framework.py 228.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'is_compiled_with_npu',
59
    'Variable',
60
    'require_version',
61
    'device_guard',
G
guofei 已提交
62 63
    'set_flags',
    'get_flags',
64
]
Y
Yu Yang 已提交
65

Q
qiaolongfei 已提交
66 67 68 69
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
70 71
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
72
_dygraph_tracer_ = None
73
_global_expected_place_ = None
74
_current_device = None
75
global_prog_seed = 0
76
_current_pipeline_stage = None
77
_global_flags_ = core.globals()
78

79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
187
def in_dygraph_mode():
L
lujun 已提交
188
    """
189

190 191 192 193 194 195 196
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
197 198

    Returns:
199
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
200 201 202 203

    Examples:
        .. code-block:: python

204 205 206 207 208 209 210 211
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
212 213

    """
L
lujun 已提交
214
    return _dygraph_tracer_ is not None
215 216


217 218 219
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
220
        ), "We don't support %s in imperative mode" % func.__name__
221 222 223 224 225 226 227 228
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
229 230 231 232 233 234 235 236 237
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
238
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
239 240 241 242 243
        return func(*args, **kwargs)

    return __impl__


244 245 246 247 248
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


249 250 251 252 253 254
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
255
# same base class.
256 257 258
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
259 260 261 262 263
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
264 265 266 267

    return __impl__


T
tangwei12 已提交
268 269
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


287 288
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
289
static_only = wrap_decorator(_static_only_)
290
fake_interface_only = wrap_decorator(_fake_interface_only_)
291 292


L
lujun 已提交
293 294
def _dygraph_tracer():
    return _dygraph_tracer_
295

W
Wu Yi 已提交
296

297 298 299 300
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
301
def _current_expected_place():
302 303 304
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
305 306 307 308 309 310 311 312 313 314 315
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
316 317 318 319 320 321 322 323 324 325 326 327
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
344 345


L
Leo Chen 已提交
346 347 348 349
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
350

L
Leo Chen 已提交
351 352 353 354 355 356 357 358 359 360 361 362
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
363
def _cpu_num():
364
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
365 366 367 368 369 370 371 372
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
373
        os.environ['CPU_NUM'] = str(1)
374
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
375 376 377 378 379 380 381 382 383 384
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
385 386


387 388 389 390 391 392 393 394 395
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


396 397 398 399 400 401 402 403 404
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


C
chengduo 已提交
460 461 462 463
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

464
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
465 466 467 468

    Examples:
        .. code-block:: python

469
            import paddle
470
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
471 472 473 474
    """
    return core.is_compiled_with_cuda()


475 476 477 478 479 480 481 482 483 484
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
485
            support_gpu = paddle.device.is_compiled_with_rocm()
486 487 488 489
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
490
def cuda_places(device_ids=None):
L
lujun 已提交
491
    """
492 493 494 495
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
496
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
497 498

    If :code:`device_ids` is None, environment variable of
499
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
500
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
501
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
502
    If :code:`FLAGS_selected_gpus` is not set, all visible
503
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
504 505

    If :code:`device_ids` is not None, it should be the device
506
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
507
    the returned list would be 
C
Chen Weihang 已提交
508
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
509

510
    Parameters:
511
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
512 513

    Returns:
C
Chen Weihang 已提交
514
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
515 516 517 518

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
519 520
            import paddle
            import paddle.static as static
T
tangwei12 已提交
521

522 523
            # required: gpu
            
C
Chen Weihang 已提交
524 525 526
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
527 528

    """
S
sneaxiy 已提交
529 530 531
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
532
        device_ids = _cuda_ids()
S
sneaxiy 已提交
533 534 535 536 537
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


538 539 540 541
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
542 543 544 545 546 547 548 549 550 551 552
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
553 554 555 556 557 558 559
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
560

561 562
            # required: xpu

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
619
def cpu_places(device_count=None):
L
lujun 已提交
620
    """
C
Chen Weihang 已提交
621
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
622

S
add doc  
sneaxiy 已提交
623 624
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
625 626
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
627 628
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
629

630 631
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
632 633

    Returns:
C
Chen Weihang 已提交
634
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
635 636 637 638

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
639 640
            import paddle
            import paddle.static as static
T
tangwei12 已提交
641

C
Chen Weihang 已提交
642 643 644
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
645 646
    """

S
sneaxiy 已提交
647 648 649 650 651 652
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
653
    """
654
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
655 656 657

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
658 659 660 661
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
662

663 664
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
665 666

    Returns:
667
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
668 669 670 671

    Examples:
        .. code-block:: python

672
            import paddle.fluid as fluid
L
lujun 已提交
673 674 675 676 677
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
678 679 680
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
681 682
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
683 684


685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
711
@signature_safe_contextmanager
712 713
def name_scope(prefix=None):
    """
714 715
    :api_attr: Static Graph

716
    Generate hierarchical name prefix for the operators in Static Graph.
717

T
Tao Luo 已提交
718 719 720
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
721
        Don't use it in dygraph, since it will cause memory leak.
722 723

    Args:
T
Tao Luo 已提交
724
        prefix(str, optional): prefix. Default is none.
725 726 727

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
728

729 730 731
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
732
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
733
             b = a + 1
734
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
735
                c = b * 1
736
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
737
                d = c / 1
738 739 740
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
741 742 743
                g = f - 1

          # Op are created in the default main program.  
744
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
760 761
    """
    # TODO(panyx0718): Only [0-9a-z].
762
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
763 764 765
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
766
        assert prefix, "namescope prefix can not be empty."
767 768
        global _name_scope
        _name_scope = _name_scope.child(prefix)
769 770 771 772
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
773 774 775 776 777 778 779 780 781 782 783 784


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
785 786 787
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
788 789 790 791


def grad_var_name(var_name):
    """
792 793
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
794 795 796
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
797

798
def convert_np_dtype_to_dtype_(np_dtype):
799 800
    """
    Convert the data type in numpy to the data type in Paddle
801

802
    Args:
803
        np_dtype(np.dtype): the data type in numpy.
804

805 806
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
807 808

    """
809 810
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
811
        return core.VarDesc.VarType.FP32
812
    elif dtype == np.float64:
813
        return core.VarDesc.VarType.FP64
814
    elif dtype == np.float16:
815
        return core.VarDesc.VarType.FP16
816
    elif dtype == np.int32:
817
        return core.VarDesc.VarType.INT32
818
    elif dtype == np.int16:
819
        return core.VarDesc.VarType.INT16
820
    elif dtype == np.int64:
821
        return core.VarDesc.VarType.INT64
822
    elif dtype == np.bool:
823
        return core.VarDesc.VarType.BOOL
824
    elif dtype == np.uint16:
825 826 827
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
828 829
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
830 831
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
832 833 834 835
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
836
    else:
M
minqiyang 已提交
837
        raise ValueError("Not supported numpy dtype %s" % dtype)
838 839 840


def dtype_is_floating(dtype):
841 842 843
    """
    Check the data type is floating or not.
    Args:
844
        dtype(np.dtype|core.VarDesc.VarType): data type.
845 846 847 848 849
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
850
    if not isinstance(dtype, core.VarDesc.VarType):
851 852
        dtype = convert_np_dtype_to_dtype_(dtype)

853 854 855 856
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
857 858


Y
Yang Yang(Tony) 已提交
859
def _debug_string_(proto, throw_on_error=True):
860 861 862 863 864 865 866 867 868 869 870
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
871
    error_fields = list()
Y
Yang Yang(Tony) 已提交
872
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
873 874
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
875 876 877
    return proto.__str__()


878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
915
class Variable(object):
916
    """
J
Jiabin Yang 已提交
917
    **Notes**:
918
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
919

920 921
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
922 923 924
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
925
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
926 927
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
928

929
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
930
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
931

T
tianshuo78520a 已提交
932
    Most of a Variable's member variables can be set to be None. It mean
933
    it is not available or will be specified later.
934

935
    Examples:
936 937
        In Static Graph Mode:

938 939
        .. code-block:: python

940
            import paddle.fluid as fluid
941
            cur_program = fluid.Program()
942 943 944 945
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
946

J
Jiabin Yang 已提交
947
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
948 949 950 951 952 953 954 955 956

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

957 958
    """

Y
Yu Yang 已提交
959 960
    def __init__(self,
                 block,
Y
Yu Yang 已提交
961
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
962 963 964 965
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
966
                 capacity=None,
Q
QI JUN 已提交
967
                 persistable=None,
F
fengjiayi 已提交
968
                 error_clip=None,
Y
Yu Yang 已提交
969
                 stop_gradient=False,
F
fengjiayi 已提交
970
                 is_data=False,
H
Huihuang Zheng 已提交
971
                 need_check_feed=False,
H
hong 已提交
972
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
973
                 **kwargs):
Y
Yu Yang 已提交
974 975
        self.block = block
        if name is None:
Y
Yu Yang 已提交
976
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
977

Y
Yu Yang 已提交
978
        if dtype is not None:
979
            if not isinstance(dtype, core.VarDesc.VarType):
980
                dtype = convert_np_dtype_to_dtype_(dtype)
981

S
Steffy-zxf 已提交
982 983 984 985
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
986 987
        self.belong_to_optimizer = belong_to_optimizer

988 989 990 991 992
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
993

994 995 996
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
997

998 999 1000
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1001 1002
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1003 1004
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1005

1006
        if shape is not None:
1007
            if is_new_var:
1008 1009 1010 1011 1012 1013
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1014 1015
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1016 1017 1018 1019 1020 1021 1022
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1023 1024
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1025 1026 1027 1028 1029 1030 1031 1032 1033
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1034 1035
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1036 1037 1038 1039 1040 1041 1042 1043 1044
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1045 1046
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1047 1048
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1049

1050 1051
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1052

1053 1054 1055 1056 1057 1058 1059
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1060

1061 1062
        self.block.vars[name] = self
        self.op = None
1063
        self.stop_gradient = stop_gradient
1064
        self.is_data = is_data
Y
Yu Yang 已提交
1065

1066 1067 1068
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1069 1070
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1071

1072
        Returns:
J
Jiabin Yang 已提交
1073
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1074 1075 1076 1077

        Examples:
            .. code-block:: python

1078
                import paddle
1079

1080 1081 1082 1083
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1084

1085 1086
                # create a detached Variable
                y = x.detach()
1087
        """
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1103

1104
    @fake_interface_only
1105
    def numpy(self):
1106
        """
J
Jiabin Yang 已提交
1107
        **Notes**:
T
tianshuo78520a 已提交
1108
            **This API is ONLY available in Dygraph mode**
1109

J
Jiabin Yang 已提交
1110
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1111 1112 1113 1114 1115

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1116
            ndarray: dtype is same as current Variable
1117 1118 1119 1120 1121 1122

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1123
                from paddle.fluid.dygraph import Linear
1124 1125 1126 1127
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1128
                    linear = Linear(32, 64)
1129
                    data = to_variable(data)
1130
                    x = linear(data)
1131 1132 1133
                    print(x.numpy())

        """
1134
        pass
1135

1136
    @fake_interface_only
1137
    def backward(self, retain_graph=False):
1138
        """
J
Jiabin Yang 已提交
1139
        **Notes**:
T
tianshuo78520a 已提交
1140
            **This API is ONLY available in Dygraph mode**
1141

1142
        Run backward of current Graph which starts from current Tensor.
1143

J
Jiabin Yang 已提交
1144
        Args:
1145 1146 1147 1148
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1149

J
Jiabin Yang 已提交
1150 1151
        Returns:
            NoneType: None
1152 1153 1154 1155 1156

        Examples:
            .. code-block:: python

                import numpy as np
1157 1158
                import paddle
                paddle.disable_static()
1159 1160

                x = np.ones([2, 2], np.float32)
1161 1162 1163 1164 1165 1166 1167
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1168 1169
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1170
                loss.backward()
1171 1172

        """
1173
        pass
1174

1175
    @fake_interface_only
1176
    def gradient(self):
1177
        """
J
Jiabin Yang 已提交
1178
        **Notes**:
T
tianshuo78520a 已提交
1179
            **This API is ONLY available in Dygraph mode**
1180 1181 1182

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1183
        Returns:
1184
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1185 1186 1187 1188 1189 1190 1191

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1192
                # example1: return ndarray
1193 1194 1195 1196 1197 1198 1199 1200 1201
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1202
                    loss2.backward()
1203 1204
                    print(loss2.gradient())

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1218
        """
1219
        pass
1220

1221
    @fake_interface_only
1222
    def clear_gradient(self):
1223
        """
J
Jiabin Yang 已提交
1224
        **Notes**:
T
tianshuo78520a 已提交
1225
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1226 1227

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1228

J
Jiabin Yang 已提交
1229
        Clear  (set to ``0`` ) the Gradient of Current Variable
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1248
                    loss2.backward()
1249 1250 1251 1252 1253
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1254
        pass
X
Xin Pan 已提交
1255

1256 1257 1258 1259
    @fake_interface_only
    def register_hook(self, hook):
        pass

1260
    def __str__(self):
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1277 1278
                import paddle
                import paddle.static as static
1279

1280 1281 1282
                paddle.enable_static()

                cur_program = static.Program()
1283 1284 1285 1286 1287 1288
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1289 1290
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1291
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1292 1293
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1294 1295
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1296
        else:
1297 1298
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1299

1300
        if self.is_parameter:
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1311
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1312
        dist_context = get_default_distributed_context()
1313 1314
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1315
            var_str += ", {name} = {value}".format(
1316
                name="dist_attr", value=dist_tensor)
1317

1318
        return var_str
Y
Yang Yang(Tony) 已提交
1319

F
update  
fengjiayi 已提交
1320
    def to_string(self, throw_on_error, with_details=False):
1321 1322 1323
        """
        Get debug string.

J
Jiabin Yang 已提交
1324 1325 1326 1327 1328
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1329

1330 1331
        Returns:
            str: The debug string.
1332 1333 1334 1335 1336

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1337
                import paddle
1338

1339
                paddle.enable_static()
1340 1341 1342 1343 1344
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1345
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1346
                print("=============with detail===============")
1347
                print(new_variable.to_string(True, True))
1348
        """
F
update  
fengjiayi 已提交
1349 1350
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1351
        protostr = self.desc.serialize_to_string()
1352
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1353 1354
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1355
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1356
            for attr_name in additional_attr:
1357 1358 1359
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1360
        return res_str
1361 1362 1363

    __repr__ = __str__

1364
    @property
1365
    def stop_gradient(self):
J
Jiabin Yang 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1381 1382
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1383 1384 1385
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1386 1387
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1388 1389 1390 1391
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1392
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1393 1394
                assert (out1.gradient() == 0).all()
        """
1395
        return self.desc.stop_gradient()
1396

1397 1398
    @stop_gradient.setter
    def stop_gradient(self, s):
1399
        self.desc.set_stop_gradient(s)
1400

1401 1402
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1424
        return self.desc.persistable()
1425

Y
Yu Yang 已提交
1426 1427
    @persistable.setter
    def persistable(self, p):
1428
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1429

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1455 1456
    @property
    def name(self):
J
Jiabin Yang 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1473
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1474

1475 1476 1477 1478 1479 1480
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1481 1482
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1495 1496
    @name.setter
    def name(self, new_name):
1497
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1498

Y
Yu Yang 已提交
1499 1500
    @property
    def shape(self):
J
Jiabin Yang 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1518
        # convert to tuple, make it as same as numpy API.
1519
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1520 1521

    @property
F
fengjiayi 已提交
1522
    def dtype(self):
J
Jiabin Yang 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1539
        return self.desc.dtype()
Y
Yu Yang 已提交
1540 1541 1542

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1564 1565 1566
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1567
        return self.desc.lod_level()
Y
Yu Yang 已提交
1568

Y
Yu Yang 已提交
1569 1570
    @property
    def type(self):
J
Jiabin Yang 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1587
        return self.desc.type()
Y
Yu Yang 已提交
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1672
    def _set_error_clip(self, error_clip):
1673 1674 1675 1676 1677 1678 1679 1680 1681
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1682 1683
        self.error_clip = error_clip

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1724
            raise ValueError("slice step can not be zero")
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1800
    def _cloneVar(self, copy=False):
1801 1802
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1803 1804
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1805 1806 1807 1808
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1809
        new_var = self._cloneVar()
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1820
        new_var = self._cloneVar()
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1831
                return self._cloneVar(True)
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1850
                return self._cloneVar(True)
1851
            index = int(item)
1852
            if (index > 0 and index >= self.shape[axis]) \
1853 1854 1855 1856 1857 1858 1859
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1860
        return _getitem_impl_(self, item)
1861

1862
    def __setitem__(self, item, value):
1863
        return _setitem_impl_(self, item, value)
1864

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2011 2012 2013 2014
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2015 2016 2017 2018 2019 2020 2021
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2131

F
fengjiayi 已提交
2132 2133 2134
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2135

2136 2137
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2138 2139 2140 2141
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2142
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2143 2144 2145 2146 2147
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2148 2149 2150 2151
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2161
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2162 2163 2164 2165 2166 2167
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2168 2169 2170 2171 2172 2173 2174 2175
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2176 2177
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2178 2179
        return self.op_proto_map[type]

2180 2181
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2182
        custom_op_names = []
2183 2184 2185
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2186 2187 2188
                custom_op_names.append(proto.type)

        return custom_op_names
2189

2190 2191 2192 2193
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2194
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2195
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2196 2197
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2198 2199
        }

F
fengjiayi 已提交
2200

X
Xin Pan 已提交
2201
class Operator(object):
2202
    """
2203 2204 2205 2206 2207 2208 2209
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2210
        type(str): The type of operator. Default None.
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2231
        Block.append_op or Block._prepend_op instead.
2232 2233 2234 2235

    Examples:
        .. code-block:: python

2236
            import paddle.fluid as fluid
2237
            cur_program = fluid.Program()
2238 2239 2240 2241 2242
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2243
    """
2244
    OP_WITHOUT_KERNEL_SET = {
2245 2246
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2247
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2248 2249
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2250
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2251 2252
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2253
    }
2254

Y
Yu Yang 已提交
2255 2256
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2257
                 desc,
Y
Yu Yang 已提交
2258 2259 2260
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2261
                 attrs=None):
L
lujun 已提交
2262
        if in_dygraph_mode():
2263 2264
            if type is None:
                raise ValueError(
2265
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2266
            self._type = type
M
minqiyang 已提交
2267
            self.attrs = attrs if attrs else {}
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2282
                )] = self.block.program._op_role
2283 2284 2285

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2286 2287
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2288 2289 2290 2291 2292

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2293 2294 2295 2296 2297
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2298 2299 2300
                return
            if type is None:
                raise ValueError(
2301
                    "`type` to initialized an Operator can not be None.")
2302 2303
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2304 2305 2306 2307 2308 2309 2310
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2311 2312 2313 2314 2315 2316 2317

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2335 2336 2337 2338 2339
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2340

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2354
                        if not isinstance(in_args, (list, tuple)):
2355 2356 2357 2358 2359 2360
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2361
                        for index, arg in enumerate(in_args):
2362 2363 2364 2365
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2366
                            elif isinstance(arg, (Variable, core.VarBase)):
2367
                                in_arg_names.append(cpt.to_text(arg.name))
2368
                            else:
2369 2370 2371 2372
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2373 2374
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2399 2400 2401 2402
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2403
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2404
                        if not in_dygraph_mode():
2405 2406 2407 2408
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2427
    def _has_kernel(self, op_type):
2428 2429
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2430
    def to_string(self, throw_on_error):
2431
        """
2432 2433
        Get debug string.

2434
        Args:
2435 2436
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2437

2438 2439
        Returns:
            str: The debug string.
2440 2441

        """
2442
        protostr = self.desc.serialize_to_string()
2443
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2444 2445
        return _debug_string_(proto, throw_on_error)

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2478
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2531
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2532
        dist_context = get_default_distributed_context()
2533 2534
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2535
            attrs_str += ", {name} = {value}".format(
2536
                name="dist_attr", value=dist_op)
2537

2538 2539
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2540 2541
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2542 2543 2544 2545 2546
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2547
    def __str__(self):
2548
        return self._to_readable_code()
2549 2550 2551

    __repr__ = __str__

F
fengjiayi 已提交
2552 2553
    @property
    def type(self):
2554
        return self.desc.type()
F
fengjiayi 已提交
2555 2556

    def input(self, name):
2557
        r"""
2558
        Get the input arguments according to the input parameter name.
2559

2560 2561
        Args:
            name(str): The input parameter name.
2562

2563 2564 2565
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2566
        """
F
fengjiayi 已提交
2567 2568
        return self.desc.input(name)

W
Wu Yi 已提交
2569
    def _rename_input(self, old_name, new_name):
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2580
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2581

W
Wu Yi 已提交
2582
    def _rename_output(self, old_name, new_name):
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2593
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2594

F
fengjiayi 已提交
2595 2596 2597 2598
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2599 2600 2601 2602 2603 2604 2605 2606
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2607
    def output(self, name):
2608
        r"""
2609
        Get output arguments by the output parameter name.
2610

2611 2612
        Args:
            name(str): The output parameter name.
2613

2614 2615 2616
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2617
        """
F
fengjiayi 已提交
2618 2619 2620 2621 2622 2623
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2624 2625 2626 2627 2628 2629 2630 2631
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2632
    def has_attr(self, name):
2633
        """
2634 2635
        Whether this Operator has the attribute with name or not.

2636
        Args:
2637
            name(str): the attribute name.
2638

2639 2640
        Returns:
            bool: True if has this attribute.
2641 2642

        """
F
fengjiayi 已提交
2643 2644 2645
        return self.desc.has_attr(name)

    def attr_type(self, name):
2646
        """
2647
        Get the type of attribute by attribute's name.
2648

2649 2650
        Args:
            name(str): the attribute name.
2651

2652 2653
        Returns:
            core.AttrType: the attribute type.
2654
        """
F
fengjiayi 已提交
2655 2656
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2657
    def _set_attr(self, name, val):
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2668 2669
        self._update_desc_attr(name, val)

2670 2671 2672
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2684 2685
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2686 2687
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2688
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2689 2690 2691 2692
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2693
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2694

F
fengjiayi 已提交
2695 2696 2697 2698 2699
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2700
        """
2701 2702
        Get the attribute by name.

2703
        Args:
2704
            name(str): the attribute name.
2705

2706 2707
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2708 2709
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2710
        return self.desc.attr(name)
Y
Yu Yang 已提交
2711

W
Wu Yi 已提交
2712
    def _block_attr_id(self, name):
2713
        """
G
gongweibao 已提交
2714
        Get the block attribute's id by name.
2715

2716 2717
        Args:
            name(str): the attribute name.
2718

2719 2720
        Returns:
            int: the block index.
2721
        """
W
Wu Yi 已提交
2722
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2723

W
Wu Yi 已提交
2724
    def _block_attr(self, name):
G
gongweibao 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2735
        id = self._block_attr_id(name)
G
gongweibao 已提交
2736 2737 2738
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2739
    def _blocks_attr(self, name):
G
gongweibao 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2750
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2751 2752 2753 2754 2755
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2756
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2767
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2768

J
JiayiFeng 已提交
2769
    def all_attrs(self):
F
fengjiayi 已提交
2770
        """
2771 2772 2773
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2774
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2775 2776 2777 2778
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2779 2780
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2781
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2782 2783 2784
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2785
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2786 2787 2788 2789
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2790 2791
        return attr_map

2792 2793 2794
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2795 2796 2797 2798

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2799 2800 2801
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2802 2803 2804 2805 2806 2807 2808 2809

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2810 2811
            return False

2812 2813 2814 2815 2816 2817
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2843

Y
Yu Yang 已提交
2844
class Block(object):
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2859
        use `Program._create_block()` to create a block.
2860 2861 2862 2863

    Examples:
        .. code-block:: python

2864 2865 2866
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2867 2868 2869 2870 2871 2872 2873 2874 2875
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2876
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2877
        self.desc = program.desc.block(idx)
2878
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2879
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2880
        self.program = program
2881
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2882

2883
    def __str__(self):
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2918
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2930

F
fengjiayi 已提交
2931 2932
    def to_string(self, throw_on_error, with_details=False):
        """
2933 2934
        Get debug string.

F
fengjiayi 已提交
2935 2936
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2937
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2938
            with_details(bool): more details about variables and parameters
2939 2940
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2941

2942 2943
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2944 2945 2946 2947
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2948
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2949 2950
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2951
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2952
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2953
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2954
            for op in self.ops:
F
fengjiayi 已提交
2955 2956
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2957 2958 2959
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2960 2961
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2962 2963
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2964 2965 2966

    __repr__ = __str__

Y
Yu Yang 已提交
2967 2968
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2969
        return self.desc.parent
Y
Yu Yang 已提交
2970

Y
Yu Yang 已提交
2971 2972 2973 2974
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2975
    def _set_forward_block_idx(self, idx):
2976 2977 2978 2979 2980 2981 2982 2983 2984
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2985
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2986

2987 2988 2989 2990 2991 2992 2993 2994
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2995 2996
    @property
    def idx(self):
Y
Yu Yang 已提交
2997
        return self.desc.id
Y
Yu Yang 已提交
2998

Q
Qiao Longfei 已提交
2999
    def var(self, name):
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3013
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3014 3015 3016
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3017 3018
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3019
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3020
        return v
Q
Qiao Longfei 已提交
3021

X
Xin Pan 已提交
3022
    def _find_var_recursive(self, name):
3023 3024 3025 3026 3027 3028 3029
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3030
            Variable: the Variable with the giving name. Or None if not found.
3031
        """
Y
Yu Yang 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3056
        return None
Y
Yu Yang 已提交
3057

X
Xin Pan 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3077

Q
Qiao Longfei 已提交
3078
    def all_parameters(self):
3079
        return list(self.iter_parameters())
3080

3081
    def iter_parameters(self):
M
minqiyang 已提交
3082
        return (item[1] for item in six.iteritems(self.vars)
3083
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3084

Y
Yu Yang 已提交
3085
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3086 3087 3088
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3089 3090 3091
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3092
        return var
Y
Yu Yang 已提交
3093

Q
Qiao Longfei 已提交
3094 3095 3096
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3097
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3098 3099
        """
        Rename variable in vars and ops' inputs and outputs
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3112
        """
M
minqiyang 已提交
3113 3114
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3115

T
typhoonzero 已提交
3116
        if not self.has_var(name):
3117
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3118 3119
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3120
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3121 3122 3123 3124 3125 3126
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3127
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3128 3129 3130 3131
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3132
        orig_var_type = v.type
M
minqiyang 已提交
3133
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3134
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3135
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3136
        if var_type == "Parameter":
L
Leo Chen 已提交
3137 3138
            if in_dygraph_mode():
                var = ParamBase(
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3149 3150
                var = Parameter(
                    self,
3151 3152 3153 3154 3155 3156 3157 3158 3159
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3160
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3161 3162
            var = Variable(
                self,
T
typhoonzero 已提交
3163
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3164 3165 3166 3167
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3168
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3169 3170 3171
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3172
        self._sync_with_cpp()
3173
        return var
T
typhoonzero 已提交
3174

3175 3176 3177
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3178
        self.desc._remove_var(cpt.to_bytes(name))
3179 3180
        del self.vars[name]

Y
Yu Yang 已提交
3181 3182
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3183
        param = None
L
Leo Chen 已提交
3184
        if in_dygraph_mode():
3185
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3186 3187
        else:
            param = Parameter(global_block, *args, **kwargs)
3188

3189
        if 'initializer' in kwargs:
3190 3191 3192 3193 3194

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3195
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3196
                        # are treated as initialization ops that cause error.
3197
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3198 3199 3200 3201 3202
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3203
                            continue
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3215
                # TODO already inited, do nothing, should log a warning
3216 3217 3218
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3219
        return param
Y
Yu Yang 已提交
3220

Y
Yu Yang 已提交
3221
    def append_op(self, *args, **kwargs):
3222 3223 3224 3225 3226 3227
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3228
        if in_dygraph_mode():
3229
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3230
            type = kwargs.get("type", None)
3231 3232 3233
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3234
                type=type,
M
minqiyang 已提交
3235 3236
                inputs=None,
                outputs=None,
3237
                attrs=attrs)
3238

M
minqiyang 已提交
3239 3240 3241
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3242
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3243 3244

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3245
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3246 3247
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3248
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3249
        else:
3250 3251
            from paddle.fluid.dygraph.base import param_guard

3252
            op_desc = self.desc.append_op()
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3266

M
minqiyang 已提交
3267
            self.ops.append(op)
M
minqiyang 已提交
3268

3269 3270
        return op

W
Wu Yi 已提交
3271
    def _insert_op(self, index, *args, **kwargs):
3272 3273 3274 3275 3276 3277 3278 3279 3280
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3281
        self._sync_with_cpp()
F
fangshuixun007 已提交
3282
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3283

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3301 3302 3303 3304 3305 3306 3307 3308 3309
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3310 3311
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3312
        self.desc._remove_op(index, index + 1)
3313 3314
        del self.ops[index]

W
Wu Yi 已提交
3315
    def _slice_ops(self, start, end):
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3326
        return self.ops[start:end]
Y
Yancey1989 已提交
3327

W
Wu Yi 已提交
3328
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3329
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3330 3331
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3332
            op = Operator(
J
Jiabin Yang 已提交
3333
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3334

J
Jiabin Yang 已提交
3335
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3336
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3337 3338
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3339
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3340
        else:
3341 3342 3343 3344 3345 3346 3347 3348
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3349
            self.ops.insert(0, op)
3350

Y
Yu Yang 已提交
3351 3352
        return op

W
Wu Yi 已提交
3353
    def _sync_with_cpp(self):
3354
        """
3355 3356
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3357
        """
Q
Qiao Longfei 已提交
3358 3359 3360
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3378

3379
        # sync variables removed from c++ end
3380
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3381
            if not self.desc.find_var(cpt.to_bytes(var)):
3382 3383
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3384
        # sync operators from cpp
3385 3386 3387 3388
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3405 3406 3407 3408 3409

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3410
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3411 3412 3413 3414 3415 3416 3417

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3431 3432 3433 3434
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3435
    def _copy_param_info_from(self, other):
3436
        """
3437 3438
        Copy the information of parameters from the other block.

3439
        Args:
3440 3441 3442 3443 3444
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3445 3446 3447 3448 3449

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3450 3451
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3452
        for p in other.iter_parameters():
3453 3454 3455
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3456 3457
                # if the Parameter is pruned, v may be None
                continue
3458
            assert isinstance(v, Variable)
3459
            new_p = None
L
Leo Chen 已提交
3460 3461
            if in_dygraph_mode():
                new_p = ParamBase(
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3473 3474
                new_p = Parameter(
                    block=self,
3475 3476 3477
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3478 3479
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3480 3481 3482 3483 3484 3485
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3486 3487
            self.vars[new_p.name] = new_p

3488
    def _clone_variable(self, var, force_persistable=True):
3489 3490
        """
        Clone a variable into current block.
3491

3492 3493
        Args:
            var: the variable to be cloned.
3494 3495 3496
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3497 3498

        Returns:
3499
            Variable: the new  variable cloned from 'var' in current block.
3500 3501
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3502 3503 3504 3505 3506
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3507 3508
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3509
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3510 3511 3512 3513 3514 3515
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3516
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3517 3518
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3519 3520 3521 3522 3523 3524 3525
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3526
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3527 3528
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3529
        return ret_var
3530

Y
Yu Yang 已提交
3531

3532 3533 3534 3535 3536 3537
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3649
    def remove_input_by_id(self, node_id):
3650 3651 3652 3653 3654 3655
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3656
        self.node.remove_input(node_id)
3657

3658
    def remove_input(self, node):
3659 3660 3661 3662
        """
        Remove a node from inputs.

        Args:
3663
            node(IrNode): the node being removed.
3664
        """
3665
        self.node.remove_input(node.node)
3666

3667
    def append_input(self, node):
3668 3669 3670 3671
        """
        Append a node in inputs.

        Args:
3672
            node(IrNode): the node being appended.
3673
        """
3674
        self.node.append_input(node.node)
3675 3676 3677 3678 3679 3680 3681 3682

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3683
    def remove_output_by_id(self, node_id):
3684 3685 3686 3687 3688 3689
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3690
        self.node.remove_output(node_id)
3691

3692
    def remove_output(self, node):
3693 3694 3695 3696
        """
        Remove a node from outputs.

        Args:
3697
            node(IrNode): the node being removed.
3698
        """
3699
        self.node.remove_output(node.node)
3700

3701
    def append_output(self, node):
3702 3703 3704 3705
        """
        Append a node in outputs.

        Args:
3706
            node(IrNode): the node being appended.
3707
        """
3708
        self.node.append_output(node.node)
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3756
            "The node variable description can not be None."
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3767
            "The node variable description can not be None."
3768 3769
        return self.node.var().persistable()

3770 3771 3772 3773 3774 3775 3776 3777
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3778
            "The node variable description can not be None."
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3789
            "The node variable description can not be None."
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3800
            "The node variable description can not be None."
3801 3802
        return self.node.var().shape()

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3850
            "The node operator description can not be None."
3851 3852
        self.node.op()._rename_input(old_input_name, new_input_name)

3853 3854 3855 3856 3857 3858 3859 3860 3861
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3862
            "The node operator description can not be None."
3863 3864
        self.node.op()._rename_output(old_output_name, new_output_name)

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3876
            "The node operator description can not be None."
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3890
            "The node operator description can not be None."
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3901
            "The node operator description can not be None."
3902 3903
        return self.node.op().set_type(new_type)

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3919
            "The node operator description can not be None."
3920 3921 3922 3923
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3924
                all(isinstance(v, Block) for v in val):
3925 3926
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3927
                isinstance(val, core.ProgramDesc):
3928 3929 3930 3931
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3932 3933 3934 3935 3936 3937 3938 3939
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3940
            "The node operator description can not be None."
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3951
            "The node operator description can not be None."
3952 3953
        return self.node.op().output_arg_names()

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3975 3976
class IrGraph(object):
    """
3977
    Python IrGraph. Beneath it is a core.Graph, which is used for
3978
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3979 3980
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3981 3982 3983 3984
    """

    def __init__(self, graph, for_test=False):
        """
3985 3986
        Construct an IrGraph using core.Graph.

3987 3988 3989 3990 3991 3992 3993 3994 3995
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3996 3997 3998 3999
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4000 4001 4002
        Warns:
            The method only clones the graph structure, not its attributes.

4003 4004 4005
        Returns:
            IrGraph: A new and duplicated graph.
        """
4006
        g = self.graph.clone()
4007 4008
        return IrGraph(g, self._for_test)

4009
    def is_test(self):
4010 4011 4012
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4013 4014
        return self._for_test

W
WangZhen 已提交
4015
    def all_nodes(self):
4016 4017 4018
        """
        Return all nodes included in the graph as a set.
        """
4019
        return {IrNode(node) for node in self.graph.nodes()}
4020

4021
    def all_var_nodes(self):
4022 4023 4024
        """
        Return all variable nodes included in the graph as a set.
        """
4025
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4026

4027
    def all_persistable_nodes(self):
4028 4029 4030
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4031 4032 4033 4034 4035
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4036
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4037

4038
    def all_op_nodes(self):
4039 4040 4041
        """
        Return all operator nodes included in the graph as a set.
        """
4042
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4043

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4061
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4073
            IrVarNode: the created persistable variable node.
4074
        """
4075 4076 4077 4078 4079
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4080
        return IrVarNode(self.graph.create_var_node(var_desc))
4081 4082

    def create_var_node(self, name, var_type, shape, var_dtype):
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4094
            IrVarNode: the created variable node.
4095 4096
        """

4097 4098 4099 4100
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4101
        return IrVarNode(self.graph.create_var_node(var_desc))
4102

4103 4104 4105 4106 4107 4108
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4109
    def create_var_node_from_desc(self, var_desc):
4110 4111 4112 4113 4114 4115 4116 4117
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4118
            IrVarNode: the created variable node.
4119
        """
4120
        return IrVarNode(self.graph.create_var_node(var_desc))
4121 4122

    def create_op_node(self, op_type, attrs, inputs, outputs):
4123 4124 4125 4126 4127 4128 4129
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4130
            outputs(dict): the outputs of the operator node.
4131 4132

        Returns:
4133
            IrOpNode: the created operator node.
4134
        """
4135 4136
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4137
        for attr, value in six.iteritems(attrs):
4138
            self._update_desc_attr(op_desc, attr, value)
4139
        for input_name, var_nodes in six.iteritems(inputs):
4140 4141 4142 4143
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4144
        for output_name, var_nodes in six.iteritems(outputs):
4145 4146 4147 4148
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4149
        return IrOpNode(self.graph.create_op_node(op_desc))
4150 4151

    def create_op_node_from_desc(self, op_desc):
4152 4153 4154 4155 4156 4157 4158
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4159
            IrOpNode: the created operator node.
4160
        """
4161
        return IrOpNode(self.graph.create_op_node(op_desc))
4162 4163

    def update_input_link(self, old_input_node, new_input_node, op_node):
4164 4165 4166 4167
        """
        Update the input's link of a operator node.

        Args:
4168 4169 4170
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4171
        """
4172
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4173
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4174
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4175 4176 4177 4178
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4179
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4180

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4191
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4192
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4193 4194 4195 4196 4197 4198
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4199
    def link_to(self, node_in, node_out):
4200 4201 4202 4203
        """
        Connect two nodes.

        Args:
4204 4205
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4206
        """
4207 4208 4209 4210
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4211 4212
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4213 4214

    def safe_remove_nodes(self, remove_nodes):
4215 4216 4217 4218 4219 4220 4221
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4222
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4223 4224 4225 4226
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4227 4228
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4229

Z
Zhen Wang 已提交
4230 4231 4232 4233 4234 4235 4236 4237
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4238
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4239 4240 4241 4242
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4243
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4244 4245 4246
                        ]
                    else:
                        var_nodes[each_var_name].append(
4247 4248
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4249 4250
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4251
    def has_circle(self):
4252 4253 4254 4255 4256 4257
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4258 4259 4260
        return core.has_circle(self.graph)

    def graph_num(self):
4261 4262 4263 4264 4265 4266
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4267 4268 4269
        return core.graph_num(self.graph)

    def topology_sort(self):
4270 4271 4272
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4273
        Notes: the `graph` can not contain a circle.
4274 4275

        Returns:
Z
Zhen Wang 已提交
4276
            list(IrNode): nodes in topology order.
4277
        """
4278
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4279
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4280 4281

    def build_adjacency_list(self):
4282 4283 4284 4285
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4286
            dict{IrNode: set(IrNode)}: the adjacency list.
4287
        """
4288 4289 4290 4291 4292
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4293

4294 4295 4296 4297 4298 4299 4300 4301
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4302
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4303 4304 4305 4306 4307
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4308 4309
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4310 4311 4312
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4313 4314 4315 4316 4317
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4318
        remove_ctr_vars = set()
4319
        if remove_ctr_var:
4320
            for node in self.all_var_nodes():
4321 4322 4323
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4324 4325
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4326 4327
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4328 4329 4330 4331 4332 4333
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4334 4335 4336 4337
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4338 4339
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4340 4341 4342 4343 4344 4345 4346
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4347 4348 4349
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4350
        WARN: When the graph includes backward operator nodes, the
4351 4352 4353 4354 4355 4356
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4357
        convert_pass = core.get_pass('graph_to_program_pass')
4358 4359
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4360 4361 4362 4363
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4364 4365 4366 4367 4368 4369 4370 4371
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4372 4373
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4374 4375
        return target_node

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4392
class Program(object):
D
dzhwinter 已提交
4393
    """
4394
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4395
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4396
    it will contain nested block.
4397

J
Jiabin Yang 已提交
4398 4399 4400
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4401

J
Jiabin Yang 已提交
4402
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4403
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4404 4405 4406 4407 4408 4409 4410
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4411
    **Notes**:
4412 4413 4414
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4415 4416

    Returns:
J
Jiabin Yang 已提交
4417
        Program: An empty Program.
D
dzhwinter 已提交
4418 4419

    Examples:
4420 4421
        .. code-block:: python

4422 4423 4424 4425
            import paddle
            import paddle.static as static

            paddle.enable_static()
4426

4427 4428 4429 4430 4431
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4432
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4433 4434 4435

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4436 4437 4438

    """

4439 4440
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4441 4442
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4443 4444
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4445
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4446
        self.__op_role_var = []
T
tangwei12 已提交
4447

4448 4449
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4450
        self._is_distributed = False
4451
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4452
        self._is_chief = False
4453 4454 4455
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4456
        self._endpoints = []
4457 4458 4459
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4460
        self._trainers_endpoints = []
4461
        # the distributed lookup table names
T
tangwei12 已提交
4462
        self._distributed_lookup_table = None
4463 4464 4465

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4466 4467
        self._use_lamb = False

4468 4469 4470
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4471

4472 4473 4474
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4475
        self._program_config = None
4476

H
hutuxian 已提交
4477 4478 4479
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4480 4481 4482
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4483 4484 4485
        # appending gradients times
        self._appending_grad_times = 0

4486 4487 4488 4489
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4490 4491
        # compiled program, i.e. Graph
        self._graph = None
4492 4493
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4494

4495
    def _find_var_class_kwargs(self, new_desc):
4496 4497 4498 4499 4500 4501 4502 4503
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4573
        assert block_num == self.desc.num_blocks()
4574 4575

        # clear old blocks and desc
4576 4577 4578 4579 4580 4581 4582 4583 4584
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4585

4586
        del desc
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4616 4617
                import paddle
                import paddle.static as static
4618

4619 4620 4621
                paddle.enable_static()

                prog = static.default_main_program()
4622 4623 4624 4625 4626
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4627
                prog1 = static.default_main_program()
4628 4629 4630 4631 4632 4633 4634 4635
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4636
    @property
4637
    def _op_role(self):
Y
yuyang18 已提交
4638 4639 4640 4641 4642 4643 4644 4645
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4646
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4647 4648 4649 4650
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4651 4652
        return self._current_role

4653 4654
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4655 4656 4657
        self._current_role = role

    @property
4658
    def _op_role_var(self):
Y
yuyang18 已提交
4659
        """
4660
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4661

4662
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4663 4664 4665

        Notes: This is a very low-level API. Users should not use it directly.
        """
4666
        return self.__op_role_var
Y
yuyang18 已提交
4667

4668
    @signature_safe_contextmanager
4669 4670 4671 4672 4673
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4674 4675 4676 4677
        try:
            yield
        finally:
            self._current_role = tmp_role
4678

S
rename  
sneaxiy 已提交
4679
    @signature_safe_contextmanager
W
Wu Yi 已提交
4680
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4681 4682 4683 4684 4685 4686 4687
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4688
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4689 4690 4691

        Examples:

4692
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4693
            >>> p, g = backward(...)
W
Wu Yi 已提交
4694
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4695 4696
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4697
        tmp_role = self._current_role
4698
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4699

Y
yuyang18 已提交
4700 4701
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4702
        self.__op_role_var = [
4703 4704 4705
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4706 4707 4708 4709 4710
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4711

S
rename  
sneaxiy 已提交
4712
    @signature_safe_contextmanager
X
Xin Pan 已提交
4713
    def _lr_schedule_guard(self, is_with_opt=False):
4714 4715 4716 4717 4718 4719 4720
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4721 4722 4723 4724
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4725 4726 4727

        Examples:

4728
            >>> import paddle.fluid as fluid
4729 4730 4731 4732
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4733 4734

        tmp_role = self._current_role
4735
        tmp_var = self.__op_role_var
4736

4737 4738
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4739 4740
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4741
        # TODO(typhoonzero): how to set target learning rate var
4742
        self.__op_role_var = []
4743 4744 4745 4746 4747
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4748

4749
    def __str__(self):
Y
yuyang18 已提交
4750 4751 4752 4753 4754 4755 4756 4757 4758
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4779 4780
            import paddle
            import paddle.static as static
4781

4782 4783 4784
            paddle.enable_static()

            cur_program = static.Program()
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4796
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4797 4798 4799 4800
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4801
            program_str += '\n'
4802
        return program_str
Y
Yang Yang(Tony) 已提交
4803

F
fengjiayi 已提交
4804 4805 4806
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4807

J
Jiabin Yang 已提交
4808 4809 4810
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4811

J
Jiabin Yang 已提交
4812
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4813

H
haowang101779990 已提交
4814
        Returns:
J
Jiabin Yang 已提交
4815
            str: The debug string describe current Program.
Y
yuyang18 已提交
4816 4817

        Raises:
J
Jiabin Yang 已提交
4818
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4819

4820 4821 4822
        Examples:
            .. code-block:: python

4823 4824 4825 4826
                import paddle
                import paddle.static as static

                paddle.enable_static()
4827

4828 4829 4830
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4831
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4832
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4833
                print("program string without detail: {}".format(prog_string))
4834
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4835
        """
4836 4837 4838 4839 4840 4841 4842 4843 4844
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4845 4846 4847 4848 4849 4850
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4851 4852
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4853 4854
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4855

W
Wu Yi 已提交
4856
    def _get_desc(self):
Y
yuyang18 已提交
4857 4858 4859 4860 4861 4862 4863
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4864 4865
        return self.desc

X
version  
Xin Pan 已提交
4866 4867 4868
    def _version(self):
        return self.desc._version()

4869
    def clone(self, for_test=False):
Y
yuyang18 已提交
4870
        """
4871 4872 4873 4874
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4875

4876
        Create a new Program with forward content of original one when ``for_test=True``.
4877
        Create a new Program as same as the original one when ``for_test=False``.
4878

4879
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4880 4881 4882
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4883

4884 4885
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4886 4887
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4888
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4889

J
Jiabin Yang 已提交
4890
        For Example:
4891
          ::
L
Luo Tao 已提交
4892

4893 4894 4895 4896 4897 4898
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4899
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4900
            loss = paddle.mean(pred)
4901
            # Here we use clone before Momentum
4902 4903
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4904
            optimizer.minimize(loss)
4905

J
Jiabin Yang 已提交
4906
        Args:
4907

4908 4909
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4910

J
Jiabin Yang 已提交
4911
        Returns:
4912
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4913

Y
yuyang18 已提交
4914 4915 4916

        Examples:

4917 4918 4919 4920 4921 4922 4923
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4940
            1. To clone a test program, the sample code is:
4941 4942 4943
                .. code-block:: python

                    import six
4944 4945 4946 4947 4948 4949
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4962 4963
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4964 4965 4966

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4967 4968 4969
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4970
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4971 4972
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4973
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4974 4975
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4976
                            test_program = train_program.clone(for_test=True)
4977
                    print_prog(test_program)
J
Jiabin Yang 已提交
4978 4979 4980 4981

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4982
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4983 4984 4985 4986
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4987 4988 4989
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4990 4991 4992
                            sgd.minimize(avg_loss)


4993
            2. The clone method can be avoid if you create program for training and program for testing individually.
4994 4995 4996
                .. code-block:: python

                    import six
4997 4998 4999 5000 5001 5002
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5014

5015
                    def network():
5016
                        img = static.data(name='image', shape=[None, 784])
5017
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5018 5019
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5020
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5021 5022
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5023 5024
                        return avg_loss

5025 5026 5027 5028 5029
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5030
                            avg_loss = network()
5031
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5032
                            sgd.minimize(avg_loss)
5033
                    # the test startup program is not used.
5034 5035
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5036 5037
                            avg_loss = network()
                    print_prog(test_program_2)
5038

5039
            The two code snippets above will generate and print same programs.
5040
        """
5041

T
tangwei12 已提交
5042
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5043 5044 5045
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5046
        pruned_origin_block_id_map = None
5047
        if for_test:
5048 5049 5050 5051 5052 5053 5054 5055 5056
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5057
        else:
5058
            p = Program()
G
gongweibao 已提交
5059 5060
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5061
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5062 5063 5064
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5065 5066

            p._current_role = self._current_role
5067
            p.__op_role_var = self.__op_role_var
5068
            p._appending_grad_times = self._appending_grad_times
5069 5070
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5071

T
tangwei12 已提交
5072
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5073
            # its desc.
W
Wu Yi 已提交
5074
            p._sync_with_cpp()
5075

W
Wu Yi 已提交
5076
        p._copy_param_info_from(self)
5077
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5078
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5079
        return p
5080

5081
    def _prune(self, targets):
Y
yuyang18 已提交
5082 5083 5084 5085 5086 5087 5088 5089
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5090
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5091 5092 5093 5094
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5095
        """
5096
        return self._prune_with_input([], targets)
5097 5098

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5099
        """
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5110
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5111 5112 5113 5114 5115 5116
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5117
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5118 5119 5120
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5121 5122
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5123 5124
        if not isinstance(targets, list):
            targets = [targets]
5125 5126 5127

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5128 5129 5130
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5131

5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5148 5149 5150 5151
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5152 5153 5154
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5155
                else:
5156 5157 5158
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5159 5160 5161 5162 5163 5164

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5165 5166 5167
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5168

5169 5170 5171 5172 5173 5174 5175 5176 5177
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5178
                        # Skip optimize op except for optimize op in targets,
5179 5180 5181 5182 5183
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5184

5185
                if target_op is not None:
5186 5187 5188
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5189

5190
        res = Program()
5191 5192 5193
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5194 5195 5196
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5197
        res._sync_with_cpp()
5198 5199 5200 5201 5202

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5203 5204
        return res

X
Xin Pan 已提交
5205
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5206
        """
F
fengjiayi 已提交
5207 5208 5209 5210 5211
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5212
        3. change the :code:`is_test`
Y
yuyang18 已提交
5213 5214 5215
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5216
        Args:
X
Xin Pan 已提交
5217 5218
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5219

Y
yuyang18 已提交
5220 5221 5222 5223 5224 5225
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5226
        res = Program()
5227
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5228 5229 5230 5231

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5232
        if prune_read_op:
5233 5234 5235 5236 5237 5238 5239 5240 5241
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5242
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5243 5244

        # change all `is_test` attributes to True
M
minqiyang 已提交
5245
        for i in six.moves.range(res.desc.num_blocks()):
5246
            block = res.desc.block(i)
M
minqiyang 已提交
5247
            for j in six.moves.range(block.op_size()):
5248 5249
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5250
                    op._set_attr('is_test', True)
5251 5252 5253
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5254 5255 5256
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5257
        res._sync_with_cpp()
5258 5259
        return res

5260
    def _remove_training_info(self, clip_extra=True):
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5350 5351
        return res

5352 5353
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5354
        """
5355 5356 5357
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5358

5359 5360
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5361

J
Jiabin Yang 已提交
5362
        Args:
Y
yuyang18 已提交
5363

J
Jiabin Yang 已提交
5364
            binary_str_type (str): the binary prootbuf string.
5365

J
Jiabin Yang 已提交
5366 5367
        Returns:
            Program: A deserialized Program.
5368 5369 5370 5371

        Examples:
            .. code-block:: python

5372 5373 5374 5375
                import paddle
                import paddle.static as static

                paddle.enable_static()
5376

5377 5378 5379 5380
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5381

5382
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5383

5384
                    z = paddle.matmul(x=x, y=y)
5385

5386 5387
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5388

5389
                    print(static.default_main_program())
5390
                    print(prog_restored)
Y
yuyang18 已提交
5391
        """
5392 5393
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5394
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5395
        p._sync_with_cpp()
5396
        return p
Y
Yu Yang 已提交
5397

5398
    @staticmethod
5399
    def _construct_from_desc(desc):
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5415 5416
    @property
    def random_seed(self):
Y
yuyang18 已提交
5417
        """
J
Jiabin Yang 已提交
5418
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5419 5420
        the random seed from random device.

5421 5422
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5423 5424 5425

        Returns:
            int64: Random seed in current Program
5426

5427 5428 5429 5430

        Examples:
            .. code-block:: python

5431 5432 5433
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5434

5435 5436 5437
                paddle.enable_static()

                prog = static.default_main_program()
5438
                random_seed = prog.random_seed
5439
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5440 5441 5442
                print(random_seed)
                ## 0
                ## the default random seed is 0
5443

5444
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5445
                prog.random_seed = 1
5446
                z_var = F.dropout(x_var, 0.7)
5447

5448
                print(prog.random_seed)
5449 5450
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5451
        """
D
dzhwinter 已提交
5452 5453
        return self._seed

Q
qiaolongfei 已提交
5454 5455
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5456
        """
5457 5458
        The number of :ref:`api_guide_Block_en`  in this Program.

5459 5460
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5461 5462 5463

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5464

5465 5466 5467 5468

        Examples:
            .. code-block:: python

5469 5470 5471 5472
                import paddle
                import paddle.static as static

                paddle.enable_static()
5473

5474
                prog = static.default_main_program()
5475 5476
                num_blocks = prog.num_blocks
                print(num_blocks)
5477

5478 5479
                # print result:
                # 1
Y
yuyang18 已提交
5480
        """
Q
qiaolongfei 已提交
5481 5482
        return self.desc.num_blocks()

D
dzhwinter 已提交
5483 5484 5485
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5486 5487 5488
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5489 5490
        self._seed = seed

Y
Yu Yang 已提交
5491
    def __repr__(self):
5492
        return self.__str__()
5493

Y
Yu Yang 已提交
5494
    def global_block(self):
Y
yuyang18 已提交
5495
        """
5496 5497
        .. note::
            This API has no effect in Dygraph mode.
5498 5499 5500

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5501 5502
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5503

5504 5505 5506 5507

        Examples:
            .. code-block:: python

5508 5509 5510 5511
                import paddle
                import paddle.static as static

                paddle.enable_static()
5512

5513
                prog = static.default_main_program()
5514 5515
                gb_block = prog.global_block()
                print(gb_block)
5516

Y
yuyang18 已提交
5517
        """
Y
Yu Yang 已提交
5518 5519
        return self.blocks[0]

Q
Qiao Longfei 已提交
5520
    def block(self, index):
Y
yuyang18 已提交
5521
        """
5522 5523
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5524

5525 5526
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5527 5528
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5529

J
Jiabin Yang 已提交
5530 5531
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5532 5533 5534 5535

        Examples:
            .. code-block:: python

5536 5537 5538 5539
                import paddle
                import paddle.static as static

                paddle.enable_static()
5540

5541
                prog = static.default_main_program()
5542 5543
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5544
        """
Q
Qiao Longfei 已提交
5545 5546
        return self.blocks[index]

Y
Yu Yang 已提交
5547
    def current_block(self):
Y
yuyang18 已提交
5548
        """
5549 5550
        .. note::
            This API has no effect in Dygraph mode.
5551

J
Jiabin Yang 已提交
5552 5553
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5554

J
Jiabin Yang 已提交
5555 5556
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5557

5558 5559 5560
        Examples:
            .. code-block:: python

5561 5562 5563 5564
                import paddle
                import paddle.static as static

                paddle.enable_static()
5565

5566
                prog = static.default_main_program()
5567 5568
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5569
        """
Y
Yu Yang 已提交
5570 5571
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5572
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5573 5574 5575 5576 5577
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5578

Y
yuyang18 已提交
5579 5580 5581 5582 5583
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5584
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5585 5586 5587
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5588 5589 5590 5591
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5592
    def _rollback(self):
Y
yuyang18 已提交
5593 5594 5595 5596 5597
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5598 5599
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5600
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5611 5612 5613
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5614
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5615

W
Wu Yi 已提交
5616
    def _copy_param_info_from(self, other):
5617
        """
5618
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5619

Y
yuyang18 已提交
5620 5621 5622
        Notes: This is a very low level API. Users should not invoke it
        directly.

5623 5624 5625 5626 5627 5628 5629
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5630 5631 5632
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5633

W
Wu Yi 已提交
5634
        self.global_block()._copy_param_info_from(other.global_block())
5635

5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5647 5648 5649
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5650 5651
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5652
        self._parameters_on_pservers = other._parameters_on_pservers
5653
        self._endpoints = other._endpoints
5654
        self._ps_endpoint = other._ps_endpoint
5655 5656
        self._distributed_lookup_table = other._distributed_lookup_table

5657
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5658 5659
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5660

Y
yuyang18 已提交
5661 5662 5663
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5664 5665
        Args:
            other(Program): Other program
5666 5667 5668 5669
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5670 5671 5672 5673 5674

        Returns:
            None
        """
        if not isinstance(other, Program):
5675 5676 5677
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5678

5679 5680 5681 5682 5683
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5684 5685 5686

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5687 5688
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5689
            for var in list(block.vars.values()):
5690 5691 5692 5693 5694 5695 5696
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5697

5698
    def list_vars(self):
Y
yuyang18 已提交
5699
        """
5700
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5701

J
Jiabin Yang 已提交
5702
        Returns:
5703
            iterable Tensors: The Generator will yield every Tensor in this program.
5704 5705 5706 5707

        Examples:
            .. code-block:: python

5708 5709
                import paddle
                import paddle.static as static
5710

5711 5712 5713 5714 5715
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5716 5717
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5718

5719 5720
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5721
        """
5722
        for each_block in self.blocks:
5723
            for each_var in list(each_block.vars.values()):
5724 5725
                yield each_var

5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5736 5737 5738 5739
                import paddle
                import paddle.static as static

                paddle.enable_static()
5740

5741 5742
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5743
                hidden = static.nn.fc(x=data, size=10)
5744 5745
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5746 5747 5748 5749 5750 5751 5752

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5753 5754
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5932

5933
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5934
class Parameter(Variable):
5935
    """
5936
    Parameter is derived from Variable. A parameter is a persistable
5937
    Variable, and will be updated by optimizers after each iteration.
5938
    The training of a neural network is essentially the updating of
5939 5940
    its parameters.

5941
    Relative to a general Variable, a Parameter has several its own
5942 5943
    member variables:

5944 5945 5946 5947 5948 5949 5950 5951 5952 5953
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5954 5955
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5956 5957
    """

5958 5959 5960 5961 5962 5963
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5964 5965 5966 5967 5968
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5969
        if len(shape) == 0:
5970 5971
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5972 5973 5974

        for each in shape:
            if each < 0:
5975 5976 5977
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5978 5979

        Variable.__init__(
5980 5981 5982 5983 5984 5985 5986
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5987 5988 5989 5990
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5991 5992
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5993
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5994

5995 5996
        self.need_clip = kwargs.get('need_clip', True)

5997 5998
        self.is_distributed = False

5999 6000
        self.is_parameter = True

F
fengjiayi 已提交
6001
    def __str__(self):
6002
        return self._to_readable_code()
F
fengjiayi 已提交
6003

F
update  
fengjiayi 已提交
6004 6005 6006
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6007

F
update  
fengjiayi 已提交
6008 6009 6010 6011 6012 6013 6014 6015
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6016 6017 6018 6019 6020 6021 6022 6023 6024
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6025 6026 6027 6028 6029 6030
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6031
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6032
            for attr_name in additional_attr:
6033 6034
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6035 6036
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6037 6038 6039 6040
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6041

6042 6043
class ParamBase(core.VarBase):
    """
6044 6045 6046
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6047 6048 6049
    The training of a neural network is essentially the updating of
    its ParamBase.

6050
    Relative to a general Tensor, a ParamBase has several its own
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6063 6064
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6095 6096
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6097 6098 6099 6100 6101 6102 6103

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6104 6105
        self.need_clip = kwargs.get('need_clip', True)

6106
        self.is_distributed = kwargs.get('is_distributed', False)
6107
        # self.block = default_main_program().global_block()
6108

6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6122
    def __str__(self):
6123
        """
6124
        Convert a ParamBase object to a readable string.
6125

6126
        Returns(str): A readable string.
6127 6128 6129 6130

        Examples:
            .. code-block:: python

6131
                import paddle
6132 6133 6134 6135 6136 6137 6138
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6139
        """
6140 6141
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6142

6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6154

6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6173 6174 6175 6176 6177 6178
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

6179 6180 6181
    __repr__ = __str__


Y
Yu Yang 已提交
6182
# program is a global instance.
Y
Yu Yang 已提交
6183 6184
_main_program_ = Program()
_startup_program_ = Program()
6185
_startup_program_._is_start_up_program_ = True
6186

6187

6188
def default_startup_program():
Y
Yu Yang 已提交
6189
    """
Y
yuyang18 已提交
6190 6191
    Get default/global startup program.

6192 6193
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6194

6195 6196
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6197

6198 6199
    Returns:
        Program: current default startup program.
6200

6201
    Returns type: 
6202 6203 6204 6205

    Examples:
        .. code-block:: python

6206
            import paddle
6207

6208
            paddle.enable_static()
6209 6210 6211 6212
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6213
    """
Y
Yu Yang 已提交
6214
    return _startup_program_
6215

6216

6217
def default_main_program():
Y
Yu Yang 已提交
6218
    """
6219
    This API can be used to get ``default main program`` which store the 
6220
    descriptions of Ops and tensors.
T
tangwei12 已提交
6221

6222
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6223
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6224

6225 6226
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6227
    :code:`default_main_program` when the program is not specified.
6228

6229
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6230

Y
Yu Yang 已提交
6231
    Returns:
6232
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6233 6234 6235 6236

    Examples:
        ..  code-block:: python

6237
            import paddle
6238

6239
            paddle.enable_static()
6240
            # Sample Network:
6241 6242 6243
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6244

6245 6246 6247
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6248
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6249
    """
Y
Yu Yang 已提交
6250
    return _main_program_
Y
Yu Yang 已提交
6251 6252 6253 6254 6255


def switch_main_program(program):
    """
    Switch the main program to a new program.
6256

Y
Yu Yang 已提交
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6271
    Switch the startup program to a new program
Y
Yu Yang 已提交
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6284
@signature_safe_contextmanager
Y
Yu Yang 已提交
6285 6286
def program_guard(main_program, startup_program=None):
    """
6287 6288
    :api_attr: Static Graph

6289 6290 6291
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6292

G
guofei 已提交
6293
    Args:
6294 6295
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6296 6297 6298 6299
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6300
    Examples:
6301
       .. code-block:: python
T
tangwei12 已提交
6302

6303
          import paddle
Y
yuyang18 已提交
6304

6305 6306 6307 6308 6309
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6310
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6311 6312 6313

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6314

Y
Yu Yang 已提交
6315
    Examples:
6316
       .. code-block:: python
Y
yuyang18 已提交
6317

6318
          import paddle
6319

6320 6321 6322 6323 6324
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6325

Y
Yu Yang 已提交
6326
    """
6327
    from .data_feeder import check_type
6328 6329
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6330 6331
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6332
        check_type(startup_program, 'startup_program', Program,
6333
                   'paddle.static.program_guard')
6334 6335
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6336
        startup_program = switch_startup_program(startup_program)
6337 6338 6339 6340 6341 6342
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6343 6344


W
Wu Yi 已提交
6345
def _get_var(name, program=None):
X
xuwei06 已提交
6346
    """
Y
yuyang18 已提交
6347
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6348

X
xuwei06 已提交
6349 6350 6351
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6352
        If None, default_global_program() will be used.
X
xuwei06 已提交
6353 6354 6355 6356 6357 6358 6359

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6360
    assert isinstance(program, Program)
X
xuwei06 已提交
6361 6362

    return program.global_block().var(name)
6363 6364


S
rename  
sneaxiy 已提交
6365
@signature_safe_contextmanager
L
lujun 已提交
6366 6367
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6368
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6369
    _dygraph_tracer_ = tracer
6370
    core._switch_tracer(tracer)
M
minqiyang 已提交
6371

6372 6373 6374
    try:
        yield
    finally:
6375 6376
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6377 6378


S
rename  
sneaxiy 已提交
6379
@signature_safe_contextmanager
L
lujun 已提交
6380
def _dygraph_place_guard(place):
6381 6382 6383
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6384

6385 6386
    _set_dygraph_tracer_expected_place(place)

6387 6388 6389
    try:
        yield
    finally:
6390
        _global_expected_place_ = tmp_place
6391
        _set_dygraph_tracer_expected_place(tmp_place)
6392 6393


6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6410 6411
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6412 6413 6414 6415 6416 6417 6418 6419 6420
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6421
            import paddle
6422

Z
Zhang Ting 已提交
6423 6424 6425
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6426
            if support_gpu:
Z
Zhang Ting 已提交
6427
                place = paddle.CUDAPlace(0)
6428 6429

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6430 6431 6432
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6433

Z
Zhang Ting 已提交
6434
            with paddle.static.device_guard("cpu"):
6435
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6436 6437
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6438
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6439
                out = paddle.reshape(data1, shape=shape)
6440

Z
Zhang Ting 已提交
6441 6442
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6443 6444 6445
            result = exe.run(fetch_list=[out])
    """

6446 6447 6448 6449 6450
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6451
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6452
        raise ValueError(
6453
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6454
            "when there is no need to specify device. But received %s" % device)
6455 6456
    if index:
        device = ":".join([device, index])
6457
    pre_device = switch_device(device)
6458 6459 6460 6461
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6462 6463 6464 6465 6466


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6467
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6468 6469 6470 6471 6472 6473 6474

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6475 6476
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6477 6478 6479 6480
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6481 6482
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6483 6484 6485 6486 6487 6488 6489 6490
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6491
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6492 6493 6494 6495 6496 6497 6498 6499 6500 6501

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6502
            import paddle
G
guofei 已提交
6503 6504

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6505
            res = paddle.get_flags(flags)
G
guofei 已提交
6506 6507 6508 6509 6510 6511
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6512 6513
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6514 6515 6516 6517 6518 6519 6520
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6521 6522
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6523 6524 6525 6526 6527 6528 6529 6530
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6531 6532 6533 6534 6535 6536 6537


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6538
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6539 6540 6541 6542 6543 6544 6545 6546 6547
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6548

6549 6550 6551
    if (place == "device"):
        return core.Place()

6552
    # GPU
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6568 6569

    # XPU
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6593
    raise ValueError(
6594 6595
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret