framework.py 116.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
70
    'in_dygraph_mode',
71
]
Y
Yu Yang 已提交
72

Q
qiaolongfei 已提交
73 74 75 76
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
77 78
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
79 80
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
81 82


L
lujun 已提交
83
def in_dygraph_mode():
L
lujun 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
97
    return _dygraph_tracer_ is not None
98 99


L
lujun 已提交
100 101
def _dygraph_tracer():
    return _dygraph_tracer_
102

W
Wu Yi 已提交
103

M
minqiyang 已提交
104
def _current_expected_place():
L
lujun 已提交
105
    return _dygraph_current_expected_place_
M
minqiyang 已提交
106 107


S
sneaxiy 已提交
108 109 110 111 112
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
L
lujun 已提交
113
    """
S
add doc  
sneaxiy 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
133 134 135 136 137 138 139

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
154
    """
S
add doc  
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164 165 166
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
167 168 169 170 171 172 173

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
174 175 176 177 178 179
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
180
    """
S
add doc  
sneaxiy 已提交
181 182 183 184 185 186 187 188 189 190 191 192
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
193 194 195 196 197 198 199 200 201

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
202 203 204 205 206 207 208
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
235
@signature_safe_contextmanager
236 237 238 239 240 241 242 243 244 245 246 247
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
248

249 250 251 252 253 254 255 256 257 258 259
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
279 280 281
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
282 283 284 285


def grad_var_name(var_name):
    """
286 287
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
288 289 290
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
291

292
def convert_np_dtype_to_dtype_(np_dtype):
293 294
    """
    Convert the data type in numpy to the data type in Paddle
295

296
    Args:
297
        np_dtype(np.dtype): the data type in numpy.
298

299 300
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
301 302

    """
303 304
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
305
        return core.VarDesc.VarType.FP32
306
    elif dtype == np.float64:
307
        return core.VarDesc.VarType.FP64
308
    elif dtype == np.float16:
309
        return core.VarDesc.VarType.FP16
310
    elif dtype == np.int32:
311
        return core.VarDesc.VarType.INT32
312
    elif dtype == np.int16:
313
        return core.VarDesc.VarType.INT16
314
    elif dtype == np.int64:
315
        return core.VarDesc.VarType.INT64
316
    elif dtype == np.bool:
317
        return core.VarDesc.VarType.BOOL
318 319
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
320 321
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
322 323
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
324
    else:
M
minqiyang 已提交
325
        raise ValueError("Not supported numpy dtype %s" % dtype)
326 327 328


def dtype_is_floating(dtype):
329 330 331
    """
    Check the data type is floating or not.
    Args:
332
        dtype(np.dtype|core.VarDesc.VarType): data type.
333 334 335 336 337
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
338
    if not isinstance(dtype, core.VarDesc.VarType):
339 340
        dtype = convert_np_dtype_to_dtype_(dtype)

341 342 343 344
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
345 346


Y
Yang Yang(Tony) 已提交
347
def _debug_string_(proto, throw_on_error=True):
348 349 350 351 352 353 354 355 356 357 358
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
359
    error_fields = list()
Y
Yang Yang(Tony) 已提交
360
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
361 362
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
363 364 365
    return proto.__str__()


X
Xin Pan 已提交
366
class Variable(object):
367
    """
368 369 370
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
371
    two variables in different blocks could have the same name.
372

373 374
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
375

376
    Most of a Variable's member variables can be setted to be None. It mean
377
    it is not available or will be specified later.
378 379

    Args:
380
        block(Block): The block that the variable belongs to.
381 382
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
383 384
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
385
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
386
            Some kinds of variable do not contain shape, just set it to None.
387 388 389
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
390
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
391
            series data.
392
            Default: None
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
415 416
    """

Y
Yu Yang 已提交
417 418
    def __init__(self,
                 block,
Y
Yu Yang 已提交
419
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
420 421 422 423
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
424
                 capacity=None,
Q
QI JUN 已提交
425
                 persistable=None,
F
fengjiayi 已提交
426
                 error_clip=None,
Y
Yu Yang 已提交
427
                 stop_gradient=False,
F
fengjiayi 已提交
428
                 is_data=False,
Y
Yu Yang 已提交
429
                 **kwargs):
Y
Yu Yang 已提交
430 431
        self.block = block
        if name is None:
Y
Yu Yang 已提交
432
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
433

Y
Yu Yang 已提交
434
        if dtype is not None:
435
            if not isinstance(dtype, core.VarDesc.VarType):
436
                dtype = convert_np_dtype_to_dtype_(dtype)
437

L
lujun 已提交
438
        if in_dygraph_mode():
M
minqiyang 已提交
439
            # record vars in tracer rather than blocks
M
minqiyang 已提交
440 441
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
442 443 444
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
445 446
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
447
            if persistable:
L
lujun 已提交
448
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
449
            self.op = None
M
minqiyang 已提交
450
        else:
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
523
            self.block.vars[name] = self
524
            self.op = None
525
            self._stop_gradient = stop_gradient
526
            self.is_data = is_data
Y
Yu Yang 已提交
527

528
    def numpy(self):
M
minqiyang 已提交
529
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
530
        return np.array(new_ivar.value().get_tensor())
531

532
    def backward(self):
X
Xin Pan 已提交
533
        self._ivar._run_backward()
534

535
    def gradient(self):
536 537
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
538

539
    def clear_gradient(self):
X
Xin Pan 已提交
540
        self._ivar._clear_gradient()
X
Xin Pan 已提交
541

542
    def __str__(self):
Y
Yang Yang(Tony) 已提交
543 544
        return self.to_string(True)

F
update  
fengjiayi 已提交
545
    def to_string(self, throw_on_error, with_details=False):
546 547 548 549
        """
        Get debug string.

        Args:
550 551
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
552
            with_details(bool): more details about variables and parameters
553 554
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
555

556 557
        Returns:
            str: The debug string.
558
        """
L
lujun 已提交
559
        if in_dygraph_mode():
L
lujun 已提交
560
            # TODO(panyx0718): add more dygraph debug info.
561 562 563
            return 'name %s, dtype: %s shape: %s' % (self.name, self.dtype,
                                                     self.shape)

F
update  
fengjiayi 已提交
564 565
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
566
        protostr = self.desc.serialize_to_string()
567
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
568 569 570 571
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
572 573
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
574
        return res_str
575 576 577

    __repr__ = __str__

578
    def set_desc(self, input):
579 580 581 582 583 584 585 586 587
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
588 589
        self.desc = input

590
    @property
591
    def stop_gradient(self):
L
lujun 已提交
592
        if in_dygraph_mode():
M
minqiyang 已提交
593 594
            return self._ivar.stop_gradient
        else:
595
            return self._stop_gradient
596

597 598
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
599
        if in_dygraph_mode():
M
minqiyang 已提交
600
            self._ivar.stop_gradient = s
601
        else:
602
            self._stop_gradient = s
603

604 605
    @property
    def persistable(self):
L
lujun 已提交
606
        if in_dygraph_mode():
607 608 609
            return self._ivar.persistable
        else:
            return self.desc.persistable()
610

Y
Yu Yang 已提交
611 612
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
613
        if in_dygraph_mode():
614 615 616
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
617

Y
Yu Yang 已提交
618 619
    @property
    def name(self):
L
lujun 已提交
620
        if in_dygraph_mode():
621 622 623
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
624

T
typhoonzero 已提交
625 626
    @name.setter
    def name(self, new_name):
L
lujun 已提交
627
        if in_dygraph_mode():
628 629 630
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
631

Y
Yu Yang 已提交
632 633 634
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
635
        if in_dygraph_mode():
636 637 638
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
639 640

    @property
F
fengjiayi 已提交
641
    def dtype(self):
L
lujun 已提交
642
        if in_dygraph_mode():
643 644 645
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
646 647 648

    @property
    def lod_level(self):
L
lujun 已提交
649
        # TODO(minqiyang): Support lod_level in dygraph mode
650
        return self.desc.lod_level()
Y
Yu Yang 已提交
651

Y
Yu Yang 已提交
652 653
    @property
    def type(self):
L
lujun 已提交
654
        if in_dygraph_mode():
655 656 657
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
658

W
Wu Yi 已提交
659
    def _set_error_clip(self, error_clip):
660 661 662 663 664 665 666 667 668
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
669 670
        self.error_clip = error_clip

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
758
    def _cloneVar(self, copy=False):
759 760 761 762 763
        if not copy:
            return self.block.create_var(
                name=unique_name.generate(".".join(self.name)),
                dtype=self.dtype,
                persistable=self.persistable,
764
                stop_gradient=self.stop_gradient, )
765 766 767 768
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
769
        new_var = self._cloneVar()
770 771 772 773 774 775 776 777 778 779
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
780
        new_var = self._cloneVar()
781 782 783 784 785 786 787 788 789 790
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
791
                return self._cloneVar(True)
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
810
                return self._cloneVar(True)
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
        new_var = None
        if isinstance(item, tuple):
            if len(item) > len(self.shape):
                raise IndexError("Too many indexes")
W
wopeizl 已提交
833 834 835 836 837 838
            fixedSize = True
            for i in range(len(self.shape)):
                if self.shape[i] == -1:
                    fixedSize = False
                    break

839
            newitem = self._reconstructSliceinfo(item) or item
W
wopeizl 已提交
840 841
            if fixedSize:
                check, info = self._detectContinuesSlice(newitem)
842
                if check:
W
wopeizl 已提交
843 844 845 846 847 848 849 850
                    starts = info[0]
                    ends = info[1]
                    axes = [i for i in range(len(starts))]
                    return self._sliceVar(axes, starts, ends)
                else:
                    new_var = self
                    for index, o in enumerate(newitem):
                        new_var = new_var._sliceAndConcatVar(o, index)
851 852 853 854 855 856 857 858
            else:
                new_var = self
                for index, o in enumerate(newitem):
                    new_var = new_var._sliceAndConcatVar(o, index)
        else:
            new_var = self._sliceAndConcatVar(item, 0)
        return new_var

Y
Yu Yang 已提交
859

F
fengjiayi 已提交
860 861 862
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
863

864 865
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
866 867 868 869
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
870
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
871 872 873 874 875
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
876 877 878 879
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
880 881 882 883 884 885 886 887 888
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
889
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
890 891 892 893 894 895
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
896 897 898 899 900 901 902 903
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
904 905
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
906 907
        return self.op_proto_map[type]

908 909 910 911
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
912
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
913 914
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
915 916
        }

F
fengjiayi 已提交
917

X
Xin Pan 已提交
918
class Operator(object):
919
    """
920 921 922 923 924 925 926
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
927
        type(str): The type of operator. Default None.
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
948
        Block.append_op or Block._prepend_op instead.
949 950 951 952 953 954 955 956 957 958

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
959
    """
960
    OP_WITHOUT_KERNEL_SET = {
961 962 963
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
964
    }
965

Y
Yu Yang 已提交
966 967
    def __init__(self,
                 block,
Y
Yu Yang 已提交
968
                 desc,
Y
Yu Yang 已提交
969 970 971
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
972
                 attrs=None):
L
lujun 已提交
973
        if in_dygraph_mode():
974 975
            if type is None:
                raise ValueError(
976
                    "`type` to initialized an Operator can not be None.")
977
            self.iop = core.OpBase(type)
M
minqiyang 已提交
978
            self.previous_ops = []
M
minqiyang 已提交
979

M
minqiyang 已提交
980
            self.attrs = attrs if attrs else {}
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
                )] = self.block.program.op_role

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
                   op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program.op_role_var

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
                    "`type` to initilized an Operator can not be None.")
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)

                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
                        for arg in in_args:
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
                            else:
                                in_arg_names.append(cpt.to_text(arg.name))
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1075
                        if not in_dygraph_mode():
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1095
    def _has_kernel(self, op_type):
1096 1097
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1098
    def to_string(self, throw_on_error):
1099
        """
1100 1101
        Get debug string.

1102
        Args:
1103 1104
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1105

1106 1107
        Returns:
            str: The debug string.
1108 1109

        """
1110
        protostr = self.desc.serialize_to_string()
1111
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1112 1113 1114 1115
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1116 1117 1118

    __repr__ = __str__

F
fengjiayi 已提交
1119 1120
    @property
    def type(self):
L
lujun 已提交
1121
        if in_dygraph_mode():
1122 1123 1124
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1125 1126

    def input(self, name):
1127
        """
1128
        Get the input arguments according to the input parameter name.
1129

1130 1131
        Args:
            name(str): The input parameter name.
1132

1133 1134 1135
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1136
        """
F
fengjiayi 已提交
1137 1138
        return self.desc.input(name)

W
Wu Yi 已提交
1139
    def _rename_input(self, old_name, new_name):
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1150
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1151

W
Wu Yi 已提交
1152
    def _rename_output(self, old_name, new_name):
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1163
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1164

F
fengjiayi 已提交
1165 1166 1167 1168
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1169 1170 1171 1172 1173 1174 1175 1176
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1177
    def output(self, name):
1178
        """
1179
        Get output arguments by the output parameter name.
1180

1181 1182
        Args:
            name(str): The output parameter name.
1183

1184 1185 1186
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1187
        """
F
fengjiayi 已提交
1188 1189 1190 1191 1192 1193
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1194 1195 1196 1197 1198 1199 1200 1201
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1202
    def has_attr(self, name):
1203
        """
1204 1205
        Whether this Operator has the attribute with name or not.

1206
        Args:
1207
            name(str): the attribute name.
1208

1209 1210
        Returns:
            bool: True if has this attribute.
1211 1212

        """
F
fengjiayi 已提交
1213 1214 1215
        return self.desc.has_attr(name)

    def attr_type(self, name):
1216
        """
1217
        Get the type of attribute by attribute's name.
1218

1219 1220
        Args:
            name(str): the attribute name.
1221

1222 1223
        Returns:
            core.AttrType: the attribute type.
1224
        """
F
fengjiayi 已提交
1225 1226
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1227
    def _set_attr(self, name, val):
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1238 1239
        self._update_desc_attr(name, val)

1240 1241 1242
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1254 1255
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1256 1257
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1258
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1259 1260 1261 1262
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1263
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1264

F
fengjiayi 已提交
1265 1266 1267 1268 1269
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1270
        """
1271 1272
        Get the attribute by name.

1273
        Args:
1274
            name(str): the attribute name.
1275

1276 1277
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1278 1279
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1280
        return self.desc.attr(name)
Y
Yu Yang 已提交
1281

W
Wu Yi 已提交
1282
    def _block_attr_id(self, name):
1283
        """
G
gongweibao 已提交
1284
        Get the block attribute's id by name.
1285

1286 1287
        Args:
            name(str): the attribute name.
1288

1289 1290
        Returns:
            int: the block index.
1291
        """
W
Wu Yi 已提交
1292
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1293

W
Wu Yi 已提交
1294
    def _block_attr(self, name):
G
gongweibao 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1305
        id = self._block_attr_id(name)
G
gongweibao 已提交
1306 1307 1308
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1309
    def _blocks_attr(self, name):
G
gongweibao 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1320
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1321 1322 1323 1324 1325
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1326
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1337
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1338

J
JiayiFeng 已提交
1339
    def all_attrs(self):
F
fengjiayi 已提交
1340
        """
1341 1342 1343
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1344
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1345 1346 1347 1348
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1349 1350
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1351
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1352 1353 1354
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1355
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1356 1357 1358 1359
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1360 1361
        return attr_map

Y
Yu Yang 已提交
1362

Y
Yu Yang 已提交
1363
class Block(object):
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1378
        use `Program._create_block()` to create a block.
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1393
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1394
        self.desc = program.desc.block(idx)
1395
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1396
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1397
        self.program = program
1398
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1399

1400
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1401 1402
        return self.to_string(True)

F
fengjiayi 已提交
1403 1404
    def to_string(self, throw_on_error, with_details=False):
        """
1405 1406
        Get debug string.

F
fengjiayi 已提交
1407 1408
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1409
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1410
            with_details(bool): more details about variables and parameters
1411 1412
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1413

1414 1415
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1416 1417 1418 1419
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1420
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1421 1422
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1423
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1424
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1425
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1426
            for op in self.ops:
F
fengjiayi 已提交
1427 1428
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1429 1430 1431
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1432 1433
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1434 1435
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1436 1437 1438

    __repr__ = __str__

Y
Yu Yang 已提交
1439 1440
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1441
        return self.desc.parent
Y
Yu Yang 已提交
1442

Y
Yu Yang 已提交
1443 1444 1445 1446
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1447
    def _set_forward_block_idx(self, idx):
1448 1449 1450 1451 1452 1453 1454 1455 1456
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1457
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1458

Y
Yu Yang 已提交
1459 1460
    @property
    def idx(self):
Y
Yu Yang 已提交
1461
        return self.desc.id
Y
Yu Yang 已提交
1462

Q
Qiao Longfei 已提交
1463
    def var(self, name):
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1477
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1478 1479 1480
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1481 1482
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1483
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1484
        return v
Q
Qiao Longfei 已提交
1485

X
Xin Pan 已提交
1486
    def _find_var_recursive(self, name):
1487 1488 1489 1490 1491 1492 1493
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1494
            Variable: the Variable with the giving name. Or None if not found.
1495
        """
Y
Yu Yang 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1520
        return None
Y
Yu Yang 已提交
1521

X
Xin Pan 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1541

Q
Qiao Longfei 已提交
1542
    def all_parameters(self):
1543
        return list(self.iter_parameters())
1544

1545
    def iter_parameters(self):
M
minqiyang 已提交
1546
        return (item[1] for item in six.iteritems(self.vars)
1547
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1548

Y
Yu Yang 已提交
1549
    def create_var(self, *args, **kwargs):
1550
        var = Variable(block=self, *args, **kwargs)
1551 1552
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1553
        return var
Y
Yu Yang 已提交
1554

Q
Qiao Longfei 已提交
1555 1556 1557
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1558
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1559 1560
        """
        Rename variable in vars and ops' inputs and outputs
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1573
        """
M
minqiyang 已提交
1574 1575
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1576

T
typhoonzero 已提交
1577
        if not self.has_var(name):
1578
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1579 1580
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1581
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1582 1583 1584 1585 1586 1587 1588
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1589
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1590 1591 1592 1593
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1594
        orig_var_type = v.type
M
minqiyang 已提交
1595
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1596
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1597
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1598
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1599 1600 1601 1602
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1603
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1604 1605 1606 1607 1608 1609 1610
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1611
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1612 1613
            var = Variable(
                self,
T
typhoonzero 已提交
1614
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1615 1616 1617 1618
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1619
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1620 1621 1622
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1623
        self._sync_with_cpp()
1624
        return var
T
typhoonzero 已提交
1625

W
Wu Yi 已提交
1626 1627
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1628
        self.desc._remove_var(cpt.to_bytes(name))
1629 1630
        del self.vars[name]

Y
Yu Yang 已提交
1631 1632
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1633
        param = Parameter(global_block, *args, **kwargs)
1634
        if 'initializer' in kwargs:
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1655
        return param
Y
Yu Yang 已提交
1656

Y
Yu Yang 已提交
1657
    def append_op(self, *args, **kwargs):
1658 1659 1660 1661 1662 1663
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1664
        if in_dygraph_mode():
1665 1666 1667 1668
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1669 1670 1671
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))
1672

M
minqiyang 已提交
1673 1674 1675
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1676
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1677 1678 1679 1680
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1681
        else:
1682 1683 1684 1685 1686 1687 1688 1689 1690
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1691
            self.ops.append(op)
M
minqiyang 已提交
1692

1693 1694
        return op

W
Wu Yi 已提交
1695
    def _insert_op(self, index, *args, **kwargs):
1696 1697 1698 1699 1700 1701 1702 1703 1704
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1705 1706
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1707 1708 1709 1710
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1711
    def _remove_op(self, index):
1712 1713 1714 1715 1716 1717 1718 1719 1720
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1721 1722
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1723 1724
        del self.ops[index]

W
Wu Yi 已提交
1725
    def _slice_ops(self, start, end):
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1736
        return self.ops[start:end]
Y
Yancey1989 已提交
1737

W
Wu Yi 已提交
1738
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1739
        if in_dygraph_mode():
1740 1741 1742 1743
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1744 1745 1746 1747 1748 1749 1750 1751
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1752
        else:
1753 1754 1755 1756 1757 1758 1759 1760
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1761
            self.ops.insert(0, op)
1762

Y
Yu Yang 已提交
1763 1764
        return op

W
Wu Yi 已提交
1765
    def _sync_with_cpp(self):
1766
        """
1767 1768
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1769
        """
Q
Qiao Longfei 已提交
1770 1771 1772 1773 1774
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1775
        # sync variables removed from c++ end
1776
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1777
            if not self.desc.find_var(cpt.to_bytes(var)):
1778 1779
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1780
        # sync operators from cpp
1781 1782 1783 1784
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1801 1802 1803 1804 1805

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1806
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1807 1808 1809 1810 1811 1812 1813

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1827 1828 1829 1830
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1831
    def _copy_param_info_from(self, other):
1832
        """
1833 1834
        Copy the information of parameters from the other block.

1835
        Args:
1836 1837 1838 1839 1840
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1841 1842 1843 1844 1845

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1846 1847
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1848
        for p in other.iter_parameters():
1849 1850 1851
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1852
                raise ValueError("_copy_param_info_from should be invoked with "
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1865
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1866
                error_clip=p.error_clip,
1867 1868 1869
                name=v.name)
            self.vars[new_p.name] = new_p

1870
    def _clone_variable(self, var, force_persistable=True):
1871 1872
        """
        Clone a variable into current block.
1873

1874 1875
        Args:
            var: the variable to be cloned.
1876 1877 1878
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1879 1880

        Returns:
1881
            Variable: the new  variable cloned from 'var' in current block.
1882 1883
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1884 1885 1886 1887 1888
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1889 1890
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1891
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1892 1893 1894 1895 1896 1897
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1898
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1899
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1900 1901 1902 1903 1904 1905 1906
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1907
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1908
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1909
        return ret_var
1910

Y
Yu Yang 已提交
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2007
    def remove_input_by_id(self, node_id):
2008 2009 2010 2011 2012 2013
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2014
        self.node.remove_input(node_id)
2015

2016
    def remove_input(self, node):
2017 2018 2019 2020
        """
        Remove a node from inputs.

        Args:
2021
            node(IrNode): the node being removed.
2022
        """
2023
        self.node.remove_input(node.node)
2024

2025
    def append_input(self, node):
2026 2027 2028 2029
        """
        Append a node in inputs.

        Args:
2030
            node(IrNode): the node being appended.
2031
        """
2032
        self.node.append_input(node.node)
2033 2034 2035 2036 2037 2038 2039 2040

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2041
    def remove_output_by_id(self, node_id):
2042 2043 2044 2045 2046 2047
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2048
        self.node.remove_output(node_id)
2049

2050
    def remove_output(self, node):
2051 2052 2053 2054
        """
        Remove a node from outputs.

        Args:
2055
            node(IrNode): the node being removed.
2056
        """
2057
        self.node.remove_output(node.node)
2058

2059
    def append_output(self, node):
2060 2061 2062 2063
        """
        Append a node in outputs.

        Args:
2064
            node(IrNode): the node being appended.
2065
        """
2066
        self.node.append_output(node.node)
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2321 2322
class IrGraph(object):
    """
2323
    Python IrGraph. Beneath it is a core.Graph, which is used for
2324
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2325 2326
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2327 2328 2329 2330
    """

    def __init__(self, graph, for_test=False):
        """
2331 2332
        Construct an IrGraph using core.Graph.

2333 2334 2335 2336 2337 2338 2339 2340 2341
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2342 2343 2344 2345
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2346 2347 2348
        Warns:
            The method only clones the graph structure, not its attributes.

2349 2350 2351
        Returns:
            IrGraph: A new and duplicated graph.
        """
2352
        g = self.graph.clone()
2353 2354
        return IrGraph(g, self._for_test)

2355
    def is_test(self):
2356 2357 2358
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2359 2360
        return self._for_test

W
WangZhen 已提交
2361
    def all_nodes(self):
2362 2363 2364
        """
        Return all nodes included in the graph as a set.
        """
2365
        return {IrNode(node) for node in self.graph.nodes()}
2366

2367
    def all_var_nodes(self):
2368 2369 2370
        """
        Return all variable nodes included in the graph as a set.
        """
2371
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2372

2373
    def all_persistable_nodes(self):
2374 2375 2376
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2377 2378 2379 2380 2381
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2382
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2383

2384
    def all_op_nodes(self):
2385 2386 2387
        """
        Return all operator nodes included in the graph as a set.
        """
2388
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2389

2390
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2402
            IrVarNode: the created persistable variable node.
2403
        """
2404 2405 2406 2407 2408
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2409
        return IrVarNode(self.graph.create_var_node(var_desc))
2410 2411

    def create_var_node(self, name, var_type, shape, var_dtype):
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2423
            IrVarNode: the created variable node.
2424 2425
        """

2426 2427 2428 2429
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2430
        return IrVarNode(self.graph.create_var_node(var_desc))
2431 2432

    def create_var_node_from_desc(self, var_desc):
2433 2434 2435 2436 2437 2438 2439 2440
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2441
            IrVarNode: the created variable node.
2442
        """
2443
        return IrVarNode(self.graph.create_var_node(var_desc))
2444 2445

    def create_op_node(self, op_type, attrs, inputs, outputs):
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2456
            IrOpNode: the created operator node.
2457
        """
2458 2459
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2460
        for attr, value in six.iteritems(attrs):
2461
            self._update_desc_attr(op_desc, attr, value)
2462
        for input_name, var_nodes in six.iteritems(inputs):
2463 2464 2465 2466
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2467
        for output_name, var_nodes in six.iteritems(outputs):
2468 2469 2470 2471
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2472
        return IrOpNode(self.graph.create_op_node(op_desc))
2473 2474

    def create_op_node_from_desc(self, op_desc):
2475 2476 2477 2478 2479 2480 2481
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2482
            IrOpNode: the created operator node.
2483
        """
2484
        return IrOpNode(self.graph.create_op_node(op_desc))
2485 2486

    def update_input_link(self, old_input_node, new_input_node, op_node):
2487 2488 2489 2490
        """
        Update the input's link of a operator node.

        Args:
2491 2492 2493
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2494
        """
2495 2496
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2497
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2498 2499 2500 2501
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2502
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2503 2504

    def link_to(self, node_in, node_out):
2505 2506 2507 2508
        """
        Connect two nodes.

        Args:
2509 2510
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2511
        """
2512
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2513
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2514 2515
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2516 2517

    def safe_remove_nodes(self, remove_nodes):
2518 2519 2520 2521 2522 2523 2524
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2525
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2526 2527 2528 2529
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2530 2531
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2532

Z
Zhen Wang 已提交
2533 2534 2535 2536 2537 2538 2539 2540
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2541
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2542 2543 2544 2545
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2546
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2547 2548 2549
                        ]
                    else:
                        var_nodes[each_var_name].append(
2550 2551
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2552 2553
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2554
    def has_circle(self):
2555 2556 2557 2558 2559 2560
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2561 2562 2563
        return core.has_circle(self.graph)

    def graph_num(self):
2564 2565 2566 2567 2568 2569
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2570 2571 2572
        return core.graph_num(self.graph)

    def topology_sort(self):
2573 2574 2575 2576 2577 2578
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2579
            list(IrNode): nodes in topology order.
2580
        """
2581
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2582
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2583 2584

    def build_adjacency_list(self):
2585 2586 2587 2588
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2589
            dict{IrNode: set(IrNode)}: the adjacency list.
2590
        """
2591 2592 2593 2594 2595
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2596

2597 2598 2599 2600 2601 2602 2603 2604
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2605
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2606 2607 2608 2609 2610
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2611 2612 2613 2614 2615 2616 2617 2618 2619
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2620
        remove_ctr_vars = set()
2621
        if remove_ctr_var:
2622
            for node in self.all_var_nodes():
2623 2624 2625
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2626 2627
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2628 2629
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2630 2631 2632 2633 2634 2635
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2647 2648 2649
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2650
        WARN: When the graph includes backward operator nodes, the
2651 2652 2653 2654 2655 2656
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2657
        convert_pass = core.get_pass('graph_to_program_pass')
2658 2659
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2660 2661 2662 2663
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2691
class Program(object):
D
dzhwinter 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2703
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2704 2705

    Returns:
Y
yuyang18 已提交
2706
        A empty program.
D
dzhwinter 已提交
2707 2708

    Examples:
Y
yuyang18 已提交
2709 2710 2711 2712 2713 2714
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2715 2716 2717

    """

2718 2719
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2720 2721
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2722
        self._seed = 0
Y
yuyang18 已提交
2723
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2724
        self._op_role_var = []
T
tangwei12 已提交
2725

2726 2727
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2728
        self._is_distributed = False
2729
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2730
        self._is_chief = False
2731 2732 2733
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2734
        self._endpoints = []
2735 2736 2737
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2738
        self._trainers_endpoints = []
2739
        # the distributed lookup table names
T
tangwei12 已提交
2740
        self._distributed_lookup_table = None
2741 2742 2743 2744

        # use Deep gradient comrepssion or not
        self._enable_dgc = False

D
dzhwinter 已提交
2745
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2746
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2747
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2748

2749 2750 2751
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2752
        self._program_config = None
2753

D
dzhwinter 已提交
2754
    @property
D
dzhwinter 已提交
2755
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2756 2757
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2758
        return self.__is_mem_optimized
D
dzhwinter 已提交
2759

D
dzhwinter 已提交
2760 2761 2762
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2763 2764 2765

    @property
    def op_role(self):
Y
yuyang18 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2779 2780 2781
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2782
    def op_role(self, role):
Y
yuyang18 已提交
2783 2784 2785 2786
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2787 2788 2789 2790 2791 2792 2793
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2794 2795 2796 2797
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2798
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2799

2800 2801 2802 2803 2804 2805 2806 2807 2808
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2809
    @signature_safe_contextmanager
W
Wu Yi 已提交
2810
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2811 2812 2813 2814 2815 2816 2817
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2818
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2819 2820 2821 2822

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2823
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2824 2825
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2826 2827 2828
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2829 2830
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2831 2832 2833 2834
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2835
        yield
X
Xin Pan 已提交
2836 2837
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2838

S
rename  
sneaxiy 已提交
2839
    @signature_safe_contextmanager
X
Xin Pan 已提交
2840
    def _lr_schedule_guard(self, is_with_opt=False):
2841 2842 2843 2844 2845 2846 2847
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2848 2849 2850 2851
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2852 2853 2854 2855 2856 2857 2858

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2859 2860 2861 2862

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2863 2864
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2865 2866
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2867 2868 2869
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2870 2871
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2872

2873
    def __str__(self):
Y
yuyang18 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2883 2884
        return self.to_string(True)

F
fengjiayi 已提交
2885 2886 2887
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2888

F
fengjiayi 已提交
2889
        Args:
Y
yuyang18 已提交
2890 2891
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2892

Y
yuyang18 已提交
2893 2894 2895 2896
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2897 2898
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2899 2900 2901 2902

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2913 2914
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2915 2916
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2917

W
Wu Yi 已提交
2918
    def _get_desc(self):
Y
yuyang18 已提交
2919 2920 2921 2922 2923 2924 2925
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2926 2927
        return self.desc

X
version  
Xin Pan 已提交
2928 2929 2930
    def _version(self):
        return self.desc._version()

2931
    def clone(self, for_test=False):
Y
yuyang18 已提交
2932 2933 2934
        """
        Create a new, duplicated program.

2935

Y
yuyang18 已提交
2936 2937 2938 2939
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2940

Y
yuyang18 已提交
2941 2942 2943 2944
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2945 2946 2947 2948 2949
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2950 2951

        Args:
Y
yuyang18 已提交
2952 2953
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2954

D
dzhwinter 已提交
2955
        Returns:
Y
yuyang18 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
3009 3010
        """
        if for_test:
X
Xin Pan 已提交
3011
            p = self._inference_optimize(prune_read_op=False)
3012
        else:
3013
            p = Program()
G
gongweibao 已提交
3014 3015
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3016
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3017 3018 3019
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3020 3021 3022 3023

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
3024
            p._sync_with_cpp()
3025

W
Wu Yi 已提交
3026
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3027
        p._copy_data_info_from(self)
3028
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3029
        return p
3030

W
Wu Yi 已提交
3031
    def _prune(self, targets):
Y
yuyang18 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3047 3048 3049 3050 3051 3052
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3053 3054
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3055
                    # and we need to find the current op that generate this
3056 3057 3058 3059 3060 3061 3062 3063
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3064
                    t = t.op
3065 3066 3067 3068
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3069
                else:
3070 3071
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3072 3073 3074 3075

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3076 3077 3078
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3079
        res._sync_with_cpp()
3080 3081
        return res

X
Xin Pan 已提交
3082
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3083
        """
F
fengjiayi 已提交
3084 3085 3086 3087 3088
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3089
        3. change the :code:`is_test`
Y
yuyang18 已提交
3090 3091 3092
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3093
        Args:
X
Xin Pan 已提交
3094 3095
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3096

Y
yuyang18 已提交
3097 3098 3099 3100 3101 3102
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3103
        res = Program()
3104
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3105 3106 3107 3108

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3109
        if prune_read_op:
3110 3111 3112 3113 3114 3115 3116 3117 3118
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3119
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3120 3121

        # change all `is_test` attributes to True
M
minqiyang 已提交
3122
        for i in six.moves.range(res.desc.num_blocks()):
3123
            block = res.desc.block(i)
M
minqiyang 已提交
3124
            for j in six.moves.range(block.op_size()):
3125 3126
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3127
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3128 3129 3130
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3131
        res._sync_with_cpp()
3132 3133
        return res

3134 3135
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3136 3137 3138 3139 3140 3141 3142
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3143
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3144 3145 3146 3147

        Returns:
            Program: A deserialized program desc.
        """
3148 3149
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3150
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3151
        p._sync_with_cpp()
3152
        return p
Y
Yu Yang 已提交
3153

3154
    @staticmethod
3155
    def _construct_from_desc(desc):
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3171 3172
    @property
    def random_seed(self):
Y
yuyang18 已提交
3173 3174 3175 3176 3177 3178
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
3179 3180
        return self._seed

Q
qiaolongfei 已提交
3181 3182
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3183 3184 3185
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
3186 3187
        return self.desc.num_blocks()

D
dzhwinter 已提交
3188 3189 3190 3191 3192 3193
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3194
    def __repr__(self):
3195
        return self.__str__()
3196

Y
Yu Yang 已提交
3197
    def global_block(self):
Y
yuyang18 已提交
3198 3199 3200
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
3201 3202
        return self.blocks[0]

Q
Qiao Longfei 已提交
3203
    def block(self, index):
Y
yuyang18 已提交
3204 3205 3206 3207 3208 3209 3210 3211
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
3212 3213
        return self.blocks[index]

Y
Yu Yang 已提交
3214
    def current_block(self):
Y
yuyang18 已提交
3215 3216 3217 3218
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
3219 3220
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3221
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3232
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3233 3234 3235
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3236 3237 3238 3239
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3240
    def _rollback(self):
Y
yuyang18 已提交
3241 3242 3243 3244 3245
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3246 3247
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3248
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3259 3260 3261
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3262
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3263

W
Wu Yi 已提交
3264
    def _copy_param_info_from(self, other):
3265
        """
3266
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3267

Y
yuyang18 已提交
3268 3269 3270
        Notes: This is a very low level API. Users should not invoke it
        directly.

3271 3272 3273 3274 3275 3276 3277
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3278
            raise TypeError("_copy_param_info_from should be invoked with "
3279 3280 3281
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3282
            raise ValueError("_copy_param_info_from should be invoked with two "
3283
                             "program, with represent the same topology")
W
Wu Yi 已提交
3284
        self.global_block()._copy_param_info_from(other.global_block())
3285

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3301
        self._parameters_on_pservers = other._parameters_on_pservers
3302
        self._endpoints = other._endpoints
3303
        self._ps_endpoint = other._ps_endpoint
3304 3305
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3306
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3307 3308
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3309

Y
yuyang18 已提交
3310 3311 3312
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3313 3314 3315 3316 3317 3318 3319
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3320
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3321 3322 3323
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3324
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3325
                             "program, with represent the same topology")
3326
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3327 3328 3329
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3330
    def list_vars(self):
Y
yuyang18 已提交
3331 3332 3333 3334 3335 3336
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
3337
        for each_block in self.blocks:
3338
            for each_var in list(each_block.vars.values()):
3339 3340
                yield each_var

Y
Yu Yang 已提交
3341

Y
Yu Yang 已提交
3342
class Parameter(Variable):
3343
    """
3344
    Parameter is derived from Variable. A parameter is a persistable
3345
    Variable, and will be updated by optimizers after each iteration.
3346
    The training of a neural network is essentially the updating of
3347 3348
    its parameters.

3349
    Relative to a general Variable, a Parameter has several its own
3350 3351
    member variables:

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3364 3365
    """

Y
Yu Yang 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3376 3377 3378

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3379 3380 3381 3382
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3383 3384
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3385
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3386

W
wanghaoshuang 已提交
3387
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3388

F
fengjiayi 已提交
3389 3390 3391
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3392 3393 3394
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3395

F
update  
fengjiayi 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3410
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3411
            for attr_name in additional_attr:
3412 3413
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3414 3415
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3416 3417 3418 3419
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3420

Y
Yu Yang 已提交
3421
# program is a global instance.
Y
Yu Yang 已提交
3422 3423
_main_program_ = Program()
_startup_program_ = Program()
3424

3425

3426
def default_startup_program():
Y
Yu Yang 已提交
3427
    """
Y
yuyang18 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3437

Y
Yu Yang 已提交
3438 3439 3440
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3441
    return _startup_program_
3442

3443

3444
def default_main_program():
Y
Yu Yang 已提交
3445
    """
Y
yuyang18 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3455

Y
Yu Yang 已提交
3456 3457 3458
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3459
    return _main_program_
Y
Yu Yang 已提交
3460 3461 3462 3463 3464


def switch_main_program(program):
    """
    Switch the main program to a new program.
3465

Y
Yu Yang 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3480
    Switch the startup program to a new program
Y
Yu Yang 已提交
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3493
@signature_safe_contextmanager
Y
Yu Yang 已提交
3494 3495
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3496 3497 3498
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3499

Y
Yu Yang 已提交
3500
    Examples:
3501 3502 3503
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3504

3505 3506 3507 3508 3509
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3510 3511 3512

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3513

Y
Yu Yang 已提交
3514
    Examples:
3515
       .. code-block:: python
Y
yuyang18 已提交
3516

3517 3518 3519 3520 3521 3522
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3523

Y
Yu Yang 已提交
3524
    Args:
Y
yuyang18 已提交
3525
        main_program(Program): New main program inside `with` statement.
3526
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3540 3541


W
Wu Yi 已提交
3542
def _get_var(name, program=None):
X
xuwei06 已提交
3543
    """
Y
yuyang18 已提交
3544
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3545

X
xuwei06 已提交
3546 3547 3548
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3549
        If None, default_global_program() will be used.
X
xuwei06 已提交
3550 3551 3552 3553 3554 3555 3556

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3557
    assert isinstance(program, Program)
X
xuwei06 已提交
3558 3559

    return program.global_block().var(name)
3560 3561


S
rename  
sneaxiy 已提交
3562
@signature_safe_contextmanager
L
lujun 已提交
3563 3564 3565 3566
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3567

3568
    yield
P
Paddle CI 已提交
3569

L
lujun 已提交
3570
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3571 3572


S
rename  
sneaxiy 已提交
3573
@signature_safe_contextmanager
L
lujun 已提交
3574 3575 3576 3577
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3578

3579
    yield
M
minqiyang 已提交
3580

L
lujun 已提交
3581
    _dygraph_current_expected_place_ = tmp_place