framework.py 103.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
116
@signature_safe_contextmanager
117 118 119 120 121 122 123 124 125 126 127 128
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
129

130 131 132 133
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
134 135
          with name_scope("attention"):
             ...
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
155 156 157
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
158 159 160 161


def grad_var_name(var_name):
    """
162 163
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
164 165 166
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
167

168
def convert_np_dtype_to_dtype_(np_dtype):
169 170
    """
    Convert the data type in numpy to the data type in Paddle
171

172
    Args:
173
        np_dtype(np.dtype): the data type in numpy.
174

175 176
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
177 178

    """
179 180
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
181
        return core.VarDesc.VarType.FP32
182
    elif dtype == np.float64:
183
        return core.VarDesc.VarType.FP64
184
    elif dtype == np.float16:
185
        return core.VarDesc.VarType.FP16
186
    elif dtype == np.int32:
187
        return core.VarDesc.VarType.INT32
188
    elif dtype == np.int16:
189
        return core.VarDesc.VarType.INT16
190
    elif dtype == np.int64:
191
        return core.VarDesc.VarType.INT64
192
    elif dtype == np.bool:
193
        return core.VarDesc.VarType.BOOL
194 195
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
196 197
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
198 199
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
200
    else:
M
minqiyang 已提交
201
        raise ValueError("Not supported numpy dtype %s" % dtype)
202 203 204


def dtype_is_floating(dtype):
205 206 207
    """
    Check the data type is floating or not.
    Args:
208
        dtype(np.dtype|core.VarDesc.VarType): data type.
209 210 211 212 213
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
214
    if not isinstance(dtype, core.VarDesc.VarType):
215 216
        dtype = convert_np_dtype_to_dtype_(dtype)

217 218 219 220
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
221 222


Y
Yang Yang(Tony) 已提交
223
def _debug_string_(proto, throw_on_error=True):
224 225 226 227 228 229 230 231 232 233 234
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
235
    error_fields = list()
Y
Yang Yang(Tony) 已提交
236
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
237 238
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
239 240 241
    return proto.__str__()


X
Xin Pan 已提交
242
class Variable(object):
243
    """
244 245 246
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
247
    two variables in different blocks could have the same name.
248

249 250
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
251

252
    Most of a Variable's member variables can be setted to be None. It mean
253
    it is not available or will be specified later.
254 255

    Args:
256
        block(Block): The block that the variable belongs to.
257 258
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
259 260
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
261
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
262
            Some kinds of variable do not contain shape, just set it to None.
263 264 265
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
266
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
267
            series data.
268
            Default: None
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
291 292
    """

Y
Yu Yang 已提交
293 294
    def __init__(self,
                 block,
Y
Yu Yang 已提交
295
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
296 297 298 299
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
300
                 capacity=None,
Q
QI JUN 已提交
301
                 persistable=None,
F
fengjiayi 已提交
302
                 error_clip=None,
Y
Yu Yang 已提交
303
                 stop_gradient=False,
F
fengjiayi 已提交
304
                 is_data=False,
Y
Yu Yang 已提交
305
                 **kwargs):
Y
Yu Yang 已提交
306 307
        self.block = block
        if name is None:
Y
Yu Yang 已提交
308
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
309

Y
Yu Yang 已提交
310
        if dtype is not None:
311
            if not isinstance(dtype, core.VarDesc.VarType):
312
                dtype = convert_np_dtype_to_dtype_(dtype)
313

X
Xin Pan 已提交
314
        if _in_imperative_mode():
M
minqiyang 已提交
315
            # record vars in tracer rather than blocks
M
minqiyang 已提交
316 317
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
318 319 320 321 322
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
                    _current_expected_place(), True
                    if persistable else False, stop_gradient)
M
minqiyang 已提交
323
            if persistable:
324
                _imperative_tracer().trace_var(name, self)
M
minqiyang 已提交
325
        else:
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
398
            self.block.vars[name] = self
399 400 401
            self.op = None
            self.stop_gradient = stop_gradient
            self.is_data = is_data
Y
Yu Yang 已提交
402

403
    def _numpy(self):
M
minqiyang 已提交
404
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
405
        return np.array(new_ivar.value().get_tensor())
406 407

    def _backward(self):
X
Xin Pan 已提交
408
        self._ivar._run_backward()
409 410

    def _gradient(self):
M
minqiyang 已提交
411
        return np.array(self._ivar._grad_value())
412

X
Xin Pan 已提交
413 414
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
415

416
    def __str__(self):
Y
Yang Yang(Tony) 已提交
417 418
        return self.to_string(True)

F
update  
fengjiayi 已提交
419
    def to_string(self, throw_on_error, with_details=False):
420 421 422 423
        """
        Get debug string.

        Args:
424 425
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
426
            with_details(bool): more details about variables and parameters
427 428
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
429

430 431
        Returns:
            str: The debug string.
432
        """
F
update  
fengjiayi 已提交
433 434
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
435
        protostr = self.desc.serialize_to_string()
436
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
437 438 439 440
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
441 442
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
443
        return res_str
444 445 446

    __repr__ = __str__

W
Wu Yi 已提交
447
    def _set_desc(self, input):
448 449 450 451 452 453 454 455 456
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
457 458
        self.desc = input

459 460
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
461 462 463 464
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
465 466 467

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
468 469
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
470 471
        else:
            self.stop_gradient = s
472

473 474
    @property
    def persistable(self):
475 476 477 478
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            return self.desc.persistable()
479

Y
Yu Yang 已提交
480 481
    @persistable.setter
    def persistable(self, p):
482 483 484 485
        if _in_imperative_mode():
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
486

Y
Yu Yang 已提交
487 488
    @property
    def name(self):
489 490 491 492
        if _in_imperative_mode():
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
493

T
typhoonzero 已提交
494 495
    @name.setter
    def name(self, new_name):
496 497 498 499
        if _in_imperative_mode():
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
500

Y
Yu Yang 已提交
501 502 503
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
504 505 506 507
        if _in_imperative_mode():
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
508 509

    @property
F
fengjiayi 已提交
510
    def dtype(self):
511 512 513 514
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
515 516 517

    @property
    def lod_level(self):
518
        # TODO(minqiyang): Support lod_level in imperative mode
519
        return self.desc.lod_level()
Y
Yu Yang 已提交
520

Y
Yu Yang 已提交
521 522
    @property
    def type(self):
523 524 525 526
        if _in_imperative_mode():
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
527

W
Wu Yi 已提交
528
    def _set_error_clip(self, error_clip):
529 530 531 532 533 534 535 536 537
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
538 539
        self.error_clip = error_clip

Y
Yu Yang 已提交
540

F
fengjiayi 已提交
541 542 543
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
544

545 546
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
547 548 549 550
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
551
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
552 553 554 555 556
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
557 558 559 560
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
561 562 563 564 565 566 567 568 569
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
570
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
571 572 573 574 575 576
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
577 578 579 580 581 582 583 584
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
585 586
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
587 588
        return self.op_proto_map[type]

589 590 591 592
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
593
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
594 595
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
596 597
        }

F
fengjiayi 已提交
598

X
Xin Pan 已提交
599
class Operator(object):
600
    """
601 602 603 604 605 606 607
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
608
        type(str): The type of operator. Default None.
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
629
        Block.append_op or Block._prepend_op instead.
630 631 632 633 634 635 636 637 638 639

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
640
    """
641 642 643
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
644 645
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
646
    }
647

Y
Yu Yang 已提交
648 649
    def __init__(self,
                 block,
Y
Yu Yang 已提交
650
                 desc,
Y
Yu Yang 已提交
651 652 653
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
654
                 attrs=None):
X
Xin Pan 已提交
655
        if _in_imperative_mode():
656 657 658 659
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            self.iop = core.OpBase(type)
M
minqiyang 已提交
660

661 662
            # TODO(minqiyang): remove these lines after we take apart all
            # backward grads and forward variables
X
Xin Pan 已提交
663
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
664
            if inputs is not None:
X
Xin Pan 已提交
665 666 667 668 669
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
670

X
Xin Pan 已提交
671
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
672
            if outputs is not None:
X
Xin Pan 已提交
673 674 675 676 677
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
678

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
            self.attrs = attrs if attrs else {}
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
                )] = self.block.program.op_role

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
                   op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program.op_role_var

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)

                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
                        for arg in in_args:
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
                            else:
                                in_arg_names.append(cpt.to_text(arg.name))
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
                        if not _in_imperative_mode():
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
794
    def _has_kernel(self, op_type):
795 796
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
797
    def to_string(self, throw_on_error):
798
        """
799 800
        Get debug string.

801
        Args:
802 803
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
804

805 806
        Returns:
            str: The debug string.
807 808

        """
809
        protostr = self.desc.serialize_to_string()
810
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
811 812 813 814
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
815 816 817

    __repr__ = __str__

F
fengjiayi 已提交
818 819 820 821 822
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
823
        """
824
        Get the input arguments according to the input parameter name.
825

826 827
        Args:
            name(str): The input parameter name.
828

829 830 831
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
832
        """
F
fengjiayi 已提交
833 834
        return self.desc.input(name)

W
Wu Yi 已提交
835
    def _rename_input(self, old_name, new_name):
836 837 838 839 840 841 842 843 844 845
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
846
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
847

W
Wu Yi 已提交
848
    def _rename_output(self, old_name, new_name):
849 850 851 852 853 854 855 856 857 858
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
859
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
860

F
fengjiayi 已提交
861 862 863 864
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
865 866 867 868 869 870 871 872
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
873
    def output(self, name):
874
        """
875
        Get output arguments by the output parameter name.
876

877 878
        Args:
            name(str): The output parameter name.
879

880 881 882
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
883
        """
F
fengjiayi 已提交
884 885 886 887 888 889
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

890 891 892 893 894 895 896 897
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
898
    def has_attr(self, name):
899
        """
900 901
        Whether this Operator has the attribute with name or not.

902
        Args:
903
            name(str): the attribute name.
904

905 906
        Returns:
            bool: True if has this attribute.
907 908

        """
F
fengjiayi 已提交
909 910 911
        return self.desc.has_attr(name)

    def attr_type(self, name):
912
        """
913
        Get the type of attribute by attribute's name.
914

915 916
        Args:
            name(str): the attribute name.
917

918 919
        Returns:
            core.AttrType: the attribute type.
920
        """
F
fengjiayi 已提交
921 922
        return self.desc.attr_type(name)

W
Wu Yi 已提交
923
    def _set_attr(self, name, val):
924 925 926 927 928 929 930 931 932 933
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
947 948
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
949 950
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
951
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
952 953 954 955
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
956
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
957

F
fengjiayi 已提交
958 959 960 961 962
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
963
        """
964 965
        Get the attribute by name.

966
        Args:
967
            name(str): the attribute name.
968

969 970
        Returns:
            bool|int|str|float|list: The attribute value. The return value
971 972
            can be any valid attribute type.
        """
F
fengjiayi 已提交
973
        return self.desc.attr(name)
Y
Yu Yang 已提交
974

W
Wu Yi 已提交
975
    def _block_attr_id(self, name):
976
        """
G
gongweibao 已提交
977
        Get the block attribute's id by name.
978

979 980
        Args:
            name(str): the attribute name.
981

982 983
        Returns:
            int: the block index.
984
        """
W
Wu Yi 已提交
985
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
986

W
Wu Yi 已提交
987
    def _block_attr(self, name):
G
gongweibao 已提交
988 989 990 991 992 993 994 995 996 997
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
998
        id = self._block_attr_id(name)
G
gongweibao 已提交
999 1000 1001
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1002
    def _blocks_attr(self, name):
G
gongweibao 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1013
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1014 1015 1016 1017 1018
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1019
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1030
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1031

J
JiayiFeng 已提交
1032
    def all_attrs(self):
F
fengjiayi 已提交
1033
        """
1034 1035 1036
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1037
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1038 1039 1040 1041
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1042 1043
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1044
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1045 1046 1047
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1048
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1049 1050 1051 1052
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1053 1054
        return attr_map

Y
Yu Yang 已提交
1055

Y
Yu Yang 已提交
1056
class Block(object):
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1071
        use `Program._create_block()` to create a block.
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1086
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1087
        self.desc = program.desc.block(idx)
1088
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1089
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1090
        self.program = program
1091
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1092

1093
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1094 1095
        return self.to_string(True)

F
fengjiayi 已提交
1096 1097
    def to_string(self, throw_on_error, with_details=False):
        """
1098 1099
        Get debug string.

F
fengjiayi 已提交
1100 1101
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1102
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1103
            with_details(bool): more details about variables and parameters
1104 1105
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1106

1107 1108
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1109 1110 1111 1112
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1113
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1114 1115
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1116
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1117
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1118
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1119
            for op in self.ops:
F
fengjiayi 已提交
1120 1121
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1122 1123 1124
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1125 1126
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1127 1128
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1129 1130 1131

    __repr__ = __str__

Y
Yu Yang 已提交
1132 1133
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1134
        return self.desc.parent
Y
Yu Yang 已提交
1135

Y
Yu Yang 已提交
1136 1137 1138 1139
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1140
    def _set_forward_block_idx(self, idx):
1141 1142 1143 1144 1145 1146 1147 1148 1149
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1150
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1151

Y
Yu Yang 已提交
1152 1153
    @property
    def idx(self):
Y
Yu Yang 已提交
1154
        return self.desc.id
Y
Yu Yang 已提交
1155

Q
Qiao Longfei 已提交
1156
    def var(self, name):
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1170
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1171 1172 1173
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1174 1175
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1176
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1177
        return v
Q
Qiao Longfei 已提交
1178

X
Xin Pan 已提交
1179
    def _find_var_recursive(self, name):
1180 1181 1182 1183 1184 1185 1186
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1187
            Variable: the Variable with the giving name. Or None if not found.
1188
        """
Y
Yu Yang 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1213
        return None
Y
Yu Yang 已提交
1214

X
Xin Pan 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1234

Q
Qiao Longfei 已提交
1235
    def all_parameters(self):
1236
        return list(self.iter_parameters())
1237

1238
    def iter_parameters(self):
M
minqiyang 已提交
1239
        return (item[1] for item in six.iteritems(self.vars)
1240
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1241

Y
Yu Yang 已提交
1242
    def create_var(self, *args, **kwargs):
1243
        var = Variable(block=self, *args, **kwargs)
1244 1245
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1246
        return var
Y
Yu Yang 已提交
1247

Q
Qiao Longfei 已提交
1248 1249 1250
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1251
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1252 1253
        """
        Rename variable in vars and ops' inputs and outputs
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1266
        """
M
minqiyang 已提交
1267 1268
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1269

T
typhoonzero 已提交
1270
        if not self.has_var(name):
1271
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1272 1273
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1274
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1275 1276 1277 1278 1279 1280 1281
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1282
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1283 1284 1285 1286
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1287
        orig_var_type = v.type
M
minqiyang 已提交
1288
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1289
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1290
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1291
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1292 1293 1294 1295
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1296
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1297 1298 1299 1300 1301 1302 1303
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1304
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1305 1306
            var = Variable(
                self,
T
typhoonzero 已提交
1307
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1308 1309 1310 1311
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1312
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1313 1314 1315
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1316
        self._sync_with_cpp()
1317
        return var
T
typhoonzero 已提交
1318

W
Wu Yi 已提交
1319 1320
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1321
        self.desc._remove_var(cpt.to_bytes(name))
1322 1323
        del self.vars[name]

Y
Yu Yang 已提交
1324 1325
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1326
        param = Parameter(global_block, *args, **kwargs)
1327
        if 'initializer' in kwargs:
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1348
        return param
Y
Yu Yang 已提交
1349

Y
Yu Yang 已提交
1350
    def append_op(self, *args, **kwargs):
1351 1352 1353 1354 1355 1356
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
M
minqiyang 已提交
1357
        if _in_imperative_mode():
1358 1359 1360 1361 1362 1363 1364 1365
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1366 1367 1368 1369
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1370 1371 1372
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1373 1374 1375 1376 1377 1378 1379 1380 1381
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1382
            self.ops.append(op)
M
minqiyang 已提交
1383

1384 1385
        return op

W
Wu Yi 已提交
1386
    def _insert_op(self, index, *args, **kwargs):
1387 1388 1389 1390 1391 1392 1393 1394 1395
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1396 1397
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1398 1399 1400 1401
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1402
    def _remove_op(self, index):
1403 1404 1405 1406 1407 1408 1409 1410 1411
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1412 1413
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1414 1415
        del self.ops[index]

W
Wu Yi 已提交
1416
    def _slice_ops(self, start, end):
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1427
        return self.ops[start:end]
Y
Yancey1989 已提交
1428

W
Wu Yi 已提交
1429
    def _prepend_op(self, *args, **kwargs):
M
minqiyang 已提交
1430
        if _in_imperative_mode():
1431 1432 1433 1434 1435 1436 1437
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1438 1439 1440
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
1441 1442 1443 1444 1445 1446 1447 1448
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1449
            self.ops.insert(0, op)
1450

Y
Yu Yang 已提交
1451 1452
        return op

W
Wu Yi 已提交
1453
    def _sync_with_cpp(self):
1454
        """
1455 1456
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1457
        """
Q
Qiao Longfei 已提交
1458 1459 1460 1461 1462
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1463
        # sync variables removed from c++ end
1464
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1465
            if not self.desc.find_var(cpt.to_bytes(var)):
1466 1467
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1468
        # sync operators from cpp
1469 1470 1471 1472
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1489 1490 1491 1492 1493

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1494
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1495 1496 1497 1498 1499 1500 1501

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1515 1516 1517 1518
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1519
    def _copy_param_info_from(self, other):
1520
        """
1521 1522
        Copy the information of parameters from the other block.

1523
        Args:
1524 1525 1526 1527 1528
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1529 1530 1531 1532 1533

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1534 1535
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1536
        for p in other.iter_parameters():
1537 1538 1539
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1540
                raise ValueError("_copy_param_info_from should be invoked with "
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1553
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1554
                error_clip=p.error_clip,
1555 1556 1557
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1558
    def _clone_variable(self, var):
1559 1560
        """
        Clone a variable into current block.
1561

1562 1563 1564 1565
        Args:
            var: the variable to be cloned.

        Returns:
1566
            Variable: the new  variable cloned from 'var' in current block.
1567 1568
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1569 1570 1571 1572 1573
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1574 1575
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1576
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1577 1578 1579 1580 1581 1582
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1583 1584
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1585 1586 1587 1588 1589 1590 1591
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1592 1593
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1594
        return ret_var
1595

Y
Yu Yang 已提交
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1692
    def remove_input_by_id(self, node_id):
1693 1694 1695 1696 1697 1698
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1699
        self.node.remove_input(node_id)
1700

1701
    def remove_input(self, node):
1702 1703 1704 1705
        """
        Remove a node from inputs.

        Args:
1706
            node(IrNode): the node being removed.
1707
        """
1708
        self.node.remove_input(node.node)
1709

1710
    def append_input(self, node):
1711 1712 1713 1714
        """
        Append a node in inputs.

        Args:
1715
            node(IrNode): the node being appended.
1716
        """
1717
        self.node.append_input(node.node)
1718 1719 1720 1721 1722 1723 1724 1725

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

1726
    def remove_output_by_id(self, node_id):
1727 1728 1729 1730 1731 1732
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1733
        self.node.remove_output(node_id)
1734

1735
    def remove_output(self, node):
1736 1737 1738 1739
        """
        Remove a node from outputs.

        Args:
1740
            node(IrNode): the node being removed.
1741
        """
1742
        self.node.remove_output(node.node)
1743

1744
    def append_output(self, node):
1745 1746 1747 1748
        """
        Append a node in outputs.

        Args:
1749
            node(IrNode): the node being appended.
1750
        """
1751
        self.node.append_output(node.node)
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


1984 1985
class IrGraph(object):
    """
1986
    Python IrGraph. Beneath it is a core.Graph, which is used for
1987
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
1988 1989
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1990 1991 1992 1993
    """

    def __init__(self, graph, for_test=False):
        """
1994 1995
        Construct an IrGraph using core.Graph.

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
2006 2007 2008
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2009 2010
        return self._for_test

W
WangZhen 已提交
2011
    def all_nodes(self):
2012 2013 2014
        """
        Return all nodes included in the graph as a set.
        """
2015
        return {IrNode(node) for node in self.graph.nodes()}
2016

2017
    def all_var_nodes(self):
2018 2019 2020
        """
        Return all variable nodes included in the graph as a set.
        """
2021
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2022

2023
    def all_persistable_nodes(self):
2024 2025 2026
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2027 2028 2029 2030 2031
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2032
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2033

2034
    def all_op_nodes(self):
2035 2036 2037
        """
        Return all operator nodes included in the graph as a set.
        """
2038
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2039

W
WangZhen 已提交
2040 2041
    def var_node(self, name):
        """
2042 2043
        Get a variable node by name from the graph.

W
WangZhen 已提交
2044 2045
        Args:
            name(str): the name of the variable node.
2046

W
WangZhen 已提交
2047 2048 2049
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
2050

W
WangZhen 已提交
2051
        Returns:
2052
            IrVarNode: the variable node with the giving name.
W
WangZhen 已提交
2053 2054 2055 2056 2057 2058
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
2059
        var_nodes = self.all_var_nodes()
W
WangZhen 已提交
2060 2061 2062 2063 2064 2065 2066
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

2067
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2079
            IrVarNode: the created persistable variable node.
2080
        """
2081 2082 2083 2084 2085
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2086
        return IrVarNode(self.graph.create_var_node(var_desc))
2087 2088

    def create_var_node(self, name, var_type, shape, var_dtype):
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2100
            IrVarNode: the created variable node.
2101 2102
        """

2103 2104 2105 2106
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2107
        return IrVarNode(self.graph.create_var_node(var_desc))
2108 2109

    def create_var_node_from_desc(self, var_desc):
2110 2111 2112 2113 2114 2115 2116 2117
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2118
            IrVarNode: the created variable node.
2119
        """
2120
        return IrVarNode(self.graph.create_var_node(var_desc))
2121 2122

    def create_op_node(self, op_type, attrs, inputs, outputs):
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2133
            IrOpNode: the created operator node.
2134
        """
2135 2136
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2137
        for attr, value in six.iteritems(attrs):
2138
            self._update_desc_attr(op_desc, attr, value)
2139
        for input_name, var_nodes in six.iteritems(inputs):
2140 2141 2142 2143
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2144
        for output_name, var_nodes in six.iteritems(outputs):
2145 2146 2147 2148
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2149
        return IrOpNode(self.graph.create_op_node(op_desc))
2150 2151

    def create_op_node_from_desc(self, op_desc):
2152 2153 2154 2155 2156 2157 2158
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2159
            IrOpNode: the created operator node.
2160
        """
2161
        return IrOpNode(self.graph.create_op_node(op_desc))
2162 2163

    def update_input_link(self, old_input_node, new_input_node, op_node):
2164 2165 2166 2167
        """
        Update the input's link of a operator node.

        Args:
2168 2169 2170
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2171
        """
2172 2173
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2174
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2175 2176 2177 2178
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2179
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2180 2181

    def link_to(self, node_in, node_out):
2182 2183 2184 2185
        """
        Connect two nodes.

        Args:
2186 2187
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2188
        """
2189
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2190
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2191 2192
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2193 2194

    def safe_remove_nodes(self, remove_nodes):
2195 2196 2197 2198 2199 2200 2201
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2202
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2203 2204 2205 2206
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2207 2208
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2209

W
WangZhen 已提交
2210
    def has_circle(self):
2211 2212 2213 2214 2215 2216
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2217 2218 2219
        return core.has_circle(self.graph)

    def graph_num(self):
2220 2221 2222 2223 2224 2225
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2226 2227 2228
        return core.graph_num(self.graph)

    def topology_sort(self):
2229 2230 2231 2232 2233 2234
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
2235
            set(IrNode): nodes in topology order.
2236
        """
2237 2238
        ordered_nodes = core.topology_sort(self.graph)
        return {IrNode(n) for n in ordered_nodes}
W
WangZhen 已提交
2239 2240

    def build_adjacency_list(self):
2241 2242 2243 2244
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2245
            dict{IrNode: set(IrNode)}: the adjacency list.
2246
        """
2247 2248 2249 2250 2251
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2252

2253 2254 2255 2256 2257 2258 2259 2260
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2261
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2262 2263 2264 2265 2266
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2267 2268 2269 2270 2271 2272 2273 2274 2275
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2276
        remove_ctr_vars = set()
2277
        if remove_ctr_var:
2278
            for node in self.all_var_nodes():
2279 2280 2281
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2282 2283
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2284 2285
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2286 2287 2288 2289 2290 2291
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2313
        convert_pass = core.get_pass('graph_to_program_pass')
2314 2315
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2336
class Program(object):
D
dzhwinter 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2348
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2349 2350

    Returns:
Y
yuyang18 已提交
2351
        A empty program.
D
dzhwinter 已提交
2352 2353

    Examples:
Y
yuyang18 已提交
2354 2355 2356 2357 2358 2359
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2360 2361 2362

    """

2363 2364
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2365 2366
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2367
        self._seed = 0
Y
yuyang18 已提交
2368
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2369
        self._op_role_var = []
T
tangwei12 已提交
2370

2371 2372
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2373
        self._is_distributed = False
2374
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2375
        self._is_chief = False
2376 2377 2378
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2379
        self._endpoints = []
2380 2381 2382
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2383
        self._trainers_endpoints = []
2384
        # the distributed lookup table names
T
tangwei12 已提交
2385
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2386
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2387
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2388
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2389 2390

    @property
D
dzhwinter 已提交
2391
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2392 2393
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2394
        return self.__is_mem_optimized
D
dzhwinter 已提交
2395

D
dzhwinter 已提交
2396 2397 2398
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2399 2400 2401

    @property
    def op_role(self):
Y
yuyang18 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2415 2416 2417
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2418
    def op_role(self, role):
Y
yuyang18 已提交
2419 2420 2421 2422
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2423 2424 2425 2426 2427 2428 2429
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2430 2431 2432 2433
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2434
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2435

S
rename  
sneaxiy 已提交
2436
    @signature_safe_contextmanager
W
Wu Yi 已提交
2437
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2438 2439 2440 2441 2442 2443 2444
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2445
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2446 2447 2448 2449

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2450
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2451 2452
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2453 2454 2455
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2456 2457
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2458 2459 2460 2461
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2462
        yield
X
Xin Pan 已提交
2463 2464
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2465

S
rename  
sneaxiy 已提交
2466
    @signature_safe_contextmanager
X
Xin Pan 已提交
2467
    def _lr_schedule_guard(self, is_with_opt=False):
2468 2469 2470 2471 2472 2473 2474
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2475 2476 2477 2478
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2479 2480 2481 2482 2483 2484 2485

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2486 2487 2488 2489

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2490 2491
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2492 2493
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2494 2495 2496
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2497 2498
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2499

2500
    def __str__(self):
Y
yuyang18 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2510 2511
        return self.to_string(True)

F
fengjiayi 已提交
2512 2513 2514
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2515

F
fengjiayi 已提交
2516
        Args:
Y
yuyang18 已提交
2517 2518
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2519

Y
yuyang18 已提交
2520 2521 2522 2523
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2524 2525
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2526 2527 2528 2529

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2540 2541
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2542 2543
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2544

W
Wu Yi 已提交
2545
    def _get_desc(self):
Y
yuyang18 已提交
2546 2547 2548 2549 2550 2551 2552
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2553 2554
        return self.desc

X
version  
Xin Pan 已提交
2555 2556 2557
    def _version(self):
        return self.desc._version()

2558
    def clone(self, for_test=False):
Y
yuyang18 已提交
2559 2560 2561
        """
        Create a new, duplicated program.

2562

Y
yuyang18 已提交
2563 2564 2565 2566
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2567

Y
yuyang18 已提交
2568 2569 2570 2571
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2572 2573 2574 2575 2576
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2577 2578

        Args:
Y
yuyang18 已提交
2579 2580
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2581

D
dzhwinter 已提交
2582
        Returns:
Y
yuyang18 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2636 2637
        """
        if for_test:
X
Xin Pan 已提交
2638
            p = self._inference_optimize(prune_read_op=False)
2639
        else:
2640
            p = Program()
G
gongweibao 已提交
2641 2642
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2643
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2644 2645 2646
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2647 2648 2649 2650

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2651
            p._sync_with_cpp()
2652

W
Wu Yi 已提交
2653
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2654
        p._copy_data_info_from(self)
2655
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2656
        return p
2657

W
Wu Yi 已提交
2658
    def _prune(self, targets):
Y
yuyang18 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2674 2675 2676 2677 2678 2679
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2680 2681
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2682
                    # and we need to find the current op that generate this
2683 2684 2685 2686 2687 2688 2689 2690
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2691
                    t = t.op
2692 2693 2694 2695
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2696
                else:
2697 2698
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2699 2700 2701 2702

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2703 2704 2705
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2706
        res._sync_with_cpp()
2707 2708
        return res

X
Xin Pan 已提交
2709
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2710
        """
F
fengjiayi 已提交
2711 2712 2713 2714 2715
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2716
        3. change the :code:`is_test`
Y
yuyang18 已提交
2717 2718 2719
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2720
        Args:
X
Xin Pan 已提交
2721 2722
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2723

Y
yuyang18 已提交
2724 2725 2726 2727 2728 2729
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2730
        res = Program()
2731
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2732 2733 2734 2735

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2736
        if prune_read_op:
2737 2738 2739 2740 2741 2742 2743 2744 2745
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2746
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2747 2748

        # change all `is_test` attributes to True
M
minqiyang 已提交
2749
        for i in six.moves.range(res.desc.num_blocks()):
2750
            block = res.desc.block(i)
M
minqiyang 已提交
2751
            for j in six.moves.range(block.op_size()):
2752 2753
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2754
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2755 2756 2757
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2758
        res._sync_with_cpp()
2759 2760
        return res

2761 2762
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2763 2764 2765 2766 2767 2768 2769
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2770
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2771 2772 2773 2774

        Returns:
            Program: A deserialized program desc.
        """
2775 2776
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2777
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2778
        p._sync_with_cpp()
2779
        return p
Y
Yu Yang 已提交
2780

2781
    @staticmethod
2782
    def _construct_from_desc(desc):
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2798 2799
    @property
    def random_seed(self):
Y
yuyang18 已提交
2800 2801 2802 2803 2804 2805
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2806 2807
        return self._seed

Q
qiaolongfei 已提交
2808 2809
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2810 2811 2812
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2813 2814
        return self.desc.num_blocks()

D
dzhwinter 已提交
2815 2816 2817 2818 2819 2820
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2821
    def __repr__(self):
2822
        return self.__str__()
2823

Y
Yu Yang 已提交
2824
    def global_block(self):
Y
yuyang18 已提交
2825 2826 2827
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2828 2829
        return self.blocks[0]

Q
Qiao Longfei 已提交
2830
    def block(self, index):
Y
yuyang18 已提交
2831 2832 2833 2834 2835 2836 2837 2838
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2839 2840
        return self.blocks[index]

Y
Yu Yang 已提交
2841
    def current_block(self):
Y
yuyang18 已提交
2842 2843 2844 2845
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2846 2847
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2848
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2859
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2860 2861 2862
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2863 2864 2865 2866
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2867
    def _rollback(self):
Y
yuyang18 已提交
2868 2869 2870 2871 2872
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2873 2874
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2875
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2886 2887 2888
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2889
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2890

W
Wu Yi 已提交
2891
    def _copy_param_info_from(self, other):
2892
        """
2893
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2894

Y
yuyang18 已提交
2895 2896 2897
        Notes: This is a very low level API. Users should not invoke it
        directly.

2898 2899 2900 2901 2902 2903 2904
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2905
            raise TypeError("_copy_param_info_from should be invoked with "
2906 2907 2908
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2909
            raise ValueError("_copy_param_info_from should be invoked with two "
2910
                             "program, with represent the same topology")
W
Wu Yi 已提交
2911
        self.global_block()._copy_param_info_from(other.global_block())
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2928
        self._parameters_on_pservers = other._parameters_on_pservers
2929
        self._endpoints = other._endpoints
2930
        self._ps_endpoint = other._ps_endpoint
2931 2932
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2933
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2934 2935
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2936

Y
yuyang18 已提交
2937 2938 2939
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2940 2941 2942 2943 2944 2945 2946
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2947
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2948 2949 2950
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2951
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2952
                             "program, with represent the same topology")
2953
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2954 2955 2956
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2957
    def list_vars(self):
Y
yuyang18 已提交
2958 2959 2960 2961 2962 2963
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2964
        for each_block in self.blocks:
2965
            for each_var in list(each_block.vars.values()):
2966 2967
                yield each_var

Y
Yu Yang 已提交
2968

Y
Yu Yang 已提交
2969
class Parameter(Variable):
2970
    """
2971
    Parameter is derived from Variable. A parameter is a persistable
2972
    Variable, and will be updated by optimizers after each iteration.
2973
    The training of a neural network is essentially the updating of
2974 2975
    its parameters.

2976
    Relative to a general Variable, a Parameter has several its own
2977 2978
    member variables:

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2991 2992
    """

Y
Yu Yang 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3003 3004 3005

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3006 3007 3008 3009
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3010 3011
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3012
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3013

W
wanghaoshuang 已提交
3014
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3015

F
fengjiayi 已提交
3016 3017 3018
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3019 3020 3021
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3022

F
update  
fengjiayi 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3037
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3038
            for attr_name in additional_attr:
3039 3040
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3041 3042
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3043 3044 3045 3046
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3047

Y
Yu Yang 已提交
3048
# program is a global instance.
Y
Yu Yang 已提交
3049 3050
_main_program_ = Program()
_startup_program_ = Program()
3051

3052

3053
def default_startup_program():
Y
Yu Yang 已提交
3054
    """
Y
yuyang18 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3064

Y
Yu Yang 已提交
3065 3066 3067
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3068
    return _startup_program_
3069

3070

3071
def default_main_program():
Y
Yu Yang 已提交
3072
    """
Y
yuyang18 已提交
3073 3074 3075 3076 3077 3078 3079 3080 3081
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3082

Y
Yu Yang 已提交
3083 3084 3085
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3086
    return _main_program_
Y
Yu Yang 已提交
3087 3088 3089 3090 3091


def switch_main_program(program):
    """
    Switch the main program to a new program.
3092

Y
Yu Yang 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3107
    Switch the startup program to a new program
Y
Yu Yang 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3120
@signature_safe_contextmanager
Y
Yu Yang 已提交
3121 3122
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3123 3124 3125
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3126

Y
Yu Yang 已提交
3127
    Examples:
Y
yuyang18 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3138

Y
Yu Yang 已提交
3139
    Examples:
Y
yuyang18 已提交
3140 3141 3142 3143 3144 3145

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3146

Y
Yu Yang 已提交
3147
    Args:
Y
yuyang18 已提交
3148
        main_program(Program): New main program inside `with` statement.
3149
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3163 3164


W
Wu Yi 已提交
3165
def _get_var(name, program=None):
X
xuwei06 已提交
3166
    """
Y
yuyang18 已提交
3167
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3168

X
xuwei06 已提交
3169 3170 3171
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3172
        If None, default_global_program() will be used.
X
xuwei06 已提交
3173 3174 3175 3176 3177 3178 3179

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3180
    assert isinstance(program, Program)
X
xuwei06 已提交
3181 3182

    return program.global_block().var(name)
3183 3184


S
rename  
sneaxiy 已提交
3185
@signature_safe_contextmanager
3186 3187 3188 3189
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3190

3191
    yield
P
Paddle CI 已提交
3192

3193
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3194 3195


S
rename  
sneaxiy 已提交
3196
@signature_safe_contextmanager
P
Paddle CI 已提交
3197
def _imperative_place_guard(place):
M
minqiyang 已提交
3198 3199 3200
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3201

3202
    yield
M
minqiyang 已提交
3203

M
minqiyang 已提交
3204
    _imperative_current_expected_place_ = tmp_place