framework.py 172.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
]
Y
Yu Yang 已提交
55

Q
qiaolongfei 已提交
56 57 58 59
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
60 61
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
62 63
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
64 65


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
173
def in_dygraph_mode():
L
lujun 已提交
174
    """
Y
Youwei Song 已提交
175
    This function checks whether the program runs in dynamic graph mode or not.
176 177 178
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
179 180

    Returns:
Y
Youwei Song 已提交
181
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
182 183 184 185

    Examples:
        .. code-block:: python

186
            import paddle.fluid as fluid
L
lujun 已提交
187

188 189 190 191
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
192
    """
L
lujun 已提交
193
    return _dygraph_tracer_ is not None
194 195


196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
218 219
def _dygraph_tracer():
    return _dygraph_tracer_
220

W
Wu Yi 已提交
221

M
minqiyang 已提交
222
def _current_expected_place():
L
lujun 已提交
223
    return _dygraph_current_expected_place_
M
minqiyang 已提交
224 225


L
Leo Chen 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
243
def _cpu_num():
244
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
245 246 247 248 249 250 251 252
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
253
        os.environ['CPU_NUM'] = str(1)
254
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
255 256 257 258 259 260 261 262 263 264
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
265 266


C
chengduo 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
282
def cuda_places(device_ids=None):
L
lujun 已提交
283
    """
284 285 286 287 288
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
289 290

    If :code:`device_ids` is None, environment variable of
291
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
292 293 294
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
295
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
296 297

    If :code:`device_ids` is not None, it should be the device
298
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
299 300 301
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
302 303
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
304 305

    Returns:
306
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
307 308 309 310

    Examples:
        .. code-block:: python

311
            import paddle.fluid as fluid
L
lujun 已提交
312 313 314
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
315 316 317
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
318
        device_ids = _cuda_ids()
S
sneaxiy 已提交
319 320 321 322 323 324
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
325
    """
326
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
327 328 329
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
330 331
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
332 333
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
334

335 336
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
337 338

    Returns:
339
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
340 341 342 343

    Examples:
        .. code-block:: python

344
            import paddle.fluid as fluid
L
lujun 已提交
345 346 347
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
348 349 350 351 352 353
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
354
    """
355
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
356 357 358

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
359 360 361 362
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
363

364 365
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
366 367

    Returns:
368
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
369 370 371 372

    Examples:
        .. code-block:: python

373
            import paddle.fluid as fluid
L
lujun 已提交
374 375 376 377 378
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
379 380 381
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
382 383
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
384 385


386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
412
@signature_safe_contextmanager
413 414 415 416
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
417 418 419
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
420 421

    Args:
T
Tao Luo 已提交
422
        prefix(str, optional): prefix. Default is none.
423 424 425

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
426

427
          import paddle.fluid as fluid
428
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
429 430 431 432 433 434
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
435
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
436
                f = fluid.layers.pow(d, 2.0)
437
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
457 458
    """
    # TODO(panyx0718): Only [0-9a-z].
459
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
460 461 462
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
463
        assert prefix, "namescope prefix can not be empty."
464 465 466 467
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
468 469 470 471 472 473 474 475 476 477 478 479


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
480 481 482
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
483 484 485 486


def grad_var_name(var_name):
    """
487 488
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
489 490 491
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
492

493
def convert_np_dtype_to_dtype_(np_dtype):
494 495
    """
    Convert the data type in numpy to the data type in Paddle
496

497
    Args:
498
        np_dtype(np.dtype): the data type in numpy.
499

500 501
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
502 503

    """
504 505
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
506
        return core.VarDesc.VarType.FP32
507
    elif dtype == np.float64:
508
        return core.VarDesc.VarType.FP64
509
    elif dtype == np.float16:
510
        return core.VarDesc.VarType.FP16
511
    elif dtype == np.int32:
512
        return core.VarDesc.VarType.INT32
513
    elif dtype == np.int16:
514
        return core.VarDesc.VarType.INT16
515
    elif dtype == np.int64:
516
        return core.VarDesc.VarType.INT64
517
    elif dtype == np.bool:
518
        return core.VarDesc.VarType.BOOL
519 520
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
521 522
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
523 524
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
525
    else:
M
minqiyang 已提交
526
        raise ValueError("Not supported numpy dtype %s" % dtype)
527 528 529


def dtype_is_floating(dtype):
530 531 532
    """
    Check the data type is floating or not.
    Args:
533
        dtype(np.dtype|core.VarDesc.VarType): data type.
534 535 536 537 538
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
539
    if not isinstance(dtype, core.VarDesc.VarType):
540 541
        dtype = convert_np_dtype_to_dtype_(dtype)

542 543 544 545
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
546 547


Y
Yang Yang(Tony) 已提交
548
def _debug_string_(proto, throw_on_error=True):
549 550 551 552 553 554 555 556 557 558 559
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
560
    error_fields = list()
Y
Yang Yang(Tony) 已提交
561
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
562 563
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
564 565 566
    return proto.__str__()


567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():

            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
720

721
    # starts
L
Leo Chen 已提交
722
    if contain_var(slice_start):
723 724 725 726 727 728 729 730
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
731 732 733 734
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
735 736 737 738 739 740 741
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
742 743 744
    else:
        attrs['ends'] = slice_end

745 746
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
747
        if contain_var(slice_step):
748 749 750 751 752 753 754
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
755 756
        else:
            attrs['strides'] = slice_step
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
804
class Variable(object):
805
    """
J
Jiabin Yang 已提交
806
    **Notes**:
807
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
808

809 810
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
811 812 813
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
814
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
815 816
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
817

818
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
819
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
820

T
tianshuo78520a 已提交
821
    Most of a Variable's member variables can be set to be None. It mean
822
    it is not available or will be specified later.
823

824
    Examples:
825 826
        In Static Graph Mode:

827 828
        .. code-block:: python

829
            import paddle.fluid as fluid
830
            cur_program = fluid.Program()
831 832 833 834
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
835
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
836 837 838 839 840 841 842 843 844

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

845 846
    """

Y
Yu Yang 已提交
847 848
    def __init__(self,
                 block,
Y
Yu Yang 已提交
849
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
850 851 852 853
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
854
                 capacity=None,
Q
QI JUN 已提交
855
                 persistable=None,
F
fengjiayi 已提交
856
                 error_clip=None,
Y
Yu Yang 已提交
857
                 stop_gradient=False,
F
fengjiayi 已提交
858
                 is_data=False,
H
Huihuang Zheng 已提交
859
                 need_check_feed=False,
H
hong 已提交
860
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
861
                 **kwargs):
Y
Yu Yang 已提交
862 863
        self.block = block
        if name is None:
Y
Yu Yang 已提交
864
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
865

Y
Yu Yang 已提交
866
        if dtype is not None:
867
            if not isinstance(dtype, core.VarDesc.VarType):
868
                dtype = convert_np_dtype_to_dtype_(dtype)
869

H
hong 已提交
870 871
        self.belong_to_optimizer = belong_to_optimizer

872 873 874 875 876
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
877

878 879 880
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
881

882 883 884 885 886 887 888
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
889

890
        if shape is not None:
891
            if is_new_var:
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
933

934 935
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
936

937 938 939 940 941 942 943
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
944

945 946 947 948
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
949

950
    @dygraph_only
951 952
    def detach(self):
        """
J
Jiabin Yang 已提交
953
        **Notes**:
T
tianshuo78520a 已提交
954
            **This API is ONLY available in Dygraph mode**
955

956
        Returns a new Variable, detached from the current graph.
957

958
        Returns:
J
Jiabin Yang 已提交
959
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
960

961

962 963 964 965 966
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
967
                from paddle.fluid.dygraph import Linear
968 969 970 971
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
972
                    linear = Linear(32, 64)
973
                    data = to_variable(data)
974
                    x = linear(data)
975 976 977
                    y = x.detach()

        """
978
        pass
979

980
    @dygraph_only
981
    def numpy(self):
982
        """
J
Jiabin Yang 已提交
983
        **Notes**:
T
tianshuo78520a 已提交
984
            **This API is ONLY available in Dygraph mode**
985

J
Jiabin Yang 已提交
986
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
987 988 989 990 991

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
992
            ndarray: dtype is same as current Variable
993 994 995 996 997 998

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
999
                from paddle.fluid.dygraph import Linear
1000 1001 1002 1003
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1004
                    linear = Linear(32, 64)
1005
                    data = to_variable(data)
1006
                    x = linear(data)
1007 1008 1009
                    print(x.numpy())

        """
1010
        pass
1011

1012 1013 1014
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1015
        **Notes**:
T
tianshuo78520a 已提交
1016
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1028
                from paddle.fluid.dygraph import Linear
1029 1030
                import numpy as np

1031
                data = np.ones([3, 1024], dtype='float32')
1032
                with fluid.dygraph.guard():
1033
                    linear = fluid.dygraph.Linear(1024, 4)
1034
                    t = to_variable(data)
1035
                    linear(t)  # call with default weight
1036
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1037 1038
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1039 1040

        """
1041
        pass
1042

1043
    @dygraph_only
1044
    def backward(self, backward_strategy=None):
1045
        """
J
Jiabin Yang 已提交
1046
        **Notes**:
T
tianshuo78520a 已提交
1047
            **This API is ONLY available in Dygraph mode**
1048 1049 1050

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1051 1052
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1053

J
Jiabin Yang 已提交
1054 1055
        Returns:
            NoneType: None
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1068 1069
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1070 1071 1072 1073 1074 1075 1076 1077 1078
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1079
        pass
1080

1081
    @dygraph_only
1082
    def gradient(self):
1083
        """
J
Jiabin Yang 已提交
1084
        **Notes**:
T
tianshuo78520a 已提交
1085
            **This API is ONLY available in Dygraph mode**
1086 1087 1088

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1089
        Returns:
1090
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1091 1092 1093 1094 1095 1096 1097

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1098
                # example1: return ndarray
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1126
        """
1127
        pass
1128

1129
    @dygraph_only
1130
    def clear_gradient(self):
1131
        """
J
Jiabin Yang 已提交
1132
        **Notes**:
T
tianshuo78520a 已提交
1133
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1134 1135

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1136

J
Jiabin Yang 已提交
1137
        Clear  (set to ``0`` ) the Gradient of Current Variable
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1164
        pass
X
Xin Pan 已提交
1165

1166
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1167 1168
        return self.to_string(True)

F
update  
fengjiayi 已提交
1169
    def to_string(self, throw_on_error, with_details=False):
1170 1171 1172
        """
        Get debug string.

J
Jiabin Yang 已提交
1173 1174 1175 1176 1177
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1178

1179 1180
        Returns:
            str: The debug string.
1181 1182 1183 1184 1185

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1186

1187 1188 1189 1190 1191
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1192
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1193
                print("=============with detail===============")
1194
                print(new_variable.to_string(True, True))
1195
        """
L
lujun 已提交
1196
        if in_dygraph_mode():
1197
            return
1198

F
update  
fengjiayi 已提交
1199 1200
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1201
        protostr = self.desc.serialize_to_string()
1202
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1203 1204 1205 1206
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1207 1208 1209
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1210
        return res_str
1211 1212 1213

    __repr__ = __str__

1214
    @property
1215
    def stop_gradient(self):
J
Jiabin Yang 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1231 1232
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1233 1234 1235
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1236 1237
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1238 1239 1240 1241
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1242
                assert (linear.weight.gradient() == 0).all()
J
Jiabin Yang 已提交
1243 1244
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1245
        if in_dygraph_mode():
1246
            pass
M
minqiyang 已提交
1247
        else:
1248
            return self._stop_gradient
1249

1250 1251
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1252
        if in_dygraph_mode():
1253
            pass
1254
        else:
1255
            self._stop_gradient = s
1256

1257 1258
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1280
        if in_dygraph_mode():
1281
            pass
1282 1283
        else:
            return self.desc.persistable()
1284

Y
Yu Yang 已提交
1285 1286
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1287
        if in_dygraph_mode():
1288 1289 1290
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1291 1292
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1293

Y
Yu Yang 已提交
1294 1295
    @property
    def name(self):
J
Jiabin Yang 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1312
        if in_dygraph_mode():
1313
            pass
1314 1315
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1337 1338
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1339
        if in_dygraph_mode():
1340
            pass
1341 1342
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1343

Y
Yu Yang 已提交
1344 1345
    @property
    def shape(self):
J
Jiabin Yang 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1363
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1364
        if in_dygraph_mode():
1365
            pass
1366 1367
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1368 1369

    @property
F
fengjiayi 已提交
1370
    def dtype(self):
J
Jiabin Yang 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1387
        if in_dygraph_mode():
1388
            pass
1389 1390
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1391 1392

    @property
1393
    @dygraph_not_support
Y
Yu Yang 已提交
1394
    def lod_level(self):
J
Jiabin Yang 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1416
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1417 1418
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1419 1420 1421 1422

        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1423
        return self.desc.lod_level()
Y
Yu Yang 已提交
1424

Y
Yu Yang 已提交
1425 1426
    @property
    def type(self):
J
Jiabin Yang 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1443
        if in_dygraph_mode():
1444
            pass
1445 1446
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1447

W
Wu Yi 已提交
1448
    def _set_error_clip(self, error_clip):
1449 1450 1451 1452 1453 1454 1455 1456 1457
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1458 1459
        self.error_clip = error_clip

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1500
            raise ValueError("slice step can not be zero")
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1576
    def _cloneVar(self, copy=False):
1577 1578
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1579 1580
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1581 1582 1583 1584
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1585
        new_var = self._cloneVar()
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1596
        new_var = self._cloneVar()
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1607
                return self._cloneVar(True)
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1626
                return self._cloneVar(True)
1627
            index = int(item)
1628
            if (index > 0 and index >= self.shape[axis]) \
1629 1630 1631 1632 1633 1634 1635
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1636
        return _getitem_impl_(self, item)
1637

Y
Yu Yang 已提交
1638

F
fengjiayi 已提交
1639 1640 1641
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1642

1643 1644
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1645 1646 1647 1648
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1649
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1650 1651 1652 1653 1654
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1655 1656 1657 1658
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1668
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1669 1670 1671 1672 1673 1674
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1675 1676 1677 1678 1679 1680 1681 1682
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1683 1684
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1685 1686
        return self.op_proto_map[type]

1687 1688 1689 1690 1691 1692
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1693 1694 1695 1696
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1697
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1698 1699
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1700 1701
        }

F
fengjiayi 已提交
1702

X
Xin Pan 已提交
1703
class Operator(object):
1704
    """
1705 1706 1707 1708 1709 1710 1711
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1712
        type(str): The type of operator. Default None.
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1733
        Block.append_op or Block._prepend_op instead.
1734 1735 1736 1737

    Examples:
        .. code-block:: python

1738
            import paddle.fluid as fluid
1739
            cur_program = fluid.Program()
1740 1741 1742 1743 1744
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1745
    """
1746
    OP_WITHOUT_KERNEL_SET = {
1747 1748
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1749 1750
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1751
        'c_sync_comm_stream'
1752
    }
1753

Y
Yu Yang 已提交
1754 1755
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1756
                 desc,
Y
Yu Yang 已提交
1757 1758 1759
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1760
                 attrs=None):
L
lujun 已提交
1761
        if in_dygraph_mode():
1762 1763
            if type is None:
                raise ValueError(
1764
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1765
            self._type = type
M
minqiyang 已提交
1766
            self.attrs = attrs if attrs else {}
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1781
                )] = self.block.program._op_role
1782 1783 1784

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1785 1786
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1787 1788 1789 1790 1791 1792 1793 1794

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1795
                    "`type` to initialized an Operator can not be None.")
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1827
                        for index, arg in enumerate(in_args):
1828 1829 1830 1831
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1832
                            elif isinstance(arg, Variable):
1833
                                in_arg_names.append(cpt.to_text(arg.name))
1834
                            else:
1835 1836 1837 1838
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1839 1840
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1867
                        if not in_dygraph_mode():
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1887
    def _has_kernel(self, op_type):
1888 1889
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1890
    def to_string(self, throw_on_error):
1891
        """
1892 1893
        Get debug string.

1894
        Args:
1895 1896
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1897

1898 1899
        Returns:
            str: The debug string.
1900 1901

        """
1902
        protostr = self.desc.serialize_to_string()
1903
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1904 1905 1906 1907
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1908 1909 1910

    __repr__ = __str__

F
fengjiayi 已提交
1911 1912
    @property
    def type(self):
L
lujun 已提交
1913
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1914
            return self._type
1915 1916
        else:
            return self.desc.type()
F
fengjiayi 已提交
1917 1918

    def input(self, name):
1919
        """
1920
        Get the input arguments according to the input parameter name.
1921

1922 1923
        Args:
            name(str): The input parameter name.
1924

1925 1926 1927
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1928
        """
F
fengjiayi 已提交
1929 1930
        return self.desc.input(name)

W
Wu Yi 已提交
1931
    def _rename_input(self, old_name, new_name):
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1942
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1943

W
Wu Yi 已提交
1944
    def _rename_output(self, old_name, new_name):
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1955
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1956

F
fengjiayi 已提交
1957 1958 1959 1960
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1961 1962 1963 1964 1965 1966 1967 1968
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1969
    def output(self, name):
1970
        """
1971
        Get output arguments by the output parameter name.
1972

1973 1974
        Args:
            name(str): The output parameter name.
1975

1976 1977 1978
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1979
        """
F
fengjiayi 已提交
1980 1981 1982 1983 1984 1985
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1986 1987 1988 1989 1990 1991 1992 1993
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1994
    def has_attr(self, name):
1995
        """
1996 1997
        Whether this Operator has the attribute with name or not.

1998
        Args:
1999
            name(str): the attribute name.
2000

2001 2002
        Returns:
            bool: True if has this attribute.
2003 2004

        """
F
fengjiayi 已提交
2005 2006 2007
        return self.desc.has_attr(name)

    def attr_type(self, name):
2008
        """
2009
        Get the type of attribute by attribute's name.
2010

2011 2012
        Args:
            name(str): the attribute name.
2013

2014 2015
        Returns:
            core.AttrType: the attribute type.
2016
        """
F
fengjiayi 已提交
2017 2018
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2019
    def _set_attr(self, name, val):
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2030 2031
        self._update_desc_attr(name, val)

2032 2033 2034
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2046 2047
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2048 2049
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2050
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2051 2052 2053 2054
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2055
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2056

F
fengjiayi 已提交
2057 2058 2059 2060 2061
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2062
        """
2063 2064
        Get the attribute by name.

2065
        Args:
2066
            name(str): the attribute name.
2067

2068 2069
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2070 2071
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2072
        return self.desc.attr(name)
Y
Yu Yang 已提交
2073

W
Wu Yi 已提交
2074
    def _block_attr_id(self, name):
2075
        """
G
gongweibao 已提交
2076
        Get the block attribute's id by name.
2077

2078 2079
        Args:
            name(str): the attribute name.
2080

2081 2082
        Returns:
            int: the block index.
2083
        """
W
Wu Yi 已提交
2084
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2085

W
Wu Yi 已提交
2086
    def _block_attr(self, name):
G
gongweibao 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2097
        id = self._block_attr_id(name)
G
gongweibao 已提交
2098 2099 2100
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2101
    def _blocks_attr(self, name):
G
gongweibao 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2112
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2113 2114 2115 2116 2117
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2118
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2129
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2130

J
JiayiFeng 已提交
2131
    def all_attrs(self):
F
fengjiayi 已提交
2132
        """
2133 2134 2135
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2136
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2137 2138 2139 2140
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2141 2142
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2143
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2144 2145 2146
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2147
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2148 2149 2150 2151
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2152 2153
        return attr_map

Y
Yu Yang 已提交
2154

Y
Yu Yang 已提交
2155
class Block(object):
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2170
        use `Program._create_block()` to create a block.
2171 2172 2173 2174

    Examples:
        .. code-block:: python

2175 2176 2177
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2178 2179 2180 2181 2182 2183 2184 2185 2186
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2187
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2188
        self.desc = program.desc.block(idx)
2189
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2190
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2191
        self.program = program
2192
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2193

2194
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2195 2196
        return self.to_string(True)

F
fengjiayi 已提交
2197 2198
    def to_string(self, throw_on_error, with_details=False):
        """
2199 2200
        Get debug string.

F
fengjiayi 已提交
2201 2202
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2203
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2204
            with_details(bool): more details about variables and parameters
2205 2206
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2207

2208 2209
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2210 2211 2212 2213
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2214
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2215 2216
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2217
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2218
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2219
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2220
            for op in self.ops:
F
fengjiayi 已提交
2221 2222
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2223 2224 2225
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2226 2227
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2228 2229
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2230 2231 2232

    __repr__ = __str__

Y
Yu Yang 已提交
2233 2234
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2235
        return self.desc.parent
Y
Yu Yang 已提交
2236

Y
Yu Yang 已提交
2237 2238 2239 2240
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2241
    def _set_forward_block_idx(self, idx):
2242 2243 2244 2245 2246 2247 2248 2249 2250
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2251
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2252

2253 2254 2255 2256 2257 2258 2259 2260
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2261 2262
    @property
    def idx(self):
Y
Yu Yang 已提交
2263
        return self.desc.id
Y
Yu Yang 已提交
2264

Q
Qiao Longfei 已提交
2265
    def var(self, name):
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2279
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2280 2281 2282
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2283 2284
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2285
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2286
        return v
Q
Qiao Longfei 已提交
2287

X
Xin Pan 已提交
2288
    def _find_var_recursive(self, name):
2289 2290 2291 2292 2293 2294 2295
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2296
            Variable: the Variable with the giving name. Or None if not found.
2297
        """
Y
Yu Yang 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2322
        return None
Y
Yu Yang 已提交
2323

X
Xin Pan 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2343

Q
Qiao Longfei 已提交
2344
    def all_parameters(self):
2345
        return list(self.iter_parameters())
2346

2347
    def iter_parameters(self):
M
minqiyang 已提交
2348
        return (item[1] for item in six.iteritems(self.vars)
2349
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2350

Y
Yu Yang 已提交
2351
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2352 2353 2354
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2355 2356 2357
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2358
        return var
Y
Yu Yang 已提交
2359

Q
Qiao Longfei 已提交
2360 2361 2362
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2363
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2364 2365
        """
        Rename variable in vars and ops' inputs and outputs
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2378
        """
M
minqiyang 已提交
2379 2380
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2381

T
typhoonzero 已提交
2382
        if not self.has_var(name):
2383
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2384 2385
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2386
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2387 2388 2389 2390 2391 2392 2393
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2394
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2395 2396 2397 2398
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2399
        orig_var_type = v.type
M
minqiyang 已提交
2400
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2401
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2402
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2403
        if var_type == "Parameter":
L
Leo Chen 已提交
2404 2405
            if in_dygraph_mode():
                var = ParamBase(
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    gradient_clip_attr=gradient_clip_attr,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2417 2418
                var = Parameter(
                    self,
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    gradient_clip_attr=gradient_clip_attr,
                    error_clip=error_clip)
T
typhoonzero 已提交
2429
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2430 2431
            var = Variable(
                self,
T
typhoonzero 已提交
2432
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2433 2434 2435 2436
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2437
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2438 2439 2440
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2441
        self._sync_with_cpp()
2442
        return var
T
typhoonzero 已提交
2443

W
Wu Yi 已提交
2444 2445
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2446
        self.desc._remove_var(cpt.to_bytes(name))
2447 2448
        del self.vars[name]

Y
Yu Yang 已提交
2449 2450
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2451
        param = None
L
Leo Chen 已提交
2452
        if in_dygraph_mode():
2453
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2454 2455
        else:
            param = Parameter(global_block, *args, **kwargs)
2456
        if 'initializer' in kwargs:
2457 2458 2459 2460 2461

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2462 2463 2464 2465 2466
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2478
                # TODO already inited, do nothing, should log a warning
2479 2480 2481
                pass
            else:
                initializer(param, self)
2482
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2483
        return param
Y
Yu Yang 已提交
2484

Y
Yu Yang 已提交
2485
    def append_op(self, *args, **kwargs):
2486 2487 2488 2489 2490 2491
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2492
        if in_dygraph_mode():
2493 2494 2495
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2496 2497 2498 2499 2500
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2501

J
Jiabin Yang 已提交
2502 2503
            type = kwargs.get("type", None)

2504 2505 2506
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2507
                type=type,
M
minqiyang 已提交
2508 2509
                inputs=None,
                outputs=None,
2510
                attrs=attrs)
2511

M
minqiyang 已提交
2512 2513 2514
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2515
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2516 2517

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2518
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2519 2520
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2521
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2522
        else:
2523 2524 2525 2526 2527 2528 2529 2530 2531
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2532
            self.ops.append(op)
M
minqiyang 已提交
2533

2534 2535
        return op

W
Wu Yi 已提交
2536
    def _insert_op(self, index, *args, **kwargs):
2537 2538 2539 2540 2541 2542 2543 2544 2545
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2546 2547
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2548 2549 2550 2551
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2552
    def _remove_op(self, index):
2553 2554 2555 2556 2557 2558 2559 2560 2561
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2562 2563
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2564 2565
        del self.ops[index]

W
Wu Yi 已提交
2566
    def _slice_ops(self, start, end):
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2577
        return self.ops[start:end]
Y
Yancey1989 已提交
2578

W
Wu Yi 已提交
2579
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2580
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2581 2582
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2583
            op = Operator(
J
Jiabin Yang 已提交
2584
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2585

J
Jiabin Yang 已提交
2586
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2587
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2588 2589
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2590
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2591
        else:
2592 2593 2594 2595 2596 2597 2598 2599
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2600
            self.ops.insert(0, op)
2601

Y
Yu Yang 已提交
2602 2603
        return op

W
Wu Yi 已提交
2604
    def _sync_with_cpp(self):
2605
        """
2606 2607
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2608
        """
Q
Qiao Longfei 已提交
2609 2610 2611 2612 2613
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2614
        # sync variables removed from c++ end
2615
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2616
            if not self.desc.find_var(cpt.to_bytes(var)):
2617 2618
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2619
        # sync operators from cpp
2620 2621 2622 2623
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2640 2641 2642 2643 2644

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2645
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2646 2647 2648 2649 2650 2651 2652

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2666 2667 2668 2669
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2670
    def _copy_param_info_from(self, other):
2671
        """
2672 2673
        Copy the information of parameters from the other block.

2674
        Args:
2675 2676 2677 2678 2679
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2680 2681 2682 2683 2684

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2685 2686
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2687
        for p in other.iter_parameters():
2688 2689 2690
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2691
                raise ValueError("_copy_param_info_from should be invoked with "
2692 2693
                                 "same topology")
            assert isinstance(v, Variable)
2694
            new_p = None
L
Leo Chen 已提交
2695 2696
            if in_dygraph_mode():
                new_p = ParamBase(
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    gradient_clip_attr=p.gradient_clip_attr,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2709 2710
                new_p = Parameter(
                    block=self,
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    gradient_clip_attr=p.gradient_clip_attr,
                    error_clip=p.error_clip,
                    name=v.name)
2722 2723
            self.vars[new_p.name] = new_p

2724
    def _clone_variable(self, var, force_persistable=True):
2725 2726
        """
        Clone a variable into current block.
2727

2728 2729
        Args:
            var: the variable to be cloned.
2730 2731 2732
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2733 2734

        Returns:
2735
            Variable: the new  variable cloned from 'var' in current block.
2736 2737
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2738 2739 2740 2741 2742
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2743 2744
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2745
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2746 2747 2748 2749 2750 2751
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2752
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2753 2754
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2755 2756 2757 2758 2759 2760 2761
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2762
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2763 2764
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2765
        return ret_var
2766

Y
Yu Yang 已提交
2767

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2863
    def remove_input_by_id(self, node_id):
2864 2865 2866 2867 2868 2869
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2870
        self.node.remove_input(node_id)
2871

2872
    def remove_input(self, node):
2873 2874 2875 2876
        """
        Remove a node from inputs.

        Args:
2877
            node(IrNode): the node being removed.
2878
        """
2879
        self.node.remove_input(node.node)
2880

2881
    def append_input(self, node):
2882 2883 2884 2885
        """
        Append a node in inputs.

        Args:
2886
            node(IrNode): the node being appended.
2887
        """
2888
        self.node.append_input(node.node)
2889 2890 2891 2892 2893 2894 2895 2896

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2897
    def remove_output_by_id(self, node_id):
2898 2899 2900 2901 2902 2903
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2904
        self.node.remove_output(node_id)
2905

2906
    def remove_output(self, node):
2907 2908 2909 2910
        """
        Remove a node from outputs.

        Args:
2911
            node(IrNode): the node being removed.
2912
        """
2913
        self.node.remove_output(node.node)
2914

2915
    def append_output(self, node):
2916 2917 2918 2919
        """
        Append a node in outputs.

        Args:
2920
            node(IrNode): the node being appended.
2921
        """
2922
        self.node.append_output(node.node)
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
2970
            "The node variable description can not be None."
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
2981
            "The node variable description can not be None."
2982 2983
        return self.node.var().persistable()

2984 2985 2986 2987 2988 2989 2990 2991
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
2992
            "The node variable description can not be None."
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3003
            "The node variable description can not be None."
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3014
            "The node variable description can not be None."
3015 3016
        return self.node.var().shape()

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3064
            "The node operator description can not be None."
3065 3066
        self.node.op()._rename_input(old_input_name, new_input_name)

3067 3068 3069 3070 3071 3072 3073 3074 3075
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3076
            "The node operator description can not be None."
3077 3078 3079 3080
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3092
            "The node operator description can not be None."
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3106
            "The node operator description can not be None."
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3117
            "The node operator description can not be None."
3118 3119
        return self.node.op().set_type(new_type)

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3135
            "The node operator description can not be None."
3136 3137 3138 3139
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3140
                all(isinstance(v, Block) for v in val):
3141 3142
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3143
                isinstance(val, core.ProgramDesc):
3144 3145 3146 3147
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3148 3149 3150 3151 3152 3153 3154 3155
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3156
            "The node operator description can not be None."
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3167
            "The node operator description can not be None."
3168 3169
        return self.node.op().output_arg_names()

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3191 3192
class IrGraph(object):
    """
3193
    Python IrGraph. Beneath it is a core.Graph, which is used for
3194
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3195 3196
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3197 3198 3199 3200
    """

    def __init__(self, graph, for_test=False):
        """
3201 3202
        Construct an IrGraph using core.Graph.

3203 3204 3205 3206 3207 3208 3209 3210 3211
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3212 3213 3214 3215
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3216 3217 3218
        Warns:
            The method only clones the graph structure, not its attributes.

3219 3220 3221
        Returns:
            IrGraph: A new and duplicated graph.
        """
3222
        g = self.graph.clone()
3223 3224
        return IrGraph(g, self._for_test)

3225
    def is_test(self):
3226 3227 3228
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3229 3230
        return self._for_test

W
WangZhen 已提交
3231
    def all_nodes(self):
3232 3233 3234
        """
        Return all nodes included in the graph as a set.
        """
3235
        return {IrNode(node) for node in self.graph.nodes()}
3236

3237
    def all_var_nodes(self):
3238 3239 3240
        """
        Return all variable nodes included in the graph as a set.
        """
3241
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3242

3243
    def all_persistable_nodes(self):
3244 3245 3246
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3247 3248 3249 3250 3251
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3252
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3253

3254
    def all_op_nodes(self):
3255 3256 3257
        """
        Return all operator nodes included in the graph as a set.
        """
3258
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3259

3260
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3272
            IrVarNode: the created persistable variable node.
3273
        """
3274 3275 3276 3277 3278
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3279
        return IrVarNode(self.graph.create_var_node(var_desc))
3280 3281

    def create_var_node(self, name, var_type, shape, var_dtype):
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3293
            IrVarNode: the created variable node.
3294 3295
        """

3296 3297 3298 3299
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3300
        return IrVarNode(self.graph.create_var_node(var_desc))
3301 3302

    def create_var_node_from_desc(self, var_desc):
3303 3304 3305 3306 3307 3308 3309 3310
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3311
            IrVarNode: the created variable node.
3312
        """
3313
        return IrVarNode(self.graph.create_var_node(var_desc))
3314 3315

    def create_op_node(self, op_type, attrs, inputs, outputs):
3316 3317 3318 3319 3320 3321 3322
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3323
            outputs(dict): the outputs of the operator node.
3324 3325

        Returns:
3326
            IrOpNode: the created operator node.
3327
        """
3328 3329
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3330
        for attr, value in six.iteritems(attrs):
3331
            self._update_desc_attr(op_desc, attr, value)
3332
        for input_name, var_nodes in six.iteritems(inputs):
3333 3334 3335 3336
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3337
        for output_name, var_nodes in six.iteritems(outputs):
3338 3339 3340 3341
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3342
        return IrOpNode(self.graph.create_op_node(op_desc))
3343 3344

    def create_op_node_from_desc(self, op_desc):
3345 3346 3347 3348 3349 3350 3351
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3352
            IrOpNode: the created operator node.
3353
        """
3354
        return IrOpNode(self.graph.create_op_node(op_desc))
3355 3356

    def update_input_link(self, old_input_node, new_input_node, op_node):
3357 3358 3359 3360
        """
        Update the input's link of a operator node.

        Args:
3361 3362 3363
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3364
        """
3365
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3366 3367
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3368 3369 3370 3371
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3372
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3373

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3384 3385
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3386 3387 3388 3389 3390 3391
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3392
    def link_to(self, node_in, node_out):
3393 3394 3395 3396
        """
        Connect two nodes.

        Args:
3397 3398
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3399
        """
3400
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3401
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3402 3403
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3404 3405

    def safe_remove_nodes(self, remove_nodes):
3406 3407 3408 3409 3410 3411 3412
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3413
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3414 3415 3416 3417
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3418 3419
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3420

Z
Zhen Wang 已提交
3421 3422 3423 3424 3425 3426 3427 3428
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3429
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3430 3431 3432 3433
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3434
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3435 3436 3437
                        ]
                    else:
                        var_nodes[each_var_name].append(
3438 3439
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3440 3441
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3442
    def has_circle(self):
3443 3444 3445 3446 3447 3448
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3449 3450 3451
        return core.has_circle(self.graph)

    def graph_num(self):
3452 3453 3454 3455 3456 3457
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3458 3459 3460
        return core.graph_num(self.graph)

    def topology_sort(self):
3461 3462 3463
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3464
        Notes: the `graph` can not contain a circle.
3465 3466

        Returns:
Z
Zhen Wang 已提交
3467
            list(IrNode): nodes in topology order.
3468
        """
3469
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3470
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3471 3472

    def build_adjacency_list(self):
3473 3474 3475 3476
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3477
            dict{IrNode: set(IrNode)}: the adjacency list.
3478
        """
3479 3480 3481 3482 3483
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3484

3485 3486 3487 3488 3489 3490 3491 3492
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3493
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3494 3495 3496 3497 3498
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3499 3500 3501
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3502
                                          + ' -o ' + pdf_save_path, shell=True)
3503 3504 3505 3506 3507
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3508
        remove_ctr_vars = set()
3509
        if remove_ctr_var:
3510
            for node in self.all_var_nodes():
3511 3512 3513
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3514 3515
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3516 3517
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3518 3519 3520 3521 3522 3523
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3524 3525 3526 3527
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3528 3529
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3530 3531 3532 3533 3534 3535 3536
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3537 3538 3539
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3540
        WARN: When the graph includes backward operator nodes, the
3541 3542 3543 3544 3545 3546
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3547
        convert_pass = core.get_pass('graph_to_program_pass')
3548 3549
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3550 3551 3552 3553
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3581
class Program(object):
D
dzhwinter 已提交
3582
    """
3583 3584
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3585
    it will contain nested block.
3586

J
Jiabin Yang 已提交
3587 3588 3589
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3590

J
Jiabin Yang 已提交
3591
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3592
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3593 3594 3595 3596 3597 3598 3599
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3600 3601 3602 3603
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3604 3605

    Returns:
J
Jiabin Yang 已提交
3606
        Program: An empty Program.
D
dzhwinter 已提交
3607 3608

    Examples:
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3622 3623 3624

    """

3625 3626
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3627 3628
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3629
        self._seed = 0
Y
yuyang18 已提交
3630
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3631
        self.__op_role_var = []
T
tangwei12 已提交
3632

3633 3634
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3635
        self._is_distributed = False
3636
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3637
        self._is_chief = False
3638 3639 3640
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3641
        self._endpoints = []
3642 3643 3644
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3645
        self._trainers_endpoints = []
3646
        # the distributed lookup table names
T
tangwei12 已提交
3647
        self._distributed_lookup_table = None
3648 3649 3650

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3651 3652
        self._use_lamb = False

3653 3654 3655
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3656

3657 3658 3659
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3660
        self._program_config = None
3661

H
hutuxian 已提交
3662 3663 3664
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3665 3666 3667
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3668
    @property
3669
    def _op_role(self):
Y
yuyang18 已提交
3670 3671 3672 3673 3674 3675 3676 3677
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3678
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3679 3680 3681 3682
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3683 3684
        return self._current_role

3685 3686
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3687 3688 3689
        self._current_role = role

    @property
3690
    def _op_role_var(self):
Y
yuyang18 已提交
3691
        """
3692
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3693

3694
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3695 3696 3697

        Notes: This is a very low-level API. Users should not use it directly.
        """
3698
        return self.__op_role_var
Y
yuyang18 已提交
3699

3700 3701 3702 3703 3704 3705 3706 3707 3708
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3709
    @signature_safe_contextmanager
W
Wu Yi 已提交
3710
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3711 3712 3713 3714 3715 3716 3717
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3718
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3719 3720 3721

        Examples:

3722
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3723
            >>> p, g = backward(...)
W
Wu Yi 已提交
3724
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3725 3726
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3727
        tmp_role = self._current_role
3728
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3729

Y
yuyang18 已提交
3730 3731
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3732
        self.__op_role_var = [
3733 3734 3735
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3736
        yield
3737
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3738
        self._current_role = tmp_role
Y
Yu Yang 已提交
3739

S
rename  
sneaxiy 已提交
3740
    @signature_safe_contextmanager
X
Xin Pan 已提交
3741
    def _lr_schedule_guard(self, is_with_opt=False):
3742 3743 3744 3745 3746 3747 3748
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3749 3750 3751 3752
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3753 3754 3755

        Examples:

3756
            >>> import paddle.fluid as fluid
3757 3758 3759 3760
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3761 3762

        tmp_role = self._current_role
3763
        tmp_var = self.__op_role_var
3764

3765 3766
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3767 3768
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3769
        # TODO(typhoonzero): how to set target learning rate var
3770
        self.__op_role_var = []
3771
        yield
3772
        self.__op_role_var = tmp_var
3773
        self._current_role = tmp_role
3774

3775
    def __str__(self):
Y
yuyang18 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3785 3786
        return self.to_string(True)

F
fengjiayi 已提交
3787 3788 3789
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3790

J
Jiabin Yang 已提交
3791 3792 3793
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3794

J
Jiabin Yang 已提交
3795
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3796

H
haowang101779990 已提交
3797
        Returns:
J
Jiabin Yang 已提交
3798
            str: The debug string describe current Program.
Y
yuyang18 已提交
3799 3800

        Raises:
J
Jiabin Yang 已提交
3801
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3802

3803 3804 3805 3806 3807 3808 3809
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
T
tianshuo78520a 已提交
3810
                print("program string without detail: {}".format(prog_string))
J
Jiabin Yang 已提交
3811
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
T
tianshuo78520a 已提交
3812
                print("program string with detail: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3813 3814 3815 3816 3817 3818 3819 3820 3821
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3822 3823
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3824 3825
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3826

W
Wu Yi 已提交
3827
    def _get_desc(self):
Y
yuyang18 已提交
3828 3829 3830 3831 3832 3833 3834
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3835 3836
        return self.desc

X
version  
Xin Pan 已提交
3837 3838 3839
    def _version(self):
        return self.desc._version()

3840
    @dygraph_not_support
3841
    def clone(self, for_test=False):
Y
yuyang18 已提交
3842
        """
3843
        **Notes**:
J
Jiabin Yang 已提交
3844 3845 3846 3847
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3848
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3849

3850 3851
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3852

3853

J
Jiabin Yang 已提交
3854
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3855 3856 3857
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3858

Y
yuyang18 已提交
3859
        * Set for_test to False when we want to clone the program for training.
3860
        * Set for_test to True when we want to clone the program for testing.
3861 3862
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3863
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3864

J
Jiabin Yang 已提交
3865 3866
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3867

J
Jiabin Yang 已提交
3868 3869 3870 3871
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3872

J
Jiabin Yang 已提交
3873
        Args:
3874

J
Jiabin Yang 已提交
3875
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3876

J
Jiabin Yang 已提交
3877 3878
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3879

Y
yuyang18 已提交
3880 3881 3882

        Examples:

J
Jiabin Yang 已提交
3883
        **Notes: The Program's order maybe different after** :code:`clone` **and
3884
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3885
        example we give you an simple method** :code:`print_prog(program)` **to
3886
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3887
        after** :code:`clone`:
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3925 3926 3927

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3939 3940 3941 3942 3943 3944 3945 3946 3947

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3995
        """
3996 3997 3998 3999 4000

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4001
        pruned_origin_block_id_map = None
4002
        if for_test:
4003 4004 4005 4006 4007 4008 4009 4010 4011
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4012
        else:
4013
            p = Program()
G
gongweibao 已提交
4014 4015
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4016
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4017 4018 4019
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4020 4021

            p._current_role = self._current_role
4022
            p.__op_role_var = self.__op_role_var
4023
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4024

4025 4026
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4027
            p._sync_with_cpp()
4028

W
Wu Yi 已提交
4029
        p._copy_param_info_from(self)
4030
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4031
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4032
        return p
4033

4034
    def _prune(self, targets):
Y
yuyang18 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4048 4049
        """

4050 4051 4052 4053
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4054 4055
        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
4056

4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4091
        """
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4109 4110 4111 4112
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4113 4114
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4115 4116
        if not isinstance(targets, list):
            targets = [targets]
4117 4118 4119 4120 4121 4122

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

4123 4124 4125 4126
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4127 4128
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
4129
                    # and we need to find the current op that generate this
4130 4131 4132 4133 4134 4135 4136 4137
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

4138
                    t = t.op
4139 4140 4141 4142
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
4143
                else:
4144 4145
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
4146 4147 4148

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
4149
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
4150 4151 4152
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4153
        res._sync_with_cpp()
4154 4155
        return res

X
Xin Pan 已提交
4156
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4157
        """
F
fengjiayi 已提交
4158 4159 4160 4161 4162
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4163
        3. change the :code:`is_test`
Y
yuyang18 已提交
4164 4165 4166
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4167
        Args:
X
Xin Pan 已提交
4168 4169
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4170

Y
yuyang18 已提交
4171 4172 4173 4174 4175 4176
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4177
        res = Program()
4178
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4179 4180 4181 4182

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4183
        if prune_read_op:
4184 4185 4186 4187 4188 4189 4190 4191 4192
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4193
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4194 4195

        # change all `is_test` attributes to True
M
minqiyang 已提交
4196
        for i in six.moves.range(res.desc.num_blocks()):
4197
            block = res.desc.block(i)
M
minqiyang 已提交
4198
            for j in six.moves.range(block.op_size()):
4199 4200
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4201
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4202 4203 4204
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4205
        res._sync_with_cpp()
4206 4207
        return res

4208 4209
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4210
        """
J
Jiabin Yang 已提交
4211 4212 4213 4214
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4215

4216 4217
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4218

J
Jiabin Yang 已提交
4219
        Args:
Y
yuyang18 已提交
4220

J
Jiabin Yang 已提交
4221
            binary_str_type (str): the binary prootbuf string.
4222

J
Jiabin Yang 已提交
4223 4224
        Returns:
            Program: A deserialized Program.
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4247
        """
4248 4249
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4250
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4251
        p._sync_with_cpp()
4252
        return p
Y
Yu Yang 已提交
4253

4254
    @staticmethod
4255
    def _construct_from_desc(desc):
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4271 4272
    @property
    def random_seed(self):
Y
yuyang18 已提交
4273
        """
J
Jiabin Yang 已提交
4274
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4275 4276
        the random seed from random device.

J
Jiabin Yang 已提交
4277 4278 4279 4280
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4281

4282 4283 4284 4285 4286 4287 4288 4289

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4290 4291 4292
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4293 4294
                print(random_seed)
                prog.random_seed = 1
4295 4296
                z_var = fluid.layers.dropout(x_var, 0.7)

4297
                print(prog.random_seed)
Y
yuyang18 已提交
4298
        """
D
dzhwinter 已提交
4299 4300
        return self._seed

Q
qiaolongfei 已提交
4301 4302
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4303
        """
4304 4305
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4306 4307 4308 4309
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4320 4321


Y
yuyang18 已提交
4322
        """
Q
qiaolongfei 已提交
4323 4324
        return self.desc.num_blocks()

D
dzhwinter 已提交
4325 4326 4327 4328 4329 4330
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4331
    def __repr__(self):
4332
        return self.__str__()
4333

Y
Yu Yang 已提交
4334
    def global_block(self):
Y
yuyang18 已提交
4335
        """
J
Jiabin Yang 已提交
4336 4337
        **Notes**:
            **This API has no effect in Dygraph mode**
4338 4339 4340

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4341 4342
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4343

4344 4345 4346 4347 4348 4349 4350 4351 4352

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4353

Y
yuyang18 已提交
4354
        """
Y
Yu Yang 已提交
4355 4356
        return self.blocks[0]

Q
Qiao Longfei 已提交
4357
    def block(self, index):
Y
yuyang18 已提交
4358
        """
J
Jiabin Yang 已提交
4359 4360
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4361

4362 4363
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4364 4365
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4366

J
Jiabin Yang 已提交
4367 4368
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4369 4370 4371 4372 4373 4374 4375 4376 4377

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4378
        """
Q
Qiao Longfei 已提交
4379 4380
        return self.blocks[index]

Y
Yu Yang 已提交
4381
    def current_block(self):
Y
yuyang18 已提交
4382
        """
J
Jiabin Yang 已提交
4383 4384
        **Notes**:
            **This API has no effect in Dygraph mode**
4385

J
Jiabin Yang 已提交
4386 4387
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4388

J
Jiabin Yang 已提交
4389 4390
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4391

4392 4393 4394 4395 4396 4397 4398 4399
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4400
        """
Y
Yu Yang 已提交
4401 4402
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4403
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4404 4405 4406 4407 4408
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4409

Y
yuyang18 已提交
4410 4411 4412 4413 4414
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4415
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4416 4417 4418
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4419 4420 4421 4422
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4423
    def _rollback(self):
Y
yuyang18 已提交
4424 4425 4426 4427 4428
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4429 4430
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4431
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4442 4443 4444
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4445
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4446

W
Wu Yi 已提交
4447
    def _copy_param_info_from(self, other):
4448
        """
4449
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4450

Y
yuyang18 已提交
4451 4452 4453
        Notes: This is a very low level API. Users should not invoke it
        directly.

4454 4455 4456 4457 4458 4459 4460
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4461
            raise TypeError("_copy_param_info_from should be invoked with "
4462 4463
                            "Program")

W
Wu Yi 已提交
4464
        self.global_block()._copy_param_info_from(other.global_block())
4465

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4481
        self._parameters_on_pservers = other._parameters_on_pservers
4482
        self._endpoints = other._endpoints
4483
        self._ps_endpoint = other._ps_endpoint
4484 4485
        self._distributed_lookup_table = other._distributed_lookup_table

4486
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4487 4488
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4489

Y
yuyang18 已提交
4490 4491 4492
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4493 4494
        Args:
            other(Program): Other program
4495 4496 4497 4498
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4499 4500 4501 4502 4503

        Returns:
            None
        """
        if not isinstance(other, Program):
4504
            raise TypeError("_copy_data_info_from should be invoked with "
F
fengjiayi 已提交
4505 4506
                            "Program")

4507 4508 4509 4510 4511
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4512 4513 4514

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4515 4516
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4517
            for var in list(block.vars.values()):
4518 4519 4520 4521 4522 4523 4524
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4525

4526
    @dygraph_not_support
4527
    def list_vars(self):
Y
yuyang18 已提交
4528
        """
J
Jiabin Yang 已提交
4529
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4530

J
Jiabin Yang 已提交
4531 4532
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4544
        """
4545
        for each_block in self.blocks:
4546
            for each_var in list(each_block.vars.values()):
4547 4548
                yield each_var

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
    @dygraph_not_support
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4608

4609
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4610
class Parameter(Variable):
4611
    """
4612
    Parameter is derived from Variable. A parameter is a persistable
4613
    Variable, and will be updated by optimizers after each iteration.
4614
    The training of a neural network is essentially the updating of
4615 4616
    its parameters.

4617
    Relative to a general Variable, a Parameter has several its own
4618 4619
    member variables:

4620 4621 4622 4623 4624 4625 4626 4627
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
T
tianshuo78520a 已提交
4628
        gradient_clip_attr(BaseGradientClipAttr): The gradient clip strategy
4629 4630 4631
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4632 4633
    """

4634 4635 4636 4637 4638 4639
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4640 4641 4642 4643 4644
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4645
        if len(shape) == 0:
4646 4647
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4648 4649 4650

        for each in shape:
            if each < 0:
4651 4652 4653
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4654 4655

        Variable.__init__(
4656 4657 4658 4659 4660 4661 4662
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
4663 4664 4665 4666
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4667 4668
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4669
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4670

W
wanghaoshuang 已提交
4671
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4672

4673 4674
        self.is_distributed = False

F
fengjiayi 已提交
4675 4676 4677
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4678 4679 4680
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4681

F
update  
fengjiayi 已提交
4682 4683 4684 4685 4686 4687 4688 4689
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4690 4691 4692 4693 4694 4695 4696 4697 4698
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4699 4700 4701 4702 4703 4704
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4705
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4706
            for attr_name in additional_attr:
4707 4708
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4709 4710
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4711 4712 4713 4714
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4715

4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
T
tianshuo78520a 已提交
4734
        gradient_clip_attr(BaseGradientClipAttr): The gradient clip strategy
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
            which will be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

4780
        # self.block = default_main_program().global_block()
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
            return 'name %s, dtype: %s shape: %s %s' % (self.name, self.dtype,
                                                        self.shape, str(tensor))
        else:
            return 'name %s, shape: %s, not inited' % (self.name, self.shape)

    __repr__ = __str__


Y
Yu Yang 已提交
4819
# program is a global instance.
Y
Yu Yang 已提交
4820 4821
_main_program_ = Program()
_startup_program_ = Program()
4822

4823

4824
def default_startup_program():
Y
Yu Yang 已提交
4825
    """
Y
yuyang18 已提交
4826 4827
    Get default/global startup program.

J
Jiabin Yang 已提交
4828 4829 4830
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4831 4832 4833
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4834
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4835

J
Jiabin Yang 已提交
4836
    Returns: current default startup :ref:`api_fluid_Program`
4837

J
Jiabin Yang 已提交
4838
    Returns type: :ref:`api_fluid_Program`
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4854
    """
Y
Yu Yang 已提交
4855
    return _startup_program_
4856

4857

4858
def default_main_program():
Y
Yu Yang 已提交
4859
    """
4860 4861 4862 4863 4864
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4865

4866 4867
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4868
    :code:`default_main_program` when the program is not specified.
4869

4870 4871
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4872
    Returns:
4873
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4874 4875 4876 4877 4878

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4879

4880
            # Sample Network:
4881 4882
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4902
            #print the number of blocks in the program, 1 in this case
4903
            print(fluid.default_main_program().num_blocks)
4904 4905

            #print the description of variable 'image'
4906
            print(fluid.default_main_program().blocks[0].var('image'))
4907

Y
Yu Yang 已提交
4908
    """
Y
Yu Yang 已提交
4909
    return _main_program_
Y
Yu Yang 已提交
4910 4911 4912 4913 4914


def switch_main_program(program):
    """
    Switch the main program to a new program.
4915

Y
Yu Yang 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4930
    Switch the startup program to a new program
Y
Yu Yang 已提交
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4943
@signature_safe_contextmanager
Y
Yu Yang 已提交
4944 4945
def program_guard(main_program, startup_program=None):
    """
4946 4947
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4948
    variables to the new main programs.
4949

G
guofei 已提交
4950 4951 4952 4953 4954 4955 4956
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4957
    Examples:
4958 4959 4960
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4961

4962 4963 4964
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
4965
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4966
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4967 4968 4969

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4970

Y
Yu Yang 已提交
4971
    Examples:
4972
       .. code-block:: python
Y
yuyang18 已提交
4973

4974 4975 4976 4977 4978
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
4979 4980
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4993 4994


W
Wu Yi 已提交
4995
def _get_var(name, program=None):
X
xuwei06 已提交
4996
    """
Y
yuyang18 已提交
4997
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4998

X
xuwei06 已提交
4999 5000 5001
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5002
        If None, default_global_program() will be used.
X
xuwei06 已提交
5003 5004 5005 5006 5007 5008 5009

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5010
    assert isinstance(program, Program)
X
xuwei06 已提交
5011 5012

    return program.global_block().var(name)
5013 5014


S
rename  
sneaxiy 已提交
5015
@signature_safe_contextmanager
L
lujun 已提交
5016 5017 5018 5019
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5020
    core._switch_tracer(tracer)
M
minqiyang 已提交
5021

5022
    yield
P
Paddle CI 已提交
5023

5024
    core._switch_tracer(tmp_trace)
L
lujun 已提交
5025
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5026 5027


S
rename  
sneaxiy 已提交
5028
@signature_safe_contextmanager
L
lujun 已提交
5029 5030 5031 5032
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5033

5034
    yield
M
minqiyang 已提交
5035

L
lujun 已提交
5036
    _dygraph_current_expected_place_ = tmp_place
5037 5038 5039 5040 5041 5042 5043


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5044
    Please note, the type of custom operators can't have the same type
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()