framework.py 219.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'Variable',
59
    'require_version',
60
    'device_guard',
G
guofei 已提交
61 62
    'set_flags',
    'get_flags',
63
]
Y
Yu Yang 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
69 70
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
71
_dygraph_tracer_ = None
72
_global_expected_place_ = None
73
_current_device = None
74
global_prog_seed = 0
75
_current_pipeline_stage = None
76
_global_flags_ = core.globals()
77

78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
186
def in_dygraph_mode():
L
lujun 已提交
187
    """
188

189 190 191 192 193 194 195
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
196 197

    Returns:
198
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
199 200 201 202

    Examples:
        .. code-block:: python

203 204 205 206 207 208 209 210
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
211 212

    """
L
lujun 已提交
213
    return _dygraph_tracer_ is not None
214 215


216 217 218
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
219
        ), "We don't support %s in imperative mode" % func.__name__
220 221 222 223 224 225 226 227
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
228 229 230 231 232 233 234 235 236
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
237
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
238 239 240 241 242
        return func(*args, **kwargs)

    return __impl__


243 244 245 246 247
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


248 249 250 251 252 253
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
254
# same base class.
255 256 257
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
258 259 260 261 262
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
263 264 265 266

    return __impl__


T
tangwei12 已提交
267 268
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


286 287
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
288
static_only = wrap_decorator(_static_only_)
289
fake_interface_only = wrap_decorator(_fake_interface_only_)
290 291


L
lujun 已提交
292 293
def _dygraph_tracer():
    return _dygraph_tracer_
294

W
Wu Yi 已提交
295

296 297 298 299
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
300
def _current_expected_place():
301 302 303
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
304 305 306 307 308 309 310 311 312 313 314
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
331 332


L
Leo Chen 已提交
333 334 335 336
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
337

L
Leo Chen 已提交
338 339 340 341 342 343 344 345 346 347 348 349
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
350
def _cpu_num():
351
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
352 353 354 355 356 357 358 359
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
360
        os.environ['CPU_NUM'] = str(1)
361
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
362 363 364 365 366 367 368 369 370 371
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
372 373


374 375 376 377 378 379 380 381 382
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


C
chengduo 已提交
423 424 425 426
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

427
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
428 429 430 431

    Examples:
        .. code-block:: python

432 433
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
434 435 436 437
    """
    return core.is_compiled_with_cuda()


438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_gpu = paddle.is_compiled_with_rocm()
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
453
def cuda_places(device_ids=None):
L
lujun 已提交
454
    """
455 456 457 458
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
459
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
460 461

    If :code:`device_ids` is None, environment variable of
462
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
463
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
464
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
465
    If :code:`FLAGS_selected_gpus` is not set, all visible
466
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
467 468

    If :code:`device_ids` is not None, it should be the device
469
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
470
    the returned list would be 
C
Chen Weihang 已提交
471
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
472

473
    Parameters:
474
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
475 476

    Returns:
C
Chen Weihang 已提交
477
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
478 479 480 481

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
482 483
            import paddle
            import paddle.static as static
T
tangwei12 已提交
484

485 486
            # required: gpu
            
C
Chen Weihang 已提交
487 488 489
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
490 491

    """
S
sneaxiy 已提交
492 493 494
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
495
        device_ids = _cuda_ids()
S
sneaxiy 已提交
496 497 498 499 500
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
523 524
            # required: xpu

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
540
def cpu_places(device_count=None):
L
lujun 已提交
541
    """
C
Chen Weihang 已提交
542
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
543

S
add doc  
sneaxiy 已提交
544 545
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
546 547
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
548 549
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
550

551 552
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
553 554

    Returns:
C
Chen Weihang 已提交
555
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
556 557 558 559

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
560 561
            import paddle
            import paddle.static as static
T
tangwei12 已提交
562

C
Chen Weihang 已提交
563 564 565
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
566 567
    """

S
sneaxiy 已提交
568 569 570 571 572 573
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
574
    """
575
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
576 577 578

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
579 580 581 582
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
583

584 585
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
586 587

    Returns:
588
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
589 590 591 592

    Examples:
        .. code-block:: python

593
            import paddle.fluid as fluid
L
lujun 已提交
594 595 596 597 598
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
599 600 601
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
602 603
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
604 605


606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
632
@signature_safe_contextmanager
633 634
def name_scope(prefix=None):
    """
635 636
    :api_attr: Static Graph

637
    Generate hierarchical name prefix for the operators in Static Graph.
638

T
Tao Luo 已提交
639 640 641
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
642
        Don't use it in dygraph, since it will cause memory leak.
643 644

    Args:
T
Tao Luo 已提交
645
        prefix(str, optional): prefix. Default is none.
646 647 648

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
649

650 651 652
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
653
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
654
             b = a + 1
655
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
656
                c = b * 1
657
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
658
                d = c / 1
659 660 661
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
662 663 664
                g = f - 1

          # Op are created in the default main program.  
665
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
681 682
    """
    # TODO(panyx0718): Only [0-9a-z].
683
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
684 685 686
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
687
        assert prefix, "namescope prefix can not be empty."
688 689
        global _name_scope
        _name_scope = _name_scope.child(prefix)
690 691 692 693
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
694 695 696 697 698 699 700 701 702 703 704 705


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
706 707 708
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
709 710 711 712


def grad_var_name(var_name):
    """
713 714
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
715 716 717
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
718

719
def convert_np_dtype_to_dtype_(np_dtype):
720 721
    """
    Convert the data type in numpy to the data type in Paddle
722

723
    Args:
724
        np_dtype(np.dtype): the data type in numpy.
725

726 727
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
728 729

    """
730 731
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
732
        return core.VarDesc.VarType.FP32
733
    elif dtype == np.float64:
734
        return core.VarDesc.VarType.FP64
735
    elif dtype == np.float16:
736
        return core.VarDesc.VarType.FP16
737
    elif dtype == np.int32:
738
        return core.VarDesc.VarType.INT32
739
    elif dtype == np.int16:
740
        return core.VarDesc.VarType.INT16
741
    elif dtype == np.int64:
742
        return core.VarDesc.VarType.INT64
743
    elif dtype == np.bool:
744
        return core.VarDesc.VarType.BOOL
745
    elif dtype == np.uint16:
746 747 748
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
749 750
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
751 752
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
753 754 755 756
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
757
    else:
M
minqiyang 已提交
758
        raise ValueError("Not supported numpy dtype %s" % dtype)
759 760 761


def dtype_is_floating(dtype):
762 763 764
    """
    Check the data type is floating or not.
    Args:
765
        dtype(np.dtype|core.VarDesc.VarType): data type.
766 767 768 769 770
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
771
    if not isinstance(dtype, core.VarDesc.VarType):
772 773
        dtype = convert_np_dtype_to_dtype_(dtype)

774 775 776 777
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
778 779


Y
Yang Yang(Tony) 已提交
780
def _debug_string_(proto, throw_on_error=True):
781 782 783 784 785 786 787 788 789 790 791
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
792
    error_fields = list()
Y
Yang Yang(Tony) 已提交
793
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
794 795
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
796 797 798
    return proto.__str__()


799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
836
class Variable(object):
837
    """
J
Jiabin Yang 已提交
838
    **Notes**:
839
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
840

841 842
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
843 844 845
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
846
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
847 848
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
849

850
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
851
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
852

T
tianshuo78520a 已提交
853
    Most of a Variable's member variables can be set to be None. It mean
854
    it is not available or will be specified later.
855

856
    Examples:
857 858
        In Static Graph Mode:

859 860
        .. code-block:: python

861
            import paddle.fluid as fluid
862
            cur_program = fluid.Program()
863 864 865 866
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
867
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
868 869 870 871 872 873 874 875 876

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

877 878
    """

Y
Yu Yang 已提交
879 880
    def __init__(self,
                 block,
Y
Yu Yang 已提交
881
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
882 883 884 885
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
886
                 capacity=None,
Q
QI JUN 已提交
887
                 persistable=None,
F
fengjiayi 已提交
888
                 error_clip=None,
Y
Yu Yang 已提交
889
                 stop_gradient=False,
F
fengjiayi 已提交
890
                 is_data=False,
H
Huihuang Zheng 已提交
891
                 need_check_feed=False,
H
hong 已提交
892
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
893
                 **kwargs):
Y
Yu Yang 已提交
894 895
        self.block = block
        if name is None:
Y
Yu Yang 已提交
896
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
897

Y
Yu Yang 已提交
898
        if dtype is not None:
899
            if not isinstance(dtype, core.VarDesc.VarType):
900
                dtype = convert_np_dtype_to_dtype_(dtype)
901

H
hong 已提交
902 903
        self.belong_to_optimizer = belong_to_optimizer

904 905 906 907 908
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
909

910 911 912
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
913

914 915 916
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
917 918
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
919 920
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
921

922
        if shape is not None:
923
            if is_new_var:
924 925 926 927 928 929
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
930 931
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
932 933 934 935 936 937 938
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
939 940
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
941 942 943 944 945 946 947 948 949
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
950 951
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
952 953 954 955 956 957 958 959 960
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
961 962
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
963 964
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
965

966 967
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
968

969 970 971 972 973 974 975
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
976

977 978
        self.block.vars[name] = self
        self.op = None
979
        self.stop_gradient = stop_gradient
980
        self.is_data = is_data
Y
Yu Yang 已提交
981

982 983 984
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
985 986
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
987

988
        Returns:
J
Jiabin Yang 已提交
989
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
990 991 992 993

        Examples:
            .. code-block:: python

994
                import paddle
995

996 997 998 999
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1000

1001 1002
                # create a detached Variable
                y = x.detach()
1003
        """
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1019

1020
    @fake_interface_only
1021
    def numpy(self):
1022
        """
J
Jiabin Yang 已提交
1023
        **Notes**:
T
tianshuo78520a 已提交
1024
            **This API is ONLY available in Dygraph mode**
1025

J
Jiabin Yang 已提交
1026
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1027 1028 1029 1030 1031

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1032
            ndarray: dtype is same as current Variable
1033 1034 1035 1036 1037 1038

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1039
                from paddle.fluid.dygraph import Linear
1040 1041 1042 1043
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1044
                    linear = Linear(32, 64)
1045
                    data = to_variable(data)
1046
                    x = linear(data)
1047 1048 1049
                    print(x.numpy())

        """
1050
        pass
1051

1052
    @fake_interface_only
1053
    def backward(self, retain_graph=False):
1054
        """
J
Jiabin Yang 已提交
1055
        **Notes**:
T
tianshuo78520a 已提交
1056
            **This API is ONLY available in Dygraph mode**
1057

1058
        Run backward of current Graph which starts from current Tensor.
1059

J
Jiabin Yang 已提交
1060
        Args:
1061 1062 1063 1064
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1065

J
Jiabin Yang 已提交
1066 1067
        Returns:
            NoneType: None
1068 1069 1070 1071 1072

        Examples:
            .. code-block:: python

                import numpy as np
1073 1074
                import paddle
                paddle.disable_static()
1075 1076

                x = np.ones([2, 2], np.float32)
1077 1078 1079 1080 1081 1082 1083
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1084 1085
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1086
                loss.backward()
1087 1088

        """
1089
        pass
1090

1091
    @fake_interface_only
1092
    def gradient(self):
1093
        """
J
Jiabin Yang 已提交
1094
        **Notes**:
T
tianshuo78520a 已提交
1095
            **This API is ONLY available in Dygraph mode**
1096 1097 1098

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1099
        Returns:
1100
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1101 1102 1103 1104 1105 1106 1107

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1108
                # example1: return ndarray
1109 1110 1111 1112 1113 1114 1115 1116 1117
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1118
                    loss2.backward()
1119 1120
                    print(loss2.gradient())

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1134
        """
1135
        pass
1136

1137
    @fake_interface_only
1138
    def clear_gradient(self):
1139
        """
J
Jiabin Yang 已提交
1140
        **Notes**:
T
tianshuo78520a 已提交
1141
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1142 1143

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1144

J
Jiabin Yang 已提交
1145
        Clear  (set to ``0`` ) the Gradient of Current Variable
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1164
                    loss2.backward()
1165 1166 1167 1168 1169
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1170
        pass
X
Xin Pan 已提交
1171

1172 1173 1174 1175
    @fake_interface_only
    def register_hook(self, hook):
        pass

1176
    def __str__(self):
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1193 1194
                import paddle
                import paddle.static as static
1195

1196 1197 1198
                paddle.enable_static()

                cur_program = static.Program()
1199 1200 1201 1202 1203 1204
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1205 1206
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1207
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1208 1209
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1210 1211
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1212
        else:
1213 1214
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1215

1216
        if self.is_parameter:
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1227 1228 1229 1230 1231 1232 1233 1234
        from paddle.distributed.auto_parallel.context import get_default_distributed_context
        dist_context = get_default_distributed_context()
        var_dist_attr = dist_context.get_tensor_distributed_attr_for_program(
            self)
        if var_dist_attr is not None:
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=var_dist_attr)

1235
        return var_str
Y
Yang Yang(Tony) 已提交
1236

F
update  
fengjiayi 已提交
1237
    def to_string(self, throw_on_error, with_details=False):
1238 1239 1240
        """
        Get debug string.

J
Jiabin Yang 已提交
1241 1242 1243 1244 1245
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1246

1247 1248
        Returns:
            str: The debug string.
1249 1250 1251 1252 1253

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1254
                import paddle
1255

1256
                paddle.enable_static()
1257 1258 1259 1260 1261
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1262
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1263
                print("=============with detail===============")
1264
                print(new_variable.to_string(True, True))
1265
        """
F
update  
fengjiayi 已提交
1266 1267
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1268
        protostr = self.desc.serialize_to_string()
1269
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1270 1271
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1272
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1273
            for attr_name in additional_attr:
1274 1275 1276
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1277
        return res_str
1278 1279 1280

    __repr__ = __str__

1281
    @property
1282
    def stop_gradient(self):
J
Jiabin Yang 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1298 1299
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1300 1301 1302
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1303 1304
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1305 1306 1307 1308
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1309
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1310 1311
                assert (out1.gradient() == 0).all()
        """
1312
        return self.desc.stop_gradient()
1313

1314 1315
    @stop_gradient.setter
    def stop_gradient(self, s):
1316
        self.desc.set_stop_gradient(s)
1317

1318 1319
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1341
        return self.desc.persistable()
1342

Y
Yu Yang 已提交
1343 1344
    @persistable.setter
    def persistable(self, p):
1345
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1372 1373
    @property
    def name(self):
J
Jiabin Yang 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1390
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1391

1392 1393 1394 1395 1396 1397 1398 1399
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1412 1413
    @name.setter
    def name(self, new_name):
1414
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1415

Y
Yu Yang 已提交
1416 1417
    @property
    def shape(self):
J
Jiabin Yang 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1435
        # convert to tuple, make it as same as numpy API.
1436
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1437 1438

    @property
F
fengjiayi 已提交
1439
    def dtype(self):
J
Jiabin Yang 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1456
        return self.desc.dtype()
Y
Yu Yang 已提交
1457 1458 1459

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1481 1482 1483
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1484
        return self.desc.lod_level()
Y
Yu Yang 已提交
1485

Y
Yu Yang 已提交
1486 1487
    @property
    def type(self):
J
Jiabin Yang 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1504
        return self.desc.type()
Y
Yu Yang 已提交
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1540
    def _set_error_clip(self, error_clip):
1541 1542 1543 1544 1545 1546 1547 1548 1549
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1550 1551
        self.error_clip = error_clip

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1592
            raise ValueError("slice step can not be zero")
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1668
    def _cloneVar(self, copy=False):
1669 1670
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1671 1672
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1673 1674 1675 1676
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1677
        new_var = self._cloneVar()
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1688
        new_var = self._cloneVar()
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1699
                return self._cloneVar(True)
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1718
                return self._cloneVar(True)
1719
            index = int(item)
1720
            if (index > 0 and index >= self.shape[axis]) \
1721 1722 1723 1724 1725 1726 1727
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1728
        return _getitem_impl_(self, item)
1729

1730
    def __setitem__(self, item, value):
1731
        return _setitem_impl_(self, item, value)
1732

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
1995

F
fengjiayi 已提交
1996 1997 1998
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1999

2000 2001
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2002 2003 2004 2005
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2006
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2007 2008 2009 2010 2011
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2012 2013 2014 2015
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2025
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2026 2027 2028 2029 2030 2031
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2032 2033 2034 2035 2036 2037 2038 2039
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2040 2041
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2042 2043
        return self.op_proto_map[type]

2044 2045
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2046
        custom_op_names = []
2047 2048 2049
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2050 2051 2052
                custom_op_names.append(proto.type)

        return custom_op_names
2053

2054 2055 2056 2057
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2058
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2059
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2060 2061
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2062 2063
        }

F
fengjiayi 已提交
2064

X
Xin Pan 已提交
2065
class Operator(object):
2066
    """
2067 2068 2069 2070 2071 2072 2073
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2074
        type(str): The type of operator. Default None.
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2095
        Block.append_op or Block._prepend_op instead.
2096 2097 2098 2099

    Examples:
        .. code-block:: python

2100
            import paddle.fluid as fluid
2101
            cur_program = fluid.Program()
2102 2103 2104 2105 2106
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2107
    """
2108
    OP_WITHOUT_KERNEL_SET = {
2109 2110
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2111
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2112 2113
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2114
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2115 2116
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2117
    }
2118

Y
Yu Yang 已提交
2119 2120
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2121
                 desc,
Y
Yu Yang 已提交
2122 2123 2124
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2125
                 attrs=None):
L
lujun 已提交
2126
        if in_dygraph_mode():
2127 2128
            if type is None:
                raise ValueError(
2129
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2130
            self._type = type
M
minqiyang 已提交
2131
            self.attrs = attrs if attrs else {}
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2146
                )] = self.block.program._op_role
2147 2148 2149

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2150 2151
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2152 2153 2154 2155 2156

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2157 2158 2159 2160 2161
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2162 2163 2164
                return
            if type is None:
                raise ValueError(
2165
                    "`type` to initialized an Operator can not be None.")
2166 2167
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2168 2169 2170 2171 2172 2173 2174
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2175 2176 2177 2178 2179 2180 2181

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2199 2200 2201 2202 2203
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2218
                        if not isinstance(in_args, (list, tuple)):
2219 2220 2221 2222 2223 2224
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2225
                        for index, arg in enumerate(in_args):
2226 2227 2228 2229
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2230
                            elif isinstance(arg, (Variable, core.VarBase)):
2231
                                in_arg_names.append(cpt.to_text(arg.name))
2232
                            else:
2233 2234 2235 2236
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2237 2238
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2263 2264 2265 2266
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2267
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2268
                        if not in_dygraph_mode():
2269 2270 2271 2272
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2291
    def _has_kernel(self, op_type):
2292 2293
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2294
    def to_string(self, throw_on_error):
2295
        """
2296 2297
        Get debug string.

2298
        Args:
2299 2300
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2301

2302 2303
        Returns:
            str: The debug string.
2304 2305

        """
2306
        protostr = self.desc.serialize_to_string()
2307
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2308 2309
        return _debug_string_(proto, throw_on_error)

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2342
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2395 2396 2397 2398 2399 2400 2401
        from paddle.distributed.auto_parallel.context import get_default_distributed_context
        dist_context = get_default_distributed_context()
        op_dist_attr = dist_context.get_op_distributed_attr_for_program(self)
        if op_dist_attr is not None:
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=op_dist_attr)

2402 2403
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2404 2405
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2406 2407 2408 2409 2410
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2411
    def __str__(self):
2412
        return self._to_readable_code()
2413 2414 2415

    __repr__ = __str__

F
fengjiayi 已提交
2416 2417
    @property
    def type(self):
2418
        return self.desc.type()
F
fengjiayi 已提交
2419 2420

    def input(self, name):
2421
        r"""
2422
        Get the input arguments according to the input parameter name.
2423

2424 2425
        Args:
            name(str): The input parameter name.
2426

2427 2428 2429
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2430
        """
F
fengjiayi 已提交
2431 2432
        return self.desc.input(name)

W
Wu Yi 已提交
2433
    def _rename_input(self, old_name, new_name):
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2444
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2445

W
Wu Yi 已提交
2446
    def _rename_output(self, old_name, new_name):
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2457
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2458

F
fengjiayi 已提交
2459 2460 2461 2462
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2463 2464 2465 2466 2467 2468 2469 2470
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2471
    def output(self, name):
2472
        r"""
2473
        Get output arguments by the output parameter name.
2474

2475 2476
        Args:
            name(str): The output parameter name.
2477

2478 2479 2480
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2481
        """
F
fengjiayi 已提交
2482 2483 2484 2485 2486 2487
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2488 2489 2490 2491 2492 2493 2494 2495
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2496
    def has_attr(self, name):
2497
        """
2498 2499
        Whether this Operator has the attribute with name or not.

2500
        Args:
2501
            name(str): the attribute name.
2502

2503 2504
        Returns:
            bool: True if has this attribute.
2505 2506

        """
F
fengjiayi 已提交
2507 2508 2509
        return self.desc.has_attr(name)

    def attr_type(self, name):
2510
        """
2511
        Get the type of attribute by attribute's name.
2512

2513 2514
        Args:
            name(str): the attribute name.
2515

2516 2517
        Returns:
            core.AttrType: the attribute type.
2518
        """
F
fengjiayi 已提交
2519 2520
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2521
    def _set_attr(self, name, val):
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2532 2533
        self._update_desc_attr(name, val)

2534 2535 2536
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2548 2549
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2550 2551
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2552
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2553 2554 2555 2556
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2557
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2558

F
fengjiayi 已提交
2559 2560 2561 2562 2563
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2564
        """
2565 2566
        Get the attribute by name.

2567
        Args:
2568
            name(str): the attribute name.
2569

2570 2571
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2572 2573
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2574
        return self.desc.attr(name)
Y
Yu Yang 已提交
2575

W
Wu Yi 已提交
2576
    def _block_attr_id(self, name):
2577
        """
G
gongweibao 已提交
2578
        Get the block attribute's id by name.
2579

2580 2581
        Args:
            name(str): the attribute name.
2582

2583 2584
        Returns:
            int: the block index.
2585
        """
W
Wu Yi 已提交
2586
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2587

W
Wu Yi 已提交
2588
    def _block_attr(self, name):
G
gongweibao 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2599
        id = self._block_attr_id(name)
G
gongweibao 已提交
2600 2601 2602
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2603
    def _blocks_attr(self, name):
G
gongweibao 已提交
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2614
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2615 2616 2617 2618 2619
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2620
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2631
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2632

J
JiayiFeng 已提交
2633
    def all_attrs(self):
F
fengjiayi 已提交
2634
        """
2635 2636 2637
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2638
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2639 2640 2641 2642
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2643 2644
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2645
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2646 2647 2648
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2649
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2650 2651 2652 2653
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2654 2655
        return attr_map

2656 2657 2658
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2659 2660 2661 2662

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2663 2664 2665
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2666 2667 2668 2669 2670 2671 2672 2673

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2674 2675
            return False

2676 2677 2678 2679 2680 2681
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2707

Y
Yu Yang 已提交
2708
class Block(object):
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2723
        use `Program._create_block()` to create a block.
2724 2725 2726 2727

    Examples:
        .. code-block:: python

2728 2729 2730
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2731 2732 2733 2734 2735 2736 2737 2738 2739
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2740
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2741
        self.desc = program.desc.block(idx)
2742
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2743
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2744
        self.program = program
2745
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2746

2747
    def __str__(self):
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2782
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2794

F
fengjiayi 已提交
2795 2796
    def to_string(self, throw_on_error, with_details=False):
        """
2797 2798
        Get debug string.

F
fengjiayi 已提交
2799 2800
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2801
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2802
            with_details(bool): more details about variables and parameters
2803 2804
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2805

2806 2807
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2808 2809 2810 2811
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2812
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2813 2814
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2815
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2816
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2817
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2818
            for op in self.ops:
F
fengjiayi 已提交
2819 2820
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2821 2822 2823
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2824 2825
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2826 2827
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2828 2829 2830

    __repr__ = __str__

Y
Yu Yang 已提交
2831 2832
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2833
        return self.desc.parent
Y
Yu Yang 已提交
2834

Y
Yu Yang 已提交
2835 2836 2837 2838
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2839
    def _set_forward_block_idx(self, idx):
2840 2841 2842 2843 2844 2845 2846 2847 2848
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2849
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2850

2851 2852 2853 2854 2855 2856 2857 2858
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2859 2860
    @property
    def idx(self):
Y
Yu Yang 已提交
2861
        return self.desc.id
Y
Yu Yang 已提交
2862

Q
Qiao Longfei 已提交
2863
    def var(self, name):
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2877
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2878 2879 2880
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2881 2882
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2883
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2884
        return v
Q
Qiao Longfei 已提交
2885

X
Xin Pan 已提交
2886
    def _find_var_recursive(self, name):
2887 2888 2889 2890 2891 2892 2893
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2894
            Variable: the Variable with the giving name. Or None if not found.
2895
        """
Y
Yu Yang 已提交
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2920
        return None
Y
Yu Yang 已提交
2921

X
Xin Pan 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2941

Q
Qiao Longfei 已提交
2942
    def all_parameters(self):
2943
        return list(self.iter_parameters())
2944

2945
    def iter_parameters(self):
M
minqiyang 已提交
2946
        return (item[1] for item in six.iteritems(self.vars)
2947
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2948

Y
Yu Yang 已提交
2949
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2950 2951 2952
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2953 2954 2955
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2956
        return var
Y
Yu Yang 已提交
2957

Q
Qiao Longfei 已提交
2958 2959 2960
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2961
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2962 2963
        """
        Rename variable in vars and ops' inputs and outputs
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2976
        """
M
minqiyang 已提交
2977 2978
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2979

T
typhoonzero 已提交
2980
        if not self.has_var(name):
2981
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2982 2983
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2984
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2985 2986 2987 2988 2989 2990
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2991
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2992 2993 2994 2995
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2996
        orig_var_type = v.type
M
minqiyang 已提交
2997
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2998
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2999
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3000
        if var_type == "Parameter":
L
Leo Chen 已提交
3001 3002
            if in_dygraph_mode():
                var = ParamBase(
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3013 3014
                var = Parameter(
                    self,
3015 3016 3017 3018 3019 3020 3021 3022 3023
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3024
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3025 3026
            var = Variable(
                self,
T
typhoonzero 已提交
3027
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3028 3029 3030 3031
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3032
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3033 3034 3035
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3036
        self._sync_with_cpp()
3037
        return var
T
typhoonzero 已提交
3038

3039 3040 3041
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3042
        self.desc._remove_var(cpt.to_bytes(name))
3043 3044
        del self.vars[name]

Y
Yu Yang 已提交
3045 3046
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3047
        param = None
L
Leo Chen 已提交
3048
        if in_dygraph_mode():
3049
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3050 3051
        else:
            param = Parameter(global_block, *args, **kwargs)
3052

3053
        if 'initializer' in kwargs:
3054 3055 3056 3057 3058

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3059
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3060
                        # are treated as initialization ops that cause error.
3061
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3062 3063 3064 3065 3066
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3067
                            continue
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3079
                # TODO already inited, do nothing, should log a warning
3080 3081 3082
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3083
        return param
Y
Yu Yang 已提交
3084

Y
Yu Yang 已提交
3085
    def append_op(self, *args, **kwargs):
3086 3087 3088 3089 3090 3091
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3092
        if in_dygraph_mode():
3093
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3094
            type = kwargs.get("type", None)
3095 3096 3097
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3098
                type=type,
M
minqiyang 已提交
3099 3100
                inputs=None,
                outputs=None,
3101
                attrs=attrs)
3102

M
minqiyang 已提交
3103 3104 3105
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3106
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3107 3108

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3109
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3110 3111
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3112
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3113
        else:
3114 3115
            from paddle.fluid.dygraph.base import param_guard

3116
            op_desc = self.desc.append_op()
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3130

M
minqiyang 已提交
3131
            self.ops.append(op)
M
minqiyang 已提交
3132

3133 3134
        return op

W
Wu Yi 已提交
3135
    def _insert_op(self, index, *args, **kwargs):
3136 3137 3138 3139 3140 3141 3142 3143 3144
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3145
        self._sync_with_cpp()
F
fangshuixun007 已提交
3146
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3147

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3165 3166 3167 3168 3169 3170 3171 3172 3173
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3174 3175
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3176
        self.desc._remove_op(index, index + 1)
3177 3178
        del self.ops[index]

W
Wu Yi 已提交
3179
    def _slice_ops(self, start, end):
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3190
        return self.ops[start:end]
Y
Yancey1989 已提交
3191

W
Wu Yi 已提交
3192
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3193
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3194 3195
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3196
            op = Operator(
J
Jiabin Yang 已提交
3197
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3198

J
Jiabin Yang 已提交
3199
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3200
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3201 3202
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3203
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3204
        else:
3205 3206 3207 3208 3209 3210 3211 3212
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3213
            self.ops.insert(0, op)
3214

Y
Yu Yang 已提交
3215 3216
        return op

W
Wu Yi 已提交
3217
    def _sync_with_cpp(self):
3218
        """
3219 3220
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3221
        """
Q
Qiao Longfei 已提交
3222 3223 3224
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3242

3243
        # sync variables removed from c++ end
3244
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3245
            if not self.desc.find_var(cpt.to_bytes(var)):
3246 3247
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3248
        # sync operators from cpp
3249 3250 3251 3252
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3269 3270 3271 3272 3273

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3274
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3275 3276 3277 3278 3279 3280 3281

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3295 3296 3297 3298
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3299
    def _copy_param_info_from(self, other):
3300
        """
3301 3302
        Copy the information of parameters from the other block.

3303
        Args:
3304 3305 3306 3307 3308
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3309 3310 3311 3312 3313

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3314 3315
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3316
        for p in other.iter_parameters():
3317 3318 3319
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3320 3321
                # if the Parameter is pruned, v may be None
                continue
3322
            assert isinstance(v, Variable)
3323
            new_p = None
L
Leo Chen 已提交
3324 3325
            if in_dygraph_mode():
                new_p = ParamBase(
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3337 3338
                new_p = Parameter(
                    block=self,
3339 3340 3341
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3342 3343
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3344 3345 3346 3347 3348 3349
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3350 3351
            self.vars[new_p.name] = new_p

3352
    def _clone_variable(self, var, force_persistable=True):
3353 3354
        """
        Clone a variable into current block.
3355

3356 3357
        Args:
            var: the variable to be cloned.
3358 3359 3360
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3361 3362

        Returns:
3363
            Variable: the new  variable cloned from 'var' in current block.
3364 3365
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3366 3367 3368 3369 3370
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3371 3372
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3373
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3374 3375 3376 3377 3378 3379
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3380
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3381 3382
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3383 3384 3385 3386 3387 3388 3389
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3390
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3391 3392
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3393
        return ret_var
3394

Y
Yu Yang 已提交
3395

3396 3397 3398 3399 3400 3401
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3513
    def remove_input_by_id(self, node_id):
3514 3515 3516 3517 3518 3519
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3520
        self.node.remove_input(node_id)
3521

3522
    def remove_input(self, node):
3523 3524 3525 3526
        """
        Remove a node from inputs.

        Args:
3527
            node(IrNode): the node being removed.
3528
        """
3529
        self.node.remove_input(node.node)
3530

3531
    def append_input(self, node):
3532 3533 3534 3535
        """
        Append a node in inputs.

        Args:
3536
            node(IrNode): the node being appended.
3537
        """
3538
        self.node.append_input(node.node)
3539 3540 3541 3542 3543 3544 3545 3546

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3547
    def remove_output_by_id(self, node_id):
3548 3549 3550 3551 3552 3553
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3554
        self.node.remove_output(node_id)
3555

3556
    def remove_output(self, node):
3557 3558 3559 3560
        """
        Remove a node from outputs.

        Args:
3561
            node(IrNode): the node being removed.
3562
        """
3563
        self.node.remove_output(node.node)
3564

3565
    def append_output(self, node):
3566 3567 3568 3569
        """
        Append a node in outputs.

        Args:
3570
            node(IrNode): the node being appended.
3571
        """
3572
        self.node.append_output(node.node)
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3620
            "The node variable description can not be None."
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3631
            "The node variable description can not be None."
3632 3633
        return self.node.var().persistable()

3634 3635 3636 3637 3638 3639 3640 3641
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3642
            "The node variable description can not be None."
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3653
            "The node variable description can not be None."
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3664
            "The node variable description can not be None."
3665 3666
        return self.node.var().shape()

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3714
            "The node operator description can not be None."
3715 3716
        self.node.op()._rename_input(old_input_name, new_input_name)

3717 3718 3719 3720 3721 3722 3723 3724 3725
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3726
            "The node operator description can not be None."
3727 3728
        self.node.op()._rename_output(old_output_name, new_output_name)

3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3740
            "The node operator description can not be None."
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3754
            "The node operator description can not be None."
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3765
            "The node operator description can not be None."
3766 3767
        return self.node.op().set_type(new_type)

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3783
            "The node operator description can not be None."
3784 3785 3786 3787
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3788
                all(isinstance(v, Block) for v in val):
3789 3790
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3791
                isinstance(val, core.ProgramDesc):
3792 3793 3794 3795
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3796 3797 3798 3799 3800 3801 3802 3803
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3804
            "The node operator description can not be None."
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3815
            "The node operator description can not be None."
3816 3817
        return self.node.op().output_arg_names()

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3839 3840
class IrGraph(object):
    """
3841
    Python IrGraph. Beneath it is a core.Graph, which is used for
3842
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3843 3844
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3845 3846 3847 3848
    """

    def __init__(self, graph, for_test=False):
        """
3849 3850
        Construct an IrGraph using core.Graph.

3851 3852 3853 3854 3855 3856 3857 3858 3859
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3860 3861 3862 3863
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3864 3865 3866
        Warns:
            The method only clones the graph structure, not its attributes.

3867 3868 3869
        Returns:
            IrGraph: A new and duplicated graph.
        """
3870
        g = self.graph.clone()
3871 3872
        return IrGraph(g, self._for_test)

3873
    def is_test(self):
3874 3875 3876
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3877 3878
        return self._for_test

W
WangZhen 已提交
3879
    def all_nodes(self):
3880 3881 3882
        """
        Return all nodes included in the graph as a set.
        """
3883
        return {IrNode(node) for node in self.graph.nodes()}
3884

3885
    def all_var_nodes(self):
3886 3887 3888
        """
        Return all variable nodes included in the graph as a set.
        """
3889
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3890

3891
    def all_persistable_nodes(self):
3892 3893 3894
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3895 3896 3897 3898 3899
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3900
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3901

3902
    def all_op_nodes(self):
3903 3904 3905
        """
        Return all operator nodes included in the graph as a set.
        """
3906
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3907

3908
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3920
            IrVarNode: the created persistable variable node.
3921
        """
3922 3923 3924 3925 3926
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3927
        return IrVarNode(self.graph.create_var_node(var_desc))
3928 3929

    def create_var_node(self, name, var_type, shape, var_dtype):
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3941
            IrVarNode: the created variable node.
3942 3943
        """

3944 3945 3946 3947
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3948
        return IrVarNode(self.graph.create_var_node(var_desc))
3949

3950 3951 3952 3953 3954 3955
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3956
    def create_var_node_from_desc(self, var_desc):
3957 3958 3959 3960 3961 3962 3963 3964
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3965
            IrVarNode: the created variable node.
3966
        """
3967
        return IrVarNode(self.graph.create_var_node(var_desc))
3968 3969

    def create_op_node(self, op_type, attrs, inputs, outputs):
3970 3971 3972 3973 3974 3975 3976
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3977
            outputs(dict): the outputs of the operator node.
3978 3979

        Returns:
3980
            IrOpNode: the created operator node.
3981
        """
3982 3983
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3984
        for attr, value in six.iteritems(attrs):
3985
            self._update_desc_attr(op_desc, attr, value)
3986
        for input_name, var_nodes in six.iteritems(inputs):
3987 3988 3989 3990
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3991
        for output_name, var_nodes in six.iteritems(outputs):
3992 3993 3994 3995
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3996
        return IrOpNode(self.graph.create_op_node(op_desc))
3997 3998

    def create_op_node_from_desc(self, op_desc):
3999 4000 4001 4002 4003 4004 4005
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4006
            IrOpNode: the created operator node.
4007
        """
4008
        return IrOpNode(self.graph.create_op_node(op_desc))
4009 4010

    def update_input_link(self, old_input_node, new_input_node, op_node):
4011 4012 4013 4014
        """
        Update the input's link of a operator node.

        Args:
4015 4016 4017
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4018
        """
4019
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4020
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4021
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4022 4023 4024 4025
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4026
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4027

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4038
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4039
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4040 4041 4042 4043 4044 4045
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4046
    def link_to(self, node_in, node_out):
4047 4048 4049 4050
        """
        Connect two nodes.

        Args:
4051 4052
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4053
        """
4054
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
4055
            'The two arguments(node_in&node_out) must be in the graph nodes.'
4056 4057
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4058 4059

    def safe_remove_nodes(self, remove_nodes):
4060 4061 4062 4063 4064 4065 4066
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4067
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4068 4069 4070 4071
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4072 4073
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4074

Z
Zhen Wang 已提交
4075 4076 4077 4078 4079 4080 4081 4082
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4083
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4084 4085 4086 4087
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4088
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4089 4090 4091
                        ]
                    else:
                        var_nodes[each_var_name].append(
4092 4093
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4094 4095
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4096
    def has_circle(self):
4097 4098 4099 4100 4101 4102
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4103 4104 4105
        return core.has_circle(self.graph)

    def graph_num(self):
4106 4107 4108 4109 4110 4111
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4112 4113 4114
        return core.graph_num(self.graph)

    def topology_sort(self):
4115 4116 4117
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4118
        Notes: the `graph` can not contain a circle.
4119 4120

        Returns:
Z
Zhen Wang 已提交
4121
            list(IrNode): nodes in topology order.
4122
        """
4123
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4124
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4125 4126

    def build_adjacency_list(self):
4127 4128 4129 4130
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4131
            dict{IrNode: set(IrNode)}: the adjacency list.
4132
        """
4133 4134 4135 4136 4137
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4138

4139 4140 4141 4142 4143 4144 4145 4146
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4147
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4148 4149 4150 4151 4152
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4153 4154
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4155 4156 4157
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4158 4159 4160 4161 4162
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4163
        remove_ctr_vars = set()
4164
        if remove_ctr_var:
4165
            for node in self.all_var_nodes():
4166 4167 4168
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4169 4170
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4171 4172
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4173 4174 4175 4176 4177 4178
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4179 4180 4181 4182
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4183 4184
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4185 4186 4187 4188 4189 4190 4191
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4192 4193 4194
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4195
        WARN: When the graph includes backward operator nodes, the
4196 4197 4198 4199 4200 4201
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4202
        convert_pass = core.get_pass('graph_to_program_pass')
4203 4204
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4205 4206 4207 4208
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4236
class Program(object):
D
dzhwinter 已提交
4237
    """
4238
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4239
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4240
    it will contain nested block.
4241

J
Jiabin Yang 已提交
4242 4243 4244
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4245

J
Jiabin Yang 已提交
4246
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4247
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4248 4249 4250 4251 4252 4253 4254
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4255
    **Notes**:
4256 4257 4258
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4259 4260

    Returns:
J
Jiabin Yang 已提交
4261
        Program: An empty Program.
D
dzhwinter 已提交
4262 4263

    Examples:
4264 4265
        .. code-block:: python

4266 4267 4268 4269
            import paddle
            import paddle.static as static

            paddle.enable_static()
4270

4271 4272 4273 4274 4275
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4276
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4277 4278 4279

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4280 4281 4282

    """

4283 4284
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4285 4286
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4287 4288
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4289
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4290
        self.__op_role_var = []
T
tangwei12 已提交
4291

4292 4293
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4294
        self._is_distributed = False
4295
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4296
        self._is_chief = False
4297 4298 4299
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4300
        self._endpoints = []
4301 4302 4303
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4304
        self._trainers_endpoints = []
4305
        # the distributed lookup table names
T
tangwei12 已提交
4306
        self._distributed_lookup_table = None
4307 4308 4309

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4310 4311
        self._use_lamb = False

4312 4313 4314
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4315

4316 4317 4318
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4319
        self._program_config = None
4320

H
hutuxian 已提交
4321 4322 4323
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4324 4325 4326
        # appending gradients times
        self._appending_grad_times = 0

4327 4328 4329 4330
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4331 4332 4333
        # compiled program, i.e. Graph
        self._graph = None

4334
    def _find_var_class_kwargs(self, new_desc):
4335 4336 4337 4338 4339 4340 4341 4342
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4412
        assert block_num == self.desc.num_blocks()
4413 4414

        # clear old blocks and desc
4415 4416 4417 4418 4419 4420 4421 4422 4423
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4424

4425
        del desc
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4455 4456
                import paddle
                import paddle.static as static
4457

4458 4459 4460
                paddle.enable_static()

                prog = static.default_main_program()
4461 4462 4463 4464 4465
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4466
                prog1 = static.default_main_program()
4467 4468 4469 4470 4471 4472 4473 4474
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4475
    @property
4476
    def _op_role(self):
Y
yuyang18 已提交
4477 4478 4479 4480 4481 4482 4483 4484
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4485
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4486 4487 4488 4489
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4490 4491
        return self._current_role

4492 4493
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4494 4495 4496
        self._current_role = role

    @property
4497
    def _op_role_var(self):
Y
yuyang18 已提交
4498
        """
4499
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4500

4501
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4502 4503 4504

        Notes: This is a very low-level API. Users should not use it directly.
        """
4505
        return self.__op_role_var
Y
yuyang18 已提交
4506

4507
    @signature_safe_contextmanager
4508 4509 4510 4511 4512
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4513 4514 4515 4516
        try:
            yield
        finally:
            self._current_role = tmp_role
4517

S
rename  
sneaxiy 已提交
4518
    @signature_safe_contextmanager
W
Wu Yi 已提交
4519
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4520 4521 4522 4523 4524 4525 4526
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4527
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4528 4529 4530

        Examples:

4531
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4532
            >>> p, g = backward(...)
W
Wu Yi 已提交
4533
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4534 4535
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4536
        tmp_role = self._current_role
4537
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4538

Y
yuyang18 已提交
4539 4540
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4541
        self.__op_role_var = [
4542 4543 4544
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4545 4546 4547 4548 4549
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4550

S
rename  
sneaxiy 已提交
4551
    @signature_safe_contextmanager
X
Xin Pan 已提交
4552
    def _lr_schedule_guard(self, is_with_opt=False):
4553 4554 4555 4556 4557 4558 4559
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4560 4561 4562 4563
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4564 4565 4566

        Examples:

4567
            >>> import paddle.fluid as fluid
4568 4569 4570 4571
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4572 4573

        tmp_role = self._current_role
4574
        tmp_var = self.__op_role_var
4575

4576 4577
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4578 4579
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4580
        # TODO(typhoonzero): how to set target learning rate var
4581
        self.__op_role_var = []
4582 4583 4584 4585 4586
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4587

4588
    def __str__(self):
Y
yuyang18 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4618 4619
            import paddle
            import paddle.static as static
4620

4621 4622 4623
            paddle.enable_static()

            cur_program = static.Program()
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4635
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4636 4637 4638 4639
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4640
            program_str += '\n'
4641
        return program_str
Y
Yang Yang(Tony) 已提交
4642

F
fengjiayi 已提交
4643 4644 4645
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4646

J
Jiabin Yang 已提交
4647 4648 4649
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4650

J
Jiabin Yang 已提交
4651
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4652

H
haowang101779990 已提交
4653
        Returns:
J
Jiabin Yang 已提交
4654
            str: The debug string describe current Program.
Y
yuyang18 已提交
4655 4656

        Raises:
J
Jiabin Yang 已提交
4657
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4658

4659 4660 4661
        Examples:
            .. code-block:: python

4662 4663 4664 4665
                import paddle
                import paddle.static as static

                paddle.enable_static()
4666

4667 4668 4669
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4670
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4671
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4672
                print("program string without detail: {}".format(prog_string))
4673
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4674
        """
4675 4676 4677 4678 4679 4680 4681 4682 4683
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4684 4685 4686 4687 4688 4689
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4690 4691
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4692 4693
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4694

W
Wu Yi 已提交
4695
    def _get_desc(self):
Y
yuyang18 已提交
4696 4697 4698 4699 4700 4701 4702
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4703 4704
        return self.desc

X
version  
Xin Pan 已提交
4705 4706 4707
    def _version(self):
        return self.desc._version()

4708
    def clone(self, for_test=False):
Y
yuyang18 已提交
4709
        """
4710 4711 4712 4713
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4714

4715
        Create a new Program with forward content of original one when ``for_test=True``.
4716
        Create a new Program as same as the original one when ``for_test=False``.
4717

4718
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4719 4720 4721
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4722

4723 4724
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4725 4726
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4727
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4728

J
Jiabin Yang 已提交
4729
        For Example:
4730
          ::
L
Luo Tao 已提交
4731

4732 4733 4734 4735 4736 4737
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4738
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4739
            loss = paddle.mean(pred)
4740
            # Here we use clone before Momentum
4741 4742
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4743
            optimizer.minimize(loss)
4744

J
Jiabin Yang 已提交
4745
        Args:
4746

4747 4748
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4749

J
Jiabin Yang 已提交
4750
        Returns:
4751
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4752

Y
yuyang18 已提交
4753 4754 4755

        Examples:

4756 4757 4758 4759 4760 4761 4762
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4779
            1. To clone a test program, the sample code is:
4780 4781 4782
                .. code-block:: python

                    import six
4783 4784 4785 4786 4787 4788
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4801 4802
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4803 4804 4805

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4806 4807 4808
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4809
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4810 4811
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4812
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4813 4814
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4815
                            test_program = train_program.clone(for_test=True)
4816
                    print_prog(test_program)
J
Jiabin Yang 已提交
4817 4818 4819 4820

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4821
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4822 4823 4824 4825
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4826 4827 4828
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4829 4830 4831
                            sgd.minimize(avg_loss)


4832
            2. The clone method can be avoid if you create program for training and program for testing individually.
4833 4834 4835
                .. code-block:: python

                    import six
4836 4837 4838 4839 4840 4841
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4853

4854
                    def network():
4855
                        img = static.data(name='image', shape=[None, 784])
4856
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4857 4858
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4859
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4860 4861
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4862 4863
                        return avg_loss

4864 4865 4866 4867 4868
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4869
                            avg_loss = network()
4870
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4871
                            sgd.minimize(avg_loss)
4872
                    # the test startup program is not used.
4873 4874
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4875 4876
                            avg_loss = network()
                    print_prog(test_program_2)
4877

4878
            The two code snippets above will generate and print same programs.
4879
        """
4880

T
tangwei12 已提交
4881
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4882 4883 4884
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4885
        pruned_origin_block_id_map = None
4886
        if for_test:
4887 4888 4889 4890 4891 4892 4893 4894 4895
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4896
        else:
4897
            p = Program()
G
gongweibao 已提交
4898 4899
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4900
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4901 4902 4903
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4904 4905

            p._current_role = self._current_role
4906
            p.__op_role_var = self.__op_role_var
4907
            p._appending_grad_times = self._appending_grad_times
4908 4909
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4910

T
tangwei12 已提交
4911
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4912
            # its desc.
W
Wu Yi 已提交
4913
            p._sync_with_cpp()
4914

W
Wu Yi 已提交
4915
        p._copy_param_info_from(self)
4916
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4917
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4918
        return p
4919

4920
    def _prune(self, targets):
Y
yuyang18 已提交
4921 4922 4923 4924 4925 4926 4927 4928
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4929
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4930 4931 4932 4933
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4934
        """
4935
        return self._prune_with_input([], targets)
4936 4937

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4938
        """
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4949
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4950 4951 4952 4953 4954 4955
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4956
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4957 4958 4959
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4960 4961
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4962 4963
        if not isinstance(targets, list):
            targets = [targets]
4964 4965 4966

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4967 4968 4969
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4970

4971 4972 4973 4974
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4975 4976 4977
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4978
                else:
4979 4980 4981
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4982 4983 4984 4985 4986 4987 4988 4989

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4990 4991 4992 4993 4994 4995 4996 4997 4998
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4999
                        # Skip optimize op except for optimize op in targets,
5000 5001 5002 5003 5004 5005
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
5006 5007 5008 5009 5010 5011 5012 5013
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5014

5015
        res = Program()
5016 5017 5018
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5019 5020 5021
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5022
        res._sync_with_cpp()
5023 5024 5025 5026 5027

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5028 5029
        return res

X
Xin Pan 已提交
5030
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5031
        """
F
fengjiayi 已提交
5032 5033 5034 5035 5036
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5037
        3. change the :code:`is_test`
Y
yuyang18 已提交
5038 5039 5040
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5041
        Args:
X
Xin Pan 已提交
5042 5043
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5044

Y
yuyang18 已提交
5045 5046 5047 5048 5049 5050
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5051
        res = Program()
5052
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5053 5054 5055 5056

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5057
        if prune_read_op:
5058 5059 5060 5061 5062 5063 5064 5065 5066
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5067
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5068 5069

        # change all `is_test` attributes to True
M
minqiyang 已提交
5070
        for i in six.moves.range(res.desc.num_blocks()):
5071
            block = res.desc.block(i)
M
minqiyang 已提交
5072
            for j in six.moves.range(block.op_size()):
5073 5074
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5075
                    op._set_attr('is_test', True)
5076 5077 5078
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5079 5080 5081
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5082
        res._sync_with_cpp()
5083 5084
        return res

5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
    def _remove_training_info(self):
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
        return res

5112 5113
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5114
        """
5115 5116 5117
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5118

5119 5120
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5121

J
Jiabin Yang 已提交
5122
        Args:
Y
yuyang18 已提交
5123

J
Jiabin Yang 已提交
5124
            binary_str_type (str): the binary prootbuf string.
5125

J
Jiabin Yang 已提交
5126 5127
        Returns:
            Program: A deserialized Program.
5128 5129 5130 5131

        Examples:
            .. code-block:: python

5132 5133 5134 5135
                import paddle
                import paddle.static as static

                paddle.enable_static()
5136

5137 5138 5139 5140
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5141

5142
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5143

5144
                    z = paddle.matmul(x=x, y=y)
5145

5146 5147
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5148

5149
                    print(static.default_main_program())
5150
                    print(prog_restored)
Y
yuyang18 已提交
5151
        """
5152 5153
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5154
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5155
        p._sync_with_cpp()
5156
        return p
Y
Yu Yang 已提交
5157

5158
    @staticmethod
5159
    def _construct_from_desc(desc):
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5175 5176
    @property
    def random_seed(self):
Y
yuyang18 已提交
5177
        """
J
Jiabin Yang 已提交
5178
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5179 5180
        the random seed from random device.

5181 5182
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5183 5184 5185

        Returns:
            int64: Random seed in current Program
5186

5187 5188 5189 5190

        Examples:
            .. code-block:: python

5191 5192 5193
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5194

5195 5196 5197
                paddle.enable_static()

                prog = static.default_main_program()
5198
                random_seed = prog.random_seed
5199
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5200 5201 5202
                print(random_seed)
                ## 0
                ## the default random seed is 0
5203

5204
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5205
                prog.random_seed = 1
5206
                z_var = F.dropout(x_var, 0.7)
5207

5208
                print(prog.random_seed)
5209 5210
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5211
        """
D
dzhwinter 已提交
5212 5213
        return self._seed

Q
qiaolongfei 已提交
5214 5215
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5216
        """
5217 5218
        The number of :ref:`api_guide_Block_en`  in this Program.

5219 5220
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5221 5222 5223

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5224

5225 5226 5227 5228

        Examples:
            .. code-block:: python

5229 5230 5231 5232
                import paddle
                import paddle.static as static

                paddle.enable_static()
5233

5234
                prog = static.default_main_program()
5235 5236
                num_blocks = prog.num_blocks
                print(num_blocks)
5237

5238 5239
                # print result:
                # 1
Y
yuyang18 已提交
5240
        """
Q
qiaolongfei 已提交
5241 5242
        return self.desc.num_blocks()

D
dzhwinter 已提交
5243 5244 5245
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5246 5247 5248
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5249 5250
        self._seed = seed

Y
Yu Yang 已提交
5251
    def __repr__(self):
5252
        return self.__str__()
5253

Y
Yu Yang 已提交
5254
    def global_block(self):
Y
yuyang18 已提交
5255
        """
5256 5257
        .. note::
            This API has no effect in Dygraph mode.
5258 5259 5260

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5261 5262
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5263

5264 5265 5266 5267

        Examples:
            .. code-block:: python

5268 5269 5270 5271
                import paddle
                import paddle.static as static

                paddle.enable_static()
5272

5273
                prog = static.default_main_program()
5274 5275
                gb_block = prog.global_block()
                print(gb_block)
5276

Y
yuyang18 已提交
5277
        """
Y
Yu Yang 已提交
5278 5279
        return self.blocks[0]

Q
Qiao Longfei 已提交
5280
    def block(self, index):
Y
yuyang18 已提交
5281
        """
5282 5283
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5284

5285 5286
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5287 5288
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5289

J
Jiabin Yang 已提交
5290 5291
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5292 5293 5294 5295

        Examples:
            .. code-block:: python

5296 5297 5298 5299
                import paddle
                import paddle.static as static

                paddle.enable_static()
5300

5301
                prog = static.default_main_program()
5302 5303
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5304
        """
Q
Qiao Longfei 已提交
5305 5306
        return self.blocks[index]

Y
Yu Yang 已提交
5307
    def current_block(self):
Y
yuyang18 已提交
5308
        """
5309 5310
        .. note::
            This API has no effect in Dygraph mode.
5311

J
Jiabin Yang 已提交
5312 5313
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5314

J
Jiabin Yang 已提交
5315 5316
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5317

5318 5319 5320
        Examples:
            .. code-block:: python

5321 5322 5323 5324
                import paddle
                import paddle.static as static

                paddle.enable_static()
5325

5326
                prog = static.default_main_program()
5327 5328
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5329
        """
Y
Yu Yang 已提交
5330 5331
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5332
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5333 5334 5335 5336 5337
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5338

Y
yuyang18 已提交
5339 5340 5341 5342 5343
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5344
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5345 5346 5347
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5348 5349 5350 5351
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5352
    def _rollback(self):
Y
yuyang18 已提交
5353 5354 5355 5356 5357
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5358 5359
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5360
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5371 5372 5373
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5374
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5375

W
Wu Yi 已提交
5376
    def _copy_param_info_from(self, other):
5377
        """
5378
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5379

Y
yuyang18 已提交
5380 5381 5382
        Notes: This is a very low level API. Users should not invoke it
        directly.

5383 5384 5385 5386 5387 5388 5389
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5390 5391 5392
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5393

W
Wu Yi 已提交
5394
        self.global_block()._copy_param_info_from(other.global_block())
5395

5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5407 5408 5409
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5410 5411
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5412
        self._parameters_on_pservers = other._parameters_on_pservers
5413
        self._endpoints = other._endpoints
5414
        self._ps_endpoint = other._ps_endpoint
5415 5416
        self._distributed_lookup_table = other._distributed_lookup_table

5417
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5418 5419
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5420

Y
yuyang18 已提交
5421 5422 5423
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5424 5425
        Args:
            other(Program): Other program
5426 5427 5428 5429
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5430 5431 5432 5433 5434

        Returns:
            None
        """
        if not isinstance(other, Program):
5435 5436 5437
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5438

5439 5440 5441 5442 5443
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5444 5445 5446

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5447 5448
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5449
            for var in list(block.vars.values()):
5450 5451 5452 5453 5454 5455 5456
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5457

5458
    def list_vars(self):
Y
yuyang18 已提交
5459
        """
5460
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5461

J
Jiabin Yang 已提交
5462
        Returns:
5463
            iterable Tensors: The Generator will yield every Tensor in this program.
5464 5465 5466 5467

        Examples:
            .. code-block:: python

5468 5469
                import paddle
                import paddle.static as static
5470

5471 5472 5473 5474 5475
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5476 5477
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5478

5479 5480
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5481
        """
5482
        for each_block in self.blocks:
5483
            for each_var in list(each_block.vars.values()):
5484 5485
                yield each_var

5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5496 5497 5498 5499
                import paddle
                import paddle.static as static

                paddle.enable_static()
5500

5501 5502
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5503
                hidden = static.nn.fc(x=data, size=10)
5504 5505
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5506 5507 5508 5509 5510 5511 5512

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5513 5514
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5692

5693
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5694
class Parameter(Variable):
5695
    """
5696
    Parameter is derived from Variable. A parameter is a persistable
5697
    Variable, and will be updated by optimizers after each iteration.
5698
    The training of a neural network is essentially the updating of
5699 5700
    its parameters.

5701
    Relative to a general Variable, a Parameter has several its own
5702 5703
    member variables:

5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5714 5715
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5716 5717
    """

5718 5719 5720 5721 5722 5723
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5724 5725 5726 5727 5728
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5729
        if len(shape) == 0:
5730 5731
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5732 5733 5734

        for each in shape:
            if each < 0:
5735 5736 5737
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5738 5739

        Variable.__init__(
5740 5741 5742 5743 5744 5745 5746
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5747 5748 5749 5750
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5751 5752
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5753
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5754

5755 5756
        self.need_clip = kwargs.get('need_clip', True)

5757 5758
        self.is_distributed = False

5759 5760
        self.is_parameter = True

F
fengjiayi 已提交
5761
    def __str__(self):
5762
        return self._to_readable_code()
F
fengjiayi 已提交
5763

F
update  
fengjiayi 已提交
5764 5765 5766
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5767

F
update  
fengjiayi 已提交
5768 5769 5770 5771 5772 5773 5774 5775
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5776 5777 5778 5779 5780 5781 5782 5783 5784
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5785 5786 5787 5788 5789 5790
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5791
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5792
            for attr_name in additional_attr:
5793 5794
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5795 5796
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5797 5798 5799 5800
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5801

5802 5803
class ParamBase(core.VarBase):
    """
5804 5805 5806
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5807 5808 5809
    The training of a neural network is essentially the updating of
    its ParamBase.

5810
    Relative to a general Tensor, a ParamBase has several its own
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5823 5824
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5855 5856
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5857 5858 5859 5860 5861 5862 5863

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5864 5865
        self.need_clip = kwargs.get('need_clip', True)

5866
        self.is_distributed = False
5867
        # self.block = default_main_program().global_block()
5868

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5882
    def __str__(self):
5883
        """
5884
        Convert a ParamBase object to a readable string.
5885

5886
        Returns(str): A readable string.
5887 5888 5889 5890

        Examples:
            .. code-block:: python

5891
                import paddle
5892 5893 5894 5895 5896 5897 5898
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5899
        """
5900 5901
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5902

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5914

5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5933 5934 5935 5936 5937 5938 5939
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

5940 5941 5942
    __repr__ = __str__


Y
Yu Yang 已提交
5943
# program is a global instance.
Y
Yu Yang 已提交
5944 5945
_main_program_ = Program()
_startup_program_ = Program()
5946

5947

5948
def default_startup_program():
Y
Yu Yang 已提交
5949
    """
Y
yuyang18 已提交
5950 5951
    Get default/global startup program.

5952 5953
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5954

5955 5956
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5957

5958 5959
    Returns:
        Program: current default startup program.
5960

5961
    Returns type: 
5962 5963 5964 5965

    Examples:
        .. code-block:: python

5966
            import paddle
5967

5968
            paddle.enable_static()
5969 5970 5971 5972
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5973
    """
Y
Yu Yang 已提交
5974
    return _startup_program_
5975

5976

5977
def default_main_program():
Y
Yu Yang 已提交
5978
    """
5979
    This API can be used to get ``default main program`` which store the 
5980
    descriptions of Ops and tensors.
T
tangwei12 已提交
5981

5982
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5983
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5984

5985 5986
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5987
    :code:`default_main_program` when the program is not specified.
5988

5989
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5990

Y
Yu Yang 已提交
5991
    Returns:
5992
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5993 5994 5995 5996

    Examples:
        ..  code-block:: python

5997
            import paddle
5998

5999
            paddle.enable_static()
6000
            # Sample Network:
6001 6002 6003
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6004

6005 6006 6007
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6008
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6009
    """
Y
Yu Yang 已提交
6010
    return _main_program_
Y
Yu Yang 已提交
6011 6012 6013 6014 6015


def switch_main_program(program):
    """
    Switch the main program to a new program.
6016

Y
Yu Yang 已提交
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6031
    Switch the startup program to a new program
Y
Yu Yang 已提交
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6044
@signature_safe_contextmanager
Y
Yu Yang 已提交
6045 6046
def program_guard(main_program, startup_program=None):
    """
6047 6048
    :api_attr: Static Graph

6049 6050 6051
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6052

G
guofei 已提交
6053
    Args:
6054 6055
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6056 6057 6058 6059
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6060
    Examples:
6061
       .. code-block:: python
T
tangwei12 已提交
6062

6063
          import paddle
Y
yuyang18 已提交
6064

6065 6066 6067 6068 6069
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6070
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6071 6072 6073

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6074

Y
Yu Yang 已提交
6075
    Examples:
6076
       .. code-block:: python
Y
yuyang18 已提交
6077

6078
          import paddle
6079

6080 6081 6082 6083 6084
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6085

Y
Yu Yang 已提交
6086
    """
6087
    from .data_feeder import check_type
6088 6089
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6090 6091
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6092
        check_type(startup_program, 'startup_program', Program,
6093
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
6094
        startup_program = switch_startup_program(startup_program)
6095 6096 6097 6098 6099 6100
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6101 6102


W
Wu Yi 已提交
6103
def _get_var(name, program=None):
X
xuwei06 已提交
6104
    """
Y
yuyang18 已提交
6105
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6106

X
xuwei06 已提交
6107 6108 6109
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6110
        If None, default_global_program() will be used.
X
xuwei06 已提交
6111 6112 6113 6114 6115 6116 6117

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6118
    assert isinstance(program, Program)
X
xuwei06 已提交
6119 6120

    return program.global_block().var(name)
6121 6122


S
rename  
sneaxiy 已提交
6123
@signature_safe_contextmanager
L
lujun 已提交
6124 6125
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6126
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6127
    _dygraph_tracer_ = tracer
6128
    core._switch_tracer(tracer)
M
minqiyang 已提交
6129

6130 6131 6132
    try:
        yield
    finally:
6133 6134
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6135 6136


S
rename  
sneaxiy 已提交
6137
@signature_safe_contextmanager
L
lujun 已提交
6138
def _dygraph_place_guard(place):
6139 6140 6141
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6142

6143 6144
    _set_dygraph_tracer_expected_place(place)

6145 6146 6147
    try:
        yield
    finally:
6148
        _global_expected_place_ = tmp_place
6149
        _set_dygraph_tracer_expected_place(tmp_place)
6150 6151


6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6168 6169
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6170 6171 6172 6173 6174 6175 6176 6177 6178
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6179
            import paddle
6180

Z
Zhang Ting 已提交
6181 6182 6183
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6184
            if support_gpu:
Z
Zhang Ting 已提交
6185
                place = paddle.CUDAPlace(0)
6186 6187

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6188 6189 6190
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6191

Z
Zhang Ting 已提交
6192
            with paddle.static.device_guard("cpu"):
6193
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6194 6195
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6196
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6197
                out = paddle.reshape(data1, shape=shape)
6198

Z
Zhang Ting 已提交
6199 6200
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6201 6202 6203
            result = exe.run(fetch_list=[out])
    """

6204 6205 6206 6207 6208
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6209
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6210
        raise ValueError(
6211
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6212
            "when there is no need to specify device. But received %s" % device)
6213 6214
    if index:
        device = ":".join([device, index])
6215
    pre_device = switch_device(device)
6216 6217 6218 6219
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6238 6239
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6268 6269
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6270 6271 6272 6273 6274 6275 6276
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6277 6278
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6279 6280 6281 6282 6283 6284 6285 6286
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6287 6288 6289 6290 6291 6292 6293


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6294
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6295 6296 6297 6298 6299 6300 6301 6302 6303
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6304

6305 6306 6307
    if (place == "device"):
        return core.Place()

6308
    # GPU
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6324 6325

    # XPU
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6349
    raise ValueError(
6350 6351
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret