framework.py 206.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'Variable',
59
    'require_version',
60
    'device_guard',
G
guofei 已提交
61 62
    'set_flags',
    'get_flags',
63
]
Y
Yu Yang 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
69 70
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
71
_dygraph_tracer_ = None
72
_global_expected_place_ = None
73
_current_device = None
74
global_prog_seed = 0
75
_global_flags_ = core.globals()
76

77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
185
def in_dygraph_mode():
L
lujun 已提交
186
    """
187

188 189 190 191 192 193 194
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
195 196

    Returns:
197
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
198 199 200 201

    Examples:
        .. code-block:: python

202 203 204 205 206 207 208 209
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
210 211

    """
L
lujun 已提交
212
    return _dygraph_tracer_ is not None
213 214


215 216 217
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
218
        ), "We don't support %s in imperative mode" % func.__name__
219 220 221 222 223 224 225 226
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
227 228 229 230 231 232 233 234 235
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
236
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
237 238 239 240 241
        return func(*args, **kwargs)

    return __impl__


242 243 244 245 246 247
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
248
# same base class.
249 250 251
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
252 253 254 255 256
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
257 258 259 260

    return __impl__


T
tangwei12 已提交
261 262
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


280 281
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
282
static_only = wrap_decorator(_static_only_)
283
fake_interface_only = wrap_decorator(_fake_interface_only_)
284 285


L
lujun 已提交
286 287
def _dygraph_tracer():
    return _dygraph_tracer_
288

W
Wu Yi 已提交
289

290 291 292 293
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
294
def _current_expected_place():
295 296 297
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
298 299 300 301 302 303 304 305 306 307 308
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
325 326


L
Leo Chen 已提交
327 328 329 330
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
331

L
Leo Chen 已提交
332 333 334 335 336 337 338 339 340 341 342 343
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
344
def _cpu_num():
345
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
346 347 348 349 350 351 352 353
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
354
        os.environ['CPU_NUM'] = str(1)
355
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
356 357 358 359 360 361 362 363 364 365
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
366 367


368 369 370 371 372 373 374 375 376
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
392 393 394 395
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

396
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
397 398 399 400

    Examples:
        .. code-block:: python

401 402
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
403 404 405 406
    """
    return core.is_compiled_with_cuda()


407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_gpu = paddle.is_compiled_with_rocm()
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
422
def cuda_places(device_ids=None):
L
lujun 已提交
423
    """
424 425 426 427
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
428
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
429 430

    If :code:`device_ids` is None, environment variable of
431
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
432
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
433
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
434
    If :code:`FLAGS_selected_gpus` is not set, all visible
435
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
436 437

    If :code:`device_ids` is not None, it should be the device
438
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
439
    the returned list would be 
C
Chen Weihang 已提交
440
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
441

442
    Parameters:
443
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
444 445

    Returns:
C
Chen Weihang 已提交
446
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
447 448 449 450

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
451 452
            import paddle
            import paddle.static as static
T
tangwei12 已提交
453

454 455
            # required: gpu
            
C
Chen Weihang 已提交
456 457 458
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
459 460

    """
S
sneaxiy 已提交
461 462 463
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
464
        device_ids = _cuda_ids()
S
sneaxiy 已提交
465 466 467 468 469
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
492
        
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
508
def cpu_places(device_count=None):
L
lujun 已提交
509
    """
C
Chen Weihang 已提交
510
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
511

S
add doc  
sneaxiy 已提交
512 513
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
514 515
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
516 517
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
518

519 520
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
521 522

    Returns:
C
Chen Weihang 已提交
523
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
524 525 526 527

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
528 529
            import paddle
            import paddle.static as static
T
tangwei12 已提交
530

C
Chen Weihang 已提交
531 532 533
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
534 535
    """

S
sneaxiy 已提交
536 537 538 539 540 541
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
542
    """
543
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
544 545 546

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
547 548 549 550
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
551

552 553
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
554 555

    Returns:
556
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
557 558 559 560

    Examples:
        .. code-block:: python

561
            import paddle.fluid as fluid
L
lujun 已提交
562 563 564 565 566
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
567 568 569
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
570 571
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
572 573


574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
600
@signature_safe_contextmanager
601 602
def name_scope(prefix=None):
    """
603 604
    :api_attr: Static Graph

605
    Generate hierarchical name prefix for the operators in Static Graph.
606

T
Tao Luo 已提交
607 608 609
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
610
        Don't use it in dygraph, since it will cause memory leak.
611 612

    Args:
T
Tao Luo 已提交
613
        prefix(str, optional): prefix. Default is none.
614 615 616

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
617

618 619 620
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
621
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
622
             b = a + 1
623
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
624
                c = b * 1
625
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
626
                d = c / 1
627 628 629
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
630 631 632
                g = f - 1

          # Op are created in the default main program.  
633
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
649 650
    """
    # TODO(panyx0718): Only [0-9a-z].
651
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
652 653 654
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
655
        assert prefix, "namescope prefix can not be empty."
656 657
        global _name_scope
        _name_scope = _name_scope.child(prefix)
658 659 660 661
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
662 663 664 665 666 667 668 669 670 671 672 673


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
674 675 676
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
677 678 679 680


def grad_var_name(var_name):
    """
681 682
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
683 684 685
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
686

687
def convert_np_dtype_to_dtype_(np_dtype):
688 689
    """
    Convert the data type in numpy to the data type in Paddle
690

691
    Args:
692
        np_dtype(np.dtype): the data type in numpy.
693

694 695
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
696 697

    """
698 699
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
700
        return core.VarDesc.VarType.FP32
701
    elif dtype == np.float64:
702
        return core.VarDesc.VarType.FP64
703
    elif dtype == np.float16:
704
        return core.VarDesc.VarType.FP16
705
    elif dtype == np.int32:
706
        return core.VarDesc.VarType.INT32
707
    elif dtype == np.int16:
708
        return core.VarDesc.VarType.INT16
709
    elif dtype == np.int64:
710
        return core.VarDesc.VarType.INT64
711
    elif dtype == np.bool:
712
        return core.VarDesc.VarType.BOOL
713
    elif dtype == np.uint16:
714 715 716
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
717 718
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
719 720
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
721 722 723 724
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
725
    else:
M
minqiyang 已提交
726
        raise ValueError("Not supported numpy dtype %s" % dtype)
727 728 729


def dtype_is_floating(dtype):
730 731 732
    """
    Check the data type is floating or not.
    Args:
733
        dtype(np.dtype|core.VarDesc.VarType): data type.
734 735 736 737 738
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
739
    if not isinstance(dtype, core.VarDesc.VarType):
740 741
        dtype = convert_np_dtype_to_dtype_(dtype)

742 743 744 745
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
746 747


Y
Yang Yang(Tony) 已提交
748
def _debug_string_(proto, throw_on_error=True):
749 750 751 752 753 754 755 756 757 758 759
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
760
    error_fields = list()
Y
Yang Yang(Tony) 已提交
761
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
762 763
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
764 765 766
    return proto.__str__()


767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
804
class Variable(object):
805
    """
J
Jiabin Yang 已提交
806
    **Notes**:
807
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
808

809 810
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
811 812 813
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
814
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
815 816
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
817

818
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
819
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
820

T
tianshuo78520a 已提交
821
    Most of a Variable's member variables can be set to be None. It mean
822
    it is not available or will be specified later.
823

824
    Examples:
825 826
        In Static Graph Mode:

827 828
        .. code-block:: python

829
            import paddle.fluid as fluid
830
            cur_program = fluid.Program()
831 832 833 834
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
835
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
836 837 838 839 840 841 842 843 844

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

845 846
    """

Y
Yu Yang 已提交
847 848
    def __init__(self,
                 block,
Y
Yu Yang 已提交
849
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
850 851 852 853
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
854
                 capacity=None,
Q
QI JUN 已提交
855
                 persistable=None,
F
fengjiayi 已提交
856
                 error_clip=None,
Y
Yu Yang 已提交
857
                 stop_gradient=False,
F
fengjiayi 已提交
858
                 is_data=False,
H
Huihuang Zheng 已提交
859
                 need_check_feed=False,
H
hong 已提交
860
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
861
                 **kwargs):
Y
Yu Yang 已提交
862 863
        self.block = block
        if name is None:
Y
Yu Yang 已提交
864
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
865

Y
Yu Yang 已提交
866
        if dtype is not None:
867
            if not isinstance(dtype, core.VarDesc.VarType):
868
                dtype = convert_np_dtype_to_dtype_(dtype)
869

H
hong 已提交
870 871
        self.belong_to_optimizer = belong_to_optimizer

872 873 874 875 876
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
877

878 879 880
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
881

882 883 884
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
885 886
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
887 888
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
889

890
        if shape is not None:
891
            if is_new_var:
892 893 894 895 896 897
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
898 899
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
900 901 902 903 904 905 906
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
907 908
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
909 910 911 912 913 914 915 916 917
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
918 919
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
920 921 922 923 924 925 926 927 928
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
929 930
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
931 932
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
933

934 935
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
936

937 938 939 940 941 942 943
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
944

945 946 947 948
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
949

950
    @fake_interface_only
951 952
    def detach(self):
        """
J
Jiabin Yang 已提交
953
        **Notes**:
T
tianshuo78520a 已提交
954
            **This API is ONLY available in Dygraph mode**
955

956
        Returns a new Variable, detached from the current graph.
957

958
        Returns:
J
Jiabin Yang 已提交
959
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
960

961

962 963 964 965 966
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
967
                from paddle.fluid.dygraph import Linear
968 969 970 971
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
972
                    linear = Linear(32, 64)
973
                    data = to_variable(data)
974
                    x = linear(data)
975 976 977
                    y = x.detach()

        """
978
        pass
979

980
    @fake_interface_only
981
    def numpy(self):
982
        """
J
Jiabin Yang 已提交
983
        **Notes**:
T
tianshuo78520a 已提交
984
            **This API is ONLY available in Dygraph mode**
985

J
Jiabin Yang 已提交
986
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
987 988 989 990 991

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
992
            ndarray: dtype is same as current Variable
993 994 995 996 997 998

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
999
                from paddle.fluid.dygraph import Linear
1000 1001 1002 1003
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1004
                    linear = Linear(32, 64)
1005
                    data = to_variable(data)
1006
                    x = linear(data)
1007 1008 1009
                    print(x.numpy())

        """
1010
        pass
1011

1012
    @fake_interface_only
1013
    def backward(self, retain_graph=False):
1014
        """
J
Jiabin Yang 已提交
1015
        **Notes**:
T
tianshuo78520a 已提交
1016
            **This API is ONLY available in Dygraph mode**
1017

1018
        Run backward of current Graph which starts from current Tensor.
1019

J
Jiabin Yang 已提交
1020
        Args:
1021 1022 1023 1024
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1025

J
Jiabin Yang 已提交
1026 1027
        Returns:
            NoneType: None
1028 1029 1030 1031 1032

        Examples:
            .. code-block:: python

                import numpy as np
1033 1034
                import paddle
                paddle.disable_static()
1035 1036

                x = np.ones([2, 2], np.float32)
1037 1038 1039 1040 1041 1042 1043
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1044 1045
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1046
                loss.backward()
1047 1048

        """
1049
        pass
1050

1051
    @fake_interface_only
1052
    def gradient(self):
1053
        """
J
Jiabin Yang 已提交
1054
        **Notes**:
T
tianshuo78520a 已提交
1055
            **This API is ONLY available in Dygraph mode**
1056 1057 1058

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1059
        Returns:
1060
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1061 1062 1063 1064 1065 1066 1067

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1068
                # example1: return ndarray
1069 1070 1071 1072 1073 1074 1075 1076 1077
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1078
                    loss2.backward()
1079 1080
                    print(loss2.gradient())

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1094
        """
1095
        pass
1096

1097
    @fake_interface_only
1098
    def clear_gradient(self):
1099
        """
J
Jiabin Yang 已提交
1100
        **Notes**:
T
tianshuo78520a 已提交
1101
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1102 1103

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1104

J
Jiabin Yang 已提交
1105
        Clear  (set to ``0`` ) the Gradient of Current Variable
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1124
                    loss2.backward()
1125 1126 1127 1128 1129
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1130
        pass
X
Xin Pan 已提交
1131

1132 1133 1134 1135
    @fake_interface_only
    def register_hook(self, hook):
        pass

1136
    def __str__(self):
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1153 1154
                import paddle
                import paddle.static as static
1155

1156 1157 1158
                paddle.enable_static()

                cur_program = static.Program()
1159 1160 1161 1162 1163 1164
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1165 1166
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1167
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1168 1169
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1170 1171
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1172
        else:
1173 1174
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1188

F
update  
fengjiayi 已提交
1189
    def to_string(self, throw_on_error, with_details=False):
1190 1191 1192
        """
        Get debug string.

J
Jiabin Yang 已提交
1193 1194 1195 1196 1197
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1198

1199 1200
        Returns:
            str: The debug string.
1201 1202 1203 1204 1205

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1206
                import paddle
1207

1208
                paddle.enable_static()
1209 1210 1211 1212 1213
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1214
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1215
                print("=============with detail===============")
1216
                print(new_variable.to_string(True, True))
1217
        """
F
update  
fengjiayi 已提交
1218 1219
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1220
        protostr = self.desc.serialize_to_string()
1221
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1222 1223 1224 1225
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1226 1227 1228
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1229
        return res_str
1230 1231 1232

    __repr__ = __str__

1233
    @property
1234
    def stop_gradient(self):
J
Jiabin Yang 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1250 1251
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1252 1253 1254
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1255 1256
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1257 1258 1259 1260
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1261
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1262 1263
                assert (out1.gradient() == 0).all()
        """
1264
        return self._stop_gradient
1265

1266 1267
    @stop_gradient.setter
    def stop_gradient(self, s):
1268
        self._stop_gradient = s
1269

1270 1271
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1293
        return self.desc.persistable()
1294

Y
Yu Yang 已提交
1295 1296
    @persistable.setter
    def persistable(self, p):
1297
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1298

Y
Yu Yang 已提交
1299 1300
    @property
    def name(self):
J
Jiabin Yang 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1317
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1318

1319 1320 1321 1322 1323 1324 1325 1326
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1339 1340
    @name.setter
    def name(self, new_name):
1341
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1342

Y
Yu Yang 已提交
1343 1344
    @property
    def shape(self):
J
Jiabin Yang 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1362
        # convert to tuple, make it as same as numpy API.
1363
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1364 1365

    @property
F
fengjiayi 已提交
1366
    def dtype(self):
J
Jiabin Yang 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1383
        return self.desc.dtype()
Y
Yu Yang 已提交
1384 1385 1386

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1408 1409 1410
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1411
        return self.desc.lod_level()
Y
Yu Yang 已提交
1412

Y
Yu Yang 已提交
1413 1414
    @property
    def type(self):
J
Jiabin Yang 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1431
        return self.desc.type()
Y
Yu Yang 已提交
1432

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1467
    def _set_error_clip(self, error_clip):
1468 1469 1470 1471 1472 1473 1474 1475 1476
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1477 1478
        self.error_clip = error_clip

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1519
            raise ValueError("slice step can not be zero")
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1595
    def _cloneVar(self, copy=False):
1596 1597
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1598 1599
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1600 1601 1602 1603
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1604
        new_var = self._cloneVar()
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1615
        new_var = self._cloneVar()
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1626
                return self._cloneVar(True)
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1645
                return self._cloneVar(True)
1646
            index = int(item)
1647
            if (index > 0 and index >= self.shape[axis]) \
1648 1649 1650 1651 1652 1653 1654
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1655
        return _getitem_impl_(self, item)
1656

1657
    def __setitem__(self, item, value):
1658
        return _setitem_impl_(self, item, value)
1659

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

Y
Yu Yang 已提交
1813

F
fengjiayi 已提交
1814 1815 1816
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1817

1818 1819
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1820 1821 1822 1823
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1824
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1825 1826 1827 1828 1829
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1830 1831 1832 1833
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1834 1835 1836 1837 1838 1839 1840 1841 1842
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1843
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1844 1845 1846 1847 1848 1849
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1850 1851 1852 1853 1854 1855 1856 1857
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1858 1859
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1860 1861
        return self.op_proto_map[type]

1862 1863
    def update_op_proto(self):
        op_protos = get_all_op_protos()
1864
        custom_op_names = []
1865 1866 1867
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
1868 1869 1870
                custom_op_names.append(proto.type)

        return custom_op_names
1871

1872 1873 1874 1875
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1876
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1877
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1878 1879
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1880 1881
        }

F
fengjiayi 已提交
1882

X
Xin Pan 已提交
1883
class Operator(object):
1884
    """
1885 1886 1887 1888 1889 1890 1891
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1892
        type(str): The type of operator. Default None.
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1913
        Block.append_op or Block._prepend_op instead.
1914 1915 1916 1917

    Examples:
        .. code-block:: python

1918
            import paddle.fluid as fluid
1919
            cur_program = fluid.Program()
1920 1921 1922 1923 1924
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1925
    """
1926
    OP_WITHOUT_KERNEL_SET = {
1927 1928
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1929
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
1930 1931
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
1932
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
1933 1934
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
1935
    }
1936

Y
Yu Yang 已提交
1937 1938
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1939
                 desc,
Y
Yu Yang 已提交
1940 1941 1942
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1943
                 attrs=None):
L
lujun 已提交
1944
        if in_dygraph_mode():
1945 1946
            if type is None:
                raise ValueError(
1947
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1948
            self._type = type
M
minqiyang 已提交
1949
            self.attrs = attrs if attrs else {}
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1964
                )] = self.block.program._op_role
1965 1966 1967

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1968 1969
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1970 1971 1972 1973 1974 1975 1976 1977

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1978
                    "`type` to initialized an Operator can not be None.")
1979 1980
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1981 1982 1983 1984 1985 1986 1987
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1988 1989 1990 1991 1992 1993 1994

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2026
                        if not isinstance(in_args, (list, tuple)):
2027 2028 2029 2030 2031 2032
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2033
                        for index, arg in enumerate(in_args):
2034 2035 2036 2037
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2038
                            elif isinstance(arg, (Variable, core.VarBase)):
2039
                                in_arg_names.append(cpt.to_text(arg.name))
2040
                            else:
2041 2042 2043 2044
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2045 2046
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2071 2072 2073 2074
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2075
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2076
                        if not in_dygraph_mode():
2077 2078 2079 2080
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2099
    def _has_kernel(self, op_type):
2100 2101
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2102
    def to_string(self, throw_on_error):
2103
        """
2104 2105
        Get debug string.

2106
        Args:
2107 2108
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2109

2110 2111
        Returns:
            str: The debug string.
2112 2113

        """
2114
        protostr = self.desc.serialize_to_string()
2115
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2116 2117
        return _debug_string_(proto, throw_on_error)

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2150
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2205 2206
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2207 2208 2209 2210 2211
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2212
    def __str__(self):
2213
        return self._to_readable_code()
2214 2215 2216

    __repr__ = __str__

F
fengjiayi 已提交
2217 2218
    @property
    def type(self):
2219
        return self.desc.type()
F
fengjiayi 已提交
2220 2221

    def input(self, name):
2222
        r"""
2223
        Get the input arguments according to the input parameter name.
2224

2225 2226
        Args:
            name(str): The input parameter name.
2227

2228 2229 2230
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2231
        """
F
fengjiayi 已提交
2232 2233
        return self.desc.input(name)

W
Wu Yi 已提交
2234
    def _rename_input(self, old_name, new_name):
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2245
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2246

W
Wu Yi 已提交
2247
    def _rename_output(self, old_name, new_name):
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2258
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2259

F
fengjiayi 已提交
2260 2261 2262 2263
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2264 2265 2266 2267 2268 2269 2270 2271
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2272
    def output(self, name):
2273
        r"""
2274
        Get output arguments by the output parameter name.
2275

2276 2277
        Args:
            name(str): The output parameter name.
2278

2279 2280 2281
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2282
        """
F
fengjiayi 已提交
2283 2284 2285 2286 2287 2288
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2289 2290 2291 2292 2293 2294 2295 2296
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2297
    def has_attr(self, name):
2298
        """
2299 2300
        Whether this Operator has the attribute with name or not.

2301
        Args:
2302
            name(str): the attribute name.
2303

2304 2305
        Returns:
            bool: True if has this attribute.
2306 2307

        """
F
fengjiayi 已提交
2308 2309 2310
        return self.desc.has_attr(name)

    def attr_type(self, name):
2311
        """
2312
        Get the type of attribute by attribute's name.
2313

2314 2315
        Args:
            name(str): the attribute name.
2316

2317 2318
        Returns:
            core.AttrType: the attribute type.
2319
        """
F
fengjiayi 已提交
2320 2321
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2322
    def _set_attr(self, name, val):
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2333 2334
        self._update_desc_attr(name, val)

2335 2336 2337
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2349 2350
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2351 2352
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2353
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2354 2355 2356 2357
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2358
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2359

F
fengjiayi 已提交
2360 2361 2362 2363 2364
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2365
        """
2366 2367
        Get the attribute by name.

2368
        Args:
2369
            name(str): the attribute name.
2370

2371 2372
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2373 2374
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2375
        return self.desc.attr(name)
Y
Yu Yang 已提交
2376

W
Wu Yi 已提交
2377
    def _block_attr_id(self, name):
2378
        """
G
gongweibao 已提交
2379
        Get the block attribute's id by name.
2380

2381 2382
        Args:
            name(str): the attribute name.
2383

2384 2385
        Returns:
            int: the block index.
2386
        """
W
Wu Yi 已提交
2387
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2388

W
Wu Yi 已提交
2389
    def _block_attr(self, name):
G
gongweibao 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2400
        id = self._block_attr_id(name)
G
gongweibao 已提交
2401 2402 2403
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2404
    def _blocks_attr(self, name):
G
gongweibao 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2415
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2416 2417 2418 2419 2420
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2421
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2432
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2433

J
JiayiFeng 已提交
2434
    def all_attrs(self):
F
fengjiayi 已提交
2435
        """
2436 2437 2438
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2439
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2440 2441 2442 2443
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2444 2445
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2446
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2447 2448 2449
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2450
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2451 2452 2453 2454
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2455 2456
        return attr_map

2457 2458 2459
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2460 2461 2462 2463

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2464 2465 2466
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2467 2468 2469 2470 2471 2472 2473 2474

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2475 2476
            return False

2477 2478 2479 2480 2481 2482
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2483

Y
Yu Yang 已提交
2484
class Block(object):
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2499
        use `Program._create_block()` to create a block.
2500 2501 2502 2503

    Examples:
        .. code-block:: python

2504 2505 2506
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2507 2508 2509 2510 2511 2512 2513 2514 2515
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2516
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2517
        self.desc = program.desc.block(idx)
2518
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2519
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2520
        self.program = program
2521
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2522

2523
    def __str__(self):
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2558
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2570

F
fengjiayi 已提交
2571 2572
    def to_string(self, throw_on_error, with_details=False):
        """
2573 2574
        Get debug string.

F
fengjiayi 已提交
2575 2576
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2577
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2578
            with_details(bool): more details about variables and parameters
2579 2580
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2581

2582 2583
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2584 2585 2586 2587
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2588
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2589 2590
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2591
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2592
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2593
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2594
            for op in self.ops:
F
fengjiayi 已提交
2595 2596
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2597 2598 2599
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2600 2601
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2602 2603
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2604 2605 2606

    __repr__ = __str__

Y
Yu Yang 已提交
2607 2608
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2609
        return self.desc.parent
Y
Yu Yang 已提交
2610

Y
Yu Yang 已提交
2611 2612 2613 2614
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2615
    def _set_forward_block_idx(self, idx):
2616 2617 2618 2619 2620 2621 2622 2623 2624
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2625
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2626

2627 2628 2629 2630 2631 2632 2633 2634
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2635 2636
    @property
    def idx(self):
Y
Yu Yang 已提交
2637
        return self.desc.id
Y
Yu Yang 已提交
2638

Q
Qiao Longfei 已提交
2639
    def var(self, name):
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2653
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2654 2655 2656
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2657 2658
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2659
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2660
        return v
Q
Qiao Longfei 已提交
2661

X
Xin Pan 已提交
2662
    def _find_var_recursive(self, name):
2663 2664 2665 2666 2667 2668 2669
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2670
            Variable: the Variable with the giving name. Or None if not found.
2671
        """
Y
Yu Yang 已提交
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2696
        return None
Y
Yu Yang 已提交
2697

X
Xin Pan 已提交
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2717

Q
Qiao Longfei 已提交
2718
    def all_parameters(self):
2719
        return list(self.iter_parameters())
2720

2721
    def iter_parameters(self):
M
minqiyang 已提交
2722
        return (item[1] for item in six.iteritems(self.vars)
2723
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2724

Y
Yu Yang 已提交
2725
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2726 2727 2728
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2729 2730 2731
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2732
        return var
Y
Yu Yang 已提交
2733

Q
Qiao Longfei 已提交
2734 2735 2736
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2737
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2738 2739
        """
        Rename variable in vars and ops' inputs and outputs
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2752
        """
M
minqiyang 已提交
2753 2754
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2755

T
typhoonzero 已提交
2756
        if not self.has_var(name):
2757
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2758 2759
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2760
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2761 2762 2763 2764 2765 2766
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2767
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2768 2769 2770 2771
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2772
        orig_var_type = v.type
M
minqiyang 已提交
2773
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2774
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2775
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2776
        if var_type == "Parameter":
L
Leo Chen 已提交
2777 2778
            if in_dygraph_mode():
                var = ParamBase(
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2789 2790
                var = Parameter(
                    self,
2791 2792 2793 2794 2795 2796 2797 2798 2799
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2800
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2801 2802
            var = Variable(
                self,
T
typhoonzero 已提交
2803
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2804 2805 2806 2807
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2808
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2809 2810 2811
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2812
        self._sync_with_cpp()
2813
        return var
T
typhoonzero 已提交
2814

2815 2816 2817
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2818
        self.desc._remove_var(cpt.to_bytes(name))
2819 2820
        del self.vars[name]

Y
Yu Yang 已提交
2821 2822
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2823
        param = None
L
Leo Chen 已提交
2824
        if in_dygraph_mode():
2825
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2826 2827
        else:
            param = Parameter(global_block, *args, **kwargs)
2828 2829 2830 2831 2832 2833
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2834
        if 'initializer' in kwargs:
2835 2836 2837 2838 2839

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2840
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
2841
                        # are treated as initialization ops that cause error.
2842
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
2843 2844 2845 2846 2847
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
2848
                            continue
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2860
                # TODO already inited, do nothing, should log a warning
2861 2862 2863
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2864
        return param
Y
Yu Yang 已提交
2865

Y
Yu Yang 已提交
2866
    def append_op(self, *args, **kwargs):
2867 2868 2869 2870 2871 2872
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2873
        if in_dygraph_mode():
2874
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2875
            type = kwargs.get("type", None)
2876 2877 2878
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2879
                type=type,
M
minqiyang 已提交
2880 2881
                inputs=None,
                outputs=None,
2882
                attrs=attrs)
2883

M
minqiyang 已提交
2884 2885 2886
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2887
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2888 2889

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2890
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2891 2892
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2893
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2894
        else:
2895 2896
            from paddle.fluid.dygraph.base import param_guard

2897
            op_desc = self.desc.append_op()
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
2911

M
minqiyang 已提交
2912
            self.ops.append(op)
M
minqiyang 已提交
2913

2914 2915
        return op

W
Wu Yi 已提交
2916
    def _insert_op(self, index, *args, **kwargs):
2917 2918 2919 2920 2921 2922 2923 2924 2925
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2926
        self._sync_with_cpp()
F
fangshuixun007 已提交
2927
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
2928

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
2946 2947 2948 2949 2950 2951 2952 2953 2954
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
2955 2956
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
2957
        self.desc._remove_op(index, index + 1)
2958 2959
        del self.ops[index]

W
Wu Yi 已提交
2960
    def _slice_ops(self, start, end):
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2971
        return self.ops[start:end]
Y
Yancey1989 已提交
2972

W
Wu Yi 已提交
2973
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2974
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2975 2976
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2977
            op = Operator(
J
Jiabin Yang 已提交
2978
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2979

J
Jiabin Yang 已提交
2980
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2981
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2982 2983
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2984
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2985
        else:
2986 2987 2988 2989 2990 2991 2992 2993
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2994
            self.ops.insert(0, op)
2995

Y
Yu Yang 已提交
2996 2997
        return op

W
Wu Yi 已提交
2998
    def _sync_with_cpp(self):
2999
        """
3000 3001
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3002
        """
Q
Qiao Longfei 已提交
3003 3004 3005 3006 3007
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3008
        # sync variables removed from c++ end
3009
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3010
            if not self.desc.find_var(cpt.to_bytes(var)):
3011 3012
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3013
        # sync operators from cpp
3014 3015 3016 3017
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3034 3035 3036 3037 3038

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3039
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3040 3041 3042 3043 3044 3045 3046

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3060 3061 3062 3063
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3064
    def _copy_param_info_from(self, other):
3065
        """
3066 3067
        Copy the information of parameters from the other block.

3068
        Args:
3069 3070 3071 3072 3073
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3074 3075 3076 3077 3078

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3079 3080
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3081
        for p in other.iter_parameters():
3082 3083 3084
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3085 3086
                # if the Parameter is pruned, v may be None
                continue
3087
            assert isinstance(v, Variable)
3088
            new_p = None
L
Leo Chen 已提交
3089 3090
            if in_dygraph_mode():
                new_p = ParamBase(
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3102 3103
                new_p = Parameter(
                    block=self,
3104 3105 3106
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3107 3108
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3109 3110 3111 3112 3113 3114
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3115 3116
            self.vars[new_p.name] = new_p

3117
    def _clone_variable(self, var, force_persistable=True):
3118 3119
        """
        Clone a variable into current block.
3120

3121 3122
        Args:
            var: the variable to be cloned.
3123 3124 3125
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3126 3127

        Returns:
3128
            Variable: the new  variable cloned from 'var' in current block.
3129 3130
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3131 3132 3133 3134 3135
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3136 3137
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3138
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3139 3140 3141 3142 3143 3144
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3145
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3146 3147
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3148 3149 3150 3151 3152 3153 3154
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3155
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3156 3157
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3158
        return ret_var
3159

Y
Yu Yang 已提交
3160

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3256
    def remove_input_by_id(self, node_id):
3257 3258 3259 3260 3261 3262
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3263
        self.node.remove_input(node_id)
3264

3265
    def remove_input(self, node):
3266 3267 3268 3269
        """
        Remove a node from inputs.

        Args:
3270
            node(IrNode): the node being removed.
3271
        """
3272
        self.node.remove_input(node.node)
3273

3274
    def append_input(self, node):
3275 3276 3277 3278
        """
        Append a node in inputs.

        Args:
3279
            node(IrNode): the node being appended.
3280
        """
3281
        self.node.append_input(node.node)
3282 3283 3284 3285 3286 3287 3288 3289

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3290
    def remove_output_by_id(self, node_id):
3291 3292 3293 3294 3295 3296
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3297
        self.node.remove_output(node_id)
3298

3299
    def remove_output(self, node):
3300 3301 3302 3303
        """
        Remove a node from outputs.

        Args:
3304
            node(IrNode): the node being removed.
3305
        """
3306
        self.node.remove_output(node.node)
3307

3308
    def append_output(self, node):
3309 3310 3311 3312
        """
        Append a node in outputs.

        Args:
3313
            node(IrNode): the node being appended.
3314
        """
3315
        self.node.append_output(node.node)
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3363
            "The node variable description can not be None."
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3374
            "The node variable description can not be None."
3375 3376
        return self.node.var().persistable()

3377 3378 3379 3380 3381 3382 3383 3384
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3385
            "The node variable description can not be None."
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3396
            "The node variable description can not be None."
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3407
            "The node variable description can not be None."
3408 3409
        return self.node.var().shape()

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3457
            "The node operator description can not be None."
3458 3459
        self.node.op()._rename_input(old_input_name, new_input_name)

3460 3461 3462 3463 3464 3465 3466 3467 3468
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3469
            "The node operator description can not be None."
3470 3471
        self.node.op()._rename_output(old_output_name, new_output_name)

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3483
            "The node operator description can not be None."
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3497
            "The node operator description can not be None."
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3508
            "The node operator description can not be None."
3509 3510
        return self.node.op().set_type(new_type)

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3526
            "The node operator description can not be None."
3527 3528 3529 3530
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3531
                all(isinstance(v, Block) for v in val):
3532 3533
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3534
                isinstance(val, core.ProgramDesc):
3535 3536 3537 3538
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3539 3540 3541 3542 3543 3544 3545 3546
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3547
            "The node operator description can not be None."
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3558
            "The node operator description can not be None."
3559 3560
        return self.node.op().output_arg_names()

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3582 3583
class IrGraph(object):
    """
3584
    Python IrGraph. Beneath it is a core.Graph, which is used for
3585
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3586 3587
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3588 3589 3590 3591
    """

    def __init__(self, graph, for_test=False):
        """
3592 3593
        Construct an IrGraph using core.Graph.

3594 3595 3596 3597 3598 3599 3600 3601 3602
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3603 3604 3605 3606
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3607 3608 3609
        Warns:
            The method only clones the graph structure, not its attributes.

3610 3611 3612
        Returns:
            IrGraph: A new and duplicated graph.
        """
3613
        g = self.graph.clone()
3614 3615
        return IrGraph(g, self._for_test)

3616
    def is_test(self):
3617 3618 3619
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3620 3621
        return self._for_test

W
WangZhen 已提交
3622
    def all_nodes(self):
3623 3624 3625
        """
        Return all nodes included in the graph as a set.
        """
3626
        return {IrNode(node) for node in self.graph.nodes()}
3627

3628
    def all_var_nodes(self):
3629 3630 3631
        """
        Return all variable nodes included in the graph as a set.
        """
3632
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3633

3634
    def all_persistable_nodes(self):
3635 3636 3637
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3638 3639 3640 3641 3642
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3643
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3644

3645
    def all_op_nodes(self):
3646 3647 3648
        """
        Return all operator nodes included in the graph as a set.
        """
3649
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3650

3651
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3663
            IrVarNode: the created persistable variable node.
3664
        """
3665 3666 3667 3668 3669
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3670
        return IrVarNode(self.graph.create_var_node(var_desc))
3671 3672

    def create_var_node(self, name, var_type, shape, var_dtype):
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3684
            IrVarNode: the created variable node.
3685 3686
        """

3687 3688 3689 3690
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3691
        return IrVarNode(self.graph.create_var_node(var_desc))
3692

3693 3694 3695 3696 3697 3698
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3699
    def create_var_node_from_desc(self, var_desc):
3700 3701 3702 3703 3704 3705 3706 3707
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3708
            IrVarNode: the created variable node.
3709
        """
3710
        return IrVarNode(self.graph.create_var_node(var_desc))
3711 3712

    def create_op_node(self, op_type, attrs, inputs, outputs):
3713 3714 3715 3716 3717 3718 3719
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3720
            outputs(dict): the outputs of the operator node.
3721 3722

        Returns:
3723
            IrOpNode: the created operator node.
3724
        """
3725 3726
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3727
        for attr, value in six.iteritems(attrs):
3728
            self._update_desc_attr(op_desc, attr, value)
3729
        for input_name, var_nodes in six.iteritems(inputs):
3730 3731 3732 3733
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3734
        for output_name, var_nodes in six.iteritems(outputs):
3735 3736 3737 3738
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3739
        return IrOpNode(self.graph.create_op_node(op_desc))
3740 3741

    def create_op_node_from_desc(self, op_desc):
3742 3743 3744 3745 3746 3747 3748
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3749
            IrOpNode: the created operator node.
3750
        """
3751
        return IrOpNode(self.graph.create_op_node(op_desc))
3752 3753

    def update_input_link(self, old_input_node, new_input_node, op_node):
3754 3755 3756 3757
        """
        Update the input's link of a operator node.

        Args:
3758 3759 3760
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3761
        """
3762
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3763
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3764
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3765 3766 3767 3768
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3769
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3770

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3781
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3782
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3783 3784 3785 3786 3787 3788
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3789
    def link_to(self, node_in, node_out):
3790 3791 3792 3793
        """
        Connect two nodes.

        Args:
3794 3795
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3796
        """
3797
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3798
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3799 3800
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3801 3802

    def safe_remove_nodes(self, remove_nodes):
3803 3804 3805 3806 3807 3808 3809
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3810
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3811 3812 3813 3814
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3815 3816
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3817

Z
Zhen Wang 已提交
3818 3819 3820 3821 3822 3823 3824 3825
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3826
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3827 3828 3829 3830
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3831
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3832 3833 3834
                        ]
                    else:
                        var_nodes[each_var_name].append(
3835 3836
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3837 3838
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3839
    def has_circle(self):
3840 3841 3842 3843 3844 3845
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3846 3847 3848
        return core.has_circle(self.graph)

    def graph_num(self):
3849 3850 3851 3852 3853 3854
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3855 3856 3857
        return core.graph_num(self.graph)

    def topology_sort(self):
3858 3859 3860
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3861
        Notes: the `graph` can not contain a circle.
3862 3863

        Returns:
Z
Zhen Wang 已提交
3864
            list(IrNode): nodes in topology order.
3865
        """
3866
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3867
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3868 3869

    def build_adjacency_list(self):
3870 3871 3872 3873
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3874
            dict{IrNode: set(IrNode)}: the adjacency list.
3875
        """
3876 3877 3878 3879 3880
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3881

3882 3883 3884 3885 3886 3887 3888 3889
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3890
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3891 3892 3893 3894 3895
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3896 3897
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
3898 3899 3900
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
3901 3902 3903 3904 3905
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3906
        remove_ctr_vars = set()
3907
        if remove_ctr_var:
3908
            for node in self.all_var_nodes():
3909 3910 3911
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3912 3913
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3914 3915
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3916 3917 3918 3919 3920 3921
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3922 3923 3924 3925
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3926 3927
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3928 3929 3930 3931 3932 3933 3934
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3935 3936 3937
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3938
        WARN: When the graph includes backward operator nodes, the
3939 3940 3941 3942 3943 3944
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3945
        convert_pass = core.get_pass('graph_to_program_pass')
3946 3947
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3948 3949 3950 3951
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3979
class Program(object):
D
dzhwinter 已提交
3980
    """
3981
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3982
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3983
    it will contain nested block.
3984

J
Jiabin Yang 已提交
3985 3986 3987
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3988

J
Jiabin Yang 已提交
3989
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3990
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3991 3992 3993 3994 3995 3996 3997
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3998
    **Notes**:
3999 4000 4001
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4002 4003

    Returns:
J
Jiabin Yang 已提交
4004
        Program: An empty Program.
D
dzhwinter 已提交
4005 4006

    Examples:
4007 4008
        .. code-block:: python

4009 4010 4011 4012
            import paddle
            import paddle.static as static

            paddle.enable_static()
4013

4014 4015 4016 4017 4018
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4019
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4020 4021 4022

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4023 4024 4025

    """

4026 4027
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4028 4029
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4030 4031
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4032
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4033
        self.__op_role_var = []
T
tangwei12 已提交
4034

4035 4036
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4037
        self._is_distributed = False
4038
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4039
        self._is_chief = False
4040 4041 4042
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4043
        self._endpoints = []
4044 4045 4046
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4047
        self._trainers_endpoints = []
4048
        # the distributed lookup table names
T
tangwei12 已提交
4049
        self._distributed_lookup_table = None
4050 4051 4052

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4053 4054
        self._use_lamb = False

4055 4056 4057
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4058

4059 4060 4061
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4062
        self._program_config = None
4063

H
hutuxian 已提交
4064 4065 4066
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4067 4068 4069
        # appending gradients times
        self._appending_grad_times = 0

4070 4071 4072 4073
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4074 4075 4076
        # compiled program, i.e. Graph
        self._graph = None

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4087 4088
                import paddle
                import paddle.static as static
4089

4090 4091 4092
                paddle.enable_static()

                prog = static.default_main_program()
4093 4094 4095 4096 4097
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4098
                prog1 = static.default_main_program()
4099 4100 4101 4102 4103 4104 4105 4106
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4107
    @property
4108
    def _op_role(self):
Y
yuyang18 已提交
4109 4110 4111 4112 4113 4114 4115 4116
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4117
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4118 4119 4120 4121
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4122 4123
        return self._current_role

4124 4125
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4126 4127 4128
        self._current_role = role

    @property
4129
    def _op_role_var(self):
Y
yuyang18 已提交
4130
        """
4131
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4132

4133
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4134 4135 4136

        Notes: This is a very low-level API. Users should not use it directly.
        """
4137
        return self.__op_role_var
Y
yuyang18 已提交
4138

4139
    @signature_safe_contextmanager
4140 4141 4142 4143 4144
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4145 4146 4147 4148
        try:
            yield
        finally:
            self._current_role = tmp_role
4149

S
rename  
sneaxiy 已提交
4150
    @signature_safe_contextmanager
W
Wu Yi 已提交
4151
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4152 4153 4154 4155 4156 4157 4158
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4159
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4160 4161 4162

        Examples:

4163
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4164
            >>> p, g = backward(...)
W
Wu Yi 已提交
4165
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4166 4167
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4168
        tmp_role = self._current_role
4169
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4170

Y
yuyang18 已提交
4171 4172
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4173
        self.__op_role_var = [
4174 4175 4176
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4177 4178 4179 4180 4181
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4182

S
rename  
sneaxiy 已提交
4183
    @signature_safe_contextmanager
X
Xin Pan 已提交
4184
    def _lr_schedule_guard(self, is_with_opt=False):
4185 4186 4187 4188 4189 4190 4191
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4192 4193 4194 4195
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4196 4197 4198

        Examples:

4199
            >>> import paddle.fluid as fluid
4200 4201 4202 4203
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4204 4205

        tmp_role = self._current_role
4206
        tmp_var = self.__op_role_var
4207

4208 4209
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4210 4211
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4212
        # TODO(typhoonzero): how to set target learning rate var
4213
        self.__op_role_var = []
4214 4215 4216 4217 4218
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4219

4220
    def __str__(self):
Y
yuyang18 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4250 4251
            import paddle
            import paddle.static as static
4252

4253 4254 4255
            paddle.enable_static()

            cur_program = static.Program()
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4267
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4268 4269 4270 4271
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4272
            program_str += '\n'
4273
        return program_str
Y
Yang Yang(Tony) 已提交
4274

F
fengjiayi 已提交
4275 4276 4277
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4278

J
Jiabin Yang 已提交
4279 4280 4281
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4282

J
Jiabin Yang 已提交
4283
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4284

H
haowang101779990 已提交
4285
        Returns:
J
Jiabin Yang 已提交
4286
            str: The debug string describe current Program.
Y
yuyang18 已提交
4287 4288

        Raises:
J
Jiabin Yang 已提交
4289
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4290

4291 4292 4293
        Examples:
            .. code-block:: python

4294 4295 4296 4297
                import paddle
                import paddle.static as static

                paddle.enable_static()
4298

4299 4300 4301
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4302
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4303
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4304
                print("program string without detail: {}".format(prog_string))
4305
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4306
        """
4307 4308 4309 4310 4311 4312 4313 4314 4315
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4316 4317 4318 4319 4320 4321
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4322 4323
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4324 4325
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4326

W
Wu Yi 已提交
4327
    def _get_desc(self):
Y
yuyang18 已提交
4328 4329 4330 4331 4332 4333 4334
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4335 4336
        return self.desc

X
version  
Xin Pan 已提交
4337 4338 4339
    def _version(self):
        return self.desc._version()

4340
    def clone(self, for_test=False):
Y
yuyang18 已提交
4341
        """
4342 4343 4344 4345
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4346

4347
        Create a new Program with forward content of original one when ``for_test=True``.
4348
        Create a new Program as same as the original one when ``for_test=False``.
4349

4350
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4351 4352 4353
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4354

4355 4356
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4357 4358
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4359
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4360

J
Jiabin Yang 已提交
4361
        For Example:
4362
          ::
L
Luo Tao 已提交
4363

4364 4365 4366 4367 4368 4369
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4370
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4371
            loss = paddle.mean(pred)
4372
            # Here we use clone before Momentum
4373 4374
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4375
            optimizer.minimize(loss)
4376

J
Jiabin Yang 已提交
4377
        Args:
4378

4379 4380
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4381

J
Jiabin Yang 已提交
4382
        Returns:
4383
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4384

Y
yuyang18 已提交
4385 4386 4387

        Examples:

4388 4389 4390 4391 4392 4393 4394
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4411
            1. To clone a test program, the sample code is:
4412 4413 4414
                .. code-block:: python

                    import six
4415 4416 4417 4418 4419 4420
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4433 4434
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4435 4436 4437

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4438 4439 4440
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4441
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4442 4443
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4444
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4445 4446
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4447
                            test_program = train_program.clone(for_test=True)
4448
                    print_prog(test_program)
J
Jiabin Yang 已提交
4449 4450 4451 4452

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4453
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4454 4455 4456 4457
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4458 4459 4460
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4461 4462 4463
                            sgd.minimize(avg_loss)


4464
            2. The clone method can be avoid if you create program for training and program for testing individually.
4465 4466 4467
                .. code-block:: python

                    import six
4468 4469 4470 4471 4472 4473
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4485

4486
                    def network():
4487
                        img = static.data(name='image', shape=[None, 784])
4488
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4489 4490
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4491
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4492 4493
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4494 4495
                        return avg_loss

4496 4497 4498 4499 4500
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4501
                            avg_loss = network()
4502
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4503
                            sgd.minimize(avg_loss)
4504
                    # the test startup program is not used.
4505 4506
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4507 4508
                            avg_loss = network()
                    print_prog(test_program_2)
4509

4510
            The two code snippets above will generate and print same programs.
4511
        """
4512

T
tangwei12 已提交
4513
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4514 4515 4516
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4517
        pruned_origin_block_id_map = None
4518
        if for_test:
4519 4520 4521 4522 4523 4524 4525 4526 4527
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4528
        else:
4529
            p = Program()
G
gongweibao 已提交
4530 4531
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4532
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4533 4534 4535
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4536 4537

            p._current_role = self._current_role
4538
            p.__op_role_var = self.__op_role_var
4539
            p._appending_grad_times = self._appending_grad_times
4540 4541
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4542

T
tangwei12 已提交
4543
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4544
            # its desc.
W
Wu Yi 已提交
4545
            p._sync_with_cpp()
4546

W
Wu Yi 已提交
4547
        p._copy_param_info_from(self)
4548
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4549
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4550
        return p
4551

4552
    def _prune(self, targets):
Y
yuyang18 已提交
4553 4554 4555 4556 4557 4558 4559 4560
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4561
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4562 4563 4564 4565
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4566
        """
4567
        return self._prune_with_input([], targets)
4568 4569

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4570
        """
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4581
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4582 4583 4584 4585 4586 4587
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4588
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4589 4590 4591
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4592 4593
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4594 4595
        if not isinstance(targets, list):
            targets = [targets]
4596 4597 4598

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4599 4600 4601
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4602

4603 4604 4605 4606
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4607 4608 4609
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4610
                else:
4611 4612 4613
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4614 4615 4616 4617 4618 4619 4620 4621

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4622 4623 4624 4625 4626 4627 4628 4629 4630
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4631
                        # Skip optimize op except for optimize op in targets,
4632 4633 4634 4635 4636 4637
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4638 4639 4640 4641 4642 4643 4644 4645
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4646

4647
        res = Program()
4648 4649 4650
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4651 4652 4653
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4654
        res._sync_with_cpp()
4655 4656 4657 4658 4659

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4660 4661
        return res

X
Xin Pan 已提交
4662
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4663
        """
F
fengjiayi 已提交
4664 4665 4666 4667 4668
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4669
        3. change the :code:`is_test`
Y
yuyang18 已提交
4670 4671 4672
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4673
        Args:
X
Xin Pan 已提交
4674 4675
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4676

Y
yuyang18 已提交
4677 4678 4679 4680 4681 4682
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4683
        res = Program()
4684
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4685 4686 4687 4688

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4689
        if prune_read_op:
4690 4691 4692 4693 4694 4695 4696 4697 4698
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4699
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4700 4701

        # change all `is_test` attributes to True
M
minqiyang 已提交
4702
        for i in six.moves.range(res.desc.num_blocks()):
4703
            block = res.desc.block(i)
M
minqiyang 已提交
4704
            for j in six.moves.range(block.op_size()):
4705 4706
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4707
                    op._set_attr('is_test', True)
4708 4709 4710
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
4711 4712 4713
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4714
        res._sync_with_cpp()
4715 4716
        return res

4717 4718
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4719
        """
4720 4721 4722
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4723

4724 4725
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4726

J
Jiabin Yang 已提交
4727
        Args:
Y
yuyang18 已提交
4728

J
Jiabin Yang 已提交
4729
            binary_str_type (str): the binary prootbuf string.
4730

J
Jiabin Yang 已提交
4731 4732
        Returns:
            Program: A deserialized Program.
4733 4734 4735 4736

        Examples:
            .. code-block:: python

4737 4738 4739 4740
                import paddle
                import paddle.static as static

                paddle.enable_static()
4741

4742 4743 4744 4745
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4746

4747
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4748

4749
                    z = paddle.matmul(x=x, y=y)
4750

4751 4752
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4753

4754
                    print(static.default_main_program())
4755
                    print(prog_restored)
Y
yuyang18 已提交
4756
        """
4757 4758
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4759
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4760
        p._sync_with_cpp()
4761
        return p
Y
Yu Yang 已提交
4762

4763
    @staticmethod
4764
    def _construct_from_desc(desc):
4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4780 4781
    @property
    def random_seed(self):
Y
yuyang18 已提交
4782
        """
J
Jiabin Yang 已提交
4783
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4784 4785
        the random seed from random device.

4786 4787
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4788 4789 4790

        Returns:
            int64: Random seed in current Program
4791

4792 4793 4794 4795

        Examples:
            .. code-block:: python

4796 4797 4798
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4799

4800 4801 4802
                paddle.enable_static()

                prog = static.default_main_program()
4803
                random_seed = prog.random_seed
4804
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4805 4806 4807
                print(random_seed)
                ## 0
                ## the default random seed is 0
4808

4809
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4810
                prog.random_seed = 1
4811
                z_var = F.dropout(x_var, 0.7)
4812

4813
                print(prog.random_seed)
4814 4815
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4816
        """
D
dzhwinter 已提交
4817 4818
        return self._seed

Q
qiaolongfei 已提交
4819 4820
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4821
        """
4822 4823
        The number of :ref:`api_guide_Block_en`  in this Program.

4824 4825
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4826 4827 4828

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4829

4830 4831 4832 4833

        Examples:
            .. code-block:: python

4834 4835 4836 4837
                import paddle
                import paddle.static as static

                paddle.enable_static()
4838

4839
                prog = static.default_main_program()
4840 4841
                num_blocks = prog.num_blocks
                print(num_blocks)
4842

4843 4844
                # print result:
                # 1
Y
yuyang18 已提交
4845
        """
Q
qiaolongfei 已提交
4846 4847
        return self.desc.num_blocks()

D
dzhwinter 已提交
4848 4849 4850
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4851 4852 4853
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4854 4855
        self._seed = seed

Y
Yu Yang 已提交
4856
    def __repr__(self):
4857
        return self.__str__()
4858

Y
Yu Yang 已提交
4859
    def global_block(self):
Y
yuyang18 已提交
4860
        """
4861 4862
        .. note::
            This API has no effect in Dygraph mode.
4863 4864 4865

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4866 4867
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4868

4869 4870 4871 4872

        Examples:
            .. code-block:: python

4873 4874 4875 4876
                import paddle
                import paddle.static as static

                paddle.enable_static()
4877

4878
                prog = static.default_main_program()
4879 4880
                gb_block = prog.global_block()
                print(gb_block)
4881

Y
yuyang18 已提交
4882
        """
Y
Yu Yang 已提交
4883 4884
        return self.blocks[0]

Q
Qiao Longfei 已提交
4885
    def block(self, index):
Y
yuyang18 已提交
4886
        """
4887 4888
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4889

4890 4891
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4892 4893
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4894

J
Jiabin Yang 已提交
4895 4896
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4897 4898 4899 4900

        Examples:
            .. code-block:: python

4901 4902 4903 4904
                import paddle
                import paddle.static as static

                paddle.enable_static()
4905

4906
                prog = static.default_main_program()
4907 4908
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4909
        """
Q
Qiao Longfei 已提交
4910 4911
        return self.blocks[index]

Y
Yu Yang 已提交
4912
    def current_block(self):
Y
yuyang18 已提交
4913
        """
4914 4915
        .. note::
            This API has no effect in Dygraph mode.
4916

J
Jiabin Yang 已提交
4917 4918
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4919

J
Jiabin Yang 已提交
4920 4921
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4922

4923 4924 4925
        Examples:
            .. code-block:: python

4926 4927 4928 4929
                import paddle
                import paddle.static as static

                paddle.enable_static()
4930

4931
                prog = static.default_main_program()
4932 4933
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4934
        """
Y
Yu Yang 已提交
4935 4936
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4937
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4938 4939 4940 4941 4942
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4943

Y
yuyang18 已提交
4944 4945 4946 4947 4948
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4949
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4950 4951 4952
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4953 4954 4955 4956
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4957
    def _rollback(self):
Y
yuyang18 已提交
4958 4959 4960 4961 4962
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4963 4964
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4965
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4976 4977 4978
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4979
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4980

W
Wu Yi 已提交
4981
    def _copy_param_info_from(self, other):
4982
        """
4983
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4984

Y
yuyang18 已提交
4985 4986 4987
        Notes: This is a very low level API. Users should not invoke it
        directly.

4988 4989 4990 4991 4992 4993 4994
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4995 4996 4997
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4998

W
Wu Yi 已提交
4999
        self.global_block()._copy_param_info_from(other.global_block())
5000

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5012 5013 5014
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5015 5016
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5017
        self._parameters_on_pservers = other._parameters_on_pservers
5018
        self._endpoints = other._endpoints
5019
        self._ps_endpoint = other._ps_endpoint
5020 5021
        self._distributed_lookup_table = other._distributed_lookup_table

5022
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5023 5024
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5025

Y
yuyang18 已提交
5026 5027 5028
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5029 5030
        Args:
            other(Program): Other program
5031 5032 5033 5034
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5035 5036 5037 5038 5039

        Returns:
            None
        """
        if not isinstance(other, Program):
5040 5041 5042
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5043

5044 5045 5046 5047 5048
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5049 5050 5051

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5052 5053
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5054
            for var in list(block.vars.values()):
5055 5056 5057 5058 5059 5060 5061
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5062

5063
    def list_vars(self):
Y
yuyang18 已提交
5064
        """
5065
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5066

J
Jiabin Yang 已提交
5067
        Returns:
5068
            iterable Tensors: The Generator will yield every Tensor in this program.
5069 5070 5071 5072

        Examples:
            .. code-block:: python

5073 5074
                import paddle
                import paddle.static as static
5075

5076 5077 5078 5079 5080
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5081 5082
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5083

5084 5085
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5086
        """
5087
        for each_block in self.blocks:
5088
            for each_var in list(each_block.vars.values()):
5089 5090
                yield each_var

5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5101 5102 5103 5104
                import paddle
                import paddle.static as static

                paddle.enable_static()
5105

5106 5107
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5108
                hidden = static.nn.fc(x=data, size=10)
5109 5110
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5111 5112 5113 5114 5115 5116 5117

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5118 5119
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5297

5298
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5299
class Parameter(Variable):
5300
    """
5301
    Parameter is derived from Variable. A parameter is a persistable
5302
    Variable, and will be updated by optimizers after each iteration.
5303
    The training of a neural network is essentially the updating of
5304 5305
    its parameters.

5306
    Relative to a general Variable, a Parameter has several its own
5307 5308
    member variables:

5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5319 5320
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5321 5322
    """

5323 5324 5325 5326 5327 5328
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5329 5330 5331 5332 5333
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5334
        if len(shape) == 0:
5335 5336
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5337 5338 5339

        for each in shape:
            if each < 0:
5340 5341 5342
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5343 5344

        Variable.__init__(
5345 5346 5347 5348 5349 5350 5351
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5352 5353 5354 5355
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5356 5357
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5358
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5359

5360 5361
        self.need_clip = kwargs.get('need_clip', True)

5362 5363
        self.is_distributed = False

F
fengjiayi 已提交
5364
    def __str__(self):
5365
        return self._to_readable_code()
F
fengjiayi 已提交
5366

F
update  
fengjiayi 已提交
5367 5368 5369
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5370

F
update  
fengjiayi 已提交
5371 5372 5373 5374 5375 5376 5377 5378
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5379 5380 5381 5382 5383 5384 5385 5386 5387
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5388 5389 5390 5391 5392 5393
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5394
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5395
            for attr_name in additional_attr:
5396 5397
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5398 5399
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5400 5401 5402 5403
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5404

5405 5406
class ParamBase(core.VarBase):
    """
5407 5408 5409
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5410 5411 5412
    The training of a neural network is essentially the updating of
    its ParamBase.

5413
    Relative to a general Tensor, a ParamBase has several its own
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5426 5427
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5458 5459
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5460 5461 5462 5463 5464 5465 5466

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5467 5468
        self.need_clip = kwargs.get('need_clip', True)

5469
        self.is_distributed = False
5470
        # self.block = default_main_program().global_block()
5471

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5485
    def __str__(self):
5486
        """
5487
        Convert a ParamBase object to a readable string.
5488

5489
        Returns(str): A readable string.
5490 5491 5492 5493

        Examples:
            .. code-block:: python

5494
                import paddle
5495 5496 5497 5498 5499 5500 5501
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5502
        """
5503 5504
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5505

5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5517

5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5536 5537 5538 5539 5540 5541 5542
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
    def __reduce__(self):
        value = self.numpy()
        state = (self.name, self.persistable, self.stop_gradient)
        return ParamBase, (self.shape, self.dtype), (self.__dict__, value,
                                                     state)

    def __setstate__(self, state):
        self.__dict__.update(state[0])
        t = self.value().get_tensor()
        t.set(state[1], _current_expected_place())
        self.name, self.persistable, self.stop_gradient = state[2]

5555 5556 5557
    __repr__ = __str__


Y
Yu Yang 已提交
5558
# program is a global instance.
Y
Yu Yang 已提交
5559 5560
_main_program_ = Program()
_startup_program_ = Program()
5561

5562

5563
def default_startup_program():
Y
Yu Yang 已提交
5564
    """
Y
yuyang18 已提交
5565 5566
    Get default/global startup program.

5567 5568
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5569

5570 5571
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5572

5573 5574
    Returns:
        Program: current default startup program.
5575

5576
    Returns type: 
5577 5578 5579 5580

    Examples:
        .. code-block:: python

5581
            import paddle
5582

5583
            paddle.enable_static()
5584 5585 5586 5587
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5588
    """
Y
Yu Yang 已提交
5589
    return _startup_program_
5590

5591

5592
def default_main_program():
Y
Yu Yang 已提交
5593
    """
5594
    This API can be used to get ``default main program`` which store the 
5595
    descriptions of Ops and tensors.
T
tangwei12 已提交
5596

5597
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5598
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5599

5600 5601
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5602
    :code:`default_main_program` when the program is not specified.
5603

5604
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5605

Y
Yu Yang 已提交
5606
    Returns:
5607
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5608 5609 5610 5611

    Examples:
        ..  code-block:: python

5612
            import paddle
5613

5614
            paddle.enable_static()
5615
            # Sample Network:
5616 5617 5618
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5619

5620 5621 5622
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5623
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5624
    """
Y
Yu Yang 已提交
5625
    return _main_program_
Y
Yu Yang 已提交
5626 5627 5628 5629 5630


def switch_main_program(program):
    """
    Switch the main program to a new program.
5631

Y
Yu Yang 已提交
5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5646
    Switch the startup program to a new program
Y
Yu Yang 已提交
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5659
@signature_safe_contextmanager
Y
Yu Yang 已提交
5660 5661
def program_guard(main_program, startup_program=None):
    """
5662 5663
    :api_attr: Static Graph

5664 5665 5666
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5667

G
guofei 已提交
5668
    Args:
5669 5670
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5671 5672 5673 5674
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5675
    Examples:
5676
       .. code-block:: python
T
tangwei12 已提交
5677

5678
          import paddle
Y
yuyang18 已提交
5679

5680 5681 5682 5683 5684
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5685
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5686 5687 5688

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5689

Y
Yu Yang 已提交
5690
    Examples:
5691
       .. code-block:: python
Y
yuyang18 已提交
5692

5693
          import paddle
5694

5695 5696 5697 5698 5699
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5700

Y
Yu Yang 已提交
5701
    """
5702
    from .data_feeder import check_type
5703 5704
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5705 5706
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5707
        check_type(startup_program, 'startup_program', Program,
5708
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5709
        startup_program = switch_startup_program(startup_program)
5710 5711 5712 5713 5714 5715
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5716 5717


W
Wu Yi 已提交
5718
def _get_var(name, program=None):
X
xuwei06 已提交
5719
    """
Y
yuyang18 已提交
5720
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5721

X
xuwei06 已提交
5722 5723 5724
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5725
        If None, default_global_program() will be used.
X
xuwei06 已提交
5726 5727 5728 5729 5730 5731 5732

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5733
    assert isinstance(program, Program)
X
xuwei06 已提交
5734 5735

    return program.global_block().var(name)
5736 5737


S
rename  
sneaxiy 已提交
5738
@signature_safe_contextmanager
L
lujun 已提交
5739 5740
def _dygraph_guard(tracer):
    global _dygraph_tracer_
5741
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
5742
    _dygraph_tracer_ = tracer
5743
    core._switch_tracer(tracer)
M
minqiyang 已提交
5744

5745 5746 5747
    try:
        yield
    finally:
5748 5749
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
5750 5751


S
rename  
sneaxiy 已提交
5752
@signature_safe_contextmanager
L
lujun 已提交
5753
def _dygraph_place_guard(place):
5754 5755 5756
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5757

5758 5759
    _set_dygraph_tracer_expected_place(place)

5760 5761 5762
    try:
        yield
    finally:
5763
        _global_expected_place_ = tmp_place
5764
        _set_dygraph_tracer_expected_place(tmp_place)
5765 5766


5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
5783 5784
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
5785 5786 5787 5788 5789 5790 5791 5792 5793
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
5794
            import paddle
5795

Z
Zhang Ting 已提交
5796 5797 5798
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
5799
            if support_gpu:
Z
Zhang Ting 已提交
5800
                place = paddle.CUDAPlace(0)
5801 5802

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
5803 5804 5805
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
5806

Z
Zhang Ting 已提交
5807
            with paddle.static.device_guard("cpu"):
5808
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
5809 5810
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
5811
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
5812
                out = paddle.reshape(data1, shape=shape)
5813

Z
Zhang Ting 已提交
5814 5815
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
5816 5817 5818
            result = exe.run(fetch_list=[out])
    """

5819 5820 5821 5822 5823
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5824
    if device not in ['cpu', 'gpu', 'npu', '', None]:
5825
        raise ValueError(
5826
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
5827
            "when there is no need to specify device. But received %s" % device)
5828 5829
    if index:
        device = ":".join([device, index])
5830
    pre_device = switch_device(device)
5831 5832 5833 5834
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
5853 5854
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
5883 5884
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
5885 5886 5887 5888 5889 5890 5891
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
5892 5893
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
5894 5895 5896 5897 5898 5899 5900 5901
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
5902 5903 5904 5905 5906 5907 5908


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
5909
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
5910 5911 5912 5913 5914 5915 5916 5917 5918
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
5919

5920 5921 5922
    if (place == "device"):
        return core.Place()

5923
    # GPU
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
5939 5940

    # XPU
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

5964
    raise ValueError(
5965 5966
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret