framework.py 236.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'is_compiled_with_npu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
74
_dygraph_tracer_ = None
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
80
core._disable_eager_mode()
81 82 83


@signature_safe_contextmanager
84
def _test_eager_guard(tracer=None):
J
Jiabin Yang 已提交
85
    core._enable_eager_mode()
86
    _C_ops.switch_to_eager_ops()
87 88 89 90
    if tracer is None:
        core._set_eager_tracer(_dygraph_tracer_)
    else:
        core._set_eager_tracer(tracer)
91
    try:
J
Jiabin Yang 已提交
92
        yield
93
    finally:
J
Jiabin Yang 已提交
94
        core._disable_eager_mode()
95
        _C_ops.switch_to_core_ops()
96 97


98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
205
def in_dygraph_mode():
L
lujun 已提交
206
    """
207

208 209 210 211 212 213 214
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
215 216

    Returns:
217
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
218 219 220 221

    Examples:
        .. code-block:: python

222 223 224 225 226 227 228 229
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
230 231

    """
L
lujun 已提交
232
    return _dygraph_tracer_ is not None
233 234


J
Jiabin Yang 已提交
235 236 237 238
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


239 240 241
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
242
        ), "We don't support %s in imperative mode" % func.__name__
243 244 245 246 247 248 249 250
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
251 252 253 254 255 256 257 258 259
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
260
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
261 262 263 264 265
        return func(*args, **kwargs)

    return __impl__


266 267 268 269 270
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


271 272 273 274 275 276
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
277
# same base class.
278 279 280
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
281 282 283 284 285
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
286 287 288 289

    return __impl__


T
tangwei12 已提交
290 291
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


309 310
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
311
static_only = wrap_decorator(_static_only_)
312
fake_interface_only = wrap_decorator(_fake_interface_only_)
313 314


L
lujun 已提交
315 316
def _dygraph_tracer():
    return _dygraph_tracer_
317

W
Wu Yi 已提交
318

319 320 321 322
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
323
def _current_expected_place():
324 325 326
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
327 328 329 330 331 332 333 334 335 336 337
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
338 339 340 341 342 343 344 345 346 347 348 349
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
365
    if _in_eager_mode():
366
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
367
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
368 369


L
Leo Chen 已提交
370 371 372 373
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
374

L
Leo Chen 已提交
375 376 377 378 379 380 381 382 383 384 385 386
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
387
def _cpu_num():
388
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
389 390 391 392 393 394 395 396
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
397
        os.environ['CPU_NUM'] = str(1)
398
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
399 400 401 402 403 404 405 406 407 408
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
409 410


411 412 413 414 415 416 417 418 419
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


420 421 422 423 424 425 426 427 428
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
499 500 501 502
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

503
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
504 505 506 507

    Examples:
        .. code-block:: python

508
            import paddle
509
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
510 511 512 513
    """
    return core.is_compiled_with_cuda()


514 515 516 517 518 519 520 521 522 523
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
524
            support_gpu = paddle.device.is_compiled_with_rocm()
525 526 527 528
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
529
def cuda_places(device_ids=None):
L
lujun 已提交
530
    """
531 532 533 534
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
535
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
536 537

    If :code:`device_ids` is None, environment variable of
538
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
539
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
540
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
541
    If :code:`FLAGS_selected_gpus` is not set, all visible
542
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
543 544

    If :code:`device_ids` is not None, it should be the device
545
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
546
    the returned list would be 
C
Chen Weihang 已提交
547
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
548

549
    Parameters:
550
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
551 552

    Returns:
C
Chen Weihang 已提交
553
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
554 555 556 557

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
558 559
            import paddle
            import paddle.static as static
T
tangwei12 已提交
560

561 562
            # required: gpu
            
C
Chen Weihang 已提交
563 564 565
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
566 567

    """
S
sneaxiy 已提交
568 569 570
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
571
        device_ids = _cuda_ids()
S
sneaxiy 已提交
572 573 574 575 576
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


577 578 579 580
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
581 582 583 584 585 586 587 588 589 590 591
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
592 593 594 595 596 597 598
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
599

600 601
            # required: xpu

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
658
def cpu_places(device_count=None):
L
lujun 已提交
659
    """
C
Chen Weihang 已提交
660
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
661

S
add doc  
sneaxiy 已提交
662 663
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
664 665
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
666 667
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
668

669 670
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
671 672

    Returns:
C
Chen Weihang 已提交
673
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
674 675 676 677

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
678 679
            import paddle
            import paddle.static as static
T
tangwei12 已提交
680

C
Chen Weihang 已提交
681 682 683
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
684 685
    """

S
sneaxiy 已提交
686 687 688 689 690 691
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
692
    """
693
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
694 695 696

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
697 698 699 700
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
701

702 703
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
704 705

    Returns:
706
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
707 708 709 710

    Examples:
        .. code-block:: python

711
            import paddle.fluid as fluid
L
lujun 已提交
712 713 714 715 716
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
717 718 719
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
720 721
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
722 723


724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
750
@signature_safe_contextmanager
751 752
def name_scope(prefix=None):
    """
753 754
    :api_attr: Static Graph

755
    Generate hierarchical name prefix for the operators in Static Graph.
756

T
Tao Luo 已提交
757 758 759
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
760
        Don't use it in dygraph, since it will cause memory leak.
761 762

    Args:
T
Tao Luo 已提交
763
        prefix(str, optional): prefix. Default is none.
764 765 766

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
767

768 769 770
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
771
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
772
             b = a + 1
773
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
774
                c = b * 1
775
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
776
                d = c / 1
777 778 779
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
780 781 782
                g = f - 1

          # Op are created in the default main program.  
783
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
799 800
    """
    # TODO(panyx0718): Only [0-9a-z].
801
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
802 803 804
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
805
        assert prefix, "namescope prefix can not be empty."
806 807
        global _name_scope
        _name_scope = _name_scope.child(prefix)
808 809 810 811
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
812 813 814 815 816 817 818 819 820 821 822 823


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
824 825 826
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
827 828 829 830


def grad_var_name(var_name):
    """
831 832
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
833 834 835
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
836

837
def convert_np_dtype_to_dtype_(np_dtype):
838 839
    """
    Convert the data type in numpy to the data type in Paddle
840

841
    Args:
842
        np_dtype(np.dtype): the data type in numpy.
843

844 845
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
846 847

    """
848 849
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
850
        return core.VarDesc.VarType.FP32
851
    elif dtype == np.float64:
852
        return core.VarDesc.VarType.FP64
853
    elif dtype == np.float16:
854
        return core.VarDesc.VarType.FP16
855
    elif dtype == np.int32:
856
        return core.VarDesc.VarType.INT32
857
    elif dtype == np.int16:
858
        return core.VarDesc.VarType.INT16
859
    elif dtype == np.int64:
860
        return core.VarDesc.VarType.INT64
861
    elif dtype == np.bool:
862
        return core.VarDesc.VarType.BOOL
863
    elif dtype == np.uint16:
864 865 866
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
867 868
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
869 870
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
871 872 873 874
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
875
    else:
M
minqiyang 已提交
876
        raise ValueError("Not supported numpy dtype %s" % dtype)
877 878 879


def dtype_is_floating(dtype):
880 881 882
    """
    Check the data type is floating or not.
    Args:
883
        dtype(np.dtype|core.VarDesc.VarType): data type.
884 885 886 887 888
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
889
    if not isinstance(dtype, core.VarDesc.VarType):
890 891
        dtype = convert_np_dtype_to_dtype_(dtype)

892 893 894 895
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
896 897


Y
Yang Yang(Tony) 已提交
898
def _debug_string_(proto, throw_on_error=True):
899 900 901 902 903 904 905 906 907 908 909
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
910
    error_fields = list()
Y
Yang Yang(Tony) 已提交
911
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
912 913
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
914 915 916
    return proto.__str__()


917 918 919 920 921 922 923 924 925 926
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

927 928 929 930 931 932 933 934
    if _in_eager_mode():
        eager_tensor = core.eager.EagerTensor(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
935 936 937 938 939 940 941 942 943 944 945
    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
946 947
            if _in_eager_mode():
                return issubclass(t, core.eager.EagerTensor)
948 949 950 951 952 953 954 955 956 957
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
958 959
            if _in_eager_mode():
                return issubclass(t, EagerParamBase)
960 961 962 963 964 965
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
966
class Variable(object):
967
    """
J
Jiabin Yang 已提交
968
    **Notes**:
969
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
970

971 972
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
973 974 975
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
976
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
977 978
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
979

980
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
981
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
982

T
tianshuo78520a 已提交
983
    Most of a Variable's member variables can be set to be None. It mean
984
    it is not available or will be specified later.
985

986
    Examples:
987 988
        In Static Graph Mode:

989 990
        .. code-block:: python

991
            import paddle.fluid as fluid
992
            cur_program = fluid.Program()
993 994 995 996
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
997

J
Jiabin Yang 已提交
998
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
999 1000 1001 1002 1003 1004 1005 1006 1007

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1008 1009
    """

Y
Yu Yang 已提交
1010 1011
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1012
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1013 1014 1015 1016
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1017
                 capacity=None,
Q
QI JUN 已提交
1018
                 persistable=None,
F
fengjiayi 已提交
1019
                 error_clip=None,
Y
Yu Yang 已提交
1020
                 stop_gradient=False,
F
fengjiayi 已提交
1021
                 is_data=False,
H
Huihuang Zheng 已提交
1022
                 need_check_feed=False,
H
hong 已提交
1023
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1024
                 **kwargs):
Y
Yu Yang 已提交
1025 1026
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1027
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1028

Y
Yu Yang 已提交
1029
        if dtype is not None:
1030
            if not isinstance(dtype, core.VarDesc.VarType):
1031
                dtype = convert_np_dtype_to_dtype_(dtype)
1032

S
Steffy-zxf 已提交
1033 1034 1035 1036
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1037 1038
        self.belong_to_optimizer = belong_to_optimizer

1039 1040 1041 1042 1043
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1044

1045 1046 1047
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1048

1049 1050 1051
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1052 1053
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1054 1055
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1056

1057
        if shape is not None:
1058
            if is_new_var:
1059 1060 1061 1062 1063 1064
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1065 1066
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1067 1068 1069 1070 1071 1072 1073
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1074 1075
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1076 1077 1078 1079 1080 1081 1082 1083 1084
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1085 1086
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1087 1088 1089 1090 1091 1092 1093 1094 1095
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1096 1097
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1098 1099
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1100

1101 1102
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1103

1104 1105 1106 1107 1108 1109 1110
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1111

1112 1113
        self.block.vars[name] = self
        self.op = None
1114
        self.stop_gradient = stop_gradient
1115
        self.is_data = is_data
Y
Yu Yang 已提交
1116

1117 1118 1119
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1120 1121
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1122

1123
        Returns:
J
Jiabin Yang 已提交
1124
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1125 1126 1127 1128

        Examples:
            .. code-block:: python

1129
                import paddle
1130

1131 1132 1133 1134
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1135

1136 1137
                # create a detached Variable
                y = x.detach()
1138
        """
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1154

1155
    @fake_interface_only
1156
    def numpy(self):
1157
        """
J
Jiabin Yang 已提交
1158
        **Notes**:
T
tianshuo78520a 已提交
1159
            **This API is ONLY available in Dygraph mode**
1160

J
Jiabin Yang 已提交
1161
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1162 1163 1164 1165 1166

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1167
            ndarray: dtype is same as current Variable
1168 1169 1170 1171 1172 1173

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1174
                from paddle.fluid.dygraph import Linear
1175 1176 1177 1178
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1179
                    linear = Linear(32, 64)
1180
                    data = to_variable(data)
1181
                    x = linear(data)
1182 1183 1184
                    print(x.numpy())

        """
1185
        pass
1186

1187
    @fake_interface_only
1188
    def backward(self, retain_graph=False):
1189
        """
J
Jiabin Yang 已提交
1190
        **Notes**:
T
tianshuo78520a 已提交
1191
            **This API is ONLY available in Dygraph mode**
1192

1193
        Run backward of current Graph which starts from current Tensor.
1194

J
Jiabin Yang 已提交
1195
        Args:
1196 1197 1198 1199
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1200

J
Jiabin Yang 已提交
1201 1202
        Returns:
            NoneType: None
1203 1204 1205 1206 1207

        Examples:
            .. code-block:: python

                import numpy as np
1208 1209
                import paddle
                paddle.disable_static()
1210 1211

                x = np.ones([2, 2], np.float32)
1212 1213 1214 1215 1216 1217 1218
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1219 1220
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1221
                loss.backward()
1222 1223

        """
1224
        pass
1225

1226
    @fake_interface_only
1227
    def gradient(self):
1228
        """
J
Jiabin Yang 已提交
1229
        **Notes**:
T
tianshuo78520a 已提交
1230
            **This API is ONLY available in Dygraph mode**
1231 1232 1233

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1234
        Returns:
1235
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1236 1237 1238 1239 1240 1241 1242

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1243
                # example1: return ndarray
1244 1245 1246 1247 1248 1249 1250 1251 1252
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1253
                    loss2.backward()
1254 1255
                    print(loss2.gradient())

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1269
        """
1270
        pass
1271

1272
    @fake_interface_only
1273
    def clear_gradient(self):
1274
        """
J
Jiabin Yang 已提交
1275
        **Notes**:
T
tianshuo78520a 已提交
1276
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1277 1278

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1279

J
Jiabin Yang 已提交
1280
        Clear  (set to ``0`` ) the Gradient of Current Variable
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1299
                    loss2.backward()
1300 1301 1302 1303 1304
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1305
        pass
X
Xin Pan 已提交
1306

1307 1308 1309 1310
    @fake_interface_only
    def register_hook(self, hook):
        pass

1311
    def __str__(self):
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1328 1329
                import paddle
                import paddle.static as static
1330

1331 1332 1333
                paddle.enable_static()

                cur_program = static.Program()
1334 1335 1336 1337 1338 1339
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1340 1341
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1342
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1343 1344
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1345 1346
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1347
        else:
1348 1349
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1350

1351
        if self.is_parameter:
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1362
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1363
        dist_context = get_default_distributed_context()
1364 1365
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1366
            var_str += ", {name} = {value}".format(
1367
                name="dist_attr", value=dist_tensor)
1368

1369
        return var_str
Y
Yang Yang(Tony) 已提交
1370

F
update  
fengjiayi 已提交
1371
    def to_string(self, throw_on_error, with_details=False):
1372 1373 1374
        """
        Get debug string.

J
Jiabin Yang 已提交
1375 1376 1377 1378 1379
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1380

1381 1382
        Returns:
            str: The debug string.
1383 1384 1385 1386 1387

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1388
                import paddle
1389

1390
                paddle.enable_static()
1391 1392 1393 1394 1395
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1396
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1397
                print("=============with detail===============")
1398
                print(new_variable.to_string(True, True))
1399
        """
F
update  
fengjiayi 已提交
1400 1401
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1402
        protostr = self.desc.serialize_to_string()
1403
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1404 1405
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1406
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1407
            for attr_name in additional_attr:
1408 1409 1410
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1411
        return res_str
1412 1413 1414

    __repr__ = __str__

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1442
    @property
1443
    def stop_gradient(self):
J
Jiabin Yang 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1459 1460
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1461 1462 1463
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1464 1465
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1466 1467 1468 1469
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1470
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1471 1472
                assert (out1.gradient() == 0).all()
        """
1473
        return self.desc.stop_gradient()
1474

1475 1476
    @stop_gradient.setter
    def stop_gradient(self, s):
1477
        self.desc.set_stop_gradient(s)
1478

1479 1480
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1502
        return self.desc.persistable()
1503

Y
Yu Yang 已提交
1504 1505
    @persistable.setter
    def persistable(self, p):
1506
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1533 1534
    @property
    def name(self):
J
Jiabin Yang 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1551
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1552

1553 1554 1555 1556 1557 1558
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1559 1560
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1573 1574
    @name.setter
    def name(self, new_name):
1575
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1576

Y
Yu Yang 已提交
1577 1578
    @property
    def shape(self):
J
Jiabin Yang 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1596
        # convert to tuple, make it as same as numpy API.
1597
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1598 1599

    @property
F
fengjiayi 已提交
1600
    def dtype(self):
J
Jiabin Yang 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1617
        return self.desc.dtype()
Y
Yu Yang 已提交
1618 1619 1620

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1642 1643 1644
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1645
        return self.desc.lod_level()
Y
Yu Yang 已提交
1646

Y
Yu Yang 已提交
1647 1648
    @property
    def type(self):
J
Jiabin Yang 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1665
        return self.desc.type()
Y
Yu Yang 已提交
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1750
    def _set_error_clip(self, error_clip):
1751 1752 1753 1754 1755 1756 1757 1758 1759
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1760 1761
        self.error_clip = error_clip

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1802
            raise ValueError("slice step can not be zero")
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1878
    def _cloneVar(self, copy=False):
1879 1880
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1881 1882
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1883 1884 1885 1886
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1887
        new_var = self._cloneVar()
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1898
        new_var = self._cloneVar()
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1909
                return self._cloneVar(True)
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1928
                return self._cloneVar(True)
1929
            index = int(item)
1930
            if (index > 0 and index >= self.shape[axis]) \
1931 1932 1933 1934 1935 1936 1937
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1938
        return _getitem_impl_(self, item)
1939

1940
    def __setitem__(self, item, value):
1941
        return _setitem_impl_(self, item, value)
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2089 2090 2091 2092
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2093 2094 2095 2096 2097 2098 2099
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2209

F
fengjiayi 已提交
2210 2211 2212
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2213

2214 2215
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2216 2217 2218 2219
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2220
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2221 2222 2223 2224 2225
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2226 2227 2228 2229
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2239
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2240 2241 2242 2243 2244 2245
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2246 2247 2248 2249 2250 2251 2252 2253
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2254 2255
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2256 2257
        return self.op_proto_map[type]

2258 2259
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2260
        custom_op_names = []
2261 2262 2263
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2264 2265 2266
                custom_op_names.append(proto.type)

        return custom_op_names
2267

2268 2269 2270 2271
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2272
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2273
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2274 2275
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2276 2277
        }

F
fengjiayi 已提交
2278

X
Xin Pan 已提交
2279
class Operator(object):
2280
    """
2281 2282 2283 2284 2285 2286 2287
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2288
        type(str): The type of operator. Default None.
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2309
        Block.append_op or Block._prepend_op instead.
2310 2311 2312 2313

    Examples:
        .. code-block:: python

2314
            import paddle.fluid as fluid
2315
            cur_program = fluid.Program()
2316 2317 2318 2319 2320
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2321
    """
2322
    OP_WITHOUT_KERNEL_SET = {
2323 2324
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2325
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2326 2327
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2328
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2329 2330
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2331
    }
2332

Y
Yu Yang 已提交
2333 2334
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2335
                 desc,
Y
Yu Yang 已提交
2336 2337 2338
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2339
                 attrs=None):
L
lujun 已提交
2340
        if in_dygraph_mode():
2341 2342
            if type is None:
                raise ValueError(
2343
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2344
            self._type = type
M
minqiyang 已提交
2345
            self.attrs = attrs if attrs else {}
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2360
                )] = self.block.program._op_role
2361 2362 2363

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2364 2365
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2366 2367 2368 2369 2370

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2371 2372 2373 2374 2375
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2376 2377 2378
                return
            if type is None:
                raise ValueError(
2379
                    "`type` to initialized an Operator can not be None.")
2380 2381
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2382 2383 2384 2385 2386 2387 2388
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2389 2390 2391 2392 2393 2394 2395

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2413 2414 2415 2416 2417
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2432
                        if not isinstance(in_args, (list, tuple)):
2433 2434 2435 2436 2437 2438
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2439
                        for index, arg in enumerate(in_args):
2440 2441 2442 2443
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2444
                            elif isinstance(arg, (Variable, core.VarBase)):
2445
                                in_arg_names.append(cpt.to_text(arg.name))
2446
                            else:
2447 2448 2449 2450
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2451 2452
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2477 2478 2479 2480
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2481
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2482
                        if not in_dygraph_mode():
2483 2484 2485 2486
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2505
    def _has_kernel(self, op_type):
2506 2507
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2508
    def to_string(self, throw_on_error):
2509
        """
2510 2511
        Get debug string.

2512
        Args:
2513 2514
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2515

2516 2517
        Returns:
            str: The debug string.
2518 2519

        """
2520
        protostr = self.desc.serialize_to_string()
2521
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2522 2523
        return _debug_string_(proto, throw_on_error)

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2556
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2609
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2610
        dist_context = get_default_distributed_context()
2611 2612
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2613
            attrs_str += ", {name} = {value}".format(
2614
                name="dist_attr", value=dist_op)
2615

2616 2617
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2618 2619
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2620 2621 2622 2623 2624
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2625
    def __str__(self):
2626
        return self._to_readable_code()
2627 2628 2629

    __repr__ = __str__

F
fengjiayi 已提交
2630 2631
    @property
    def type(self):
2632
        return self.desc.type()
F
fengjiayi 已提交
2633 2634

    def input(self, name):
2635
        r"""
2636
        Get the input arguments according to the input parameter name.
2637

2638 2639
        Args:
            name(str): The input parameter name.
2640

2641 2642 2643
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2644
        """
F
fengjiayi 已提交
2645 2646
        return self.desc.input(name)

W
Wu Yi 已提交
2647
    def _rename_input(self, old_name, new_name):
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2658
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2659

W
Wu Yi 已提交
2660
    def _rename_output(self, old_name, new_name):
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2671
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2672

F
fengjiayi 已提交
2673 2674 2675 2676
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2677 2678 2679 2680 2681 2682 2683 2684
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2685
    def output(self, name):
2686
        r"""
2687
        Get output arguments by the output parameter name.
2688

2689 2690
        Args:
            name(str): The output parameter name.
2691

2692 2693 2694
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2695
        """
F
fengjiayi 已提交
2696 2697 2698 2699 2700 2701
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2702 2703 2704 2705 2706 2707 2708 2709
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2710
    def has_attr(self, name):
2711
        """
2712 2713
        Whether this Operator has the attribute with name or not.

2714
        Args:
2715
            name(str): the attribute name.
2716

2717 2718
        Returns:
            bool: True if has this attribute.
2719 2720

        """
F
fengjiayi 已提交
2721 2722 2723
        return self.desc.has_attr(name)

    def attr_type(self, name):
2724
        """
2725
        Get the type of attribute by attribute's name.
2726

2727 2728
        Args:
            name(str): the attribute name.
2729

2730 2731
        Returns:
            core.AttrType: the attribute type.
2732
        """
F
fengjiayi 已提交
2733 2734
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2735
    def _set_attr(self, name, val):
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2746 2747
        self._update_desc_attr(name, val)

2748 2749 2750
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2762 2763
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2764 2765
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2766
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2767 2768 2769 2770
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2771
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2772

F
fengjiayi 已提交
2773 2774 2775 2776 2777
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2778
        """
2779 2780
        Get the attribute by name.

2781
        Args:
2782
            name(str): the attribute name.
2783

2784 2785
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2786 2787
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2788
        return self.desc.attr(name)
Y
Yu Yang 已提交
2789

W
Wu Yi 已提交
2790
    def _block_attr_id(self, name):
2791
        """
G
gongweibao 已提交
2792
        Get the block attribute's id by name.
2793

2794 2795
        Args:
            name(str): the attribute name.
2796

2797 2798
        Returns:
            int: the block index.
2799
        """
W
Wu Yi 已提交
2800
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2801

W
Wu Yi 已提交
2802
    def _block_attr(self, name):
G
gongweibao 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2813
        id = self._block_attr_id(name)
G
gongweibao 已提交
2814 2815 2816
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2817
    def _blocks_attr(self, name):
G
gongweibao 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2828
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2829 2830 2831 2832 2833
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2834
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2845
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2846

J
JiayiFeng 已提交
2847
    def all_attrs(self):
F
fengjiayi 已提交
2848
        """
2849 2850 2851
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2852
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2853 2854 2855 2856
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2857 2858
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2859
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2860 2861 2862
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2863
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2864 2865 2866 2867
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2868 2869
        return attr_map

2870 2871 2872
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2873 2874 2875 2876

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2877 2878 2879
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2880 2881 2882 2883 2884 2885 2886 2887

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2888 2889
            return False

2890 2891 2892 2893 2894 2895
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2921

Y
Yu Yang 已提交
2922
class Block(object):
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2937
        use `Program._create_block()` to create a block.
2938 2939 2940 2941

    Examples:
        .. code-block:: python

2942 2943 2944
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2945 2946 2947 2948 2949 2950 2951 2952 2953
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2954
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2955
        self.desc = program.desc.block(idx)
2956
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2957
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2958
        self.program = program
2959
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2960

2961
    def __str__(self):
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2996
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3008

F
fengjiayi 已提交
3009 3010
    def to_string(self, throw_on_error, with_details=False):
        """
3011 3012
        Get debug string.

F
fengjiayi 已提交
3013 3014
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3015
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3016
            with_details(bool): more details about variables and parameters
3017 3018
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3019

3020 3021
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3022 3023 3024 3025
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3026
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3027 3028
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3029
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3030
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3031
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3032
            for op in self.ops:
F
fengjiayi 已提交
3033 3034
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3035 3036 3037
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3038 3039
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3040 3041
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3042 3043 3044

    __repr__ = __str__

Y
Yu Yang 已提交
3045 3046
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3047
        return self.desc.parent
Y
Yu Yang 已提交
3048

Y
Yu Yang 已提交
3049 3050 3051 3052
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3053
    def _set_forward_block_idx(self, idx):
3054 3055 3056 3057 3058 3059 3060 3061 3062
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3063
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3064

3065 3066 3067 3068 3069 3070 3071 3072
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3073 3074
    @property
    def idx(self):
Y
Yu Yang 已提交
3075
        return self.desc.id
Y
Yu Yang 已提交
3076

Q
Qiao Longfei 已提交
3077
    def var(self, name):
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3091
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3092 3093 3094
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3095 3096
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3097
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3098
        return v
Q
Qiao Longfei 已提交
3099

X
Xin Pan 已提交
3100
    def _find_var_recursive(self, name):
3101 3102 3103 3104 3105 3106 3107
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3108
            Variable: the Variable with the giving name. Or None if not found.
3109
        """
Y
Yu Yang 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3134
        return None
Y
Yu Yang 已提交
3135

X
Xin Pan 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3155

Q
Qiao Longfei 已提交
3156
    def all_parameters(self):
3157
        return list(self.iter_parameters())
3158

3159
    def iter_parameters(self):
M
minqiyang 已提交
3160
        return (item[1] for item in six.iteritems(self.vars)
3161
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3162

Y
Yu Yang 已提交
3163
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3164 3165 3166
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3167 3168 3169
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3170
        return var
Y
Yu Yang 已提交
3171

Q
Qiao Longfei 已提交
3172 3173 3174
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3175
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3176 3177
        """
        Rename variable in vars and ops' inputs and outputs
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3190
        """
M
minqiyang 已提交
3191 3192
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3193

T
typhoonzero 已提交
3194
        if not self.has_var(name):
3195
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3196 3197
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3198
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3199 3200 3201 3202 3203 3204
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3205
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3206 3207 3208 3209
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3210
        orig_var_type = v.type
M
minqiyang 已提交
3211
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3212
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3213
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3214
        if var_type == "Parameter":
L
Leo Chen 已提交
3215 3216
            if in_dygraph_mode():
                var = ParamBase(
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3227 3228
                var = Parameter(
                    self,
3229 3230 3231 3232 3233 3234 3235 3236 3237
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3238
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3239 3240
            var = Variable(
                self,
T
typhoonzero 已提交
3241
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3242 3243 3244 3245
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3246
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3247 3248 3249
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3250
        self._sync_with_cpp()
3251
        return var
T
typhoonzero 已提交
3252

3253 3254 3255
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3256
        self.desc._remove_var(cpt.to_bytes(name))
3257 3258
        del self.vars[name]

Y
Yu Yang 已提交
3259 3260
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3261
        param = None
L
Leo Chen 已提交
3262
        if in_dygraph_mode():
3263 3264 3265 3266
            if _in_eager_mode():
                param = EagerParamBase(*args, **kwargs)
            else:
                param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3267 3268
        else:
            param = Parameter(global_block, *args, **kwargs)
3269

3270
        if 'initializer' in kwargs:
3271 3272 3273 3274 3275

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3276
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3277
                        # are treated as initialization ops that cause error.
3278
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3279 3280 3281 3282 3283
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3284
                            continue
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3296
                # TODO already inited, do nothing, should log a warning
3297 3298 3299
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3300
        return param
Y
Yu Yang 已提交
3301

Y
Yu Yang 已提交
3302
    def append_op(self, *args, **kwargs):
3303 3304 3305 3306 3307 3308
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3309
        if in_dygraph_mode():
3310
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3311
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3312
            type = kwargs.get("type", None)
3313 3314 3315
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3316
                type=type,
M
minqiyang 已提交
3317 3318
                inputs=None,
                outputs=None,
3319
                attrs=attrs)
3320

M
minqiyang 已提交
3321 3322 3323
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3324
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3325 3326

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3327
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3328 3329
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3330 3331
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3332
        else:
3333 3334
            from paddle.fluid.dygraph.base import param_guard

3335
            op_desc = self.desc.append_op()
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3349

M
minqiyang 已提交
3350
            self.ops.append(op)
M
minqiyang 已提交
3351

3352 3353
        return op

W
Wu Yi 已提交
3354
    def _insert_op(self, index, *args, **kwargs):
3355 3356 3357 3358 3359 3360 3361 3362 3363
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3364
        self._sync_with_cpp()
F
fangshuixun007 已提交
3365
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3366

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3384 3385 3386 3387 3388 3389 3390 3391 3392
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3393 3394
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3395
        self.desc._remove_op(index, index + 1)
3396 3397
        del self.ops[index]

W
Wu Yi 已提交
3398
    def _slice_ops(self, start, end):
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3409
        return self.ops[start:end]
Y
Yancey1989 已提交
3410

W
Wu Yi 已提交
3411
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3412
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3413 3414
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3415
            op = Operator(
J
Jiabin Yang 已提交
3416
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3417

J
Jiabin Yang 已提交
3418
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3419
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3420 3421
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3422
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3423
        else:
3424 3425 3426 3427 3428 3429 3430 3431
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3432
            self.ops.insert(0, op)
3433

Y
Yu Yang 已提交
3434 3435
        return op

W
Wu Yi 已提交
3436
    def _sync_with_cpp(self):
3437
        """
3438 3439
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3440
        """
Q
Qiao Longfei 已提交
3441 3442 3443
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3461

3462
        # sync variables removed from c++ end
3463
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3464
            if not self.desc.find_var(cpt.to_bytes(var)):
3465 3466
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3467
        # sync operators from cpp
3468 3469 3470 3471
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3488 3489 3490 3491 3492

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3493
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3494 3495 3496 3497 3498 3499 3500

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3514 3515 3516 3517
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3518
    def _copy_param_info_from(self, other):
3519
        """
3520 3521
        Copy the information of parameters from the other block.

3522
        Args:
3523 3524 3525 3526 3527
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3528 3529 3530 3531 3532

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3533 3534
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3535
        for p in other.iter_parameters():
3536 3537 3538
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3539 3540
                # if the Parameter is pruned, v may be None
                continue
3541
            assert isinstance(v, Variable)
3542
            new_p = None
L
Leo Chen 已提交
3543 3544
            if in_dygraph_mode():
                new_p = ParamBase(
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3556 3557
                new_p = Parameter(
                    block=self,
3558 3559 3560
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3561 3562
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3563 3564 3565 3566 3567 3568
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3569 3570
            self.vars[new_p.name] = new_p

3571
    def _clone_variable(self, var, force_persistable=True):
3572 3573
        """
        Clone a variable into current block.
3574

3575 3576
        Args:
            var: the variable to be cloned.
3577 3578 3579
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3580 3581

        Returns:
3582
            Variable: the new  variable cloned from 'var' in current block.
3583 3584
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3585 3586 3587 3588 3589
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3590 3591
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3592
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3593 3594 3595 3596 3597 3598
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3599
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3600 3601
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3602 3603 3604 3605 3606 3607 3608
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3609
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3610 3611
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3612
        return ret_var
3613

Y
Yu Yang 已提交
3614

3615 3616 3617 3618 3619 3620
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3732
    def remove_input_by_id(self, node_id):
3733 3734 3735 3736 3737 3738
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3739
        self.node.remove_input(node_id)
3740

3741
    def remove_input(self, node):
3742 3743 3744 3745
        """
        Remove a node from inputs.

        Args:
3746
            node(IrNode): the node being removed.
3747
        """
3748
        self.node.remove_input(node.node)
3749

3750
    def append_input(self, node):
3751 3752 3753 3754
        """
        Append a node in inputs.

        Args:
3755
            node(IrNode): the node being appended.
3756
        """
3757
        self.node.append_input(node.node)
3758 3759 3760 3761 3762 3763 3764 3765

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3766
    def remove_output_by_id(self, node_id):
3767 3768 3769 3770 3771 3772
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3773
        self.node.remove_output(node_id)
3774

3775
    def remove_output(self, node):
3776 3777 3778 3779
        """
        Remove a node from outputs.

        Args:
3780
            node(IrNode): the node being removed.
3781
        """
3782
        self.node.remove_output(node.node)
3783

3784
    def append_output(self, node):
3785 3786 3787 3788
        """
        Append a node in outputs.

        Args:
3789
            node(IrNode): the node being appended.
3790
        """
3791
        self.node.append_output(node.node)
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3839
            "The node variable description can not be None."
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3850
            "The node variable description can not be None."
3851 3852
        return self.node.var().persistable()

3853 3854 3855 3856 3857 3858 3859 3860
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3861
            "The node variable description can not be None."
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3872
            "The node variable description can not be None."
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3883
            "The node variable description can not be None."
3884 3885
        return self.node.var().shape()

3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3933
            "The node operator description can not be None."
3934 3935
        self.node.op()._rename_input(old_input_name, new_input_name)

3936 3937 3938 3939 3940 3941 3942 3943 3944
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3945
            "The node operator description can not be None."
3946 3947
        self.node.op()._rename_output(old_output_name, new_output_name)

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3959
            "The node operator description can not be None."
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3973
            "The node operator description can not be None."
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3984
            "The node operator description can not be None."
3985 3986
        return self.node.op().set_type(new_type)

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4002
            "The node operator description can not be None."
4003 4004 4005 4006
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4007
                all(isinstance(v, Block) for v in val):
4008 4009
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4010
                isinstance(val, core.ProgramDesc):
4011 4012 4013 4014
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4015 4016 4017 4018 4019 4020 4021 4022
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4023
            "The node operator description can not be None."
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4034
            "The node operator description can not be None."
4035 4036
        return self.node.op().output_arg_names()

4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4058 4059
class IrGraph(object):
    """
4060
    Python IrGraph. Beneath it is a core.Graph, which is used for
4061
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4062 4063
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4064 4065 4066 4067
    """

    def __init__(self, graph, for_test=False):
        """
4068 4069
        Construct an IrGraph using core.Graph.

4070 4071 4072 4073 4074 4075 4076 4077 4078
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4079 4080 4081 4082
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4083 4084 4085
        Warns:
            The method only clones the graph structure, not its attributes.

4086 4087 4088
        Returns:
            IrGraph: A new and duplicated graph.
        """
4089
        g = self.graph.clone()
4090 4091
        return IrGraph(g, self._for_test)

4092
    def is_test(self):
4093 4094 4095
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4096 4097
        return self._for_test

W
WangZhen 已提交
4098
    def all_nodes(self):
4099 4100 4101
        """
        Return all nodes included in the graph as a set.
        """
4102
        return {IrNode(node) for node in self.graph.nodes()}
4103

4104
    def all_var_nodes(self):
4105 4106 4107
        """
        Return all variable nodes included in the graph as a set.
        """
4108
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4109

4110
    def all_persistable_nodes(self):
4111 4112 4113
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4114 4115 4116 4117 4118
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4119
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4120

4121
    def all_op_nodes(self):
4122 4123 4124
        """
        Return all operator nodes included in the graph as a set.
        """
4125
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4126

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4144
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4156
            IrVarNode: the created persistable variable node.
4157
        """
4158 4159 4160 4161 4162
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4163
        return IrVarNode(self.graph.create_var_node(var_desc))
4164 4165

    def create_var_node(self, name, var_type, shape, var_dtype):
4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4177
            IrVarNode: the created variable node.
4178 4179
        """

4180 4181 4182 4183
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4184
        return IrVarNode(self.graph.create_var_node(var_desc))
4185

4186 4187 4188 4189 4190 4191
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4192
    def create_var_node_from_desc(self, var_desc):
4193 4194 4195 4196 4197 4198 4199 4200
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4201
            IrVarNode: the created variable node.
4202
        """
4203
        return IrVarNode(self.graph.create_var_node(var_desc))
4204 4205

    def create_op_node(self, op_type, attrs, inputs, outputs):
4206 4207 4208 4209 4210 4211 4212
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4213
            outputs(dict): the outputs of the operator node.
4214 4215

        Returns:
4216
            IrOpNode: the created operator node.
4217
        """
4218 4219
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4220
        for attr, value in six.iteritems(attrs):
4221
            self._update_desc_attr(op_desc, attr, value)
4222
        for input_name, var_nodes in six.iteritems(inputs):
4223 4224 4225 4226
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4227
        for output_name, var_nodes in six.iteritems(outputs):
4228 4229 4230 4231
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4232
        return IrOpNode(self.graph.create_op_node(op_desc))
4233 4234

    def create_op_node_from_desc(self, op_desc):
4235 4236 4237 4238 4239 4240 4241
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4242
            IrOpNode: the created operator node.
4243
        """
4244
        return IrOpNode(self.graph.create_op_node(op_desc))
4245 4246

    def update_input_link(self, old_input_node, new_input_node, op_node):
4247 4248 4249 4250
        """
        Update the input's link of a operator node.

        Args:
4251 4252 4253
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4254
        """
4255
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4256
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4257
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4258 4259 4260 4261
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4262
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4263

4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4274
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4275
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4276 4277 4278 4279 4280 4281
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4282
    def link_to(self, node_in, node_out):
4283 4284 4285 4286
        """
        Connect two nodes.

        Args:
4287 4288
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4289
        """
4290 4291 4292 4293
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4294 4295
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4296 4297

    def safe_remove_nodes(self, remove_nodes):
4298 4299 4300 4301 4302 4303 4304
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4305
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4306 4307 4308 4309
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4310 4311
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4312

Z
Zhen Wang 已提交
4313 4314 4315 4316 4317 4318 4319 4320
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4321
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4322 4323 4324 4325
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4326
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4327 4328 4329
                        ]
                    else:
                        var_nodes[each_var_name].append(
4330 4331
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4332 4333
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4334
    def has_circle(self):
4335 4336 4337 4338 4339 4340
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4341 4342 4343
        return core.has_circle(self.graph)

    def graph_num(self):
4344 4345 4346 4347 4348 4349
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4350 4351 4352
        return core.graph_num(self.graph)

    def topology_sort(self):
4353 4354 4355
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4356
        Notes: the `graph` can not contain a circle.
4357 4358

        Returns:
Z
Zhen Wang 已提交
4359
            list(IrNode): nodes in topology order.
4360
        """
4361
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4362
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4363 4364

    def build_adjacency_list(self):
4365 4366 4367 4368
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4369
            dict{IrNode: set(IrNode)}: the adjacency list.
4370
        """
4371 4372 4373 4374 4375
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4376

4377 4378 4379 4380 4381 4382 4383 4384
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4385
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4386 4387 4388 4389 4390
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4391 4392
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4393 4394 4395
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4396 4397 4398 4399 4400
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4401
        remove_ctr_vars = set()
4402
        if remove_ctr_var:
4403
            for node in self.all_var_nodes():
4404 4405 4406
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4407 4408
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4409 4410
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4411 4412 4413 4414 4415 4416
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4417 4418 4419 4420
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4421 4422
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4423 4424 4425 4426 4427 4428 4429
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4430 4431 4432
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4433
        WARN: When the graph includes backward operator nodes, the
4434 4435 4436 4437 4438 4439
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4440
        convert_pass = core.get_pass('graph_to_program_pass')
4441 4442
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4443 4444 4445 4446
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4447 4448 4449 4450 4451 4452 4453 4454
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4455 4456
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4457 4458
        return target_node

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4475
class Program(object):
D
dzhwinter 已提交
4476
    """
4477
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4478
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4479
    it will contain nested block.
4480

J
Jiabin Yang 已提交
4481 4482 4483
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4484

J
Jiabin Yang 已提交
4485
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4486
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4487 4488 4489 4490 4491 4492 4493
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4494
    **Notes**:
4495 4496 4497
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4498 4499

    Returns:
J
Jiabin Yang 已提交
4500
        Program: An empty Program.
D
dzhwinter 已提交
4501 4502

    Examples:
4503 4504
        .. code-block:: python

4505 4506 4507 4508
            import paddle
            import paddle.static as static

            paddle.enable_static()
4509

4510 4511 4512 4513 4514
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4515
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4516 4517 4518

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4519 4520 4521

    """

4522 4523
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4524 4525
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4526 4527
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4528
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4529
        self.__op_role_var = []
T
tangwei12 已提交
4530

4531 4532
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4533
        self._is_distributed = False
4534
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4535
        self._is_chief = False
4536 4537 4538
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4539
        self._endpoints = []
4540 4541 4542
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4543
        self._trainers_endpoints = []
4544
        # the distributed lookup table names
T
tangwei12 已提交
4545
        self._distributed_lookup_table = None
4546 4547 4548

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4549 4550
        self._use_lamb = False

4551 4552 4553
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4554

4555 4556 4557
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4558
        self._program_config = None
4559

H
hutuxian 已提交
4560 4561 4562
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4563 4564 4565
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4566 4567 4568
        # appending gradients times
        self._appending_grad_times = 0

4569 4570 4571 4572
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4573 4574
        # compiled program, i.e. Graph
        self._graph = None
4575 4576
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4577

4578
    def _find_var_class_kwargs(self, new_desc):
4579 4580 4581 4582 4583 4584 4585 4586
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4656
        assert block_num == self.desc.num_blocks()
4657 4658

        # clear old blocks and desc
4659 4660 4661 4662 4663 4664 4665 4666 4667
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4668

4669
        del desc
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4699 4700
                import paddle
                import paddle.static as static
4701

4702 4703 4704
                paddle.enable_static()

                prog = static.default_main_program()
4705 4706 4707 4708 4709
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4710
                prog1 = static.default_main_program()
4711 4712 4713 4714 4715 4716 4717 4718
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4719
    @property
4720
    def _op_role(self):
Y
yuyang18 已提交
4721 4722 4723 4724 4725 4726 4727 4728
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4729
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4730 4731 4732 4733
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4734 4735
        return self._current_role

4736 4737
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4738 4739 4740
        self._current_role = role

    @property
4741
    def _op_role_var(self):
Y
yuyang18 已提交
4742
        """
4743
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4744

4745
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4746 4747 4748

        Notes: This is a very low-level API. Users should not use it directly.
        """
4749
        return self.__op_role_var
Y
yuyang18 已提交
4750

4751
    @signature_safe_contextmanager
4752 4753 4754 4755 4756
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4757 4758 4759 4760
        try:
            yield
        finally:
            self._current_role = tmp_role
4761

S
rename  
sneaxiy 已提交
4762
    @signature_safe_contextmanager
W
Wu Yi 已提交
4763
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4764 4765 4766 4767 4768 4769 4770
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4771
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4772 4773 4774

        Examples:

4775
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4776
            >>> p, g = backward(...)
W
Wu Yi 已提交
4777
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4778 4779
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4780
        tmp_role = self._current_role
4781
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4782

Y
yuyang18 已提交
4783 4784
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4785
        self.__op_role_var = [
4786 4787 4788
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4789 4790 4791 4792 4793
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4794

S
rename  
sneaxiy 已提交
4795
    @signature_safe_contextmanager
X
Xin Pan 已提交
4796
    def _lr_schedule_guard(self, is_with_opt=False):
4797 4798 4799 4800 4801 4802 4803
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4804 4805 4806 4807
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4808 4809 4810

        Examples:

4811
            >>> import paddle.fluid as fluid
4812 4813 4814 4815
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4816 4817

        tmp_role = self._current_role
4818
        tmp_var = self.__op_role_var
4819

4820 4821
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4822 4823
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4824
        # TODO(typhoonzero): how to set target learning rate var
4825
        self.__op_role_var = []
4826 4827 4828 4829 4830
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4831

4832
    def __str__(self):
Y
yuyang18 已提交
4833 4834 4835 4836 4837 4838 4839 4840 4841
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4862 4863
            import paddle
            import paddle.static as static
4864

4865 4866 4867
            paddle.enable_static()

            cur_program = static.Program()
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4879
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4880 4881 4882 4883
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4884
            program_str += '\n'
4885
        return program_str
Y
Yang Yang(Tony) 已提交
4886

F
fengjiayi 已提交
4887 4888 4889
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4890

J
Jiabin Yang 已提交
4891 4892 4893
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4894

J
Jiabin Yang 已提交
4895
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4896

H
haowang101779990 已提交
4897
        Returns:
J
Jiabin Yang 已提交
4898
            str: The debug string describe current Program.
Y
yuyang18 已提交
4899 4900

        Raises:
J
Jiabin Yang 已提交
4901
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4902

4903 4904 4905
        Examples:
            .. code-block:: python

4906 4907 4908 4909
                import paddle
                import paddle.static as static

                paddle.enable_static()
4910

4911 4912 4913
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4914
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4915
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4916
                print("program string without detail: {}".format(prog_string))
4917
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4918
        """
4919 4920 4921 4922 4923 4924 4925 4926 4927
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4928 4929 4930 4931 4932 4933
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4934 4935
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4936 4937
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4938

W
Wu Yi 已提交
4939
    def _get_desc(self):
Y
yuyang18 已提交
4940 4941 4942 4943 4944 4945 4946
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4947 4948
        return self.desc

X
version  
Xin Pan 已提交
4949 4950 4951
    def _version(self):
        return self.desc._version()

4952
    def clone(self, for_test=False):
Y
yuyang18 已提交
4953
        """
4954 4955 4956 4957
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4958

4959
        Create a new Program with forward content of original one when ``for_test=True``.
4960
        Create a new Program as same as the original one when ``for_test=False``.
4961

4962
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4963 4964 4965
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4966

4967 4968
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4969 4970
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4971
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4972

J
Jiabin Yang 已提交
4973
        For Example:
4974
          ::
L
Luo Tao 已提交
4975

4976 4977 4978 4979 4980 4981
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4982
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4983
            loss = paddle.mean(pred)
4984
            # Here we use clone before Momentum
4985 4986
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4987
            optimizer.minimize(loss)
4988

J
Jiabin Yang 已提交
4989
        Args:
4990

4991 4992
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4993

J
Jiabin Yang 已提交
4994
        Returns:
4995
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4996

Y
yuyang18 已提交
4997 4998 4999

        Examples:

5000 5001 5002 5003 5004 5005 5006
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5023
            1. To clone a test program, the sample code is:
5024 5025 5026
                .. code-block:: python

                    import six
5027 5028 5029 5030 5031 5032
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5045 5046
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5047 5048 5049

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5050 5051 5052
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5053
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5054 5055
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5056
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5057 5058
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5059
                            test_program = train_program.clone(for_test=True)
5060
                    print_prog(test_program)
J
Jiabin Yang 已提交
5061 5062 5063 5064

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5065
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5066 5067 5068 5069
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5070 5071 5072
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5073 5074 5075
                            sgd.minimize(avg_loss)


5076
            2. The clone method can be avoid if you create program for training and program for testing individually.
5077 5078 5079
                .. code-block:: python

                    import six
5080 5081 5082 5083 5084 5085
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5097

5098
                    def network():
5099
                        img = static.data(name='image', shape=[None, 784])
5100
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5101 5102
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5103
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5104 5105
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5106 5107
                        return avg_loss

5108 5109 5110 5111 5112
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5113
                            avg_loss = network()
5114
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5115
                            sgd.minimize(avg_loss)
5116
                    # the test startup program is not used.
5117 5118
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5119 5120
                            avg_loss = network()
                    print_prog(test_program_2)
5121

5122
            The two code snippets above will generate and print same programs.
5123
        """
5124

T
tangwei12 已提交
5125
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5126 5127 5128
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5129
        pruned_origin_block_id_map = None
5130
        if for_test:
5131 5132 5133 5134 5135 5136 5137 5138 5139
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5140
        else:
5141
            p = Program()
G
gongweibao 已提交
5142 5143
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5144
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5145 5146 5147
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5148 5149

            p._current_role = self._current_role
5150
            p.__op_role_var = self.__op_role_var
5151
            p._appending_grad_times = self._appending_grad_times
5152 5153
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5154

T
tangwei12 已提交
5155
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5156
            # its desc.
W
Wu Yi 已提交
5157
            p._sync_with_cpp()
5158

W
Wu Yi 已提交
5159
        p._copy_param_info_from(self)
5160
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5161
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5162
        return p
5163

5164
    def _prune(self, targets):
Y
yuyang18 已提交
5165 5166 5167 5168 5169 5170 5171 5172
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5173
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5174 5175 5176 5177
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5178
        """
5179
        return self._prune_with_input([], targets)
5180 5181

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5182
        """
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5193
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5194 5195 5196 5197 5198 5199
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5200
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5201 5202 5203
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5204 5205
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5206 5207
        if not isinstance(targets, list):
            targets = [targets]
5208 5209 5210

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5211 5212 5213
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5214

5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5231 5232 5233 5234
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5235 5236 5237
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5238
                else:
5239 5240 5241
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5242 5243 5244 5245 5246 5247

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5248 5249 5250
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5251

5252 5253 5254 5255 5256 5257 5258 5259 5260
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5261
                        # Skip optimize op except for optimize op in targets,
5262 5263 5264 5265 5266
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5267

5268
                if target_op is not None:
5269 5270 5271
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5272

5273
        res = Program()
5274 5275 5276
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5277 5278 5279
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5280
        res._sync_with_cpp()
5281 5282 5283 5284 5285

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5286 5287
        return res

X
Xin Pan 已提交
5288
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5289
        """
F
fengjiayi 已提交
5290 5291 5292 5293 5294
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5295
        3. change the :code:`is_test`
Y
yuyang18 已提交
5296 5297 5298
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5299
        Args:
X
Xin Pan 已提交
5300 5301
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5302

Y
yuyang18 已提交
5303 5304 5305 5306 5307 5308
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5309
        res = Program()
5310
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5311 5312 5313 5314

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5315
        if prune_read_op:
5316 5317 5318 5319 5320 5321 5322 5323 5324
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5325
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5326 5327

        # change all `is_test` attributes to True
M
minqiyang 已提交
5328
        for i in six.moves.range(res.desc.num_blocks()):
5329
            block = res.desc.block(i)
M
minqiyang 已提交
5330
            for j in six.moves.range(block.op_size()):
5331 5332
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5333
                    op._set_attr('is_test', True)
5334 5335 5336
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5337 5338 5339
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5340
        res._sync_with_cpp()
5341 5342
        return res

5343
    def _remove_training_info(self, clip_extra=True):
5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5433 5434
        return res

5435 5436
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5437
        """
5438 5439 5440
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5441

5442 5443
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5444

J
Jiabin Yang 已提交
5445
        Args:
Y
yuyang18 已提交
5446

J
Jiabin Yang 已提交
5447
            binary_str_type (str): the binary prootbuf string.
5448

J
Jiabin Yang 已提交
5449 5450
        Returns:
            Program: A deserialized Program.
5451 5452 5453 5454

        Examples:
            .. code-block:: python

5455 5456 5457 5458
                import paddle
                import paddle.static as static

                paddle.enable_static()
5459

5460 5461 5462 5463
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5464

5465
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5466

5467
                    z = paddle.matmul(x=x, y=y)
5468

5469 5470
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5471

5472
                    print(static.default_main_program())
5473
                    print(prog_restored)
Y
yuyang18 已提交
5474
        """
5475 5476
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5477
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5478
        p._sync_with_cpp()
5479
        return p
Y
Yu Yang 已提交
5480

5481
    @staticmethod
5482
    def _construct_from_desc(desc):
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5498 5499
    @property
    def random_seed(self):
Y
yuyang18 已提交
5500
        """
J
Jiabin Yang 已提交
5501
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5502 5503
        the random seed from random device.

5504 5505
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5506 5507 5508

        Returns:
            int64: Random seed in current Program
5509

5510 5511 5512 5513

        Examples:
            .. code-block:: python

5514 5515 5516
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5517

5518 5519 5520
                paddle.enable_static()

                prog = static.default_main_program()
5521
                random_seed = prog.random_seed
5522
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5523 5524 5525
                print(random_seed)
                ## 0
                ## the default random seed is 0
5526

5527
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5528
                prog.random_seed = 1
5529
                z_var = F.dropout(x_var, 0.7)
5530

5531
                print(prog.random_seed)
5532 5533
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5534
        """
D
dzhwinter 已提交
5535 5536
        return self._seed

Q
qiaolongfei 已提交
5537 5538
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5539
        """
5540 5541
        The number of :ref:`api_guide_Block_en`  in this Program.

5542 5543
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5544 5545 5546

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5547

5548 5549 5550 5551

        Examples:
            .. code-block:: python

5552 5553 5554 5555
                import paddle
                import paddle.static as static

                paddle.enable_static()
5556

5557
                prog = static.default_main_program()
5558 5559
                num_blocks = prog.num_blocks
                print(num_blocks)
5560

5561 5562
                # print result:
                # 1
Y
yuyang18 已提交
5563
        """
Q
qiaolongfei 已提交
5564 5565
        return self.desc.num_blocks()

D
dzhwinter 已提交
5566 5567 5568
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5569 5570 5571
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5572 5573
        self._seed = seed

Y
Yu Yang 已提交
5574
    def __repr__(self):
5575
        return self.__str__()
5576

Y
Yu Yang 已提交
5577
    def global_block(self):
Y
yuyang18 已提交
5578
        """
5579 5580
        .. note::
            This API has no effect in Dygraph mode.
5581 5582 5583

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5584 5585
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5586

5587 5588 5589 5590

        Examples:
            .. code-block:: python

5591 5592 5593 5594
                import paddle
                import paddle.static as static

                paddle.enable_static()
5595

5596
                prog = static.default_main_program()
5597 5598
                gb_block = prog.global_block()
                print(gb_block)
5599

Y
yuyang18 已提交
5600
        """
Y
Yu Yang 已提交
5601 5602
        return self.blocks[0]

Q
Qiao Longfei 已提交
5603
    def block(self, index):
Y
yuyang18 已提交
5604
        """
5605 5606
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5607

5608 5609
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5610 5611
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5612

J
Jiabin Yang 已提交
5613 5614
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5615 5616 5617 5618

        Examples:
            .. code-block:: python

5619 5620 5621 5622
                import paddle
                import paddle.static as static

                paddle.enable_static()
5623

5624
                prog = static.default_main_program()
5625 5626
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5627
        """
Q
Qiao Longfei 已提交
5628 5629
        return self.blocks[index]

Y
Yu Yang 已提交
5630
    def current_block(self):
Y
yuyang18 已提交
5631
        """
5632 5633
        .. note::
            This API has no effect in Dygraph mode.
5634

J
Jiabin Yang 已提交
5635 5636
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5637

J
Jiabin Yang 已提交
5638 5639
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5640

5641 5642 5643
        Examples:
            .. code-block:: python

5644 5645 5646 5647
                import paddle
                import paddle.static as static

                paddle.enable_static()
5648

5649
                prog = static.default_main_program()
5650 5651
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5652
        """
Y
Yu Yang 已提交
5653 5654
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5655
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5656 5657 5658 5659 5660
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5661

Y
yuyang18 已提交
5662 5663 5664 5665 5666
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5667
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5668 5669 5670
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5671 5672 5673 5674
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5675
    def _rollback(self):
Y
yuyang18 已提交
5676 5677 5678 5679 5680
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5681 5682
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5683
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5694 5695 5696
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5697
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5698

W
Wu Yi 已提交
5699
    def _copy_param_info_from(self, other):
5700
        """
5701
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5702

Y
yuyang18 已提交
5703 5704 5705
        Notes: This is a very low level API. Users should not invoke it
        directly.

5706 5707 5708 5709 5710 5711 5712
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5713 5714 5715
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5716

W
Wu Yi 已提交
5717
        self.global_block()._copy_param_info_from(other.global_block())
5718

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5730 5731 5732
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5733 5734
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5735
        self._parameters_on_pservers = other._parameters_on_pservers
5736
        self._endpoints = other._endpoints
5737
        self._ps_endpoint = other._ps_endpoint
5738 5739
        self._distributed_lookup_table = other._distributed_lookup_table

5740
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5741 5742
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5743

Y
yuyang18 已提交
5744 5745 5746
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5747 5748
        Args:
            other(Program): Other program
5749 5750 5751 5752
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5753 5754 5755 5756 5757

        Returns:
            None
        """
        if not isinstance(other, Program):
5758 5759 5760
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5761

5762 5763 5764 5765 5766
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5767 5768 5769

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5770 5771
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5772
            for var in list(block.vars.values()):
5773 5774 5775 5776 5777 5778 5779
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5780

5781
    def list_vars(self):
Y
yuyang18 已提交
5782
        """
5783
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5784

J
Jiabin Yang 已提交
5785
        Returns:
5786
            iterable Tensors: The Generator will yield every Tensor in this program.
5787 5788 5789 5790

        Examples:
            .. code-block:: python

5791 5792
                import paddle
                import paddle.static as static
5793

5794 5795 5796 5797 5798
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5799 5800
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5801

5802 5803
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5804
        """
5805
        for each_block in self.blocks:
5806
            for each_var in list(each_block.vars.values()):
5807 5808
                yield each_var

5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5819 5820 5821 5822
                import paddle
                import paddle.static as static

                paddle.enable_static()
5823

5824 5825
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5826
                hidden = static.nn.fc(x=data, size=10)
5827 5828
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5829 5830 5831 5832 5833 5834 5835

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5836 5837
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6015

6016
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6017
class Parameter(Variable):
6018
    """
6019
    Parameter is derived from Variable. A parameter is a persistable
6020
    Variable, and will be updated by optimizers after each iteration.
6021
    The training of a neural network is essentially the updating of
6022 6023
    its parameters.

6024
    Relative to a general Variable, a Parameter has several its own
6025 6026
    member variables:

6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6037 6038
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6039 6040
    """

6041 6042 6043 6044 6045 6046
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6047 6048 6049 6050 6051
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6052
        if len(shape) == 0:
6053 6054
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6055 6056 6057

        for each in shape:
            if each < 0:
6058 6059 6060
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6061 6062

        Variable.__init__(
6063 6064 6065 6066 6067 6068 6069
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6070 6071 6072 6073
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6074 6075
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6076
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6077

6078 6079
        self.need_clip = kwargs.get('need_clip', True)

6080 6081
        self.is_distributed = False

6082 6083
        self.is_parameter = True

F
fengjiayi 已提交
6084
    def __str__(self):
6085
        return self._to_readable_code()
F
fengjiayi 已提交
6086

F
update  
fengjiayi 已提交
6087 6088 6089
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6090

F
update  
fengjiayi 已提交
6091 6092 6093 6094 6095 6096 6097 6098
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6099 6100 6101 6102 6103 6104 6105 6106 6107
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6108 6109 6110 6111 6112 6113
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6114
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6115
            for attr_name in additional_attr:
6116 6117
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6118 6119
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6120 6121 6122 6123
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6124

6125 6126
class ParamBase(core.VarBase):
    """
6127 6128 6129
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6130 6131 6132
    The training of a neural network is essentially the updating of
    its ParamBase.

6133
    Relative to a general Tensor, a ParamBase has several its own
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6146 6147
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6178 6179
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6180 6181 6182 6183 6184 6185 6186

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6187 6188
        self.need_clip = kwargs.get('need_clip', True)

6189
        self.is_distributed = kwargs.get('is_distributed', False)
6190
        # self.block = default_main_program().global_block()
6191

6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6205
    def __str__(self):
6206
        """
6207
        Convert a ParamBase object to a readable string.
6208

6209
        Returns(str): A readable string.
6210 6211 6212 6213

        Examples:
            .. code-block:: python

6214
                import paddle
6215 6216 6217 6218 6219 6220 6221
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6222
        """
6223 6224
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6225

6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6237

6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6256 6257 6258 6259
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
    _core_eager_eagertensor = core.eager.EagerTensor
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6407 6408
        return new_param

6409 6410 6411
    __repr__ = __str__


Y
Yu Yang 已提交
6412
# program is a global instance.
Y
Yu Yang 已提交
6413 6414
_main_program_ = Program()
_startup_program_ = Program()
6415
_startup_program_._is_start_up_program_ = True
6416

6417

6418
def default_startup_program():
Y
Yu Yang 已提交
6419
    """
Y
yuyang18 已提交
6420 6421
    Get default/global startup program.

6422 6423
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6424

6425 6426
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6427

6428 6429
    Returns:
        Program: current default startup program.
6430

6431
    Returns type: 
6432 6433 6434 6435

    Examples:
        .. code-block:: python

6436
            import paddle
6437

6438
            paddle.enable_static()
6439 6440 6441 6442
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6443
    """
Y
Yu Yang 已提交
6444
    return _startup_program_
6445

6446

6447
def default_main_program():
Y
Yu Yang 已提交
6448
    """
6449
    This API can be used to get ``default main program`` which store the 
6450
    descriptions of Ops and tensors.
T
tangwei12 已提交
6451

6452
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6453
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6454

6455 6456
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6457
    :code:`default_main_program` when the program is not specified.
6458

6459
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6460

Y
Yu Yang 已提交
6461
    Returns:
6462
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6463 6464 6465 6466

    Examples:
        ..  code-block:: python

6467
            import paddle
6468

6469
            paddle.enable_static()
6470
            # Sample Network:
6471 6472 6473
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6474

6475 6476 6477
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6478
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6479
    """
Y
Yu Yang 已提交
6480
    return _main_program_
Y
Yu Yang 已提交
6481 6482 6483 6484 6485


def switch_main_program(program):
    """
    Switch the main program to a new program.
6486

Y
Yu Yang 已提交
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6501
    Switch the startup program to a new program
Y
Yu Yang 已提交
6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6514
@signature_safe_contextmanager
Y
Yu Yang 已提交
6515 6516
def program_guard(main_program, startup_program=None):
    """
6517 6518
    :api_attr: Static Graph

6519 6520 6521
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6522

G
guofei 已提交
6523
    Args:
6524 6525
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6526 6527 6528 6529
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6530
    Examples:
6531
       .. code-block:: python
T
tangwei12 已提交
6532

6533
          import paddle
Y
yuyang18 已提交
6534

6535 6536 6537 6538 6539
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6540
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6541 6542 6543

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6544

Y
Yu Yang 已提交
6545
    Examples:
6546
       .. code-block:: python
Y
yuyang18 已提交
6547

6548
          import paddle
6549

6550 6551 6552 6553 6554
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6555

Y
Yu Yang 已提交
6556
    """
6557
    from .data_feeder import check_type
6558 6559
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6560 6561
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6562
        check_type(startup_program, 'startup_program', Program,
6563
                   'paddle.static.program_guard')
6564 6565
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6566
        startup_program = switch_startup_program(startup_program)
6567 6568 6569 6570 6571 6572
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6573 6574


W
Wu Yi 已提交
6575
def _get_var(name, program=None):
X
xuwei06 已提交
6576
    """
Y
yuyang18 已提交
6577
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6578

X
xuwei06 已提交
6579 6580 6581
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6582
        If None, default_global_program() will be used.
X
xuwei06 已提交
6583 6584 6585 6586 6587 6588 6589

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6590
    assert isinstance(program, Program)
X
xuwei06 已提交
6591 6592

    return program.global_block().var(name)
6593 6594


S
rename  
sneaxiy 已提交
6595
@signature_safe_contextmanager
L
lujun 已提交
6596 6597
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6598
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6599
    _dygraph_tracer_ = tracer
6600
    core._switch_tracer(tracer)
M
minqiyang 已提交
6601

6602 6603 6604
    try:
        yield
    finally:
6605 6606
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6607 6608


S
rename  
sneaxiy 已提交
6609
@signature_safe_contextmanager
L
lujun 已提交
6610
def _dygraph_place_guard(place):
6611 6612 6613
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6614 6615
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6616 6617
    _set_dygraph_tracer_expected_place(place)

6618 6619 6620
    try:
        yield
    finally:
6621
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6622 6623 6624
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6625 6626


6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6643 6644
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6645 6646 6647 6648 6649 6650 6651 6652 6653
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6654
            import paddle
6655

Z
Zhang Ting 已提交
6656 6657 6658
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6659
            if support_gpu:
Z
Zhang Ting 已提交
6660
                place = paddle.CUDAPlace(0)
6661 6662

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6663 6664 6665
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6666

Z
Zhang Ting 已提交
6667
            with paddle.static.device_guard("cpu"):
6668
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6669 6670
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6671
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6672
                out = paddle.reshape(data1, shape=shape)
6673

Z
Zhang Ting 已提交
6674 6675
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6676 6677 6678
            result = exe.run(fetch_list=[out])
    """

6679 6680 6681 6682 6683
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6684
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6685
        raise ValueError(
6686
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6687
            "when there is no need to specify device. But received %s" % device)
6688 6689
    if index:
        device = ":".join([device, index])
6690
    pre_device = switch_device(device)
6691 6692 6693 6694
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6695 6696 6697 6698 6699


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6700
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6701 6702 6703 6704 6705 6706 6707

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6708 6709
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6710 6711 6712 6713
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6714 6715
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6716 6717 6718 6719 6720 6721 6722 6723
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6724
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6735
            import paddle
G
guofei 已提交
6736 6737

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6738
            res = paddle.get_flags(flags)
G
guofei 已提交
6739 6740 6741 6742 6743 6744
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6745 6746
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6747 6748 6749 6750 6751 6752 6753
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6754 6755
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6756 6757 6758 6759 6760 6761 6762 6763
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6764 6765 6766 6767 6768 6769 6770


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6771
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6772 6773 6774 6775 6776 6777 6778 6779 6780
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6781

6782 6783 6784
    if (place == "device"):
        return core.Place()

6785
    # GPU
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6801 6802

    # XPU
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6826
    raise ValueError(
6827 6828
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret