framework.py 215.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
S
sneaxiy 已提交
49 50
    'cuda_places',
    'cpu_places',
51
    'xpu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
L
lujun 已提交
53
    'in_dygraph_mode',
C
chengduo 已提交
54
    'is_compiled_with_cuda',
55
    'is_compiled_with_xpu',
56
    'Variable',
57
    'require_version',
58
    'device_guard',
G
guofei 已提交
59 60
    'set_flags',
    'get_flags',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
69
_dygraph_tracer_ = None
70
_global_expected_place_ = None
71
_current_device = None
72 73
global_prog_seed = 0

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
182
def in_dygraph_mode():
L
lujun 已提交
183
    """
184

185 186 187 188 189 190 191
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
192 193

    Returns:
194
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
195 196 197 198

    Examples:
        .. code-block:: python

199 200 201 202 203 204 205 206
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
207 208

    """
L
lujun 已提交
209
    return _dygraph_tracer_ is not None
210 211


212 213 214
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
215
        ), "We don't support %s in imperative mode" % func.__name__
216 217 218 219 220 221 222 223
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
233
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
234 235 236 237 238
        return func(*args, **kwargs)

    return __impl__


239 240 241 242 243 244
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
245
# same base class.
246 247 248
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
249 250
            "'%s' should be called by imperative Varible in imperative mode, please run it in dygraph "
            "mode. You can turn off paddle.enable_static() if you are in static mode, or turn off "
251 252 253
            "ProgramTranslator if you are using @paddle.jit.to_static. If you have to run ProgramTranslator, "
            "please use other API to replace '%s'" % (func.__name__,
                                                      func.__name__))
254 255 256 257

    return __impl__


T
tangwei12 已提交
258 259
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


277 278
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
279
static_only = wrap_decorator(_static_only_)
280
fake_interface_only = wrap_decorator(_fake_interface_only_)
281 282


L
lujun 已提交
283 284
def _dygraph_tracer():
    return _dygraph_tracer_
285

W
Wu Yi 已提交
286

M
minqiyang 已提交
287
def _current_expected_place():
288 289 290
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
291 292 293 294 295 296 297 298 299 300 301
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
318 319


L
Leo Chen 已提交
320 321 322 323
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
324

L
Leo Chen 已提交
325 326 327 328 329 330 331 332 333 334 335 336
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
337
def _cpu_num():
338
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
339 340 341 342 343 344 345 346
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
347
        os.environ['CPU_NUM'] = str(1)
348
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
349 350 351 352 353 354 355 356 357 358
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
359 360


361 362 363 364 365 366 367 368 369
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
385 386 387 388
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

389
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
390 391 392 393

    Examples:
        .. code-block:: python

394 395
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
396 397 398 399
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
400
def cuda_places(device_ids=None):
L
lujun 已提交
401
    """
402 403 404 405
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
406
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
407 408

    If :code:`device_ids` is None, environment variable of
409
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
410
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
411
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
412
    If :code:`FLAGS_selected_gpus` is not set, all visible
413
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
414 415

    If :code:`device_ids` is not None, it should be the device
416
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
417
    the returned list would be 
C
Chen Weihang 已提交
418
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
419

420 421
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
422 423

    Returns:
C
Chen Weihang 已提交
424
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
425 426 427 428

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
429 430
            import paddle
            import paddle.static as static
T
tangwei12 已提交
431

C
Chen Weihang 已提交
432 433 434
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
435 436

    """
S
sneaxiy 已提交
437 438 439
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
440
        device_ids = _cuda_ids()
S
sneaxiy 已提交
441 442 443 444 445
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
468
        
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
484
def cpu_places(device_count=None):
L
lujun 已提交
485
    """
C
Chen Weihang 已提交
486
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
487

S
add doc  
sneaxiy 已提交
488 489
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
490 491
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
492 493
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
494

495 496
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
497 498

    Returns:
C
Chen Weihang 已提交
499
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
500 501 502 503

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
504 505
            import paddle
            import paddle.static as static
T
tangwei12 已提交
506

C
Chen Weihang 已提交
507 508 509
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
510 511
    """

S
sneaxiy 已提交
512 513 514 515 516 517
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
518
    """
519
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
520 521 522

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
523 524 525 526
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
527

528 529
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
530 531

    Returns:
532
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
533 534 535 536

    Examples:
        .. code-block:: python

537
            import paddle.fluid as fluid
L
lujun 已提交
538 539 540 541 542
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
543 544 545
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
546 547
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
548 549


550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
576
@signature_safe_contextmanager
577 578
def name_scope(prefix=None):
    """
579 580
    :api_attr: Static Graph

581
    Generate hierarchical name prefix for the operators in Static Graph.
582

T
Tao Luo 已提交
583 584 585
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
586
        Don't use it in dygraph, since it will cause memory leak.
587 588

    Args:
T
Tao Luo 已提交
589
        prefix(str, optional): prefix. Default is none.
590 591 592

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
593

594 595 596
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
597
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
598
             b = a + 1
599
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
600
                c = b * 1
601
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
602
                d = c / 1
603 604 605
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
606 607 608
                g = f - 1

          # Op are created in the default main program.  
609
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
625 626
    """
    # TODO(panyx0718): Only [0-9a-z].
627
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
628 629 630
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
631
        assert prefix, "namescope prefix can not be empty."
632 633
        global _name_scope
        _name_scope = _name_scope.child(prefix)
634 635 636 637
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
638 639 640 641 642 643 644 645 646 647 648 649


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
650 651 652
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
653 654 655 656


def grad_var_name(var_name):
    """
657 658
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
659 660 661
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
662

663
def convert_np_dtype_to_dtype_(np_dtype):
664 665
    """
    Convert the data type in numpy to the data type in Paddle
666

667
    Args:
668
        np_dtype(np.dtype): the data type in numpy.
669

670 671
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
672 673

    """
674 675
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
676
        return core.VarDesc.VarType.FP32
677
    elif dtype == np.float64:
678
        return core.VarDesc.VarType.FP64
679
    elif dtype == np.float16:
680
        return core.VarDesc.VarType.FP16
681
    elif dtype == np.int32:
682
        return core.VarDesc.VarType.INT32
683
    elif dtype == np.int16:
684
        return core.VarDesc.VarType.INT16
685
    elif dtype == np.int64:
686
        return core.VarDesc.VarType.INT64
687
    elif dtype == np.bool:
688
        return core.VarDesc.VarType.BOOL
689
    elif dtype == np.uint16:
690 691 692
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
693 694
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
695 696
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
697 698 699 700
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
701
    else:
M
minqiyang 已提交
702
        raise ValueError("Not supported numpy dtype %s" % dtype)
703 704 705


def dtype_is_floating(dtype):
706 707 708
    """
    Check the data type is floating or not.
    Args:
709
        dtype(np.dtype|core.VarDesc.VarType): data type.
710 711 712 713 714
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
715
    if not isinstance(dtype, core.VarDesc.VarType):
716 717
        dtype = convert_np_dtype_to_dtype_(dtype)

718 719 720 721
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
722 723


Y
Yang Yang(Tony) 已提交
724
def _debug_string_(proto, throw_on_error=True):
725 726 727 728 729 730 731 732 733 734 735
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
736
    error_fields = list()
Y
Yang Yang(Tony) 已提交
737
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
738 739
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
740 741 742
    return proto.__str__()


743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
800
    target_block = default_main_program().current_block()
801 802 803 804 805 806 807 808 809 810 811

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
812
            })
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
852
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
853
                fill_constant([1], 1, force_cpu=True, out=temp_1)
854
                temp_end = target_block.create_var(dtype=slice_item.dtype)
855
                target_block.append_op(
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
880
                temp_out = var.block.create_var(dtype='int64')
881 882 883 884 885 886 887 888 889 890 891 892 893 894
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
895

896
    # starts
L
Leo Chen 已提交
897
    if contain_var(slice_start):
898 899 900 901 902 903 904 905
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
906 907 908 909
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
910 911 912 913 914 915 916
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
917 918 919
    else:
        attrs['ends'] = slice_end

920 921
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
922
        if contain_var(slice_step):
923 924 925 926 927 928 929
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
930 931
        else:
            attrs['strides'] = slice_step
932 933 934 935 936 937
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
938
        slice_out_var = target_block.create_var(
939 940 941
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

942
        target_block.append_op(
943 944 945 946 947 948 949
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
950
        strided_slice_out_var = target_block.create_var(
951 952 953
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
954
        target_block.append_op(
955 956 957 958 959 960 961 962
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
963
        reverse_out_var = target_block.create_var(
964 965 966
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
967
        target_block.append_op(
968 969 970 971 972 973 974 975 976 977 978
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
979
class Variable(object):
980
    """
J
Jiabin Yang 已提交
981
    **Notes**:
982
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
983

984 985
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
986 987 988
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
989
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
990 991
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
992

993
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
994
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
995

T
tianshuo78520a 已提交
996
    Most of a Variable's member variables can be set to be None. It mean
997
    it is not available or will be specified later.
998

999
    Examples:
1000 1001
        In Static Graph Mode:

1002 1003
        .. code-block:: python

1004
            import paddle.fluid as fluid
1005
            cur_program = fluid.Program()
1006 1007 1008 1009
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
1010
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1011 1012 1013 1014 1015 1016 1017 1018 1019

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1020 1021
    """

Y
Yu Yang 已提交
1022 1023
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1024
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1025 1026 1027 1028
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1029
                 capacity=None,
Q
QI JUN 已提交
1030
                 persistable=None,
F
fengjiayi 已提交
1031
                 error_clip=None,
Y
Yu Yang 已提交
1032
                 stop_gradient=False,
F
fengjiayi 已提交
1033
                 is_data=False,
H
Huihuang Zheng 已提交
1034
                 need_check_feed=False,
H
hong 已提交
1035
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1036
                 **kwargs):
Y
Yu Yang 已提交
1037 1038
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1039
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1040

Y
Yu Yang 已提交
1041
        if dtype is not None:
1042
            if not isinstance(dtype, core.VarDesc.VarType):
1043
                dtype = convert_np_dtype_to_dtype_(dtype)
1044

H
hong 已提交
1045 1046
        self.belong_to_optimizer = belong_to_optimizer

1047 1048 1049 1050 1051
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1052

1053 1054 1055
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1056

1057 1058 1059
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1060 1061
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1062 1063
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1064

1065
        if shape is not None:
1066
            if is_new_var:
1067 1068 1069 1070 1071 1072
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1073 1074
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1075 1076 1077 1078 1079 1080 1081
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1082 1083
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1084 1085 1086 1087 1088 1089 1090 1091 1092
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1093 1094
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1095 1096 1097 1098 1099 1100 1101 1102 1103
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1104 1105
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1106 1107
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1108

1109 1110
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1111

1112 1113 1114 1115 1116 1117 1118
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1119

1120 1121 1122 1123
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1124

1125
    @fake_interface_only
1126 1127
    def detach(self):
        """
J
Jiabin Yang 已提交
1128
        **Notes**:
T
tianshuo78520a 已提交
1129
            **This API is ONLY available in Dygraph mode**
1130

1131
        Returns a new Variable, detached from the current graph.
1132

1133
        Returns:
J
Jiabin Yang 已提交
1134
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1135

1136

1137 1138 1139 1140 1141
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1142
                from paddle.fluid.dygraph import Linear
1143 1144 1145 1146
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1147
                    linear = Linear(32, 64)
1148
                    data = to_variable(data)
1149
                    x = linear(data)
1150 1151 1152
                    y = x.detach()

        """
1153
        pass
1154

1155
    @fake_interface_only
1156
    def numpy(self):
1157
        """
J
Jiabin Yang 已提交
1158
        **Notes**:
T
tianshuo78520a 已提交
1159
            **This API is ONLY available in Dygraph mode**
1160

J
Jiabin Yang 已提交
1161
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1162 1163 1164 1165 1166

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1167
            ndarray: dtype is same as current Variable
1168 1169 1170 1171 1172 1173

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1174
                from paddle.fluid.dygraph import Linear
1175 1176 1177 1178
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1179
                    linear = Linear(32, 64)
1180
                    data = to_variable(data)
1181
                    x = linear(data)
1182 1183 1184
                    print(x.numpy())

        """
1185
        pass
1186

1187
    @fake_interface_only
1188
    def backward(self, retain_graph=False):
1189
        """
J
Jiabin Yang 已提交
1190
        **Notes**:
T
tianshuo78520a 已提交
1191
            **This API is ONLY available in Dygraph mode**
1192

1193
        Run backward of current Graph which starts from current Tensor.
1194

J
Jiabin Yang 已提交
1195
        Args:
1196 1197 1198 1199
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1200

J
Jiabin Yang 已提交
1201 1202
        Returns:
            NoneType: None
1203 1204 1205 1206 1207

        Examples:
            .. code-block:: python

                import numpy as np
1208 1209
                import paddle
                paddle.disable_static()
1210 1211

                x = np.ones([2, 2], np.float32)
1212 1213 1214 1215 1216 1217 1218
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1219 1220
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1221
                loss.backward()
1222 1223

        """
1224
        pass
1225

1226
    @fake_interface_only
1227
    def gradient(self):
1228
        """
J
Jiabin Yang 已提交
1229
        **Notes**:
T
tianshuo78520a 已提交
1230
            **This API is ONLY available in Dygraph mode**
1231 1232 1233

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1234
        Returns:
1235
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1236 1237 1238 1239 1240 1241 1242

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1243
                # example1: return ndarray
1244 1245 1246 1247 1248 1249 1250 1251 1252
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1253
                    loss2.backward()
1254 1255
                    print(loss2.gradient())

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1269
        """
1270
        pass
1271

1272
    @fake_interface_only
1273
    def clear_gradient(self):
1274
        """
J
Jiabin Yang 已提交
1275
        **Notes**:
T
tianshuo78520a 已提交
1276
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1277 1278

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1279

J
Jiabin Yang 已提交
1280
        Clear  (set to ``0`` ) the Gradient of Current Variable
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1299
                    loss2.backward()
1300 1301 1302 1303 1304
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1305
        pass
X
Xin Pan 已提交
1306

1307
    def __str__(self):
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1324 1325
                import paddle
                import paddle.static as static
1326

1327 1328 1329
                paddle.enable_static()

                cur_program = static.Program()
1330 1331 1332 1333 1334 1335
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1336 1337
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1338
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1339 1340
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1341 1342
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1343
        else:
1344 1345
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1359

F
update  
fengjiayi 已提交
1360
    def to_string(self, throw_on_error, with_details=False):
1361 1362 1363
        """
        Get debug string.

J
Jiabin Yang 已提交
1364 1365 1366 1367 1368
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1369

1370 1371
        Returns:
            str: The debug string.
1372 1373 1374 1375 1376

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1377
                import paddle
1378

1379
                paddle.enable_static()
1380 1381 1382 1383 1384
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1385
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1386
                print("=============with detail===============")
1387
                print(new_variable.to_string(True, True))
1388
        """
F
update  
fengjiayi 已提交
1389 1390
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1391
        protostr = self.desc.serialize_to_string()
1392
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1393 1394 1395 1396
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1397 1398 1399
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1400
        return res_str
1401 1402 1403

    __repr__ = __str__

1404
    @property
1405
    def stop_gradient(self):
J
Jiabin Yang 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1421 1422
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1423 1424 1425
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1426 1427
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1428 1429 1430 1431
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1432
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1433 1434
                assert (out1.gradient() == 0).all()
        """
1435
        return self._stop_gradient
1436

1437 1438
    @stop_gradient.setter
    def stop_gradient(self, s):
1439
        self._stop_gradient = s
1440

1441 1442
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1464
        return self.desc.persistable()
1465

Y
Yu Yang 已提交
1466 1467
    @persistable.setter
    def persistable(self, p):
1468
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1469

Y
Yu Yang 已提交
1470 1471
    @property
    def name(self):
J
Jiabin Yang 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1488
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1489

1490 1491 1492 1493 1494 1495 1496 1497
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1510 1511
    @name.setter
    def name(self, new_name):
1512
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1513

Y
Yu Yang 已提交
1514 1515
    @property
    def shape(self):
J
Jiabin Yang 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1533
        # convert to tuple, make it as same as numpy API.
1534
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1535 1536

    @property
F
fengjiayi 已提交
1537
    def dtype(self):
J
Jiabin Yang 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1554
        return self.desc.dtype()
Y
Yu Yang 已提交
1555 1556 1557

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1579 1580 1581
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1582
        return self.desc.lod_level()
Y
Yu Yang 已提交
1583

Y
Yu Yang 已提交
1584 1585
    @property
    def type(self):
J
Jiabin Yang 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1602
        return self.desc.type()
Y
Yu Yang 已提交
1603

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1638
    def _set_error_clip(self, error_clip):
1639 1640 1641 1642 1643 1644 1645 1646 1647
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1648 1649
        self.error_clip = error_clip

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1690
            raise ValueError("slice step can not be zero")
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1766
    def _cloneVar(self, copy=False):
1767 1768
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1769 1770
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1771 1772 1773 1774
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1775
        new_var = self._cloneVar()
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1786
        new_var = self._cloneVar()
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1797
                return self._cloneVar(True)
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1816
                return self._cloneVar(True)
1817
            index = int(item)
1818
            if (index > 0 and index >= self.shape[axis]) \
1819 1820 1821 1822 1823 1824 1825
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1826
        return _getitem_impl_(self, item)
1827

1828 1829 1830 1831 1832 1833 1834
    def __setitem__(self, item, value):
        inputs = {'Input': self}

        # 1. Parse item
        if not isinstance(item, tuple):
            item = [item]

1835
        decrease_axes = []
1836 1837 1838
        axes = []
        starts = []
        ends = []
1839 1840
        steps = []

1841
        max_integer = sys.maxsize
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

        def replace_ellipsis(item):
            # Use slice(None) to replace Ellipsis.
            # For var, var.shape = [3,4,5,6]
            #
            #   var[..., 1:2] -> var[:, :, :, 1:2]
            #   var[0, ...] -> var[0]
            #   var[0, ..., 1:2] -> var[0, :, :, 1:2]

            item = list(item)
1852 1853 1854 1855 1856 1857

            # Remove Variable to skip bug when counting Ellipsis
            item_remove_var = [
                ele for ele in item if not isinstance(ele, Variable)
            ]
            ell_count = item_remove_var.count(Ellipsis)
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
            if ell_count == 0:
                return item
            elif ell_count > 1:
                raise IndexError(
                    "An index can only have a single ellipsis ('...')")

            ell_idx = item.index(Ellipsis)

            if ell_idx == len(item) - 1:
                return item[:-1]
            else:
                item[ell_idx:ell_idx + 1] = [slice(None)] * (
                    len(self.shape) - len(item) + 1)

            return item

        item = replace_ellipsis(item)

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step

                if start is None and end is None and step is None:
                    continue

                step = 1 if step is None else step

1887 1888
                # TODO: support cases when step < 1
                if not isinstance(step, Variable) and step == 0:
1889
                    raise ValueError(
1890
                        "When assign a value to a paddle.Tensor, step can not be 0, "
1891
                        "but received step is {}.".format(step))
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904

                if isinstance(step, Variable) and (start is None or
                                                   end is None):
                    raise ValueError(
                        "When assign a value to a paddle.Tensor, it's not supported that "
                        "the start or end is None when the type of step is paddle.Tensor."
                    )

                if start is None:
                    start = 0 if step > 0 else max_integer

                if end is None:
                    end = max_integer if step > 0 else (0 - max_integer)
1905
            else:
1906
                decrease_axes.append(dim)
1907 1908
                start = slice_item
                end = slice_item + 1 if slice_item != -1 else max_integer
1909
                step = 1
1910

1911 1912 1913
            axes.append(dim)
            starts.append(start)
            ends.append(end)
1914
            steps.append(step)
1915

1916 1917 1918 1919 1920 1921 1922
        attrs = {
            'axes': axes,
            'starts': starts,
            'ends': ends,
            'steps': steps,
            'decrease_axes': decrease_axes
        }
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933

        from .layers import utils
        if utils._contain_var(starts):
            inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts)
            del attrs['starts']
        if utils._contain_var(ends):
            inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends)
            del attrs['ends']
        if utils._contain_var(steps):
            inputs['StepsTensorList'] = utils._convert_to_tensor_list(steps)
            del attrs['steps']
1934 1935 1936 1937 1938

        # 2. Parse value
        dtype = self.dtype
        attrs['dtype'] = dtype

1939
        from .data_feeder import convert_dtype
1940 1941
        #  2.1 value is an integer of float
        if isinstance(value, (int, float)):
1942
            value = np.array([value]).astype(convert_dtype(dtype))
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

        #  2.2 value is a np.ndarray
        if isinstance(value, np.ndarray):
            shape = list(value.shape)
            if dtype == core.VarDesc.VarType.BOOL:
                value_name = "bool_values"
                values = [bool(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.FP32:
                value_name = "fp32_values"
                values = [float(v) for v in value.flat]
1953 1954 1955
            elif dtype == core.VarDesc.VarType.FP64:
                value_name = "fp64_values"
                values = [float(v) for v in value.flat]
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
            elif dtype == core.VarDesc.VarType.INT32:
                value_name = "int32_values"
                values = [int(v) for v in value.flat]
            elif dtype == core.VarDesc.VarType.INT64:
                value_name = "int64_values"
                values = [int(v) for v in value.flat]
            else:
                raise TypeError(
                    "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
                    "the data type of the paddle.Tensor must be bool, float32, int32 or int64, but "
                    "received %s." % convert_dtype(dtype))
            attrs[value_name] = values
            attrs["shape"] = shape

        elif isinstance(value, Variable):
            inputs["ValueTensor"] = value
        else:
            raise TypeError(
                "Only support to assign an integer, float, numpy.ndarray or "
                "paddle.Tensor to a paddle.Tensor, but received {}".format(
                    type(value)))

1978 1979
        cur_block = default_main_program().current_block()
        cur_block.append_op(
1980
            type="set_value", inputs=inputs, outputs={'Out': self}, attrs=attrs)
1981

1982 1983
        return self

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

Y
Yu Yang 已提交
2137

F
fengjiayi 已提交
2138 2139 2140
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2141

2142 2143
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2144 2145 2146 2147
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2148
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2149 2150 2151 2152 2153
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2154 2155 2156 2157
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2167
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2168 2169 2170 2171 2172 2173
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2174 2175 2176 2177 2178 2179 2180 2181
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2182 2183
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2184 2185
        return self.op_proto_map[type]

2186 2187
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2188
        custom_op_names = []
2189 2190 2191
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2192 2193 2194
                custom_op_names.append(proto.type)

        return custom_op_names
2195

2196 2197 2198 2199
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2200
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2201
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2202 2203
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2204 2205
        }

F
fengjiayi 已提交
2206

X
Xin Pan 已提交
2207
class Operator(object):
2208
    """
2209 2210 2211 2212 2213 2214 2215
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2216
        type(str): The type of operator. Default None.
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2237
        Block.append_op or Block._prepend_op instead.
2238 2239 2240 2241

    Examples:
        .. code-block:: python

2242
            import paddle.fluid as fluid
2243
            cur_program = fluid.Program()
2244 2245 2246 2247 2248
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2249
    """
2250
    OP_WITHOUT_KERNEL_SET = {
2251 2252
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2253
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2254 2255
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2256
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2257 2258
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2259
    }
2260

Y
Yu Yang 已提交
2261 2262
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2263
                 desc,
Y
Yu Yang 已提交
2264 2265 2266
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2267
                 attrs=None):
L
lujun 已提交
2268
        if in_dygraph_mode():
2269 2270
            if type is None:
                raise ValueError(
2271
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2272
            self._type = type
M
minqiyang 已提交
2273
            self.attrs = attrs if attrs else {}
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2288
                )] = self.block.program._op_role
2289 2290 2291

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2292 2293
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2294 2295 2296 2297 2298 2299 2300 2301

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2302
                    "`type` to initialized an Operator can not be None.")
2303 2304
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2305 2306 2307 2308 2309 2310 2311
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2312 2313 2314 2315 2316 2317 2318

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2350
                        if not isinstance(in_args, (list, tuple)):
2351 2352 2353 2354 2355 2356
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2357
                        for index, arg in enumerate(in_args):
2358 2359 2360 2361
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2362
                            elif isinstance(arg, (Variable, core.VarBase)):
2363
                                in_arg_names.append(cpt.to_text(arg.name))
2364
                            else:
2365 2366 2367 2368
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2369 2370
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2395 2396 2397 2398
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2399
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2400
                        if not in_dygraph_mode():
2401 2402 2403 2404
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2423
    def _has_kernel(self, op_type):
2424 2425
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2426
    def to_string(self, throw_on_error):
2427
        """
2428 2429
        Get debug string.

2430
        Args:
2431 2432
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2433

2434 2435
        Returns:
            str: The debug string.
2436 2437

        """
2438
        protostr = self.desc.serialize_to_string()
2439
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2440 2441
        return _debug_string_(proto, throw_on_error)

2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2529 2530
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2531 2532 2533 2534 2535
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2536
    def __str__(self):
2537
        return self._to_readable_code()
2538 2539 2540

    __repr__ = __str__

F
fengjiayi 已提交
2541 2542
    @property
    def type(self):
2543
        return self.desc.type()
F
fengjiayi 已提交
2544 2545

    def input(self, name):
2546
        r"""
2547
        Get the input arguments according to the input parameter name.
2548

2549 2550
        Args:
            name(str): The input parameter name.
2551

2552 2553 2554
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2555
        """
F
fengjiayi 已提交
2556 2557
        return self.desc.input(name)

W
Wu Yi 已提交
2558
    def _rename_input(self, old_name, new_name):
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2569
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2570

W
Wu Yi 已提交
2571
    def _rename_output(self, old_name, new_name):
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2582
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2583

F
fengjiayi 已提交
2584 2585 2586 2587
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2588 2589 2590 2591 2592 2593 2594 2595
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2596
    def output(self, name):
2597
        r"""
2598
        Get output arguments by the output parameter name.
2599

2600 2601
        Args:
            name(str): The output parameter name.
2602

2603 2604 2605
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2606
        """
F
fengjiayi 已提交
2607 2608 2609 2610 2611 2612
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2613 2614 2615 2616 2617 2618 2619 2620
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2621
    def has_attr(self, name):
2622
        """
2623 2624
        Whether this Operator has the attribute with name or not.

2625
        Args:
2626
            name(str): the attribute name.
2627

2628 2629
        Returns:
            bool: True if has this attribute.
2630 2631

        """
F
fengjiayi 已提交
2632 2633 2634
        return self.desc.has_attr(name)

    def attr_type(self, name):
2635
        """
2636
        Get the type of attribute by attribute's name.
2637

2638 2639
        Args:
            name(str): the attribute name.
2640

2641 2642
        Returns:
            core.AttrType: the attribute type.
2643
        """
F
fengjiayi 已提交
2644 2645
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2646
    def _set_attr(self, name, val):
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2657 2658
        self._update_desc_attr(name, val)

2659 2660 2661
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2673 2674
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2675 2676
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2677
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2678 2679 2680 2681
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2682
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2683

F
fengjiayi 已提交
2684 2685 2686 2687 2688
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2689
        """
2690 2691
        Get the attribute by name.

2692
        Args:
2693
            name(str): the attribute name.
2694

2695 2696
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2697 2698
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2699
        return self.desc.attr(name)
Y
Yu Yang 已提交
2700

W
Wu Yi 已提交
2701
    def _block_attr_id(self, name):
2702
        """
G
gongweibao 已提交
2703
        Get the block attribute's id by name.
2704

2705 2706
        Args:
            name(str): the attribute name.
2707

2708 2709
        Returns:
            int: the block index.
2710
        """
W
Wu Yi 已提交
2711
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2712

W
Wu Yi 已提交
2713
    def _block_attr(self, name):
G
gongweibao 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2724
        id = self._block_attr_id(name)
G
gongweibao 已提交
2725 2726 2727
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2728
    def _blocks_attr(self, name):
G
gongweibao 已提交
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2739
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2740 2741 2742 2743 2744
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2745
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2756
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2757

J
JiayiFeng 已提交
2758
    def all_attrs(self):
F
fengjiayi 已提交
2759
        """
2760 2761 2762
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2763
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2764 2765 2766 2767
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2768 2769
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2770
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2771 2772 2773
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2774
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2775 2776 2777 2778
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2779 2780
        return attr_map

2781 2782 2783
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2784 2785 2786 2787

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2788 2789 2790
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2791 2792 2793 2794 2795 2796 2797 2798

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2799 2800
            return False

2801 2802 2803 2804 2805 2806
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2807

Y
Yu Yang 已提交
2808
class Block(object):
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2823
        use `Program._create_block()` to create a block.
2824 2825 2826 2827

    Examples:
        .. code-block:: python

2828 2829 2830
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2831 2832 2833 2834 2835 2836 2837 2838 2839
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2840
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2841
        self.desc = program.desc.block(idx)
2842
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2843
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2844
        self.program = program
2845
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2846

2847
    def __str__(self):
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2894

F
fengjiayi 已提交
2895 2896
    def to_string(self, throw_on_error, with_details=False):
        """
2897 2898
        Get debug string.

F
fengjiayi 已提交
2899 2900
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2901
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2902
            with_details(bool): more details about variables and parameters
2903 2904
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2905

2906 2907
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2908 2909 2910 2911
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2912
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2913 2914
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2915
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2916
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2917
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2918
            for op in self.ops:
F
fengjiayi 已提交
2919 2920
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2921 2922 2923
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2924 2925
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2926 2927
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2928 2929 2930

    __repr__ = __str__

Y
Yu Yang 已提交
2931 2932
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2933
        return self.desc.parent
Y
Yu Yang 已提交
2934

Y
Yu Yang 已提交
2935 2936 2937 2938
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2939
    def _set_forward_block_idx(self, idx):
2940 2941 2942 2943 2944 2945 2946 2947 2948
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2949
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2950

2951 2952 2953 2954 2955 2956 2957 2958
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2959 2960
    @property
    def idx(self):
Y
Yu Yang 已提交
2961
        return self.desc.id
Y
Yu Yang 已提交
2962

Q
Qiao Longfei 已提交
2963
    def var(self, name):
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2977
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2978 2979 2980
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2981 2982
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2983
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2984
        return v
Q
Qiao Longfei 已提交
2985

X
Xin Pan 已提交
2986
    def _find_var_recursive(self, name):
2987 2988 2989 2990 2991 2992 2993
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2994
            Variable: the Variable with the giving name. Or None if not found.
2995
        """
Y
Yu Yang 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3020
        return None
Y
Yu Yang 已提交
3021

X
Xin Pan 已提交
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3041

Q
Qiao Longfei 已提交
3042
    def all_parameters(self):
3043
        return list(self.iter_parameters())
3044

3045
    def iter_parameters(self):
M
minqiyang 已提交
3046
        return (item[1] for item in six.iteritems(self.vars)
3047
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3048

Y
Yu Yang 已提交
3049
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3050 3051 3052
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3053 3054 3055
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3056
        return var
Y
Yu Yang 已提交
3057

Q
Qiao Longfei 已提交
3058 3059 3060
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3061
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3062 3063
        """
        Rename variable in vars and ops' inputs and outputs
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3076
        """
M
minqiyang 已提交
3077 3078
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3079

T
typhoonzero 已提交
3080
        if not self.has_var(name):
3081
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3082 3083
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3084
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3085 3086 3087 3088 3089 3090
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3091
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3092 3093 3094 3095
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3096
        orig_var_type = v.type
M
minqiyang 已提交
3097
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3098
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3099
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3100
        if var_type == "Parameter":
L
Leo Chen 已提交
3101 3102
            if in_dygraph_mode():
                var = ParamBase(
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3113 3114
                var = Parameter(
                    self,
3115 3116 3117 3118 3119 3120 3121 3122 3123
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3124
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3125 3126
            var = Variable(
                self,
T
typhoonzero 已提交
3127
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3128 3129 3130 3131
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3132
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3133 3134 3135
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3136
        self._sync_with_cpp()
3137
        return var
T
typhoonzero 已提交
3138

3139 3140 3141
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3142
        self.desc._remove_var(cpt.to_bytes(name))
3143 3144
        del self.vars[name]

Y
Yu Yang 已提交
3145 3146
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3147
        param = None
L
Leo Chen 已提交
3148
        if in_dygraph_mode():
3149
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3150 3151
        else:
            param = Parameter(global_block, *args, **kwargs)
3152 3153 3154 3155 3156 3157
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
3158
        if 'initializer' in kwargs:
3159 3160 3161 3162 3163

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3164
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3165
                        # are treated as initialization ops that cause error.
3166
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3167 3168 3169 3170 3171
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3172
                            continue
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3184
                # TODO already inited, do nothing, should log a warning
3185 3186 3187
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3188
        return param
Y
Yu Yang 已提交
3189

Y
Yu Yang 已提交
3190
    def append_op(self, *args, **kwargs):
3191 3192 3193 3194 3195 3196
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3197
        if in_dygraph_mode():
3198
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3199
            type = kwargs.get("type", None)
3200 3201 3202
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3203
                type=type,
M
minqiyang 已提交
3204 3205
                inputs=None,
                outputs=None,
3206
                attrs=attrs)
3207

M
minqiyang 已提交
3208 3209 3210
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3211
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3212 3213

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3214
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3215 3216
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3217
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3218
        else:
3219 3220 3221 3222 3223 3224 3225 3226 3227
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
3228
            self.ops.append(op)
M
minqiyang 已提交
3229

3230 3231
        return op

W
Wu Yi 已提交
3232
    def _insert_op(self, index, *args, **kwargs):
3233 3234 3235 3236 3237 3238 3239 3240 3241
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3242
        self._sync_with_cpp()
F
fangshuixun007 已提交
3243
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3244

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3262 3263 3264 3265 3266 3267 3268 3269 3270
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3271 3272
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3273
        self.desc._remove_op(index, index + 1)
3274 3275
        del self.ops[index]

W
Wu Yi 已提交
3276
    def _slice_ops(self, start, end):
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3287
        return self.ops[start:end]
Y
Yancey1989 已提交
3288

W
Wu Yi 已提交
3289
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3290
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3291 3292
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3293
            op = Operator(
J
Jiabin Yang 已提交
3294
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3295

J
Jiabin Yang 已提交
3296
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3297
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3298 3299
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3300
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3301
        else:
3302 3303 3304 3305 3306 3307 3308 3309
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3310
            self.ops.insert(0, op)
3311

Y
Yu Yang 已提交
3312 3313
        return op

W
Wu Yi 已提交
3314
    def _sync_with_cpp(self):
3315
        """
3316 3317
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3318
        """
Q
Qiao Longfei 已提交
3319 3320 3321 3322 3323
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3324
        # sync variables removed from c++ end
3325
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3326
            if not self.desc.find_var(cpt.to_bytes(var)):
3327 3328
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3329
        # sync operators from cpp
3330 3331 3332 3333
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3350 3351 3352 3353 3354

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3355
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3356 3357 3358 3359 3360 3361 3362

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3376 3377 3378 3379
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3380
    def _copy_param_info_from(self, other):
3381
        """
3382 3383
        Copy the information of parameters from the other block.

3384
        Args:
3385 3386 3387 3388 3389
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3390 3391 3392 3393 3394

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3395 3396
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3397
        for p in other.iter_parameters():
3398 3399 3400
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3401 3402
                # if the Parameter is pruned, v may be None
                continue
3403
            assert isinstance(v, Variable)
3404
            new_p = None
L
Leo Chen 已提交
3405 3406
            if in_dygraph_mode():
                new_p = ParamBase(
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3418 3419
                new_p = Parameter(
                    block=self,
3420 3421 3422
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3423 3424
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3425 3426 3427 3428 3429 3430
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3431 3432
            self.vars[new_p.name] = new_p

3433
    def _clone_variable(self, var, force_persistable=True):
3434 3435
        """
        Clone a variable into current block.
3436

3437 3438
        Args:
            var: the variable to be cloned.
3439 3440 3441
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3442 3443

        Returns:
3444
            Variable: the new  variable cloned from 'var' in current block.
3445 3446
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3447 3448 3449 3450 3451
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3452 3453
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3454
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3455 3456 3457 3458 3459 3460
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3461
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3462 3463
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3464 3465 3466 3467 3468 3469 3470
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3471
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3472 3473
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3474
        return ret_var
3475

Y
Yu Yang 已提交
3476

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3572
    def remove_input_by_id(self, node_id):
3573 3574 3575 3576 3577 3578
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3579
        self.node.remove_input(node_id)
3580

3581
    def remove_input(self, node):
3582 3583 3584 3585
        """
        Remove a node from inputs.

        Args:
3586
            node(IrNode): the node being removed.
3587
        """
3588
        self.node.remove_input(node.node)
3589

3590
    def append_input(self, node):
3591 3592 3593 3594
        """
        Append a node in inputs.

        Args:
3595
            node(IrNode): the node being appended.
3596
        """
3597
        self.node.append_input(node.node)
3598 3599 3600 3601 3602 3603 3604 3605

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3606
    def remove_output_by_id(self, node_id):
3607 3608 3609 3610 3611 3612
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3613
        self.node.remove_output(node_id)
3614

3615
    def remove_output(self, node):
3616 3617 3618 3619
        """
        Remove a node from outputs.

        Args:
3620
            node(IrNode): the node being removed.
3621
        """
3622
        self.node.remove_output(node.node)
3623

3624
    def append_output(self, node):
3625 3626 3627 3628
        """
        Append a node in outputs.

        Args:
3629
            node(IrNode): the node being appended.
3630
        """
3631
        self.node.append_output(node.node)
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3679
            "The node variable description can not be None."
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3690
            "The node variable description can not be None."
3691 3692
        return self.node.var().persistable()

3693 3694 3695 3696 3697 3698 3699 3700
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3701
            "The node variable description can not be None."
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3712
            "The node variable description can not be None."
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3723
            "The node variable description can not be None."
3724 3725
        return self.node.var().shape()

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3773
            "The node operator description can not be None."
3774 3775
        self.node.op()._rename_input(old_input_name, new_input_name)

3776 3777 3778 3779 3780 3781 3782 3783 3784
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3785
            "The node operator description can not be None."
3786 3787
        self.node.op()._rename_output(old_output_name, new_output_name)

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3799
            "The node operator description can not be None."
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3813
            "The node operator description can not be None."
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3824
            "The node operator description can not be None."
3825 3826
        return self.node.op().set_type(new_type)

3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3842
            "The node operator description can not be None."
3843 3844 3845 3846
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3847
                all(isinstance(v, Block) for v in val):
3848 3849
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3850
                isinstance(val, core.ProgramDesc):
3851 3852 3853 3854
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3855 3856 3857 3858 3859 3860 3861 3862
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3863
            "The node operator description can not be None."
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3874
            "The node operator description can not be None."
3875 3876
        return self.node.op().output_arg_names()

3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3898 3899
class IrGraph(object):
    """
3900
    Python IrGraph. Beneath it is a core.Graph, which is used for
3901
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3902 3903
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3904 3905 3906 3907
    """

    def __init__(self, graph, for_test=False):
        """
3908 3909
        Construct an IrGraph using core.Graph.

3910 3911 3912 3913 3914 3915 3916 3917 3918
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3919 3920 3921 3922
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3923 3924 3925
        Warns:
            The method only clones the graph structure, not its attributes.

3926 3927 3928
        Returns:
            IrGraph: A new and duplicated graph.
        """
3929
        g = self.graph.clone()
3930 3931
        return IrGraph(g, self._for_test)

3932
    def is_test(self):
3933 3934 3935
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3936 3937
        return self._for_test

W
WangZhen 已提交
3938
    def all_nodes(self):
3939 3940 3941
        """
        Return all nodes included in the graph as a set.
        """
3942
        return {IrNode(node) for node in self.graph.nodes()}
3943

3944
    def all_var_nodes(self):
3945 3946 3947
        """
        Return all variable nodes included in the graph as a set.
        """
3948
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3949

3950
    def all_persistable_nodes(self):
3951 3952 3953
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3954 3955 3956 3957 3958
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3959
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3960

3961
    def all_op_nodes(self):
3962 3963 3964
        """
        Return all operator nodes included in the graph as a set.
        """
3965
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3966

3967
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3979
            IrVarNode: the created persistable variable node.
3980
        """
3981 3982 3983 3984 3985
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3986
        return IrVarNode(self.graph.create_var_node(var_desc))
3987 3988

    def create_var_node(self, name, var_type, shape, var_dtype):
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4000
            IrVarNode: the created variable node.
4001 4002
        """

4003 4004 4005 4006
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4007
        return IrVarNode(self.graph.create_var_node(var_desc))
4008

4009 4010 4011 4012 4013 4014
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4015
    def create_var_node_from_desc(self, var_desc):
4016 4017 4018 4019 4020 4021 4022 4023
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4024
            IrVarNode: the created variable node.
4025
        """
4026
        return IrVarNode(self.graph.create_var_node(var_desc))
4027 4028

    def create_op_node(self, op_type, attrs, inputs, outputs):
4029 4030 4031 4032 4033 4034 4035
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4036
            outputs(dict): the outputs of the operator node.
4037 4038

        Returns:
4039
            IrOpNode: the created operator node.
4040
        """
4041 4042
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4043
        for attr, value in six.iteritems(attrs):
4044
            self._update_desc_attr(op_desc, attr, value)
4045
        for input_name, var_nodes in six.iteritems(inputs):
4046 4047 4048 4049
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4050
        for output_name, var_nodes in six.iteritems(outputs):
4051 4052 4053 4054
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4055
        return IrOpNode(self.graph.create_op_node(op_desc))
4056 4057

    def create_op_node_from_desc(self, op_desc):
4058 4059 4060 4061 4062 4063 4064
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4065
            IrOpNode: the created operator node.
4066
        """
4067
        return IrOpNode(self.graph.create_op_node(op_desc))
4068 4069

    def update_input_link(self, old_input_node, new_input_node, op_node):
4070 4071 4072 4073
        """
        Update the input's link of a operator node.

        Args:
4074 4075 4076
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4077
        """
4078
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4079
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4080
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4081 4082 4083 4084
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4085
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4086

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4097
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4098
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4099 4100 4101 4102 4103 4104
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4105
    def link_to(self, node_in, node_out):
4106 4107 4108 4109
        """
        Connect two nodes.

        Args:
4110 4111
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4112
        """
4113
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
4114
            'The two arguments(node_in&node_out) must be in the graph nodes.'
4115 4116
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4117 4118

    def safe_remove_nodes(self, remove_nodes):
4119 4120 4121 4122 4123 4124 4125
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4126
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4127 4128 4129 4130
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4131 4132
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4133

Z
Zhen Wang 已提交
4134 4135 4136 4137 4138 4139 4140 4141
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4142
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4143 4144 4145 4146
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4147
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4148 4149 4150
                        ]
                    else:
                        var_nodes[each_var_name].append(
4151 4152
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4153 4154
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4155
    def has_circle(self):
4156 4157 4158 4159 4160 4161
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4162 4163 4164
        return core.has_circle(self.graph)

    def graph_num(self):
4165 4166 4167 4168 4169 4170
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4171 4172 4173
        return core.graph_num(self.graph)

    def topology_sort(self):
4174 4175 4176
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4177
        Notes: the `graph` can not contain a circle.
4178 4179

        Returns:
Z
Zhen Wang 已提交
4180
            list(IrNode): nodes in topology order.
4181
        """
4182
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4183
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4184 4185

    def build_adjacency_list(self):
4186 4187 4188 4189
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4190
            dict{IrNode: set(IrNode)}: the adjacency list.
4191
        """
4192 4193 4194 4195 4196
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4197

4198 4199 4200 4201 4202 4203 4204 4205
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4206
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4207 4208 4209 4210 4211
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4212 4213
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4214 4215 4216
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4217 4218 4219 4220 4221
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4222
        remove_ctr_vars = set()
4223
        if remove_ctr_var:
4224
            for node in self.all_var_nodes():
4225 4226 4227
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4228 4229
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4230 4231
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4232 4233 4234 4235 4236 4237
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4238 4239 4240 4241
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4242 4243
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4244 4245 4246 4247 4248 4249 4250
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4251 4252 4253
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4254
        WARN: When the graph includes backward operator nodes, the
4255 4256 4257 4258 4259 4260
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4261
        convert_pass = core.get_pass('graph_to_program_pass')
4262 4263
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4264 4265 4266 4267
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4295
class Program(object):
D
dzhwinter 已提交
4296
    """
4297
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4298
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4299
    it will contain nested block.
4300

J
Jiabin Yang 已提交
4301 4302 4303
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4304

J
Jiabin Yang 已提交
4305
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4306
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4307 4308 4309 4310 4311 4312 4313
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4314
    **Notes**:
4315 4316 4317
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4318 4319

    Returns:
J
Jiabin Yang 已提交
4320
        Program: An empty Program.
D
dzhwinter 已提交
4321 4322

    Examples:
4323 4324
        .. code-block:: python

4325 4326 4327 4328
            import paddle
            import paddle.static as static

            paddle.enable_static()
4329

4330 4331 4332 4333 4334
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4335
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4336 4337 4338

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4339 4340 4341

    """

4342 4343
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4344 4345
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4346 4347
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4348
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4349
        self.__op_role_var = []
T
tangwei12 已提交
4350

4351 4352
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4353
        self._is_distributed = False
4354
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4355
        self._is_chief = False
4356 4357 4358
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4359
        self._endpoints = []
4360 4361 4362
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4363
        self._trainers_endpoints = []
4364
        # the distributed lookup table names
T
tangwei12 已提交
4365
        self._distributed_lookup_table = None
4366 4367 4368

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4369 4370
        self._use_lamb = False

4371 4372 4373
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4374

4375 4376 4377
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4378
        self._program_config = None
4379

H
hutuxian 已提交
4380 4381 4382
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4383 4384 4385
        # appending gradients times
        self._appending_grad_times = 0

4386 4387 4388 4389
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4390 4391 4392
        # compiled program, i.e. Graph
        self._graph = None

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4403 4404
                import paddle
                import paddle.static as static
4405

4406 4407 4408
                paddle.enable_static()

                prog = static.default_main_program()
4409 4410 4411 4412 4413
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4414
                prog1 = static.default_main_program()
4415 4416 4417 4418 4419 4420 4421 4422
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4423
    @property
4424
    def _op_role(self):
Y
yuyang18 已提交
4425 4426 4427 4428 4429 4430 4431 4432
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4433
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4434 4435 4436 4437
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4438 4439
        return self._current_role

4440 4441
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4442 4443 4444
        self._current_role = role

    @property
4445
    def _op_role_var(self):
Y
yuyang18 已提交
4446
        """
4447
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4448

4449
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4450 4451 4452

        Notes: This is a very low-level API. Users should not use it directly.
        """
4453
        return self.__op_role_var
Y
yuyang18 已提交
4454

4455
    @signature_safe_contextmanager
4456 4457 4458 4459 4460
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4461 4462 4463 4464
        try:
            yield
        finally:
            self._current_role = tmp_role
4465

S
rename  
sneaxiy 已提交
4466
    @signature_safe_contextmanager
W
Wu Yi 已提交
4467
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4468 4469 4470 4471 4472 4473 4474
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4475
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4476 4477 4478

        Examples:

4479
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4480
            >>> p, g = backward(...)
W
Wu Yi 已提交
4481
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4482 4483
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4484
        tmp_role = self._current_role
4485
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4486

Y
yuyang18 已提交
4487 4488
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4489
        self.__op_role_var = [
4490 4491 4492
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4493 4494 4495 4496 4497
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4498

S
rename  
sneaxiy 已提交
4499
    @signature_safe_contextmanager
X
Xin Pan 已提交
4500
    def _lr_schedule_guard(self, is_with_opt=False):
4501 4502 4503 4504 4505 4506 4507
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4508 4509 4510 4511
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4512 4513 4514

        Examples:

4515
            >>> import paddle.fluid as fluid
4516 4517 4518 4519
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4520 4521

        tmp_role = self._current_role
4522
        tmp_var = self.__op_role_var
4523

4524 4525
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4526 4527
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4528
        # TODO(typhoonzero): how to set target learning rate var
4529
        self.__op_role_var = []
4530 4531 4532 4533 4534
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4535

4536
    def __str__(self):
Y
yuyang18 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4566 4567
            import paddle
            import paddle.static as static
4568

4569 4570 4571
            paddle.enable_static()

            cur_program = static.Program()
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4588
            program_str += '\n'
4589
        return program_str
Y
Yang Yang(Tony) 已提交
4590

F
fengjiayi 已提交
4591 4592 4593
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4594

J
Jiabin Yang 已提交
4595 4596 4597
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4598

J
Jiabin Yang 已提交
4599
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4600

H
haowang101779990 已提交
4601
        Returns:
J
Jiabin Yang 已提交
4602
            str: The debug string describe current Program.
Y
yuyang18 已提交
4603 4604

        Raises:
J
Jiabin Yang 已提交
4605
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4606

4607 4608 4609
        Examples:
            .. code-block:: python

4610 4611 4612 4613
                import paddle
                import paddle.static as static

                paddle.enable_static()
4614

4615 4616 4617
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4618
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4619
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4620
                print("program string without detail: {}".format(prog_string))
4621
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4622
        """
4623 4624 4625 4626 4627 4628 4629 4630 4631
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4632 4633 4634 4635 4636 4637
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4638 4639
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4640 4641
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4642

W
Wu Yi 已提交
4643
    def _get_desc(self):
Y
yuyang18 已提交
4644 4645 4646 4647 4648 4649 4650
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4651 4652
        return self.desc

X
version  
Xin Pan 已提交
4653 4654 4655
    def _version(self):
        return self.desc._version()

4656
    def clone(self, for_test=False):
Y
yuyang18 已提交
4657
        """
4658 4659 4660 4661
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4662

4663
        Create a new Program with forward content of original one when ``for_test=True``.
4664
        Create a new Program as same as the original one when ``for_test=False``.
4665

4666
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4667 4668 4669
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4670

4671 4672
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4673 4674
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4675
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4676

J
Jiabin Yang 已提交
4677
        For Example:
4678
          ::
L
Luo Tao 已提交
4679

4680 4681 4682 4683 4684 4685
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4686
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4687
            loss = paddle.mean(pred)
4688
            # Here we use clone before Momentum
4689 4690
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4691
            optimizer.minimize(loss)
4692

J
Jiabin Yang 已提交
4693
        Args:
4694

4695 4696
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4697

J
Jiabin Yang 已提交
4698
        Returns:
4699
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4700

Y
yuyang18 已提交
4701 4702 4703

        Examples:

4704 4705 4706 4707 4708 4709 4710
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4727
            1. To clone a test program, the sample code is:
4728 4729 4730
                .. code-block:: python

                    import six
4731 4732 4733 4734 4735 4736
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4749 4750
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4751 4752 4753

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4754 4755 4756
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4757
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4758 4759
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4760
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4761 4762
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4763
                            test_program = train_program.clone(for_test=True)
4764
                    print_prog(test_program)
J
Jiabin Yang 已提交
4765 4766 4767 4768

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4769
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4770 4771 4772 4773
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4774 4775 4776
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4777 4778 4779
                            sgd.minimize(avg_loss)


4780
            2. The clone method can be avoid if you create program for training and program for testing individually.
4781 4782 4783
                .. code-block:: python

                    import six
4784 4785 4786 4787 4788 4789
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4801

4802
                    def network():
4803
                        img = static.data(name='image', shape=[None, 784])
4804
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4805 4806
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4807
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4808 4809
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4810 4811
                        return avg_loss

4812 4813 4814 4815 4816
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4817
                            avg_loss = network()
4818
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4819
                            sgd.minimize(avg_loss)
4820
                    # the test startup program is not used.
4821 4822
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4823 4824
                            avg_loss = network()
                    print_prog(test_program_2)
4825

4826
            The two code snippets above will generate and print same programs.
4827
        """
4828

T
tangwei12 已提交
4829
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4830 4831 4832
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4833
        pruned_origin_block_id_map = None
4834
        if for_test:
4835 4836 4837 4838 4839 4840 4841 4842 4843
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4844
        else:
4845
            p = Program()
G
gongweibao 已提交
4846 4847
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4848
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4849 4850 4851
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4852 4853

            p._current_role = self._current_role
4854
            p.__op_role_var = self.__op_role_var
4855
            p._appending_grad_times = self._appending_grad_times
4856 4857
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4858

T
tangwei12 已提交
4859
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4860
            # its desc.
W
Wu Yi 已提交
4861
            p._sync_with_cpp()
4862

W
Wu Yi 已提交
4863
        p._copy_param_info_from(self)
4864
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4865
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4866
        return p
4867

4868
    def _prune(self, targets):
Y
yuyang18 已提交
4869 4870 4871 4872 4873 4874 4875 4876
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4877
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4878 4879 4880 4881
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4882
        """
4883
        return self._prune_with_input([], targets)
4884 4885

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4886
        """
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4897
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4898 4899 4900 4901 4902 4903
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4904
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4905 4906 4907
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4908 4909
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4910 4911
        if not isinstance(targets, list):
            targets = [targets]
4912 4913 4914

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4915 4916 4917
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4918

4919 4920 4921 4922
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4923 4924 4925
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4926
                else:
4927 4928 4929
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4930 4931 4932 4933 4934 4935 4936 4937

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4938 4939 4940 4941 4942 4943 4944 4945 4946
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4947
                        # Skip optimize op except for optimize op in targets,
4948 4949 4950 4951 4952 4953
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4954 4955 4956 4957 4958 4959 4960 4961
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4962

4963
        res = Program()
4964 4965 4966
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4967 4968 4969
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4970
        res._sync_with_cpp()
4971 4972 4973 4974 4975

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4976 4977
        return res

X
Xin Pan 已提交
4978
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4979
        """
F
fengjiayi 已提交
4980 4981 4982 4983 4984
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4985
        3. change the :code:`is_test`
Y
yuyang18 已提交
4986 4987 4988
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4989
        Args:
X
Xin Pan 已提交
4990 4991
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4992

Y
yuyang18 已提交
4993 4994 4995 4996 4997 4998
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4999
        res = Program()
5000
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5001 5002 5003 5004

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5005
        if prune_read_op:
5006 5007 5008 5009 5010 5011 5012 5013 5014
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5015
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5016 5017

        # change all `is_test` attributes to True
M
minqiyang 已提交
5018
        for i in six.moves.range(res.desc.num_blocks()):
5019
            block = res.desc.block(i)
M
minqiyang 已提交
5020
            for j in six.moves.range(block.op_size()):
5021 5022
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5023
                    op._set_attr('is_test', True)
M
minqiyang 已提交
5024 5025 5026
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5027
        res._sync_with_cpp()
5028 5029
        return res

5030 5031
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5032
        """
5033 5034 5035
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5036

5037 5038
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5039

J
Jiabin Yang 已提交
5040
        Args:
Y
yuyang18 已提交
5041

J
Jiabin Yang 已提交
5042
            binary_str_type (str): the binary prootbuf string.
5043

J
Jiabin Yang 已提交
5044 5045
        Returns:
            Program: A deserialized Program.
5046 5047 5048 5049

        Examples:
            .. code-block:: python

5050 5051 5052 5053
                import paddle
                import paddle.static as static

                paddle.enable_static()
5054

5055 5056 5057 5058
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5059

5060
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5061

5062
                    z = paddle.matmul(x=x, y=y)
5063

5064 5065
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5066

5067
                    print(static.default_main_program())
5068
                    print(prog_restored)
Y
yuyang18 已提交
5069
        """
5070 5071
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5072
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5073
        p._sync_with_cpp()
5074
        return p
Y
Yu Yang 已提交
5075

5076
    @staticmethod
5077
    def _construct_from_desc(desc):
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5093 5094
    @property
    def random_seed(self):
Y
yuyang18 已提交
5095
        """
J
Jiabin Yang 已提交
5096
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5097 5098
        the random seed from random device.

5099 5100
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5101 5102 5103

        Returns:
            int64: Random seed in current Program
5104

5105 5106 5107 5108

        Examples:
            .. code-block:: python

5109 5110 5111
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5112

5113 5114 5115
                paddle.enable_static()

                prog = static.default_main_program()
5116
                random_seed = prog.random_seed
5117
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5118 5119 5120
                print(random_seed)
                ## 0
                ## the default random seed is 0
5121

5122
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5123
                prog.random_seed = 1
5124
                z_var = F.dropout(x_var, 0.7)
5125

5126
                print(prog.random_seed)
5127 5128
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5129
        """
D
dzhwinter 已提交
5130 5131
        return self._seed

Q
qiaolongfei 已提交
5132 5133
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5134
        """
5135 5136
        The number of :ref:`api_guide_Block_en`  in this Program.

5137 5138
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5139 5140 5141

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5142

5143 5144 5145 5146

        Examples:
            .. code-block:: python

5147 5148 5149 5150
                import paddle
                import paddle.static as static

                paddle.enable_static()
5151

5152
                prog = static.default_main_program()
5153 5154
                num_blocks = prog.num_blocks
                print(num_blocks)
5155

5156 5157
                # print result:
                # 1
Y
yuyang18 已提交
5158
        """
Q
qiaolongfei 已提交
5159 5160
        return self.desc.num_blocks()

D
dzhwinter 已提交
5161 5162 5163
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5164 5165 5166
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5167 5168
        self._seed = seed

Y
Yu Yang 已提交
5169
    def __repr__(self):
5170
        return self.__str__()
5171

Y
Yu Yang 已提交
5172
    def global_block(self):
Y
yuyang18 已提交
5173
        """
5174 5175
        .. note::
            This API has no effect in Dygraph mode.
5176 5177 5178

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5179 5180
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5181

5182 5183 5184 5185

        Examples:
            .. code-block:: python

5186 5187 5188 5189
                import paddle
                import paddle.static as static

                paddle.enable_static()
5190

5191
                prog = static.default_main_program()
5192 5193
                gb_block = prog.global_block()
                print(gb_block)
5194

Y
yuyang18 已提交
5195
        """
Y
Yu Yang 已提交
5196 5197
        return self.blocks[0]

Q
Qiao Longfei 已提交
5198
    def block(self, index):
Y
yuyang18 已提交
5199
        """
5200 5201
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5202

5203 5204
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5205 5206
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5207

J
Jiabin Yang 已提交
5208 5209
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5210 5211 5212 5213

        Examples:
            .. code-block:: python

5214 5215 5216 5217
                import paddle
                import paddle.static as static

                paddle.enable_static()
5218

5219
                prog = static.default_main_program()
5220 5221
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5222
        """
Q
Qiao Longfei 已提交
5223 5224
        return self.blocks[index]

Y
Yu Yang 已提交
5225
    def current_block(self):
Y
yuyang18 已提交
5226
        """
5227 5228
        .. note::
            This API has no effect in Dygraph mode.
5229

J
Jiabin Yang 已提交
5230 5231
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5232

J
Jiabin Yang 已提交
5233 5234
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5235

5236 5237 5238
        Examples:
            .. code-block:: python

5239 5240 5241 5242
                import paddle
                import paddle.static as static

                paddle.enable_static()
5243

5244
                prog = static.default_main_program()
5245 5246
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5247
        """
Y
Yu Yang 已提交
5248 5249
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5250
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5251 5252 5253 5254 5255
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5256

Y
yuyang18 已提交
5257 5258 5259 5260 5261
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5262
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5263 5264 5265
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5266 5267 5268 5269
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5270
    def _rollback(self):
Y
yuyang18 已提交
5271 5272 5273 5274 5275
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5276 5277
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5278
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5289 5290 5291
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5292
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5293

W
Wu Yi 已提交
5294
    def _copy_param_info_from(self, other):
5295
        """
5296
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5297

Y
yuyang18 已提交
5298 5299 5300
        Notes: This is a very low level API. Users should not invoke it
        directly.

5301 5302 5303 5304 5305 5306 5307
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5308 5309 5310
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5311

W
Wu Yi 已提交
5312
        self.global_block()._copy_param_info_from(other.global_block())
5313

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5325 5326 5327
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5328 5329
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5330
        self._parameters_on_pservers = other._parameters_on_pservers
5331
        self._endpoints = other._endpoints
5332
        self._ps_endpoint = other._ps_endpoint
5333 5334
        self._distributed_lookup_table = other._distributed_lookup_table

5335
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5336 5337
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5338

Y
yuyang18 已提交
5339 5340 5341
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5342 5343
        Args:
            other(Program): Other program
5344 5345 5346 5347
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5348 5349 5350 5351 5352

        Returns:
            None
        """
        if not isinstance(other, Program):
5353 5354 5355
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5356

5357 5358 5359 5360 5361
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5362 5363 5364

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5365 5366
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5367
            for var in list(block.vars.values()):
5368 5369 5370 5371 5372 5373 5374
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5375

5376
    def list_vars(self):
Y
yuyang18 已提交
5377
        """
5378
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5379

J
Jiabin Yang 已提交
5380
        Returns:
5381
            iterable Tensors: The Generator will yield every Tensor in this program.
5382 5383 5384 5385

        Examples:
            .. code-block:: python

5386 5387
                import paddle
                import paddle.static as static
5388

5389 5390 5391 5392 5393
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5394 5395
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5396

5397 5398
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5399
        """
5400
        for each_block in self.blocks:
5401
            for each_var in list(each_block.vars.values()):
5402 5403
                yield each_var

5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5414 5415 5416 5417
                import paddle
                import paddle.static as static

                paddle.enable_static()
5418

5419 5420
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5421
                hidden = static.nn.fc(x=data, size=10)
5422 5423
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5424 5425 5426 5427 5428 5429 5430

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5431 5432
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5610

5611
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5612
class Parameter(Variable):
5613
    """
5614
    Parameter is derived from Variable. A parameter is a persistable
5615
    Variable, and will be updated by optimizers after each iteration.
5616
    The training of a neural network is essentially the updating of
5617 5618
    its parameters.

5619
    Relative to a general Variable, a Parameter has several its own
5620 5621
    member variables:

5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5632 5633
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5634 5635
    """

5636 5637 5638 5639 5640 5641
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5642 5643 5644 5645 5646
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5647
        if len(shape) == 0:
5648 5649
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5650 5651 5652

        for each in shape:
            if each < 0:
5653 5654 5655
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5656 5657

        Variable.__init__(
5658 5659 5660 5661 5662 5663 5664
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5665 5666 5667 5668
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5669 5670
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5671
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5672

5673 5674
        self.need_clip = kwargs.get('need_clip', True)

5675 5676
        self.is_distributed = False

F
fengjiayi 已提交
5677
    def __str__(self):
5678
        return self._to_readable_code()
F
fengjiayi 已提交
5679

F
update  
fengjiayi 已提交
5680 5681 5682
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5683

F
update  
fengjiayi 已提交
5684 5685 5686 5687 5688 5689 5690 5691
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5692 5693 5694 5695 5696 5697 5698 5699 5700
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5701 5702 5703 5704 5705 5706
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5707
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5708
            for attr_name in additional_attr:
5709 5710
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5711 5712
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5713 5714 5715 5716
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5717

5718 5719
class ParamBase(core.VarBase):
    """
5720 5721 5722
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5723 5724 5725
    The training of a neural network is essentially the updating of
    its ParamBase.

5726
    Relative to a general Tensor, a ParamBase has several its own
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5739 5740
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5771 5772
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5773 5774 5775 5776 5777 5778 5779

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5780 5781
        self.need_clip = kwargs.get('need_clip', True)

5782
        self.is_distributed = False
5783
        # self.block = default_main_program().global_block()
5784

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5798
    def __str__(self):
5799
        """
5800
        Convert a ParamBase object to a readable string.
5801

5802
        Returns(str): A readable string.
5803 5804 5805 5806

        Examples:
            .. code-block:: python

5807
                import paddle
5808 5809 5810 5811 5812 5813 5814
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5815
        """
5816 5817
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5818

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5830

5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5849 5850 5851
    __repr__ = __str__


Y
Yu Yang 已提交
5852
# program is a global instance.
Y
Yu Yang 已提交
5853 5854
_main_program_ = Program()
_startup_program_ = Program()
5855

5856

5857
def default_startup_program():
Y
Yu Yang 已提交
5858
    """
Y
yuyang18 已提交
5859 5860
    Get default/global startup program.

5861 5862
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5863

5864 5865
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5866

5867 5868
    Returns:
        Program: current default startup program.
5869

5870
    Returns type: 
5871 5872 5873 5874

    Examples:
        .. code-block:: python

5875
            import paddle
5876

5877
            paddle.enable_static()
5878 5879 5880 5881
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5882
    """
Y
Yu Yang 已提交
5883
    return _startup_program_
5884

5885

5886
def default_main_program():
Y
Yu Yang 已提交
5887
    """
5888
    This API can be used to get ``default main program`` which store the 
5889
    descriptions of Ops and tensors.
T
tangwei12 已提交
5890

5891
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5892
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5893

5894 5895
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5896
    :code:`default_main_program` when the program is not specified.
5897

5898
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5899

Y
Yu Yang 已提交
5900
    Returns:
5901
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5902 5903 5904 5905

    Examples:
        ..  code-block:: python

5906
            import paddle
5907

5908
            paddle.enable_static()
5909
            # Sample Network:
5910 5911 5912
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5913

5914 5915 5916
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5917
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5918
    """
Y
Yu Yang 已提交
5919
    return _main_program_
Y
Yu Yang 已提交
5920 5921 5922 5923 5924


def switch_main_program(program):
    """
    Switch the main program to a new program.
5925

Y
Yu Yang 已提交
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5940
    Switch the startup program to a new program
Y
Yu Yang 已提交
5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5953
@signature_safe_contextmanager
Y
Yu Yang 已提交
5954 5955
def program_guard(main_program, startup_program=None):
    """
5956 5957
    :api_attr: Static Graph

5958 5959 5960
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5961

G
guofei 已提交
5962
    Args:
5963 5964
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5965 5966 5967 5968
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5969
    Examples:
5970
       .. code-block:: python
T
tangwei12 已提交
5971

5972
          import paddle
Y
yuyang18 已提交
5973

5974 5975 5976 5977 5978
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5979
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5980 5981 5982

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5983

Y
Yu Yang 已提交
5984
    Examples:
5985
       .. code-block:: python
Y
yuyang18 已提交
5986

5987
          import paddle
5988

5989 5990 5991 5992 5993
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
5994

Y
Yu Yang 已提交
5995
    """
5996
    from .data_feeder import check_type
5997 5998
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5999 6000
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6001
        check_type(startup_program, 'startup_program', Program,
6002
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
6003
        startup_program = switch_startup_program(startup_program)
6004 6005 6006 6007 6008 6009
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6010 6011


W
Wu Yi 已提交
6012
def _get_var(name, program=None):
X
xuwei06 已提交
6013
    """
Y
yuyang18 已提交
6014
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6015

X
xuwei06 已提交
6016 6017 6018
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6019
        If None, default_global_program() will be used.
X
xuwei06 已提交
6020 6021 6022 6023 6024 6025 6026

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6027
    assert isinstance(program, Program)
X
xuwei06 已提交
6028 6029

    return program.global_block().var(name)
6030 6031


S
rename  
sneaxiy 已提交
6032
@signature_safe_contextmanager
L
lujun 已提交
6033 6034
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6035
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6036
    _dygraph_tracer_ = tracer
6037
    core._switch_tracer(tracer)
M
minqiyang 已提交
6038

6039 6040 6041
    try:
        yield
    finally:
6042 6043
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6044 6045


S
rename  
sneaxiy 已提交
6046
@signature_safe_contextmanager
L
lujun 已提交
6047
def _dygraph_place_guard(place):
6048 6049 6050
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6051

6052 6053
    _set_dygraph_tracer_expected_place(place)

6054 6055 6056
    try:
        yield
    finally:
6057
        _global_expected_place_ = tmp_place
6058
        _set_dygraph_tracer_expected_place(tmp_place)
6059 6060


6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6077 6078
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6079 6080 6081 6082 6083 6084 6085 6086 6087
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6088
            import paddle
6089

Z
Zhang Ting 已提交
6090 6091 6092
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6093
            if support_gpu:
Z
Zhang Ting 已提交
6094
                place = paddle.CUDAPlace(0)
6095 6096

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6097 6098 6099
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6100

Z
Zhang Ting 已提交
6101
            with paddle.static.device_guard("cpu"):
6102
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6103 6104
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6105
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6106
                out = paddle.reshape(data1, shape=shape)
6107

Z
Zhang Ting 已提交
6108 6109
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6110 6111 6112
            result = exe.run(fetch_list=[out])
    """

6113 6114 6115 6116 6117
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6118 6119 6120 6121
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
6122 6123
    if index:
        device = ":".join([device, index])
6124
    pre_device = switch_device(device)
6125 6126 6127 6128
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6196 6197 6198 6199 6200 6201 6202


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6203
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6204 6205 6206 6207 6208 6209 6210 6211 6212
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6213

6214 6215 6216
    if (place == "device"):
        return core.Place()

6217
    # GPU
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6233 6234

    # XPU
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6258
    raise ValueError(
6259 6260
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret