760
        """
2761 2762
        Get the attribute by name.

2763
        Args:
2764
            name(str): the attribute name.
2765

2766 2767
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2768 2769
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2770
        return self.desc.attr(name)
Y
Yu Yang 已提交
2771

W
Wu Yi 已提交
2772
    def _block_attr_id(self, name):
2773
        """
G
gongweibao 已提交
2774
        Get the block attribute's id by name.
2775

2776 2777
        Args:
            name(str): the attribute name.
2778

2779 2780
        Returns:
            int: the block index.
2781
        """
W
Wu Yi 已提交
2782
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2783

W
Wu Yi 已提交
2784
    def _block_attr(self, name):
G
gongweibao 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2795
        id = self._block_attr_id(name)
G
gongweibao 已提交
2796 2797 2798
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2799
    def _blocks_attr(self, name):
G
gongweibao 已提交
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2810
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2811 2812 2813 2814 2815
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2816
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2827
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2828

J
JiayiFeng 已提交
2829
    def all_attrs(self):
F
fengjiayi 已提交
2830
        """
2831 2832 2833
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2834
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2835 2836 2837 2838
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2839 2840
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2841
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2842 2843 2844
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2845
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2846 2847 2848 2849
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2850 2851
        return attr_map

2852 2853 2854
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2855 2856 2857 2858

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2859 2860 2861
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2862 2863 2864 2865 2866 2867 2868 2869

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2870 2871
            return False

2872 2873 2874 2875 2876 2877
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2903

Y
Yu Yang 已提交
2904
class Block(object):
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2919
        use `Program._create_block()` to create a block.
2920 2921 2922 2923

    Examples:
        .. code-block:: python

2924 2925 2926
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2927 2928 2929 2930 2931 2932 2933 2934 2935
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2936
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2937
        self.desc = program.desc.block(idx)
2938
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2939
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2940
        self.program = program
2941
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2942

2943
    def __str__(self):
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2978
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2990

F
fengjiayi 已提交
2991 2992
    def to_string(self, throw_on_error, with_details=False):
        """
2993 2994
        Get debug string.

F
fengjiayi 已提交
2995 2996
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2997
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2998
            with_details(bool): more details about variables and parameters
2999 3000
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3001

3002 3003
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3004 3005 3006 3007
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3008
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3009 3010
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3011
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3012
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3013
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3014
            for op in self.ops:
F
fengjiayi 已提交
3015 3016
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3017 3018 3019
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3020 3021
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3022 3023
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3024 3025 3026

    __repr__ = __str__

Y
Yu Yang 已提交
3027 3028
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3029
        return self.desc.parent
Y
Yu Yang 已提交
3030

Y
Yu Yang 已提交
3031 3032 3033 3034
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3035
    def _set_forward_block_idx(self, idx):
3036 3037 3038 3039 3040 3041 3042 3043 3044
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3045
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3046

3047 3048 3049 3050 3051 3052 3053 3054
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3055 3056
    @property
    def idx(self):
Y
Yu Yang 已提交
3057
        return self.desc.id
Y
Yu Yang 已提交
3058

Q
Qiao Longfei 已提交
3059
    def var(self, name):
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3073
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3074 3075 3076
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3077 3078
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3079
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3080
        return v
Q
Qiao Longfei 已提交
3081

X
Xin Pan 已提交
3082
    def _find_var_recursive(self, name):
3083 3084 3085 3086 3087 3088 3089
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3090
            Variable: the Variable with the giving name. Or None if not found.
3091
        """
Y
Yu Yang 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3116
        return None
Y
Yu Yang 已提交
3117

X
Xin Pan 已提交
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3137

Q
Qiao Longfei 已提交
3138
    def all_parameters(self):
3139
        return list(self.iter_parameters())
3140

3141
    def iter_parameters(self):
M
minqiyang 已提交
3142
        return (item[1] for item in six.iteritems(self.vars)
3143
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3144

Y
Yu Yang 已提交
3145
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3146 3147 3148
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3149 3150 3151
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3152
        return var
Y
Yu Yang 已提交
3153

Q
Qiao Longfei 已提交
3154 3155 3156
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3157
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3158 3159
        """
        Rename variable in vars and ops' inputs and outputs
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3172
        """
M
minqiyang 已提交
3173 3174
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3175

T
typhoonzero 已提交
3176
        if not self.has_var(name):
3177
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3178 3179
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3180
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3181 3182 3183 3184 3185 3186
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3187
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3188 3189 3190 3191
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3192
        orig_var_type = v.type
M
minqiyang 已提交
3193
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3194
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3195
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3196
        if var_type == "Parameter":
L
Leo Chen 已提交
3197 3198
            if in_dygraph_mode():
                var = ParamBase(
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3209 3210
                var = Parameter(
                    self,
3211 3212 3213 3214 3215 3216 3217 3218 3219
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3220
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3221 3222
            var = Variable(
                self,
T
typhoonzero 已提交
3223
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3224 3225 3226 3227
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3228
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3229 3230 3231
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3232
        self._sync_with_cpp()
3233
        return var
T
typhoonzero 已提交
3234

3235 3236 3237
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3238
        self.desc._remove_var(cpt.to_bytes(name))
3239 3240
        del self.vars[name]

Y
Yu Yang 已提交
3241 3242
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3243
        param = None
L
Leo Chen 已提交
3244
        if in_dygraph_mode():
3245
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3246 3247
        else:
            param = Parameter(global_block, *args, **kwargs)
3248

3249
        if 'initializer' in kwargs:
3250 3251 3252 3253 3254

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3255
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3256
                        # are treated as initialization ops that cause error.
3257
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3258 3259 3260 3261 3262
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3263
                            continue
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3275
                # TODO already inited, do nothing, should log a warning
3276 3277 3278
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3279
        return param
Y
Yu Yang 已提交
3280

Y
Yu Yang 已提交
3281
    def append_op(self, *args, **kwargs):
3282 3283 3284 3285 3286 3287
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3288
        if in_dygraph_mode():
3289
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3290
            type = kwargs.get("type", None)
3291 3292 3293
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3294
                type=type,
M
minqiyang 已提交
3295 3296
                inputs=None,
                outputs=None,
3297
                attrs=attrs)
3298

M
minqiyang 已提交
3299 3300 3301
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3302
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3303 3304

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3305
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3306 3307
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3308
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3309
        else:
3310 3311
            from paddle.fluid.dygraph.base import param_guard

3312
            op_desc = self.desc.append_op()
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3326

M
minqiyang 已提交
3327
            self.ops.append(op)
M
minqiyang 已提交
3328

3329 3330
        return op

W
Wu Yi 已提交
3331
    def _insert_op(self, index, *args, **kwargs):
3332 3333 3334 3335 3336 3337 3338 3339 3340
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3341
        self._sync_with_cpp()
F
fangshuixun007 已提交
3342
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3343

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3361 3362 3363 3364 3365 3366 3367 3368 3369
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3370 3371
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3372
        self.desc._remove_op(index, index + 1)
3373 3374
        del self.ops[index]

W
Wu Yi 已提交
3375
    def _slice_ops(self, start, end):
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3386
        return self.ops[start:end]
Y
Yancey1989 已提交
3387

W
Wu Yi 已提交
3388
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3389
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3390 3391
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3392
            op = Operator(
J
Jiabin Yang 已提交
3393
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3394

J
Jiabin Yang 已提交
3395
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3396
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3397 3398
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3399
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3400
        else:
3401 3402 3403 3404 3405 3406 3407 3408
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3409
            self.ops.insert(0, op)
3410

Y
Yu Yang 已提交
3411 3412
        return op

W
Wu Yi 已提交
3413
    def _sync_with_cpp(self):
3414
        """
3415 3416
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3417
        """
Q
Qiao Longfei 已提交
3418 3419 3420
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3438

3439
        # sync variables removed from c++ end
3440
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3441
            if not self.desc.find_var(cpt.to_bytes(var)):
3442 3443
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3444
        # sync operators from cpp
3445 3446 3447 3448
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3465 3466 3467 3468 3469

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3470
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3471 3472 3473 3474 3475 3476 3477

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3491 3492 3493 3494
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3495
    def _copy_param_info_from(self, other):
3496
        """
3497 3498
        Copy the information of parameters from the other block.

3499
        Args:
3500 3501 3502 3503 3504
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3505 3506 3507 3508 3509

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3510 3511
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3512
        for p in other.iter_parameters():
3513 3514 3515
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3516 3517
                # if the Parameter is pruned, v may be None
                continue
3518
            assert isinstance(v, Variable)
3519
            new_p = None
L
Leo Chen 已提交
3520 3521
            if in_dygraph_mode():
                new_p = ParamBase(
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3533 3534
                new_p = Parameter(
                    block=self,
3535 3536 3537
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3538 3539
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3540 3541 3542 3543 3544 3545
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3546 3547
            self.vars[new_p.name] = new_p

3548
    def _clone_variable(self, var, force_persistable=True):
3549 3550
        """
        Clone a variable into current block.
3551

3552 3553
        Args:
            var: the variable to be cloned.
3554 3555 3556
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3557 3558

        Returns:
3559
            Variable: the new  variable cloned from 'var' in current block.
3560 3561
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3562 3563 3564 3565 3566
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3567 3568
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3569
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3570 3571 3572 3573 3574 3575
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3576
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3577 3578
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3579 3580 3581 3582 3583 3584 3585
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3586
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3587 3588
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3589
        return ret_var
3590

Y
Yu Yang 已提交
3591

3592 3593 3594 3595 3596 3597
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3709
    def remove_input_by_id(self, node_id):
3710 3711 3712 3713 3714 3715
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3716
        self.node.remove_input(node_id)
3717

3718
    def remove_input(self, node):
3719 3720 3721 3722
        """
        Remove a node from inputs.

        Args:
3723
            node(IrNode): the node being removed.
3724
        """
3725
        self.node.remove_input(node.node)
3726

3727
    def append_input(self, node):
3728 3729 3730 3731
        """
        Append a node in inputs.

        Args:
3732
            node(IrNode): the node being appended.
3733
        """
3734
        self.node.append_input(node.node)
3735 3736 3737 3738 3739 3740 3741 3742

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3743
    def remove_output_by_id(self, node_id):
3744 3745 3746 3747 3748 3749
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3750
        self.node.remove_output(node_id)
3751

3752
    def remove_output(self, node):
3753 3754 3755 3756
        """
        Remove a node from outputs.

        Args:
3757
            node(IrNode): the node being removed.
3758
        """
3759
        self.node.remove_output(node.node)
3760

3761
    def append_output(self, node):
3762 3763 3764 3765
        """
        Append a node in outputs.

        Args:
3766
            node(IrNode): the node being appended.
3767
        """
3768
        self.node.append_output(node.node)
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3816
            "The node variable description can not be None."
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3827
            "The node variable description can not be None."
3828 3829
        return self.node.var().persistable()

3830 3831 3832 3833 3834 3835 3836 3837
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3838
            "The node variable description can not be None."
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3849
            "The node variable description can not be None."
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3860
            "The node variable description can not be None."
3861 3862
        return self.node.var().shape()

3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3910
            "The node operator description can not be None."
3911 3912
        self.node.op()._rename_input(old_input_name, new_input_name)

3913 3914 3915 3916 3917 3918 3919 3920 3921
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3922
            "The node operator description can not be None."
3923 3924
        self.node.op()._rename_output(old_output_name, new_output_name)

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3936
            "The node operator description can not be None."
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3950
            "The node operator description can not be None."
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3961
            "The node operator description can not be None."
3962 3963
        return self.node.op().set_type(new_type)

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3979
            "The node operator description can not be None."
3980 3981 3982 3983
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3984
                all(isinstance(v, Block) for v in val):
3985 3986
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3987
                isinstance(val, core.ProgramDesc):
3988 3989 3990 3991
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3992 3993 3994 3995 3996 3997 3998 3999
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4000
            "The node operator description can not be None."
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4011
            "The node operator description can not be None."
4012 4013
        return self.node.op().output_arg_names()

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4035 4036
class IrGraph(object):
    """
4037
    Python IrGraph. Beneath it is a core.Graph, which is used for
4038
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4039 4040
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4041 4042 4043 4044
    """

    def __init__(self, graph, for_test=False):
        """
4045 4046
        Construct an IrGraph using core.Graph.

4047 4048 4049 4050 4051 4052 4053 4054 4055
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4056 4057 4058 4059
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4060 4061 4062
        Warns:
            The method only clones the graph structure, not its attributes.

4063 4064 4065
        Returns:
            IrGraph: A new and duplicated graph.
        """
4066
        g = self.graph.clone()
4067 4068
        return IrGraph(g, self._for_test)

4069
    def is_test(self):
4070 4071 4072
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4073 4074
        return self._for_test

W
WangZhen 已提交
4075
    def all_nodes(self):
4076 4077 4078
        """
        Return all nodes included in the graph as a set.
        """
4079
        return {IrNode(node) for node in self.graph.nodes()}
4080

4081
    def all_var_nodes(self):
4082 4083 4084
        """
        Return all variable nodes included in the graph as a set.
        """
4085
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4086

4087
    def all_persistable_nodes(self):
4088 4089 4090
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4091 4092 4093 4094 4095
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4096
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4097

4098
    def all_op_nodes(self):
4099 4100 4101
        """
        Return all operator nodes included in the graph as a set.
        """
4102
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4103

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4121
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4133
            IrVarNode: the created persistable variable node.
4134
        """
4135 4136 4137 4138 4139
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4140
        return IrVarNode(self.graph.create_var_node(var_desc))
4141 4142

    def create_var_node(self, name, var_type, shape, var_dtype):
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4154
            IrVarNode: the created variable node.
4155 4156
        """

4157 4158 4159 4160
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4161
        return IrVarNode(self.graph.create_var_node(var_desc))
4162

4163 4164 4165 4166 4167 4168
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4169
    def create_var_node_from_desc(self, var_desc):
4170 4171 4172 4173 4174 4175 4176 4177
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4178
            IrVarNode: the created variable node.
4179
        """
4180
        return IrVarNode(self.graph.create_var_node(var_desc))
4181 4182

    def create_op_node(self, op_type, attrs, inputs, outputs):
4183 4184 4185 4186 4187 4188 4189
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4190
            outputs(dict): the outputs of the operator node.
4191 4192

        Returns:
4193
            IrOpNode: the created operator node.
4194
        """
4195 4196
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4197
        for attr, value in six.iteritems(attrs):
4198
            self._update_desc_attr(op_desc, attr, value)
4199
        for input_name, var_nodes in six.iteritems(inputs):
4200 4201 4202 4203
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4204
        for output_name, var_nodes in six.iteritems(outputs):
4205 4206 4207 4208
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4209
        return IrOpNode(self.graph.create_op_node(op_desc))
4210 4211

    def create_op_node_from_desc(self, op_desc):
4212 4213 4214 4215 4216 4217 4218
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4219
            IrOpNode: the created operator node.
4220
        """
4221
        return IrOpNode(self.graph.create_op_node(op_desc))
4222 4223

    def update_input_link(self, old_input_node, new_input_node, op_node):
4224 4225 4226 4227
        """
        Update the input's link of a operator node.

        Args:
4228 4229 4230
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4231
        """
4232
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4233
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4234
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4235 4236 4237 4238
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4239
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4240

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4251
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4252
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4253 4254 4255 4256 4257 4258
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4259
    def link_to(self, node_in, node_out):
4260 4261 4262 4263
        """
        Connect two nodes.

        Args:
4264 4265
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4266
        """
4267 4268 4269 4270
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4271 4272
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4273 4274

    def safe_remove_nodes(self, remove_nodes):
4275 4276 4277 4278 4279 4280 4281
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4282
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4283 4284 4285 4286
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4287 4288
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4289

Z
Zhen Wang 已提交
4290 4291 4292 4293 4294 4295 4296 4297
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4298
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4299 4300 4301 4302
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4303
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4304 4305 4306
                        ]
                    else:
                        var_nodes[each_var_name].append(
4307 4308
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4309 4310
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4311
    def has_circle(self):
4312 4313 4314 4315 4316 4317
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4318 4319 4320
        return core.has_circle(self.graph)

    def graph_num(self):
4321 4322 4323 4324 4325 4326
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4327 4328 4329
        return core.graph_num(self.graph)

    def topology_sort(self):
4330 4331 4332
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4333
        Notes: the `graph` can not contain a circle.
4334 4335

        Returns:
Z
Zhen Wang 已提交
4336
            list(IrNode): nodes in topology order.
4337
        """
4338
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4339
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4340 4341

    def build_adjacency_list(self):
4342 4343 4344 4345
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4346
            dict{IrNode: set(IrNode)}: the adjacency list.
4347
        """
4348 4349 4350 4351 4352
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4353

4354 4355 4356 4357 4358 4359 4360 4361
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4362
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4363 4364 4365 4366 4367
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4368 4369
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4370 4371 4372
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4373 4374 4375 4376 4377
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4378
        remove_ctr_vars = set()
4379
        if remove_ctr_var:
4380
            for node in self.all_var_nodes():
4381 4382 4383
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4384 4385
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4386 4387
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4388 4389 4390 4391 4392 4393
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4394 4395 4396 4397
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4398 4399
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4400 4401 4402 4403 4404 4405 4406
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4407 4408 4409
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4410
        WARN: When the graph includes backward operator nodes, the
4411 4412 4413 4414 4415 4416
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4417
        convert_pass = core.get_pass('graph_to_program_pass')
4418 4419
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4420 4421 4422 4423
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4424 4425 4426 4427 4428 4429 4430 4431
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4432 4433
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4434 4435
        return target_node

4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4452
class Program(object):
D
dzhwinter 已提交
4453
    """
4454
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4455
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4456
    it will contain nested block.
4457

J
Jiabin Yang 已提交
4458 4459 4460
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4461

J
Jiabin Yang 已提交
4462
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4463
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4464 4465 4466 4467 4468 4469 4470
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4471
    **Notes**:
4472 4473 4474
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4475 4476

    Returns:
J
Jiabin Yang 已提交
4477
        Program: An empty Program.
D
dzhwinter 已提交
4478 4479

    Examples:
4480 4481
        .. code-block:: python

4482 4483 4484 4485
            import paddle
            import paddle.static as static

            paddle.enable_static()
4486

4487 4488 4489 4490 4491
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4492
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4493 4494 4495

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4496 4497 4498

    """

4499 4500
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4501 4502
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4503 4504
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4505
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4506
        self.__op_role_var = []
T
tangwei12 已提交
4507

4508 4509
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4510
        self._is_distributed = False
4511
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4512
        self._is_chief = False
4513 4514 4515
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4516
        self._endpoints = []
4517 4518 4519
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4520
        self._trainers_endpoints = []
4521
        # the distributed lookup table names
T
tangwei12 已提交
4522
        self._distributed_lookup_table = None
4523 4524 4525

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4526 4527
        self._use_lamb = False

4528 4529 4530
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4531

4532 4533 4534
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4535
        self._program_config = None
4536

H
hutuxian 已提交
4537 4538 4539
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4540 4541 4542
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4543 4544 4545
        # appending gradients times
        self._appending_grad_times = 0

4546 4547 4548 4549
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4550 4551
        # compiled program, i.e. Graph
        self._graph = None
4552 4553
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4554

4555
    def _find_var_class_kwargs(self, new_desc):
4556 4557 4558 4559 4560 4561 4562 4563
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4633
        assert block_num == self.desc.num_blocks()
4634 4635

        # clear old blocks and desc
4636 4637 4638 4639 4640 4641 4642 4643 4644
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4645

4646
        del desc
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4676 4677
                import paddle
                import paddle.static as static
4678

4679 4680 4681
                paddle.enable_static()

                prog = static.default_main_program()
4682 4683 4684 4685 4686
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4687
                prog1 = static.default_main_program()
4688 4689 4690 4691 4692 4693 4694 4695
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4696
    @property
4697
    def _op_role(self):
Y
yuyang18 已提交
4698 4699 4700 4701 4702 4703 4704 4705
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4706
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4707 4708 4709 4710
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4711 4712
        return self._current_role

4713 4714
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4715 4716 4717
        self._current_role = role

    @property
4718
    def _op_role_var(self):
Y
yuyang18 已提交
4719
        """
4720
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4721

4722
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4723 4724 4725

        Notes: This is a very low-level API. Users should not use it directly.
        """
4726
        return self.__op_role_var
Y
yuyang18 已提交
4727

4728
    @signature_safe_contextmanager
4729 4730 4731 4732 4733
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4734 4735 4736 4737
        try:
            yield
        finally:
            self._current_role = tmp_role
4738

S
rename  
sneaxiy 已提交
4739
    @signature_safe_contextmanager
W
Wu Yi 已提交
4740
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4741 4742 4743 4744 4745 4746 4747
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4748
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4749 4750 4751

        Examples:

4752
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4753
            >>> p, g = backward(...)
W
Wu Yi 已提交
4754
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4755 4756
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4757
        tmp_role = self._current_role
4758
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4759

Y
yuyang18 已提交
4760 4761
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4762
        self.__op_role_var = [
4763 4764 4765
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4766 4767 4768 4769 4770
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4771

S
rename  
sneaxiy 已提交
4772
    @signature_safe_contextmanager
X
Xin Pan 已提交
4773
    def _lr_schedule_guard(self, is_with_opt=False):
4774 4775 4776 4777 4778 4779 4780
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4781 4782 4783 4784
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4785 4786 4787

        Examples:

4788
            >>> import paddle.fluid as fluid
4789 4790 4791 4792
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4793 4794

        tmp_role = self._current_role
4795
        tmp_var = self.__op_role_var
4796

4797 4798
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4799 4800
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4801
        # TODO(typhoonzero): how to set target learning rate var
4802
        self.__op_role_var = []
4803 4804 4805 4806 4807
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4808

4809
    def __str__(self):
Y
yuyang18 已提交
4810 4811 4812 4813 4814 4815 4816 4817 4818
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4839 4840
            import paddle
            import paddle.static as static
4841

4842 4843 4844
            paddle.enable_static()

            cur_program = static.Program()
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4856
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4857 4858 4859 4860
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4861
            program_str += '\n'
4862
        return program_str
Y
Yang Yang(Tony) 已提交
4863

F
fengjiayi 已提交
4864 4865 4866
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4867

J
Jiabin Yang 已提交
4868 4869 4870
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4871

J
Jiabin Yang 已提交
4872
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4873

H
haowang101779990 已提交
4874
        Returns:
J
Jiabin Yang 已提交
4875
            str: The debug string describe current Program.
Y
yuyang18 已提交
4876 4877

        Raises:
J
Jiabin Yang 已提交
4878
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4879

4880 4881 4882
        Examples:
            .. code-block:: python

4883 4884 4885 4886
                import paddle
                import paddle.static as static

                paddle.enable_static()
4887

4888 4889 4890
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4891
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4892
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4893
                print("program string without detail: {}".format(prog_string))
4894
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4895
        """
4896 4897 4898 4899 4900 4901 4902 4903 4904
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4905 4906 4907 4908 4909 4910
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4911 4912
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4913 4914
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4915

W
Wu Yi 已提交
4916
    def _get_desc(self):
Y
yuyang18 已提交
4917 4918 4919 4920 4921 4922 4923
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4924 4925
        return self.desc

X
version  
Xin Pan 已提交
4926 4927 4928
    def _version(self):
        return self.desc._version()

4929
    def clone(self, for_test=False):
Y
yuyang18 已提交
4930
        """
4931 4932 4933 4934
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4935

4936
        Create a new Program with forward content of original one when ``for_test=True``.
4937
        Create a new Program as same as the original one when ``for_test=False``.
4938

4939
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4940 4941 4942
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4943

4944 4945
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4946 4947
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4948
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4949

J
Jiabin Yang 已提交
4950
        For Example:
4951
          ::
L
Luo Tao 已提交
4952

4953 4954 4955 4956 4957 4958
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4959
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4960
            loss = paddle.mean(pred)
4961
            # Here we use clone before Momentum
4962 4963
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4964
            optimizer.minimize(loss)
4965

J
Jiabin Yang 已提交
4966
        Args:
4967

4968 4969
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4970

J
Jiabin Yang 已提交
4971
        Returns:
4972
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4973

Y
yuyang18 已提交
4974 4975 4976

        Examples:

4977 4978 4979 4980 4981 4982 4983
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5000
            1. To clone a test program, the sample code is:
5001 5002 5003
                .. code-block:: python

                    import six
5004 5005 5006 5007 5008 5009
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5022 5023
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5024 5025 5026

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5027 5028 5029
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5030
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5031 5032
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5033
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5034 5035
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5036
                            test_program = train_program.clone(for_test=True)
5037
                    print_prog(test_program)
J
Jiabin Yang 已提交
5038 5039 5040 5041

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5042
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5043 5044 5045 5046
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5047 5048 5049
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5050 5051 5052
                            sgd.minimize(avg_loss)


5053
            2. The clone method can be avoid if you create program for training and program for testing individually.
5054 5055 5056
                .. code-block:: python

                    import six
5057 5058 5059 5060 5061 5062
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5074

5075
                    def network():
5076
                        img = static.data(name='image', shape=[None, 784])
5077
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5078 5079
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5080
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5081 5082
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5083 5084
                        return avg_loss

5085 5086 5087 5088 5089
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5090
                            avg_loss = network()
5091
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5092
                            sgd.minimize(avg_loss)
5093
                    # the test startup program is not used.
5094 5095
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5096 5097
                            avg_loss = network()
                    print_prog(test_program_2)
5098

5099
            The two code snippets above will generate and print same programs.
5100
        """
5101

T
tangwei12 已提交
5102
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5103 5104 5105
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5106
        pruned_origin_block_id_map = None
5107
        if for_test:
5108 5109 5110 5111 5112 5113 5114 5115 5116
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5117
        else:
5118
            p = Program()
G
gongweibao 已提交
5119 5120
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5121
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5122 5123 5124
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5125 5126

            p._current_role = self._current_role
5127
            p.__op_role_var = self.__op_role_var
5128
            p._appending_grad_times = self._appending_grad_times
5129 5130
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5131

T
tangwei12 已提交
5132
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5133
            # its desc.
W
Wu Yi 已提交
5134
            p._sync_with_cpp()
5135

W
Wu Yi 已提交
5136
        p._copy_param_info_from(self)
5137
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5138
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5139
        return p
5140

5141
    def _prune(self, targets):
Y
yuyang18 已提交
5142 5143 5144 5145 5146 5147 5148 5149
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5150
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5151 5152 5153 5154
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5155
        """
5156
        return self._prune_with_input([], targets)
5157 5158

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5159
        """
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5170
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5171 5172 5173 5174 5175 5176
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5177
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5178 5179 5180
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5181 5182
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5183 5184
        if not isinstance(targets, list):
            targets = [targets]
5185 5186 5187

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5188 5189 5190
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5191

5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5208 5209 5210 5211
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5212 5213 5214
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5215
                else:
5216 5217 5218
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5219 5220 5221 5222 5223 5224

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5225 5226 5227
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5228

5229 5230 5231 5232 5233 5234 5235 5236 5237
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5238
                        # Skip optimize op except for optimize op in targets,
5239 5240 5241 5242 5243
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5244

5245
                if target_op is not None:
5246 5247 5248
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5249

5250
        res = Program()
5251 5252 5253
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5254 5255 5256
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5257
        res._sync_with_cpp()
5258 5259 5260 5261 5262

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5263 5264
        return res

X
Xin Pan 已提交
5265
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5266
        """
F
fengjiayi 已提交
5267 5268 5269 5270 5271
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5272
        3. change the :code:`is_test`
Y
yuyang18 已提交
5273 5274 5275
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5276
        Args:
X
Xin Pan 已提交
5277 5278
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5279

Y
yuyang18 已提交
5280 5281 5282 5283 5284 5285
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5286
        res = Program()
5287
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5288 5289 5290 5291

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5292
        if prune_read_op:
5293 5294 5295 5296 5297 5298 5299 5300 5301
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5302
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5303 5304

        # change all `is_test` attributes to True
M
minqiyang 已提交
5305
        for i in six.moves.range(res.desc.num_blocks()):
5306
            block = res.desc.block(i)
M
minqiyang 已提交
5307
            for j in six.moves.range(block.op_size()):
5308 5309
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5310
                    op._set_attr('is_test', True)
5311 5312 5313
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5314 5315 5316
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5317
        res._sync_with_cpp()
5318 5319
        return res

5320
    def _remove_training_info(self, clip_extra=True):
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5410 5411
        return res

5412 5413
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5414
        """
5415 5416 5417
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5418

5419 5420
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5421

J
Jiabin Yang 已提交
5422
        Args:
Y
yuyang18 已提交
5423

J
Jiabin Yang 已提交
5424
            binary_str_type (str): the binary prootbuf string.
5425

J
Jiabin Yang 已提交
5426 5427
        Returns:
            Program: A deserialized Program.
5428 5429 5430 5431

        Examples:
            .. code-block:: python

5432 5433 5434 5435
                import paddle
                import paddle.static as static

                paddle.enable_static()
5436

5437 5438 5439 5440
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5441

5442
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5443

5444
                    z = paddle.matmul(x=x, y=y)
5445

5446 5447
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5448

5449
                    print(static.default_main_program())
5450
                    print(prog_restored)
Y
yuyang18 已提交
5451
        """
5452 5453
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5454
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5455
        p._sync_with_cpp()
5456
        return p
Y
Yu Yang 已提交
5457

5458
    @staticmethod
5459
    def _construct_from_desc(desc):
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5475 5476
    @property
    def random_seed(self):
Y
yuyang18 已提交
5477
        """
J
Jiabin Yang 已提交
5478
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5479 5480
        the random seed from random device.

5481 5482
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5483 5484 5485

        Returns:
            int64: Random seed in current Program
5486

5487 5488 5489 5490

        Examples:
            .. code-block:: python

5491 5492 5493
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5494

5495 5496 5497
                paddle.enable_static()

                prog = static.default_main_program()
5498
                random_seed = prog.random_seed
5499
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5500 5501 5502
                print(random_seed)
                ## 0
                ## the default random seed is 0
5503

5504
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5505
                prog.random_seed = 1
5506
                z_var = F.dropout(x_var, 0.7)
5507

5508
                print(prog.random_seed)
5509 5510
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5511
        """
D
dzhwinter 已提交
5512 5513
        return self._seed

Q
qiaolongfei 已提交
5514 5515
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5516
        """
5517 5518
        The number of :ref:`api_guide_Block_en`  in this Program.

5519 5520
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5521 5522 5523

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5524

5525 5526 5527 5528

        Examples:
            .. code-block:: python

5529 5530 5531 5532
                import paddle
                import paddle.static as static

                paddle.enable_static()
5533

5534
                prog = static.default_main_program()
5535 5536
                num_blocks = prog.num_blocks
                print(num_blocks)
5537

5538 5539
                # print result:
                # 1
Y
yuyang18 已提交
5540
        """
Q
qiaolongfei 已提交
5541 5542
        return self.desc.num_blocks()

D
dzhwinter 已提交
5543 5544 5545
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5546 5547 5548
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5549 5550
        self._seed = seed

Y
Yu Yang 已提交
5551
    def __repr__(self):
5552
        return self.__str__()
5553

Y
Yu Yang 已提交
5554
    def global_block(self):
Y
yuyang18 已提交
5555
        """
5556 5557
        .. note::
            This API has no effect in Dygraph mode.
5558 5559 5560

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5561 5562
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5563

5564 5565 5566 5567

        Examples:
            .. code-block:: python

5568 5569 5570 5571
                import paddle
                import paddle.static as static

                paddle.enable_static()
5572

5573
                prog = static.default_main_program()
5574 5575
                gb_block = prog.global_block()
                print(gb_block)
5576

Y
yuyang18 已提交
5577
        """
Y
Yu Yang 已提交
5578 5579
        return self.blocks[0]

Q
Qiao Longfei 已提交
5580
    def block(self, index):
Y
yuyang18 已提交
5581
        """
5582 5583
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5584

5585 5586
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5587 5588
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5589

J
Jiabin Yang 已提交
5590 5591
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5592 5593 5594 5595

        Examples:
            .. code-block:: python

5596 5597 5598 5599
                import paddle
                import paddle.static as static

                paddle.enable_static()
5600

5601
                prog = static.default_main_program()
5602 5603
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5604
        """
Q
Qiao Longfei 已提交
5605 5606
        return self.blocks[index]

Y
Yu Yang 已提交
5607
    def current_block(self):
Y
yuyang18 已提交
5608
        """
5609 5610
        .. note::
            This API has no effect in Dygraph mode.
5611

J
Jiabin Yang 已提交
5612 5613
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5614

J
Jiabin Yang 已提交
5615 5616
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5617

5618 5619 5620
        Examples:
            .. code-block:: python

5621 5622 5623 5624
                import paddle
                import paddle.static as static

                paddle.enable_static()
5625

5626
                prog = static.default_main_program()
5627 5628
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5629
        """
Y
Yu Yang 已提交
5630 5631
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5632
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5633 5634 5635 5636 5637
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5638

Y
yuyang18 已提交
5639 5640 5641 5642 5643
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5644
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5645 5646 5647
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5648 5649 5650 5651
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5652
    def _rollback(self):
Y
yuyang18 已提交
5653 5654 5655 5656 5657
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5658 5659
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5660
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5671 5672 5673
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5674
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5675

W
Wu Yi 已提交
5676
    def _copy_param_info_from(self, other):
5677
        """
5678
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5679

Y
yuyang18 已提交
5680 5681 5682
        Notes: This is a very low level API. Users should not invoke it
        directly.

5683 5684 5685 5686 5687 5688 5689
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5690 5691 5692
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5693

W
Wu Yi 已提交
5694
        self.global_block()._copy_param_info_from(other.global_block())
5695

5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5707 5708 5709
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5710 5711
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5712
        self._parameters_on_pservers = other._parameters_on_pservers
5713
        self._endpoints = other._endpoints
5714
        self._ps_endpoint = other._ps_endpoint
5715 5716
        self._distributed_lookup_table = other._distributed_lookup_table

5717
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5718 5719
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5720

Y
yuyang18 已提交
5721 5722 5723
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5724 5725
        Args:
            other(Program): Other program
5726 5727 5728 5729
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5730 5731 5732 5733 5734

        Returns:
            None
        """
        if not isinstance(other, Program):
5735 5736 5737
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5738

5739 5740 5741 5742 5743
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5744 5745 5746

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5747 5748
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5749
            for var in list(block.vars.values()):
5750 5751 5752 5753 5754 5755 5756
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5757

5758
    def list_vars(self):
Y
yuyang18 已提交
5759
        """
5760
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5761

J
Jiabin Yang 已提交
5762
        Returns:
5763
            iterable Tensors: The Generator will yield every Tensor in this program.
5764 5765 5766 5767

        Examples:
            .. code-block:: python

5768 5769
                import paddle
                import paddle.static as static
5770

5771 5772 5773 5774 5775
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5776 5777
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5778

5779 5780
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5781
        """
5782
        for each_block in self.blocks:
5783
            for each_var in list(each_block.vars.values()):
5784 5785
                yield each_var

5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5796 5797 5798 5799
                import paddle
                import paddle.static as static

                paddle.enable_static()
5800

5801 5802
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5803
                hidden = static.nn.fc(x=data, size=10)
5804 5805
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5806 5807 5808 5809 5810 5811 5812

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5813 5814
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5992

5993
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5994
class Parameter(Variable):
5995
    """
5996
    Parameter is derived from Variable. A parameter is a persistable
5997
    Variable, and will be updated by optimizers after each iteration.
5998
    The training of a neural network is essentially the updating of
5999 6000
    its parameters.

6001
    Relative to a general Variable, a Parameter has several its own
6002 6003
    member variables:

6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6014 6015
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6016 6017
    """

6018 6019 6020 6021 6022 6023
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6024 6025 6026 6027 6028
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6029
        if len(shape) == 0:
6030 6031
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6032 6033 6034

        for each in shape:
            if each < 0:
6035 6036 6037
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6038 6039

        Variable.__init__(
6040 6041 6042 6043 6044 6045 6046
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6047 6048 6049 6050
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6051 6052
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6053
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6054

6055 6056
        self.need_clip = kwargs.get('need_clip', True)

6057 6058
        self.is_distributed = False

6059 6060
        self.is_parameter = True

F
fengjiayi 已提交
6061
    def __str__(self):
6062
        return self._to_readable_code()
F
fengjiayi 已提交
6063

F
update  
fengjiayi 已提交
6064 6065 6066
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6067

F
update  
fengjiayi 已提交
6068 6069 6070 6071 6072 6073 6074 6075
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6076 6077 6078 6079 6080 6081 6082 6083 6084
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6085 6086 6087 6088 6089 6090
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6091
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6092
            for attr_name in additional_attr:
6093 6094
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6095 6096
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6097 6098 6099 6100
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6101

6102 6103
class ParamBase(core.VarBase):
    """
6104 6105 6106
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6107 6108 6109
    The training of a neural network is essentially the updating of
    its ParamBase.

6110
    Relative to a general Tensor, a ParamBase has several its own
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6123 6124
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6155 6156
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6157 6158 6159 6160 6161 6162 6163

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6164 6165
        self.need_clip = kwargs.get('need_clip', True)

6166
        self.is_distributed = kwargs.get('is_distributed', False)
6167
        # self.block = default_main_program().global_block()
6168

6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6182
    def __str__(self):
6183
        """
6184
        Convert a ParamBase object to a readable string.
6185

6186
        Returns(str): A readable string.
6187 6188 6189 6190

        Examples:
            .. code-block:: python

6191
                import paddle
6192 6193 6194 6195 6196 6197 6198
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6199
        """
6200 6201
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6202

6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6214

6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6233 6234 6235 6236 6237 6238
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

6239 6240 6241
    __repr__ = __str__


Y
Yu Yang 已提交
6242
# program is a global instance.
Y
Yu Yang 已提交
6243 6244
_main_program_ = Program()
_startup_program_ = Program()
6245
_startup_program_._is_start_up_program_ = True
6246

6247

6248
def default_startup_program():
Y
Yu Yang 已提交
6249
    """
Y
yuyang18 已提交
6250 6251
    Get default/global startup program.

6252 6253
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6254

6255 6256
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6257

6258 6259
    Returns:
        Program: current default startup program.
6260

6261
    Returns type: 
6262 6263 6264 6265

    Examples:
        .. code-block:: python

6266
            import paddle
6267

6268
            paddle.enable_static()
6269 6270 6271 6272
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6273
    """
Y
Yu Yang 已提交
6274
    return _startup_program_
6275

6276

6277
def default_main_program():
Y
Yu Yang 已提交
6278
    """
6279
    This API can be used to get ``default main program`` which store the 
6280
    descriptions of Ops and tensors.
T
tangwei12 已提交
6281

6282
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6283
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6284

6285 6286
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6287
    :code:`default_main_program` when the program is not specified.
6288

6289
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6290

Y
Yu Yang 已提交
6291
    Returns:
6292
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6293 6294 6295 6296

    Examples:
        ..  code-block:: python

6297
            import paddle
6298

6299
            paddle.enable_static()
6300
            # Sample Network:
6301 6302 6303
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6304

6305 6306 6307
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6308
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6309
    """
Y
Yu Yang 已提交
6310
    return _main_program_
Y
Yu Yang 已提交
6311 6312 6313 6314 6315


def switch_main_program(program):
    """
    Switch the main program to a new program.
6316

Y
Yu Yang 已提交
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6331
    Switch the startup program to a new program
Y
Yu Yang 已提交
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6344
@signature_safe_contextmanager
Y
Yu Yang 已提交
6345 6346
def program_guard(main_program, startup_program=None):
    """
6347 6348
    :api_attr: Static Graph

6349 6350 6351
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6352

G
guofei 已提交
6353
    Args:
6354 6355
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6356 6357 6358 6359
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6360
    Examples:
6361
       .. code-block:: python
T
tangwei12 已提交
6362

6363
          import paddle
Y
yuyang18 已提交
6364

6365 6366 6367 6368 6369
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6370
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6371 6372 6373

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6374

Y
Yu Yang 已提交
6375
    Examples:
6376
       .. code-block:: python
Y
yuyang18 已提交
6377

6378
          import paddle
6379

6380 6381 6382 6383 6384
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6385

Y
Yu Yang 已提交
6386
    """
6387
    from .data_feeder import check_type
6388 6389
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6390 6391
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6392
        check_type(startup_program, 'startup_program', Program,
6393
                   'paddle.static.program_guard')
6394 6395
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6396
        startup_program = switch_startup_program(startup_program)
6397 6398 6399 6400 6401 6402
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6403 6404


W
Wu Yi 已提交
6405
def _get_var(name, program=None):
X
xuwei06 已提交
6406
    """
Y
yuyang18 已提交
6407
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6408

X
xuwei06 已提交
6409 6410 6411
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6412
        If None, default_global_program() will be used.
X
xuwei06 已提交
6413 6414 6415 6416 6417 6418 6419

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6420
    assert isinstance(program, Program)
X
xuwei06 已提交
6421 6422

    return program.global_block().var(name)
6423 6424


S
rename  
sneaxiy 已提交
6425
@signature_safe_contextmanager
L
lujun 已提交
6426 6427
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6428
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6429
    _dygraph_tracer_ = tracer
6430
    core._switch_tracer(tracer)
M
minqiyang 已提交
6431

6432 6433 6434
    try:
        yield
    finally:
6435 6436
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6437 6438


S
rename  
sneaxiy 已提交
6439
@signature_safe_contextmanager
L
lujun 已提交
6440
def _dygraph_place_guard(place):
6441 6442 6443
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6444

6445 6446
    _set_dygraph_tracer_expected_place(place)

6447 6448 6449
    try:
        yield
    finally:
6450
        _global_expected_place_ = tmp_place
6451
        _set_dygraph_tracer_expected_place(tmp_place)
6452 6453


6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6470 6471
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6472 6473 6474 6475 6476 6477 6478 6479 6480
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6481
            import paddle
6482

Z
Zhang Ting 已提交
6483 6484 6485
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6486
            if support_gpu:
Z
Zhang Ting 已提交
6487
                place = paddle.CUDAPlace(0)
6488 6489

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6490 6491 6492
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6493

Z
Zhang Ting 已提交
6494
            with paddle.static.device_guard("cpu"):
6495
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6496 6497
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6498
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6499
                out = paddle.reshape(data1, shape=shape)
6500

Z
Zhang Ting 已提交
6501 6502
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6503 6504 6505
            result = exe.run(fetch_list=[out])
    """

6506 6507 6508 6509 6510
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6511
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6512
        raise ValueError(
6513
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6514
            "when there is no need to specify device. But received %s" % device)
6515 6516
    if index:
        device = ":".join([device, index])
6517
    pre_device = switch_device(device)
6518 6519 6520 6521
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6522 6523 6524 6525 6526


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6527
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6528 6529 6530 6531 6532 6533 6534

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6535 6536
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6537 6538 6539 6540
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6541 6542
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6543 6544 6545 6546 6547 6548 6549 6550
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6551
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6562
            import paddle
G
guofei 已提交
6563 6564

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6565
            res = paddle.get_flags(flags)
G
guofei 已提交
6566 6567 6568 6569 6570 6571
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6572 6573
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6574 6575 6576 6577 6578 6579 6580
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6581 6582
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6583 6584 6585 6586 6587 6588 6589 6590
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6591 6592 6593 6594 6595 6596 6597


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6598
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6599 6600 6601 6602 6603 6604 6605 6606 6607
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6608

6609 6610 6611
    if (place == "device"):
        return core.Place()

6612
    # GPU
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6628 6629

    # XPU
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6653
    raise ValueError(
6654 6655
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret