framework.py 127.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
C
chengduo 已提交
47
    'is_compiled_with_cuda',
48
]
Y
Yu Yang 已提交
49

Q
qiaolongfei 已提交
50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
56 57
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
58 59


L
lujun 已提交
60
def in_dygraph_mode():
L
lujun 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
74
    return _dygraph_tracer_ is not None
75 76


L
lujun 已提交
77 78
def _dygraph_tracer():
    return _dygraph_tracer_
79

W
Wu Yi 已提交
80

M
minqiyang 已提交
81
def _current_expected_place():
L
lujun 已提交
82
    return _dygraph_current_expected_place_
M
minqiyang 已提交
83 84


S
sneaxiy 已提交
85
def _cpu_num():
86
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
87 88 89 90
        sys.stderr.write(
            'The CPU_NUM is not specified, you should set CPU_NUM in '
            'the environment variable list, i.e export CPU_NUM=1. CPU_NUM '
            'indicates that how many CPUPlace are used in the current task.\n'
91
            '!!! The default number of CPUPlaces is 1.\n\n')
C
chengduo 已提交
92
        os.environ['CPU_NUM'] = str(1)
93
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
94 95 96 97 98 99 100 101 102 103
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
104 105


C
chengduo 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
121
def cuda_places(device_ids=None):
L
lujun 已提交
122
    """
S
add doc  
sneaxiy 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
142 143 144 145 146 147 148

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
149 150 151
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
152
        device_ids = _cuda_ids()
S
sneaxiy 已提交
153 154 155 156 157 158
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
159
    """
S
add doc  
sneaxiy 已提交
160 161 162 163
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
164 165
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
166 167 168 169 170 171

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
172 173 174 175 176 177 178

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
179 180 181 182 183 184
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
185
    """
S
add doc  
sneaxiy 已提交
186 187 188 189 190 191 192 193 194 195 196 197
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
198 199 200 201 202 203 204 205 206

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
207 208 209 210 211 212 213
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
240
@signature_safe_contextmanager
241 242 243 244 245 246 247 248 249 250 251 252
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
253

254 255 256 257 258 259 260 261 262 263 264
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
284 285 286
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
287 288 289 290


def grad_var_name(var_name):
    """
291 292
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
293 294 295
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
296

297
def convert_np_dtype_to_dtype_(np_dtype):
298 299
    """
    Convert the data type in numpy to the data type in Paddle
300

301
    Args:
302
        np_dtype(np.dtype): the data type in numpy.
303

304 305
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
306 307

    """
308 309
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
310
        return core.VarDesc.VarType.FP32
311
    elif dtype == np.float64:
312
        return core.VarDesc.VarType.FP64
313
    elif dtype == np.float16:
314
        return core.VarDesc.VarType.FP16
315
    elif dtype == np.int32:
316
        return core.VarDesc.VarType.INT32
317
    elif dtype == np.int16:
318
        return core.VarDesc.VarType.INT16
319
    elif dtype == np.int64:
320
        return core.VarDesc.VarType.INT64
321
    elif dtype == np.bool:
322
        return core.VarDesc.VarType.BOOL
323 324
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
325 326
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
327 328
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
329
    else:
M
minqiyang 已提交
330
        raise ValueError("Not supported numpy dtype %s" % dtype)
331 332 333


def dtype_is_floating(dtype):
334 335 336
    """
    Check the data type is floating or not.
    Args:
337
        dtype(np.dtype|core.VarDesc.VarType): data type.
338 339 340 341 342
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
343
    if not isinstance(dtype, core.VarDesc.VarType):
344 345
        dtype = convert_np_dtype_to_dtype_(dtype)

346 347 348 349
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
350 351


Y
Yang Yang(Tony) 已提交
352
def _debug_string_(proto, throw_on_error=True):
353 354 355 356 357 358 359 360 361 362 363
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
364
    error_fields = list()
Y
Yang Yang(Tony) 已提交
365
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
366 367
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
368 369 370
    return proto.__str__()


X
Xin Pan 已提交
371
class Variable(object):
372
    """
373 374 375
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
376
    two variables in different blocks could have the same name.
377

378
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
379
    and usages. Please refer to the framework.proto for details.
380

381
    Most of a Variable's member variables can be setted to be None. It mean
382
    it is not available or will be specified later.
383 384

    Args:
385
        block(Block): The block that the variable belongs to.
386 387
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
388 389
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
390
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
391
            Some kinds of variable do not contain shape, just set it to None.
392 393 394
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
395
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
396
            series data.
397
            Default: None
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
420 421
    """

Y
Yu Yang 已提交
422 423
    def __init__(self,
                 block,
Y
Yu Yang 已提交
424
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
425 426 427 428
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
429
                 capacity=None,
Q
QI JUN 已提交
430
                 persistable=None,
F
fengjiayi 已提交
431
                 error_clip=None,
Y
Yu Yang 已提交
432
                 stop_gradient=False,
F
fengjiayi 已提交
433
                 is_data=False,
Y
Yu Yang 已提交
434
                 **kwargs):
Y
Yu Yang 已提交
435 436
        self.block = block
        if name is None:
Y
Yu Yang 已提交
437
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
438

Y
Yu Yang 已提交
439
        if dtype is not None:
440
            if not isinstance(dtype, core.VarDesc.VarType):
441
                dtype = convert_np_dtype_to_dtype_(dtype)
442

L
lujun 已提交
443
        if in_dygraph_mode():
M
minqiyang 已提交
444
            # record vars in tracer rather than blocks
M
minqiyang 已提交
445 446
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
447 448 449
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
450 451
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
452
            if persistable:
L
lujun 已提交
453
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
454
            self.op = None
M
minqiyang 已提交
455
        else:
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
528
            self.block.vars[name] = self
529
            self.op = None
530
            self._stop_gradient = stop_gradient
531
            self.is_data = is_data
Y
Yu Yang 已提交
532

533
    def numpy(self):
M
minqiyang 已提交
534
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
535
        return np.array(new_ivar.value().get_tensor())
536

537 538
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
539
        if backward_strategy is None:
540 541
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
542 543 544

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
545

546
    def gradient(self):
547 548
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
549

550
    def clear_gradient(self):
X
Xin Pan 已提交
551
        self._ivar._clear_gradient()
X
Xin Pan 已提交
552

553
    def __str__(self):
Y
Yang Yang(Tony) 已提交
554 555
        return self.to_string(True)

F
update  
fengjiayi 已提交
556
    def to_string(self, throw_on_error, with_details=False):
557 558 559 560
        """
        Get debug string.

        Args:
561 562
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
563
            with_details(bool): more details about variables and parameters
564 565
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
566

567 568
        Returns:
            str: The debug string.
569
        """
L
lujun 已提交
570
        if in_dygraph_mode():
L
lujun 已提交
571
            # TODO(panyx0718): add more dygraph debug info.
572 573 574
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
575

F
update  
fengjiayi 已提交
576 577
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
578
        protostr = self.desc.serialize_to_string()
579
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
580 581 582 583
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
584 585
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
586
        return res_str
587 588 589

    __repr__ = __str__

590
    def set_desc(self, input):
591 592 593 594 595 596 597 598 599
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
600 601
        self.desc = input

602
    @property
603
    def stop_gradient(self):
L
lujun 已提交
604
        if in_dygraph_mode():
M
minqiyang 已提交
605 606
            return self._ivar.stop_gradient
        else:
607
            return self._stop_gradient
608

609 610
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
611
        if in_dygraph_mode():
M
minqiyang 已提交
612
            self._ivar.stop_gradient = s
613
        else:
614
            self._stop_gradient = s
615

616 617
    @property
    def persistable(self):
L
lujun 已提交
618
        if in_dygraph_mode():
619 620 621
            return self._ivar.persistable
        else:
            return self.desc.persistable()
622

Y
Yu Yang 已提交
623 624
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
625
        if in_dygraph_mode():
626 627 628
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
629

Y
Yu Yang 已提交
630 631
    @property
    def name(self):
L
lujun 已提交
632
        if in_dygraph_mode():
633 634 635
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
636

T
typhoonzero 已提交
637 638
    @name.setter
    def name(self, new_name):
L
lujun 已提交
639
        if in_dygraph_mode():
640 641 642
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
643

Y
Yu Yang 已提交
644 645 646
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
647
        if in_dygraph_mode():
648 649 650
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
651 652

    @property
F
fengjiayi 已提交
653
    def dtype(self):
L
lujun 已提交
654
        if in_dygraph_mode():
655 656 657
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
658 659 660

    @property
    def lod_level(self):
L
lujun 已提交
661
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
662 663
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
664
        return self.desc.lod_level()
Y
Yu Yang 已提交
665

Y
Yu Yang 已提交
666 667
    @property
    def type(self):
L
lujun 已提交
668
        if in_dygraph_mode():
669 670 671
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
672

W
Wu Yi 已提交
673
    def _set_error_clip(self, error_clip):
674 675 676 677 678 679 680 681 682
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
683 684
        self.error_clip = error_clip

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
772
    def _cloneVar(self, copy=False):
773 774
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
775 776
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
777 778 779 780
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
781
        new_var = self._cloneVar()
782 783 784 785 786 787 788 789 790 791
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
792
        new_var = self._cloneVar()
793 794 795 796 797 798 799 800 801 802
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
803
                return self._cloneVar(True)
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
822
                return self._cloneVar(True)
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
875
            else:
H
Hongyu Liu 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
                # int
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

        out = self
        if len(slice_axis) > 0:
            # append slice_op here

            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
                inputs={'Input': [out]},
                outputs={'Out': [slice_out_var]},
                attrs={
                    'axes': slice_axis,
                    'starts': slice_start,
                    'ends': slice_end,
                    'decrease_axis': decrease_axis
                })

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
919

Y
Yu Yang 已提交
920

F
fengjiayi 已提交
921 922 923
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
924

925 926
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
927 928 929 930
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
931
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
932 933 934 935 936
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
937 938 939 940
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
941 942 943 944 945 946 947 948 949
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
950
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
951 952 953 954 955 956
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
957 958 959 960 961 962 963 964
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
965 966
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
967 968
        return self.op_proto_map[type]

969 970 971 972
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
973
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
974 975
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
976 977
        }

F
fengjiayi 已提交
978

X
Xin Pan 已提交
979
class Operator(object):
980
    """
981 982 983 984 985 986 987
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
988
        type(str): The type of operator. Default None.
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1009
        Block.append_op or Block._prepend_op instead.
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1020
    """
1021
    OP_WITHOUT_KERNEL_SET = {
1022 1023
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1024 1025 1026
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id',
        'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
        'c_sync_comm_stream'
1027
    }
1028

Y
Yu Yang 已提交
1029 1030
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1031
                 desc,
Y
Yu Yang 已提交
1032 1033 1034
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1035
                 attrs=None):
L
lujun 已提交
1036
        if in_dygraph_mode():
1037 1038
            if type is None:
                raise ValueError(
1039
                    "`type` to initialized an Operator can not be None.")
1040
            self.iop = core.OpBase(type)
M
minqiyang 已提交
1041
            self.previous_ops = []
M
minqiyang 已提交
1042

M
minqiyang 已提交
1043
            self.attrs = attrs if attrs else {}
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1058
                )] = self.block.program._op_role
1059 1060 1061

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1062 1063
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1064 1065 1066 1067 1068 1069 1070 1071

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1072
                    "`type` to initialized an Operator can not be None.")
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1104
                        for index, arg in enumerate(in_args):
1105 1106 1107 1108
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1109
                            elif isinstance(arg, Variable):
1110
                                in_arg_names.append(cpt.to_text(arg.name))
1111 1112 1113 1114
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1141
                        if not in_dygraph_mode():
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1161
    def _has_kernel(self, op_type):
1162 1163
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1164
    def to_string(self, throw_on_error):
1165
        """
1166 1167
        Get debug string.

1168
        Args:
1169 1170
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1171

1172 1173
        Returns:
            str: The debug string.
1174 1175

        """
1176
        protostr = self.desc.serialize_to_string()
1177
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1178 1179 1180 1181
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1182 1183 1184

    __repr__ = __str__

F
fengjiayi 已提交
1185 1186
    @property
    def type(self):
L
lujun 已提交
1187
        if in_dygraph_mode():
1188 1189 1190
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1191 1192

    def input(self, name):
1193
        """
1194
        Get the input arguments according to the input parameter name.
1195

1196 1197
        Args:
            name(str): The input parameter name.
1198

1199 1200 1201
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1202
        """
F
fengjiayi 已提交
1203 1204
        return self.desc.input(name)

W
Wu Yi 已提交
1205
    def _rename_input(self, old_name, new_name):
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1216
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1217

W
Wu Yi 已提交
1218
    def _rename_output(self, old_name, new_name):
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1229
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1230

F
fengjiayi 已提交
1231 1232 1233 1234
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1235 1236 1237 1238 1239 1240 1241 1242
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1243
    def output(self, name):
1244
        """
1245
        Get output arguments by the output parameter name.
1246

1247 1248
        Args:
            name(str): The output parameter name.
1249

1250 1251 1252
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1253
        """
F
fengjiayi 已提交
1254 1255 1256 1257 1258 1259
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1260 1261 1262 1263 1264 1265 1266 1267
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1268
    def has_attr(self, name):
1269
        """
1270 1271
        Whether this Operator has the attribute with name or not.

1272
        Args:
1273
            name(str): the attribute name.
1274

1275 1276
        Returns:
            bool: True if has this attribute.
1277 1278

        """
F
fengjiayi 已提交
1279 1280 1281
        return self.desc.has_attr(name)

    def attr_type(self, name):
1282
        """
1283
        Get the type of attribute by attribute's name.
1284

1285 1286
        Args:
            name(str): the attribute name.
1287

1288 1289
        Returns:
            core.AttrType: the attribute type.
1290
        """
F
fengjiayi 已提交
1291 1292
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1293
    def _set_attr(self, name, val):
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1304 1305
        self._update_desc_attr(name, val)

1306 1307 1308
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1320 1321
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1322 1323
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1324
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1325 1326 1327 1328
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1329
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1330

F
fengjiayi 已提交
1331 1332 1333 1334 1335
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1336
        """
1337 1338
        Get the attribute by name.

1339
        Args:
1340
            name(str): the attribute name.
1341

1342 1343
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1344 1345
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1346
        return self.desc.attr(name)
Y
Yu Yang 已提交
1347

W
Wu Yi 已提交
1348
    def _block_attr_id(self, name):
1349
        """
G
gongweibao 已提交
1350
        Get the block attribute's id by name.
1351

1352 1353
        Args:
            name(str): the attribute name.
1354

1355 1356
        Returns:
            int: the block index.
1357
        """
W
Wu Yi 已提交
1358
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1359

W
Wu Yi 已提交
1360
    def _block_attr(self, name):
G
gongweibao 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1371
        id = self._block_attr_id(name)
G
gongweibao 已提交
1372 1373 1374
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1375
    def _blocks_attr(self, name):
G
gongweibao 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1386
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1387 1388 1389 1390 1391
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1392
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1403
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1404

J
JiayiFeng 已提交
1405
    def all_attrs(self):
F
fengjiayi 已提交
1406
        """
1407 1408 1409
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1410
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1411 1412 1413 1414
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1415 1416
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1417
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1418 1419 1420
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1421
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1422 1423 1424 1425
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1426 1427
        return attr_map

Y
Yu Yang 已提交
1428

Y
Yu Yang 已提交
1429
class Block(object):
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1444
        use `Program._create_block()` to create a block.
1445 1446 1447 1448

    Examples:
        .. code-block:: python

1449 1450 1451
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1452 1453 1454 1455 1456 1457 1458 1459 1460
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1461
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1462
        self.desc = program.desc.block(idx)
1463
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1464
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1465
        self.program = program
1466
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1467

1468
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1469 1470
        return self.to_string(True)

F
fengjiayi 已提交
1471 1472
    def to_string(self, throw_on_error, with_details=False):
        """
1473 1474
        Get debug string.

F
fengjiayi 已提交
1475 1476
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1477
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1478
            with_details(bool): more details about variables and parameters
1479 1480
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1481

1482 1483
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1484 1485 1486 1487
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1488
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1489 1490
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1491
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1492
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1493
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1494
            for op in self.ops:
F
fengjiayi 已提交
1495 1496
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1497 1498 1499
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1500 1501
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1502 1503
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1504 1505 1506

    __repr__ = __str__

Y
Yu Yang 已提交
1507 1508
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1509
        return self.desc.parent
Y
Yu Yang 已提交
1510

Y
Yu Yang 已提交
1511 1512 1513 1514
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1515
    def _set_forward_block_idx(self, idx):
1516 1517 1518 1519 1520 1521 1522 1523 1524
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1525
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1526

Y
Yu Yang 已提交
1527 1528
    @property
    def idx(self):
Y
Yu Yang 已提交
1529
        return self.desc.id
Y
Yu Yang 已提交
1530

Q
Qiao Longfei 已提交
1531
    def var(self, name):
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1545
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1546 1547 1548
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1549 1550
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1551
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1552
        return v
Q
Qiao Longfei 已提交
1553

X
Xin Pan 已提交
1554
    def _find_var_recursive(self, name):
1555 1556 1557 1558 1559 1560 1561
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1562
            Variable: the Variable with the giving name. Or None if not found.
1563
        """
Y
Yu Yang 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1588
        return None
Y
Yu Yang 已提交
1589

X
Xin Pan 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1609

Q
Qiao Longfei 已提交
1610
    def all_parameters(self):
1611
        return list(self.iter_parameters())
1612

1613
    def iter_parameters(self):
M
minqiyang 已提交
1614
        return (item[1] for item in six.iteritems(self.vars)
1615
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1616

Y
Yu Yang 已提交
1617
    def create_var(self, *args, **kwargs):
1618
        var = Variable(block=self, *args, **kwargs)
1619 1620
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1621
        return var
Y
Yu Yang 已提交
1622

Q
Qiao Longfei 已提交
1623 1624 1625
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1626
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1627 1628
        """
        Rename variable in vars and ops' inputs and outputs
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1641
        """
M
minqiyang 已提交
1642 1643
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1644

T
typhoonzero 已提交
1645
        if not self.has_var(name):
1646
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1647 1648
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1649
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1650 1651 1652 1653 1654 1655 1656
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1657
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1658 1659 1660 1661
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1662
        orig_var_type = v.type
M
minqiyang 已提交
1663
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1664
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1665
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1666
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1667 1668 1669 1670
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1671
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1672 1673 1674 1675 1676 1677 1678
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1679
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1680 1681
            var = Variable(
                self,
T
typhoonzero 已提交
1682
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1683 1684 1685 1686
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1687
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1688 1689 1690
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1691
        self._sync_with_cpp()
1692
        return var
T
typhoonzero 已提交
1693

W
Wu Yi 已提交
1694 1695
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1696
        self.desc._remove_var(cpt.to_bytes(name))
1697 1698
        del self.vars[name]

Y
Yu Yang 已提交
1699 1700
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1701
        param = Parameter(global_block, *args, **kwargs)
1702
        if 'initializer' in kwargs:
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1723
        return param
Y
Yu Yang 已提交
1724

Y
Yu Yang 已提交
1725
    def append_op(self, *args, **kwargs):
1726 1727 1728 1729 1730 1731
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1732
        if in_dygraph_mode():
1733 1734 1735
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1736 1737 1738 1739 1740
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1741

1742 1743 1744 1745
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1746 1747
                inputs=None,
                outputs=None,
1748
                attrs=attrs)
1749

M
minqiyang 已提交
1750 1751 1752
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1753
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1754 1755 1756 1757
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1758
        else:
1759 1760 1761 1762 1763 1764 1765 1766 1767
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1768
            self.ops.append(op)
M
minqiyang 已提交
1769

1770 1771
        return op

W
Wu Yi 已提交
1772
    def _insert_op(self, index, *args, **kwargs):
1773 1774 1775 1776 1777 1778 1779 1780 1781
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1782 1783
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1784 1785 1786 1787
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1788
    def _remove_op(self, index):
1789 1790 1791 1792 1793 1794 1795 1796 1797
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1798 1799
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1800 1801
        del self.ops[index]

W
Wu Yi 已提交
1802
    def _slice_ops(self, start, end):
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1813
        return self.ops[start:end]
Y
Yancey1989 已提交
1814

W
Wu Yi 已提交
1815
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1816
        if in_dygraph_mode():
1817 1818 1819 1820
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1821 1822 1823 1824 1825 1826 1827 1828
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1829
        else:
1830 1831 1832 1833 1834 1835 1836 1837
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1838
            self.ops.insert(0, op)
1839

Y
Yu Yang 已提交
1840 1841
        return op

W
Wu Yi 已提交
1842
    def _sync_with_cpp(self):
1843
        """
1844 1845
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1846
        """
Q
Qiao Longfei 已提交
1847 1848 1849 1850 1851
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1852
        # sync variables removed from c++ end
1853
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1854
            if not self.desc.find_var(cpt.to_bytes(var)):
1855 1856
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1857
        # sync operators from cpp
1858 1859 1860 1861
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1878 1879 1880 1881 1882

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1883
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1884 1885 1886 1887 1888 1889 1890

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1904 1905 1906 1907
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1908
    def _copy_param_info_from(self, other):
1909
        """
1910 1911
        Copy the information of parameters from the other block.

1912
        Args:
1913 1914 1915 1916 1917
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1918 1919 1920 1921 1922

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1923 1924
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1925
        for p in other.iter_parameters():
1926 1927 1928
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1929
                raise ValueError("_copy_param_info_from should be invoked with "
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1942
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1943
                error_clip=p.error_clip,
1944 1945 1946
                name=v.name)
            self.vars[new_p.name] = new_p

1947
    def _clone_variable(self, var, force_persistable=True):
1948 1949
        """
        Clone a variable into current block.
1950

1951 1952
        Args:
            var: the variable to be cloned.
1953 1954 1955
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1956 1957

        Returns:
1958
            Variable: the new  variable cloned from 'var' in current block.
1959 1960
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1961 1962 1963 1964 1965
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1966 1967
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1968
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1969 1970 1971 1972 1973 1974
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1975
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1976
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1977 1978 1979 1980 1981 1982 1983
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1984
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1985
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1986
        return ret_var
1987

Y
Yu Yang 已提交
1988

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2084
    def remove_input_by_id(self, node_id):
2085 2086 2087 2088 2089 2090
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2091
        self.node.remove_input(node_id)
2092

2093
    def remove_input(self, node):
2094 2095 2096 2097
        """
        Remove a node from inputs.

        Args:
2098
            node(IrNode): the node being removed.
2099
        """
2100
        self.node.remove_input(node.node)
2101

2102
    def append_input(self, node):
2103 2104 2105 2106
        """
        Append a node in inputs.

        Args:
2107
            node(IrNode): the node being appended.
2108
        """
2109
        self.node.append_input(node.node)
2110 2111 2112 2113 2114 2115 2116 2117

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2118
    def remove_output_by_id(self, node_id):
2119 2120 2121 2122 2123 2124
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2125
        self.node.remove_output(node_id)
2126

2127
    def remove_output(self, node):
2128 2129 2130 2131
        """
        Remove a node from outputs.

        Args:
2132
            node(IrNode): the node being removed.
2133
        """
2134
        self.node.remove_output(node.node)
2135

2136
    def append_output(self, node):
2137 2138 2139 2140
        """
        Append a node in outputs.

        Args:
2141
            node(IrNode): the node being appended.
2142
        """
2143
        self.node.append_output(node.node)
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2398 2399
class IrGraph(object):
    """
2400
    Python IrGraph. Beneath it is a core.Graph, which is used for
2401
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2402 2403
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2404 2405 2406 2407
    """

    def __init__(self, graph, for_test=False):
        """
2408 2409
        Construct an IrGraph using core.Graph.

2410 2411 2412 2413 2414 2415 2416 2417 2418
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2419 2420 2421 2422
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2423 2424 2425
        Warns:
            The method only clones the graph structure, not its attributes.

2426 2427 2428
        Returns:
            IrGraph: A new and duplicated graph.
        """
2429
        g = self.graph.clone()
2430 2431
        return IrGraph(g, self._for_test)

2432
    def is_test(self):
2433 2434 2435
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2436 2437
        return self._for_test

W
WangZhen 已提交
2438
    def all_nodes(self):
2439 2440 2441
        """
        Return all nodes included in the graph as a set.
        """
2442
        return {IrNode(node) for node in self.graph.nodes()}
2443

2444
    def all_var_nodes(self):
2445 2446 2447
        """
        Return all variable nodes included in the graph as a set.
        """
2448
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2449

2450
    def all_persistable_nodes(self):
2451 2452 2453
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2454 2455 2456 2457 2458
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2459
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2460

2461
    def all_op_nodes(self):
2462 2463 2464
        """
        Return all operator nodes included in the graph as a set.
        """
2465
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2466

2467
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2479
            IrVarNode: the created persistable variable node.
2480
        """
2481 2482 2483 2484 2485
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2486
        return IrVarNode(self.graph.create_var_node(var_desc))
2487 2488

    def create_var_node(self, name, var_type, shape, var_dtype):
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2500
            IrVarNode: the created variable node.
2501 2502
        """

2503 2504 2505 2506
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2507
        return IrVarNode(self.graph.create_var_node(var_desc))
2508 2509

    def create_var_node_from_desc(self, var_desc):
2510 2511 2512 2513 2514 2515 2516 2517
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2518
            IrVarNode: the created variable node.
2519
        """
2520
        return IrVarNode(self.graph.create_var_node(var_desc))
2521 2522

    def create_op_node(self, op_type, attrs, inputs, outputs):
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2533
            IrOpNode: the created operator node.
2534
        """
2535 2536
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2537
        for attr, value in six.iteritems(attrs):
2538
            self._update_desc_attr(op_desc, attr, value)
2539
        for input_name, var_nodes in six.iteritems(inputs):
2540 2541 2542 2543
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2544
        for output_name, var_nodes in six.iteritems(outputs):
2545 2546 2547 2548
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2549
        return IrOpNode(self.graph.create_op_node(op_desc))
2550 2551

    def create_op_node_from_desc(self, op_desc):
2552 2553 2554 2555 2556 2557 2558
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2559
            IrOpNode: the created operator node.
2560
        """
2561
        return IrOpNode(self.graph.create_op_node(op_desc))
2562 2563

    def update_input_link(self, old_input_node, new_input_node, op_node):
2564 2565 2566 2567
        """
        Update the input's link of a operator node.

        Args:
2568 2569 2570
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2571
        """
2572 2573
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2574
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2575 2576 2577 2578
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2579
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2580 2581

    def link_to(self, node_in, node_out):
2582 2583 2584 2585
        """
        Connect two nodes.

        Args:
2586 2587
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2588
        """
2589
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2590
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2591 2592
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2593 2594

    def safe_remove_nodes(self, remove_nodes):
2595 2596 2597 2598 2599 2600 2601
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2602
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2603 2604 2605 2606
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2607 2608
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2609

Z
Zhen Wang 已提交
2610 2611 2612 2613 2614 2615 2616 2617
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2618
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2619 2620 2621 2622
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2623
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2624 2625 2626
                        ]
                    else:
                        var_nodes[each_var_name].append(
2627 2628
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2629 2630
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2631
    def has_circle(self):
2632 2633 2634 2635 2636 2637
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2638 2639 2640
        return core.has_circle(self.graph)

    def graph_num(self):
2641 2642 2643 2644 2645 2646
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2647 2648 2649
        return core.graph_num(self.graph)

    def topology_sort(self):
2650 2651 2652 2653 2654 2655
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2656
            list(IrNode): nodes in topology order.
2657
        """
2658
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2659
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2660 2661

    def build_adjacency_list(self):
2662 2663 2664 2665
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2666
            dict{IrNode: set(IrNode)}: the adjacency list.
2667
        """
2668 2669 2670 2671 2672
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2673

2674 2675 2676 2677 2678 2679 2680 2681
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2682
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2683 2684 2685 2686 2687
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2688 2689 2690 2691 2692 2693 2694 2695 2696
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2697
        remove_ctr_vars = set()
2698
        if remove_ctr_var:
2699
            for node in self.all_var_nodes():
2700 2701 2702
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2703 2704
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2705 2706
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2707 2708 2709 2710 2711 2712
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2724 2725 2726
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2727
        WARN: When the graph includes backward operator nodes, the
2728 2729 2730 2731 2732 2733
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2734
        convert_pass = core.get_pass('graph_to_program_pass')
2735 2736
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2737 2738 2739 2740
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2768
class Program(object):
D
dzhwinter 已提交
2769 2770 2771 2772 2773
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
J
Jiabin Yang 已提交
2774
    it will contain nested block.
D
dzhwinter 已提交
2775 2776
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
2786 2787 2788
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2789
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2790 2791

    Returns:
Y
yuyang18 已提交
2792
        A empty program.
D
dzhwinter 已提交
2793 2794

    Examples:
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2808 2809 2810

    """

2811 2812
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2813 2814
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2815
        self._seed = 0
Y
yuyang18 已提交
2816
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2817
        self.__op_role_var = []
T
tangwei12 已提交
2818

2819 2820
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2821
        self._is_distributed = False
2822
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2823
        self._is_chief = False
2824 2825 2826
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2827
        self._endpoints = []
2828 2829 2830
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2831
        self._trainers_endpoints = []
2832
        # the distributed lookup table names
T
tangwei12 已提交
2833
        self._distributed_lookup_table = None
2834 2835 2836

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2837 2838 2839 2840
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2841

D
dzhwinter 已提交
2842
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2843
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2844
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2845

2846 2847 2848
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2849
        self._program_config = None
2850

H
hutuxian 已提交
2851 2852 2853
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2854 2855 2856
        # appending gradients times
        self._appending_grad_times = 0

D
dzhwinter 已提交
2857
    @property
D
dzhwinter 已提交
2858
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2859 2860
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2861
        return self.__is_mem_optimized
D
dzhwinter 已提交
2862

D
dzhwinter 已提交
2863 2864 2865
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2866 2867

    @property
2868
    def _op_role(self):
Y
yuyang18 已提交
2869 2870 2871 2872 2873 2874 2875 2876
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2877
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2878 2879 2880 2881
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2882 2883
        return self._current_role

2884 2885
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2886 2887 2888
        self._current_role = role

    @property
2889
    def _op_role_var(self):
Y
yuyang18 已提交
2890
        """
2891
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2892

2893
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2894 2895 2896

        Notes: This is a very low-level API. Users should not use it directly.
        """
2897
        return self.__op_role_var
Y
yuyang18 已提交
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2908
    @signature_safe_contextmanager
W
Wu Yi 已提交
2909
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2910 2911 2912 2913 2914 2915 2916
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2917
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2918 2919 2920 2921

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2922
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2923 2924
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2925
        tmp_role = self._current_role
2926
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2927

Y
yuyang18 已提交
2928 2929
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2930
        self.__op_role_var = [
2931 2932 2933
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2934
        yield
2935
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2936
        self._current_role = tmp_role
Y
Yu Yang 已提交
2937

S
rename  
sneaxiy 已提交
2938
    @signature_safe_contextmanager
X
Xin Pan 已提交
2939
    def _lr_schedule_guard(self, is_with_opt=False):
2940 2941 2942 2943 2944 2945 2946
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2947 2948 2949 2950
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2951 2952 2953 2954 2955 2956 2957

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2958 2959

        tmp_role = self._current_role
2960
        tmp_var = self.__op_role_var
2961

2962 2963
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2964 2965
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2966
        # TODO(typhoonzero): how to set target learning rate var
2967
        self.__op_role_var = []
2968
        yield
2969
        self.__op_role_var = tmp_var
2970
        self._current_role = tmp_role
2971

2972
    def __str__(self):
Y
yuyang18 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2982 2983
        return self.to_string(True)

F
fengjiayi 已提交
2984 2985 2986
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2987

F
fengjiayi 已提交
2988
        Args:
Y
yuyang18 已提交
2989 2990
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2991

Y
yuyang18 已提交
2992 2993 2994 2995
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2996 2997
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2998 2999 3000 3001

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3002

3003 3004 3005 3006 3007 3008 3009 3010 3011
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3021 3022
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3023 3024
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3025

W
Wu Yi 已提交
3026
    def _get_desc(self):
Y
yuyang18 已提交
3027 3028 3029 3030 3031 3032 3033
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3034 3035
        return self.desc

X
version  
Xin Pan 已提交
3036 3037 3038
    def _version(self):
        return self.desc._version()

3039
    def clone(self, for_test=False):
Y
yuyang18 已提交
3040 3041 3042
        """
        Create a new, duplicated program.

3043

Y
yuyang18 已提交
3044 3045 3046 3047
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3048

Y
yuyang18 已提交
3049
        * Set for_test to False when we want to clone the program for training.
3050 3051 3052 3053
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
3054

3055 3056 3057 3058
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
3059

3060 3061 3062 3063 3064
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3065 3066

        Args:
Y
yuyang18 已提交
3067 3068
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3069

D
dzhwinter 已提交
3070
        Returns:
Y
yuyang18 已提交
3071 3072 3073 3074
            Program: The new, duplicated Program object.

        Examples:

3075 3076 3077 3078 3079 3080
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3118 3119 3120

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3132 3133 3134 3135 3136 3137 3138 3139 3140

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3188 3189
        """
        if for_test:
X
Xin Pan 已提交
3190
            p = self._inference_optimize(prune_read_op=False)
3191
        else:
3192
            p = Program()
G
gongweibao 已提交
3193 3194
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3195
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3196 3197 3198
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3199 3200

            p._current_role = self._current_role
3201
            p.__op_role_var = self.__op_role_var
3202
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3203

W
Wu Yi 已提交
3204
            p._sync_with_cpp()
3205

W
Wu Yi 已提交
3206
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3207
        p._copy_data_info_from(self)
3208
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3209
        return p
3210

W
Wu Yi 已提交
3211
    def _prune(self, targets):
Y
yuyang18 已提交
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3227 3228 3229 3230 3231 3232
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3233 3234
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3235
                    # and we need to find the current op that generate this
3236 3237 3238 3239 3240 3241 3242 3243
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3244
                    t = t.op
3245 3246 3247 3248
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3249
                else:
3250 3251
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3252 3253 3254 3255

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3256 3257 3258
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3259
        res._sync_with_cpp()
3260 3261
        return res

X
Xin Pan 已提交
3262
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3263
        """
F
fengjiayi 已提交
3264 3265 3266 3267 3268
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3269
        3. change the :code:`is_test`
Y
yuyang18 已提交
3270 3271 3272
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3273
        Args:
X
Xin Pan 已提交
3274 3275
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3276

Y
yuyang18 已提交
3277 3278 3279 3280 3281 3282
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3283
        res = Program()
3284
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3285 3286 3287 3288

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3289
        if prune_read_op:
3290 3291 3292 3293 3294 3295 3296 3297 3298
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3299
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3300 3301

        # change all `is_test` attributes to True
M
minqiyang 已提交
3302
        for i in six.moves.range(res.desc.num_blocks()):
3303
            block = res.desc.block(i)
M
minqiyang 已提交
3304
            for j in six.moves.range(block.op_size()):
3305 3306
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3307
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3308 3309 3310
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3311
        res._sync_with_cpp()
3312 3313
        return res

3314 3315
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3316 3317 3318 3319 3320 3321 3322
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3323
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3324 3325 3326 3327

        Returns:
            Program: A deserialized program desc.
        """
3328 3329
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3330
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3331
        p._sync_with_cpp()
3332
        return p
Y
Yu Yang 已提交
3333

3334
    @staticmethod
3335
    def _construct_from_desc(desc):
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3351 3352
    @property
    def random_seed(self):
Y
yuyang18 已提交
3353 3354 3355 3356 3357
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3369
        """
D
dzhwinter 已提交
3370 3371
        return self._seed

Q
qiaolongfei 已提交
3372 3373
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3374 3375
        """
        The number of blocks in this program.
3376 3377 3378 3379 3380 3381 3382 3383 3384

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3385
        """
Q
qiaolongfei 已提交
3386 3387
        return self.desc.num_blocks()

D
dzhwinter 已提交
3388 3389 3390 3391 3392 3393
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3394
    def __repr__(self):
3395
        return self.__str__()
3396

Y
Yu Yang 已提交
3397
    def global_block(self):
Y
yuyang18 已提交
3398 3399
        """
        Get the first block of this program.
3400 3401 3402 3403 3404 3405 3406 3407 3408

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3409
        """
Y
Yu Yang 已提交
3410 3411
        return self.blocks[0]

Q
Qiao Longfei 已提交
3412
    def block(self, index):
Y
yuyang18 已提交
3413 3414 3415 3416 3417 3418 3419
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3420 3421 3422 3423 3424 3425 3426 3427 3428

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3429
        """
Q
Qiao Longfei 已提交
3430 3431
        return self.blocks[index]

Y
Yu Yang 已提交
3432
    def current_block(self):
Y
yuyang18 已提交
3433 3434 3435
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3436 3437 3438 3439 3440 3441 3442 3443 3444

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3445
        """
Y
Yu Yang 已提交
3446 3447
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3448
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3459
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3460 3461 3462
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3463 3464 3465 3466
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3467
    def _rollback(self):
Y
yuyang18 已提交
3468 3469 3470 3471 3472
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3473 3474
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3475
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3486 3487 3488
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3489
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3490

W
Wu Yi 已提交
3491
    def _copy_param_info_from(self, other):
3492
        """
3493
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3494

Y
yuyang18 已提交
3495 3496 3497
        Notes: This is a very low level API. Users should not invoke it
        directly.

3498 3499 3500 3501 3502 3503 3504
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3505
            raise TypeError("_copy_param_info_from should be invoked with "
3506 3507 3508
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3509
            raise ValueError("_copy_param_info_from should be invoked with two "
3510
                             "program, with represent the same topology")
W
Wu Yi 已提交
3511
        self.global_block()._copy_param_info_from(other.global_block())
3512

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3528
        self._parameters_on_pservers = other._parameters_on_pservers
3529
        self._endpoints = other._endpoints
3530
        self._ps_endpoint = other._ps_endpoint
3531 3532
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3533
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3534 3535
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3536

Y
yuyang18 已提交
3537 3538 3539
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3540 3541 3542 3543 3544 3545 3546
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3547
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3548 3549 3550
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3551
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3552
                             "program, with represent the same topology")
3553
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3554 3555 3556
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3557
    def list_vars(self):
Y
yuyang18 已提交
3558 3559 3560 3561 3562
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3574
        """
3575
        for each_block in self.blocks:
3576
            for each_var in list(each_block.vars.values()):
3577 3578
                yield each_var

Y
Yu Yang 已提交
3579

Y
Yu Yang 已提交
3580
class Parameter(Variable):
3581
    """
3582
    Parameter is derived from Variable. A parameter is a persistable
3583
    Variable, and will be updated by optimizers after each iteration.
3584
    The training of a neural network is essentially the updating of
3585 3586
    its parameters.

3587
    Relative to a general Variable, a Parameter has several its own
3588 3589
    member variables:

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3602 3603
    """

Y
Yu Yang 已提交
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3614 3615 3616

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3617 3618 3619 3620
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3621 3622
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3623
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3624

W
wanghaoshuang 已提交
3625
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3626

F
fengjiayi 已提交
3627 3628 3629
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3630 3631 3632
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3633

F
update  
fengjiayi 已提交
3634 3635 3636 3637 3638 3639 3640 3641
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3642 3643 3644 3645 3646 3647 3648 3649 3650
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3651 3652 3653 3654 3655 3656
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3657
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3658
            for attr_name in additional_attr:
3659 3660
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3661 3662
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3663 3664 3665 3666
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3667

Y
Yu Yang 已提交
3668
# program is a global instance.
Y
Yu Yang 已提交
3669 3670
_main_program_ = Program()
_startup_program_ = Program()
3671

3672

3673
def default_startup_program():
Y
Yu Yang 已提交
3674
    """
Y
yuyang18 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3684

Y
Yu Yang 已提交
3685 3686
    Returns:
        Program: startup program
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3702
    """
Y
Yu Yang 已提交
3703
    return _startup_program_
3704

3705

3706
def default_main_program():
Y
Yu Yang 已提交
3707
    """
Y
yuyang18 已提交
3708 3709 3710 3711 3712 3713 3714 3715 3716
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3717

Y
Yu Yang 已提交
3718 3719
    Returns:
        Program: main program
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
3748 3749
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
3750
    """
Y
Yu Yang 已提交
3751
    return _main_program_
Y
Yu Yang 已提交
3752 3753 3754 3755 3756


def switch_main_program(program):
    """
    Switch the main program to a new program.
3757

Y
Yu Yang 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3772
    Switch the startup program to a new program
Y
Yu Yang 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3785
@signature_safe_contextmanager
Y
Yu Yang 已提交
3786 3787
def program_guard(main_program, startup_program=None):
    """
3788 3789
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3790
    variables to the new main programs.
3791

Y
Yu Yang 已提交
3792
    Examples:
3793 3794 3795
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3796

3797 3798 3799 3800 3801
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3802 3803 3804

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3805

Y
Yu Yang 已提交
3806
    Examples:
3807
       .. code-block:: python
Y
yuyang18 已提交
3808

3809 3810 3811 3812 3813 3814
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3815

Y
Yu Yang 已提交
3816
    Args:
3817 3818 3819
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3832 3833


W
Wu Yi 已提交
3834
def _get_var(name, program=None):
X
xuwei06 已提交
3835
    """
Y
yuyang18 已提交
3836
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3837

X
xuwei06 已提交
3838 3839 3840
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3841
        If None, default_global_program() will be used.
X
xuwei06 已提交
3842 3843 3844 3845 3846 3847 3848

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3849
    assert isinstance(program, Program)
X
xuwei06 已提交
3850 3851

    return program.global_block().var(name)
3852 3853


S
rename  
sneaxiy 已提交
3854
@signature_safe_contextmanager
L
lujun 已提交
3855 3856 3857 3858
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3859

3860
    yield
P
Paddle CI 已提交
3861

L
lujun 已提交
3862
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3863 3864


S
rename  
sneaxiy 已提交
3865
@signature_safe_contextmanager
L
lujun 已提交
3866 3867 3868 3869
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3870

3871
    yield
M
minqiyang 已提交
3872

L
lujun 已提交
3873
    _dygraph_current_expected_place_ = tmp_place