framework.py 194.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
S
sneaxiy 已提交
47 48 49
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
50
    'in_dygraph_mode',
C
chengduo 已提交
51
    'is_compiled_with_cuda',
52
    'is_compiled_with_xpu',
53
    'Variable',
54
    'ComplexVariable',
55
    'load_op_library',
56
    'require_version',
57
    'device_guard',
G
guofei 已提交
58 59
    'set_flags',
    'get_flags',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
68
_dygraph_tracer_ = None
69
_global_expected_place_ = None
70
_current_device = None
71 72
global_prog_seed = 0

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
181
def in_dygraph_mode():
L
lujun 已提交
182
    """
183

184 185 186 187 188 189 190
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
191 192

    Returns:
193
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198 199 200 201 202 203 204 205
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
206 207

    """
L
lujun 已提交
208
    return _dygraph_tracer_ is not None
209 210


211 212 213
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
214
        ), "We don't support %s in imperative mode" % func.__name__
215 216 217 218 219 220 221 222
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
223 224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We only support '%s()' in static graph mode, please call 'paddle.enable_static()' to enter static graph mode." % func.__name__
233 234 235 236 237
        return func(*args, **kwargs)

    return __impl__


238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


273 274
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
275
static_only = wrap_decorator(_static_only_)
276
fake_interface_only = wrap_decorator(_fake_interface_only_)
277 278


L
lujun 已提交
279 280
def _dygraph_tracer():
    return _dygraph_tracer_
281

W
Wu Yi 已提交
282

M
minqiyang 已提交
283
def _current_expected_place():
284 285 286
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
287 288 289 290 291 292 293 294 295 296 297
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
314 315


L
Leo Chen 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
333
def _cpu_num():
334
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
335 336 337 338 339 340 341 342
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
343
        os.environ['CPU_NUM'] = str(1)
344
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
345 346 347 348 349 350 351 352 353 354
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
355 356


357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
372 373 374 375
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

376
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
377 378 379 380

    Examples:
        .. code-block:: python

381 382
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
383 384 385 386
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
387
def cuda_places(device_ids=None):
L
lujun 已提交
388
    """
389 390 391 392
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
393
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
394 395

    If :code:`device_ids` is None, environment variable of
396
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
397
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
398
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
399
    If :code:`FLAGS_selected_gpus` is not set, all visible
400
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
401 402

    If :code:`device_ids` is not None, it should be the device
403
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
404
    the returned list would be 
C
Chen Weihang 已提交
405
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
406
    
407 408
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
409 410

    Returns:
C
Chen Weihang 已提交
411
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
412 413 414 415

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
416 417 418 419 420 421
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
422 423

    """
S
sneaxiy 已提交
424 425 426
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
427
        device_ids = _cuda_ids()
S
sneaxiy 已提交
428 429 430 431 432 433
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
434
    """
C
Chen Weihang 已提交
435
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
436 437 438
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
439 440
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
441 442
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
443

444 445
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
446 447

    Returns:
C
Chen Weihang 已提交
448
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
449 450 451 452

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
453 454 455 456 457 458
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
459 460
    """

S
sneaxiy 已提交
461 462 463 464 465 466
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
467
    """
468
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
469 470 471

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
472 473 474 475
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
476

477 478
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
479 480

    Returns:
481
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
482 483 484 485

    Examples:
        .. code-block:: python

486
            import paddle.fluid as fluid
L
lujun 已提交
487 488 489 490 491
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
492 493 494
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
495 496
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
497 498


499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
525
@signature_safe_contextmanager
526 527
def name_scope(prefix=None):
    """
528 529
    :api_attr: Static Graph

530
    Generate hierarchical name prefix for the operators in Static Graph.
531

T
Tao Luo 已提交
532 533 534
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
535
        Don't use it in dygraph, since it will cause memory leak.
536 537

    Args:
T
Tao Luo 已提交
538
        prefix(str, optional): prefix. Default is none.
539 540 541

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
542

543 544 545 546
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
             a = paddle.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
547
             b = a + 1
548
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
549
                c = b * 1
550
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
551
                d = c / 1
552 553 554
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
555 556 557
                g = f - 1

          # Op are created in the default main program.  
558
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
574 575
    """
    # TODO(panyx0718): Only [0-9a-z].
576
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
577 578 579
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
580
        assert prefix, "namescope prefix can not be empty."
581 582
        global _name_scope
        _name_scope = _name_scope.child(prefix)
583 584 585 586
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
587 588 589 590 591 592 593 594 595 596 597 598


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
599 600 601
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
602 603 604 605


def grad_var_name(var_name):
    """
606 607
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
608 609 610
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
611

612
def convert_np_dtype_to_dtype_(np_dtype):
613 614
    """
    Convert the data type in numpy to the data type in Paddle
615

616
    Args:
617
        np_dtype(np.dtype): the data type in numpy.
618

619 620
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
621 622

    """
623 624
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
625
        return core.VarDesc.VarType.FP32
626
    elif dtype == np.float64:
627
        return core.VarDesc.VarType.FP64
628
    elif dtype == np.float16:
629
        return core.VarDesc.VarType.FP16
630
    elif dtype == np.int32:
631
        return core.VarDesc.VarType.INT32
632
    elif dtype == np.int16:
633
        return core.VarDesc.VarType.INT16
634
    elif dtype == np.int64:
635
        return core.VarDesc.VarType.INT64
636
    elif dtype == np.bool:
637
        return core.VarDesc.VarType.BOOL
638
    elif dtype == np.uint16:
639 640 641
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
642 643
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
644 645
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
646
    else:
M
minqiyang 已提交
647
        raise ValueError("Not supported numpy dtype %s" % dtype)
648 649 650


def dtype_is_floating(dtype):
651 652 653
    """
    Check the data type is floating or not.
    Args:
654
        dtype(np.dtype|core.VarDesc.VarType): data type.
655 656 657 658 659
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
660
    if not isinstance(dtype, core.VarDesc.VarType):
661 662
        dtype = convert_np_dtype_to_dtype_(dtype)

663 664 665 666
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
667 668


Y
Yang Yang(Tony) 已提交
669
def _debug_string_(proto, throw_on_error=True):
670 671 672 673 674 675 676 677 678 679 680
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
681
    error_fields = list()
Y
Yang Yang(Tony) 已提交
682
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
683 684
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
685 686 687
    return proto.__str__()


688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
745
    target_block = default_main_program().current_block()
746 747 748 749 750 751 752 753 754 755 756

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
757
            })
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
797
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
798
                fill_constant([1], 1, force_cpu=True, out=temp_1)
799
                temp_end = target_block.create_var(dtype=slice_item.dtype)
800
                target_block.append_op(
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
840

841
    # starts
L
Leo Chen 已提交
842
    if contain_var(slice_start):
843 844 845 846 847 848 849 850
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
851 852 853 854
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
855 856 857 858 859 860 861
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
862 863 864
    else:
        attrs['ends'] = slice_end

865 866
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
867
        if contain_var(slice_step):
868 869 870 871 872 873 874
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
875 876
        else:
            attrs['strides'] = slice_step
877 878 879 880 881 882
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
883
        slice_out_var = target_block.create_var(
884 885 886
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

887
        target_block.append_op(
888 889 890 891 892 893 894
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
895
        strided_slice_out_var = target_block.create_var(
896 897 898
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
899
        target_block.append_op(
900 901 902 903 904 905 906 907
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
908
        reverse_out_var = target_block.create_var(
909 910 911
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
912
        target_block.append_op(
913 914 915 916 917 918 919 920 921 922 923
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
924
class Variable(object):
925
    """
J
Jiabin Yang 已提交
926
    **Notes**:
927
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
928

929 930
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
931 932 933
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
934
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
935 936
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
937

938
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
939
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
940

T
tianshuo78520a 已提交
941
    Most of a Variable's member variables can be set to be None. It mean
942
    it is not available or will be specified later.
943

944
    Examples:
945 946
        In Static Graph Mode:

947 948
        .. code-block:: python

949
            import paddle.fluid as fluid
950
            cur_program = fluid.Program()
951 952 953 954
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
955
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
956 957 958 959 960 961 962 963 964

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

965 966
    """

Y
Yu Yang 已提交
967 968
    def __init__(self,
                 block,
Y
Yu Yang 已提交
969
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
970 971 972 973
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
974
                 capacity=None,
Q
QI JUN 已提交
975
                 persistable=None,
F
fengjiayi 已提交
976
                 error_clip=None,
Y
Yu Yang 已提交
977
                 stop_gradient=False,
F
fengjiayi 已提交
978
                 is_data=False,
H
Huihuang Zheng 已提交
979
                 need_check_feed=False,
H
hong 已提交
980
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
981
                 **kwargs):
Y
Yu Yang 已提交
982 983
        self.block = block
        if name is None:
Y
Yu Yang 已提交
984
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
985

Y
Yu Yang 已提交
986
        if dtype is not None:
987
            if not isinstance(dtype, core.VarDesc.VarType):
988
                dtype = convert_np_dtype_to_dtype_(dtype)
989

H
hong 已提交
990 991
        self.belong_to_optimizer = belong_to_optimizer

992 993 994 995 996
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
997

998 999 1000
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1001

1002 1003 1004 1005 1006 1007 1008
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1009

1010
        if shape is not None:
1011
            if is_new_var:
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1053

1054 1055
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1056

1057 1058 1059 1060 1061 1062 1063
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1064

1065 1066 1067 1068
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1069

1070
    @fake_interface_only
1071 1072
    def detach(self):
        """
J
Jiabin Yang 已提交
1073
        **Notes**:
T
tianshuo78520a 已提交
1074
            **This API is ONLY available in Dygraph mode**
1075

1076
        Returns a new Variable, detached from the current graph.
1077

1078
        Returns:
J
Jiabin Yang 已提交
1079
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1080

1081

1082 1083 1084 1085 1086
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1087
                from paddle.fluid.dygraph import Linear
1088 1089 1090 1091
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1092
                    linear = Linear(32, 64)
1093
                    data = to_variable(data)
1094
                    x = linear(data)
1095 1096 1097
                    y = x.detach()

        """
1098
        pass
1099

1100
    @fake_interface_only
1101
    def numpy(self):
1102
        """
J
Jiabin Yang 已提交
1103
        **Notes**:
T
tianshuo78520a 已提交
1104
            **This API is ONLY available in Dygraph mode**
1105

J
Jiabin Yang 已提交
1106
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1107 1108 1109 1110 1111

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1112
            ndarray: dtype is same as current Variable
1113 1114 1115 1116 1117 1118

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1119
                from paddle.fluid.dygraph import Linear
1120 1121 1122 1123
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1124
                    linear = Linear(32, 64)
1125
                    data = to_variable(data)
1126
                    x = linear(data)
1127 1128 1129
                    print(x.numpy())

        """
1130
        pass
1131

1132
    @fake_interface_only
1133 1134
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1135
        **Notes**:
T
tianshuo78520a 已提交
1136
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1148
                from paddle.fluid.dygraph import Linear
1149 1150
                import numpy as np

1151
                data = np.ones([3, 1024], dtype='float32')
1152
                with fluid.dygraph.guard():
1153
                    linear = fluid.dygraph.Linear(1024, 4)
1154
                    t = to_variable(data)
1155
                    linear(t)  # call with default weight
1156
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1157 1158
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1159 1160

        """
1161
        pass
1162

1163
    @fake_interface_only
1164
    def backward(self, retain_graph=False):
1165
        """
J
Jiabin Yang 已提交
1166
        **Notes**:
T
tianshuo78520a 已提交
1167
            **This API is ONLY available in Dygraph mode**
1168

1169
        Run backward of current Graph which starts from current Tensor.
1170

J
Jiabin Yang 已提交
1171
        Args:
1172 1173 1174 1175
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1176

J
Jiabin Yang 已提交
1177 1178
        Returns:
            NoneType: None
1179 1180 1181 1182 1183

        Examples:
            .. code-block:: python

                import numpy as np
1184 1185
                import paddle
                paddle.disable_static()
1186 1187

                x = np.ones([2, 2], np.float32)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
                ret = paddle.sums(inputs)
                loss = paddle.reduce_sum(ret)
                loss.backward()
1198 1199

        """
1200
        pass
1201

1202
    @fake_interface_only
1203
    def gradient(self):
1204
        """
J
Jiabin Yang 已提交
1205
        **Notes**:
T
tianshuo78520a 已提交
1206
            **This API is ONLY available in Dygraph mode**
1207 1208 1209

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1210
        Returns:
1211
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1212 1213 1214 1215 1216 1217 1218

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1219
                # example1: return ndarray
1220 1221 1222 1223 1224 1225 1226 1227 1228
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1229
                    loss2.backward()
1230 1231
                    print(loss2.gradient())

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1245
        """
1246
        pass
1247

1248
    @fake_interface_only
1249
    def clear_gradient(self):
1250
        """
J
Jiabin Yang 已提交
1251
        **Notes**:
T
tianshuo78520a 已提交
1252
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1253 1254

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1255

J
Jiabin Yang 已提交
1256
        Clear  (set to ``0`` ) the Gradient of Current Variable
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1275
                    loss2.backward()
1276 1277 1278 1279 1280
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1281
        pass
X
Xin Pan 已提交
1282

1283
    def __str__(self):
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1328

F
update  
fengjiayi 已提交
1329
    def to_string(self, throw_on_error, with_details=False):
1330 1331 1332
        """
        Get debug string.

J
Jiabin Yang 已提交
1333 1334 1335 1336 1337
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1338

1339 1340
        Returns:
            str: The debug string.
1341 1342 1343 1344 1345

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1346

1347 1348 1349 1350 1351
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1352
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1353
                print("=============with detail===============")
1354
                print(new_variable.to_string(True, True))
1355
        """
F
update  
fengjiayi 已提交
1356 1357
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1358
        protostr = self.desc.serialize_to_string()
1359
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1360 1361 1362 1363
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1364 1365 1366
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1367
        return res_str
1368 1369 1370

    __repr__ = __str__

1371
    @property
1372
    def stop_gradient(self):
J
Jiabin Yang 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1388 1389
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1390 1391 1392
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1393 1394
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1395 1396 1397 1398
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1399
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1400 1401
                assert (out1.gradient() == 0).all()
        """
1402
        return self._stop_gradient
1403

1404 1405
    @stop_gradient.setter
    def stop_gradient(self, s):
1406
        self._stop_gradient = s
1407

1408 1409
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1431
        return self.desc.persistable()
1432

Y
Yu Yang 已提交
1433 1434
    @persistable.setter
    def persistable(self, p):
1435
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1436

Y
Yu Yang 已提交
1437 1438
    @property
    def name(self):
J
Jiabin Yang 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1455
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1456

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1477 1478
    @name.setter
    def name(self, new_name):
1479
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1480

Y
Yu Yang 已提交
1481 1482
    @property
    def shape(self):
J
Jiabin Yang 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1500
        # convert to tuple, make it as same as numpy API.
1501
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1502 1503

    @property
F
fengjiayi 已提交
1504
    def dtype(self):
J
Jiabin Yang 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1521
        return self.desc.dtype()
Y
Yu Yang 已提交
1522 1523 1524

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1546 1547 1548
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1549
        return self.desc.lod_level()
Y
Yu Yang 已提交
1550

Y
Yu Yang 已提交
1551 1552
    @property
    def type(self):
J
Jiabin Yang 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1569
        return self.desc.type()
Y
Yu Yang 已提交
1570

W
Wu Yi 已提交
1571
    def _set_error_clip(self, error_clip):
1572 1573 1574 1575 1576 1577 1578 1579 1580
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1581 1582
        self.error_clip = error_clip

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1623
            raise ValueError("slice step can not be zero")
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1699
    def _cloneVar(self, copy=False):
1700 1701
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1702 1703
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1704 1705 1706 1707
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1708
        new_var = self._cloneVar()
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1719
        new_var = self._cloneVar()
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1730
                return self._cloneVar(True)
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1749
                return self._cloneVar(True)
1750
            index = int(item)
1751
            if (index > 0 and index >= self.shape[axis]) \
1752 1753 1754 1755 1756 1757 1758
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1759
        return _getitem_impl_(self, item)
1760

Y
Yu Yang 已提交
1761

F
fengjiayi 已提交
1762 1763 1764
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1765

1766 1767
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1768 1769 1770 1771
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1772
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1773 1774 1775 1776
        ret_values.append(op_proto)
    return ret_values


1777 1778
class ComplexVariable(object):
    """
1779 1780
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1781 1782 1783
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1784
        **The constructor of ComplexTensor should not be invoked directly.**
1785

1786
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1787 1788

    Args:
1789 1790
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1791 1792 1793 1794
    
    Examples:
        .. code-block:: python

1795
            import paddle
1796 1797
            import numpy as np

1798 1799 1800 1801 1802 1803 1804 1805
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1806 1807
    """

1808 1809 1810 1811 1812
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1859 1860 1861
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1862 1863 1864 1865

    __repr__ = __str__


F
fengjiayi 已提交
1866
class OpProtoHolder(object):
1867 1868 1869 1870
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1871 1872 1873 1874 1875 1876 1877 1878 1879
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1880
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1881 1882 1883 1884 1885 1886
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1887 1888 1889 1890 1891 1892 1893 1894
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1895 1896
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1897 1898
        return self.op_proto_map[type]

1899 1900 1901 1902 1903 1904
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1905 1906 1907 1908
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1909
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1910
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1911 1912
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1913 1914
        }

F
fengjiayi 已提交
1915

X
Xin Pan 已提交
1916
class Operator(object):
1917
    """
1918 1919 1920 1921 1922 1923 1924
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1925
        type(str): The type of operator. Default None.
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1946
        Block.append_op or Block._prepend_op instead.
1947 1948 1949 1950

    Examples:
        .. code-block:: python

1951
            import paddle.fluid as fluid
1952
            cur_program = fluid.Program()
1953 1954 1955 1956 1957
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1958
    """
1959
    OP_WITHOUT_KERNEL_SET = {
1960 1961
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1962 1963
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1964
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1965
    }
1966

Y
Yu Yang 已提交
1967 1968
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1969
                 desc,
Y
Yu Yang 已提交
1970 1971 1972
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1973
                 attrs=None):
L
lujun 已提交
1974
        if in_dygraph_mode():
1975 1976
            if type is None:
                raise ValueError(
1977
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1978
            self._type = type
M
minqiyang 已提交
1979
            self.attrs = attrs if attrs else {}
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1994
                )] = self.block.program._op_role
1995 1996 1997

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1998 1999
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2000 2001 2002 2003 2004 2005 2006 2007

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2008
                    "`type` to initialized an Operator can not be None.")
2009 2010
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2011 2012 2013 2014 2015 2016 2017
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2018 2019 2020 2021 2022 2023 2024

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2056
                        if not isinstance(in_args, (list, tuple)):
2057 2058 2059 2060 2061 2062
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2063
                        for index, arg in enumerate(in_args):
2064 2065 2066 2067
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2068
                            elif isinstance(arg, (Variable, core.VarBase)):
2069
                                in_arg_names.append(cpt.to_text(arg.name))
2070
                            else:
2071 2072 2073 2074
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2075 2076
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2103
                        if not in_dygraph_mode():
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2123
    def _has_kernel(self, op_type):
2124 2125
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2126
    def to_string(self, throw_on_error):
2127
        """
2128 2129
        Get debug string.

2130
        Args:
2131 2132
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2133

2134 2135
        Returns:
            str: The debug string.
2136 2137

        """
2138
        protostr = self.desc.serialize_to_string()
2139
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2140 2141
        return _debug_string_(proto, throw_on_error)

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2235
    def __str__(self):
2236
        return self._to_readable_code()
2237 2238 2239

    __repr__ = __str__

F
fengjiayi 已提交
2240 2241
    @property
    def type(self):
2242
        return self.desc.type()
F
fengjiayi 已提交
2243 2244

    def input(self, name):
2245
        """
2246
        Get the input arguments according to the input parameter name.
2247

2248 2249
        Args:
            name(str): The input parameter name.
2250

2251 2252 2253
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2254
        """
F
fengjiayi 已提交
2255 2256
        return self.desc.input(name)

W
Wu Yi 已提交
2257
    def _rename_input(self, old_name, new_name):
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2268
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2269

W
Wu Yi 已提交
2270
    def _rename_output(self, old_name, new_name):
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2281
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2282

F
fengjiayi 已提交
2283 2284 2285 2286
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2287 2288 2289 2290 2291 2292 2293 2294
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2295
    def output(self, name):
2296
        """
2297
        Get output arguments by the output parameter name.
2298

2299 2300
        Args:
            name(str): The output parameter name.
2301

2302 2303 2304
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2305
        """
F
fengjiayi 已提交
2306 2307 2308 2309 2310 2311
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2312 2313 2314 2315 2316 2317 2318 2319
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2320
    def has_attr(self, name):
2321
        """
2322 2323
        Whether this Operator has the attribute with name or not.

2324
        Args:
2325
            name(str): the attribute name.
2326

2327 2328
        Returns:
            bool: True if has this attribute.
2329 2330

        """
F
fengjiayi 已提交
2331 2332 2333
        return self.desc.has_attr(name)

    def attr_type(self, name):
2334
        """
2335
        Get the type of attribute by attribute's name.
2336

2337 2338
        Args:
            name(str): the attribute name.
2339

2340 2341
        Returns:
            core.AttrType: the attribute type.
2342
        """
F
fengjiayi 已提交
2343 2344
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2345
    def _set_attr(self, name, val):
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2356 2357
        self._update_desc_attr(name, val)

2358 2359 2360
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2372 2373
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2374 2375
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2376
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2377 2378 2379 2380
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2381
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2382

F
fengjiayi 已提交
2383 2384 2385 2386 2387
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2388
        """
2389 2390
        Get the attribute by name.

2391
        Args:
2392
            name(str): the attribute name.
2393

2394 2395
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2396 2397
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2398
        return self.desc.attr(name)
Y
Yu Yang 已提交
2399

W
Wu Yi 已提交
2400
    def _block_attr_id(self, name):
2401
        """
G
gongweibao 已提交
2402
        Get the block attribute's id by name.
2403

2404 2405
        Args:
            name(str): the attribute name.
2406

2407 2408
        Returns:
            int: the block index.
2409
        """
W
Wu Yi 已提交
2410
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2411

W
Wu Yi 已提交
2412
    def _block_attr(self, name):
G
gongweibao 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2423
        id = self._block_attr_id(name)
G
gongweibao 已提交
2424 2425 2426
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2427
    def _blocks_attr(self, name):
G
gongweibao 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2438
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2439 2440 2441 2442 2443
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2444
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2455
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2456

J
JiayiFeng 已提交
2457
    def all_attrs(self):
F
fengjiayi 已提交
2458
        """
2459 2460 2461
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2462
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2463 2464 2465 2466
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2467 2468
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2469
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2470 2471 2472
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2473
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2474 2475 2476 2477
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2478 2479
        return attr_map

2480 2481 2482
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2483 2484 2485 2486

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2487 2488 2489
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2490 2491 2492 2493 2494 2495 2496 2497

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2498 2499
            return False

2500 2501 2502 2503 2504 2505
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2506

Y
Yu Yang 已提交
2507
class Block(object):
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2522
        use `Program._create_block()` to create a block.
2523 2524 2525 2526

    Examples:
        .. code-block:: python

2527 2528 2529
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2530 2531 2532 2533 2534 2535 2536 2537 2538
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2539
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2540
        self.desc = program.desc.block(idx)
2541
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2542
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2543
        self.program = program
2544
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2545

2546
    def __str__(self):
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2593

F
fengjiayi 已提交
2594 2595
    def to_string(self, throw_on_error, with_details=False):
        """
2596 2597
        Get debug string.

F
fengjiayi 已提交
2598 2599
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2600
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2601
            with_details(bool): more details about variables and parameters
2602 2603
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2604

2605 2606
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2607 2608 2609 2610
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2611
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2612 2613
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2614
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2615
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2616
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2617
            for op in self.ops:
F
fengjiayi 已提交
2618 2619
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2620 2621 2622
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2623 2624
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2625 2626
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2627 2628 2629

    __repr__ = __str__

Y
Yu Yang 已提交
2630 2631
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2632
        return self.desc.parent
Y
Yu Yang 已提交
2633

Y
Yu Yang 已提交
2634 2635 2636 2637
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2638
    def _set_forward_block_idx(self, idx):
2639 2640 2641 2642 2643 2644 2645 2646 2647
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2648
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2649

2650 2651 2652 2653 2654 2655 2656 2657
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2658 2659
    @property
    def idx(self):
Y
Yu Yang 已提交
2660
        return self.desc.id
Y
Yu Yang 已提交
2661

Q
Qiao Longfei 已提交
2662
    def var(self, name):
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2676
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2677 2678 2679
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2680 2681
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2682
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2683
        return v
Q
Qiao Longfei 已提交
2684

X
Xin Pan 已提交
2685
    def _find_var_recursive(self, name):
2686 2687 2688 2689 2690 2691 2692
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2693
            Variable: the Variable with the giving name. Or None if not found.
2694
        """
Y
Yu Yang 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2719
        return None
Y
Yu Yang 已提交
2720

X
Xin Pan 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2740

Q
Qiao Longfei 已提交
2741
    def all_parameters(self):
2742
        return list(self.iter_parameters())
2743

2744
    def iter_parameters(self):
M
minqiyang 已提交
2745
        return (item[1] for item in six.iteritems(self.vars)
2746
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2747

Y
Yu Yang 已提交
2748
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2749 2750 2751
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2752 2753 2754
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2755
        return var
Y
Yu Yang 已提交
2756

Q
Qiao Longfei 已提交
2757 2758 2759
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2760
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2761 2762
        """
        Rename variable in vars and ops' inputs and outputs
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2775
        """
M
minqiyang 已提交
2776 2777
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2778

T
typhoonzero 已提交
2779
        if not self.has_var(name):
2780
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2781 2782
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2783
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2784 2785 2786 2787 2788 2789
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2790
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2791 2792 2793 2794
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2795
        orig_var_type = v.type
M
minqiyang 已提交
2796
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2797
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2798
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2799
        if var_type == "Parameter":
L
Leo Chen 已提交
2800 2801
            if in_dygraph_mode():
                var = ParamBase(
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2812 2813
                var = Parameter(
                    self,
2814 2815 2816 2817 2818 2819 2820 2821 2822
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2823
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2824 2825
            var = Variable(
                self,
T
typhoonzero 已提交
2826
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2827 2828 2829 2830
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2831
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2832 2833 2834
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2835
        self._sync_with_cpp()
2836
        return var
T
typhoonzero 已提交
2837

W
Wu Yi 已提交
2838 2839
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2840
        self.desc._remove_var(cpt.to_bytes(name))
2841 2842
        del self.vars[name]

Y
Yu Yang 已提交
2843 2844
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2845
        param = None
L
Leo Chen 已提交
2846
        if in_dygraph_mode():
2847
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2848 2849
        else:
            param = Parameter(global_block, *args, **kwargs)
2850
        if 'initializer' in kwargs:
2851 2852 2853 2854 2855

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2856 2857 2858 2859 2860
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2872
                # TODO already inited, do nothing, should log a warning
2873 2874 2875
                pass
            else:
                initializer(param, self)
2876
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2877
        return param
Y
Yu Yang 已提交
2878

Y
Yu Yang 已提交
2879
    def append_op(self, *args, **kwargs):
2880 2881 2882 2883 2884 2885
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2886
        if in_dygraph_mode():
2887
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2888
            type = kwargs.get("type", None)
2889 2890 2891
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2892
                type=type,
M
minqiyang 已提交
2893 2894
                inputs=None,
                outputs=None,
2895
                attrs=attrs)
2896

M
minqiyang 已提交
2897 2898 2899
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2900
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2901 2902

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2903
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2904 2905
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2906
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2907
        else:
2908 2909 2910 2911 2912 2913 2914 2915 2916
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2917
            self.ops.append(op)
M
minqiyang 已提交
2918

2919 2920
        return op

W
Wu Yi 已提交
2921
    def _insert_op(self, index, *args, **kwargs):
2922 2923 2924 2925 2926 2927 2928 2929 2930
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2931 2932
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2933 2934 2935 2936
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2937
    def _remove_op(self, index):
2938 2939 2940 2941 2942 2943 2944 2945 2946
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2947 2948
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2949 2950
        del self.ops[index]

W
Wu Yi 已提交
2951
    def _slice_ops(self, start, end):
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2962
        return self.ops[start:end]
Y
Yancey1989 已提交
2963

W
Wu Yi 已提交
2964
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2965
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2966 2967
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2968
            op = Operator(
J
Jiabin Yang 已提交
2969
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2970

J
Jiabin Yang 已提交
2971
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2972
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2973 2974
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2975
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2976
        else:
2977 2978 2979 2980 2981 2982 2983 2984
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2985
            self.ops.insert(0, op)
2986

Y
Yu Yang 已提交
2987 2988
        return op

W
Wu Yi 已提交
2989
    def _sync_with_cpp(self):
2990
        """
2991 2992
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2993
        """
Q
Qiao Longfei 已提交
2994 2995 2996 2997 2998
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2999
        # sync variables removed from c++ end
3000
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3001
            if not self.desc.find_var(cpt.to_bytes(var)):
3002 3003
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3004
        # sync operators from cpp
3005 3006 3007 3008
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3025 3026 3027 3028 3029

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3030
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3031 3032 3033 3034 3035 3036 3037

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3051 3052 3053 3054
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3055
    def _copy_param_info_from(self, other):
3056
        """
3057 3058
        Copy the information of parameters from the other block.

3059
        Args:
3060 3061 3062 3063 3064
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3065 3066 3067 3068 3069

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3070 3071
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3072
        for p in other.iter_parameters():
3073 3074 3075
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3076 3077
                # if the Parameter is pruned, v may be None
                continue
3078
            assert isinstance(v, Variable)
3079
            new_p = None
L
Leo Chen 已提交
3080 3081
            if in_dygraph_mode():
                new_p = ParamBase(
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3093 3094
                new_p = Parameter(
                    block=self,
3095 3096 3097
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3098 3099
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3100 3101 3102 3103 3104 3105
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3106 3107
            self.vars[new_p.name] = new_p

3108
    def _clone_variable(self, var, force_persistable=True):
3109 3110
        """
        Clone a variable into current block.
3111

3112 3113
        Args:
            var: the variable to be cloned.
3114 3115 3116
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3117 3118

        Returns:
3119
            Variable: the new  variable cloned from 'var' in current block.
3120 3121
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3122 3123 3124 3125 3126
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3127 3128
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3129
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3130 3131 3132 3133 3134 3135
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3136
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3137 3138
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3139 3140 3141 3142 3143 3144 3145
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3146
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3147 3148
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3149
        return ret_var
3150

Y
Yu Yang 已提交
3151

3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3247
    def remove_input_by_id(self, node_id):
3248 3249 3250 3251 3252 3253
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3254
        self.node.remove_input(node_id)
3255

3256
    def remove_input(self, node):
3257 3258 3259 3260
        """
        Remove a node from inputs.

        Args:
3261
            node(IrNode): the node being removed.
3262
        """
3263
        self.node.remove_input(node.node)
3264

3265
    def append_input(self, node):
3266 3267 3268 3269
        """
        Append a node in inputs.

        Args:
3270
            node(IrNode): the node being appended.
3271
        """
3272
        self.node.append_input(node.node)
3273 3274 3275 3276 3277 3278 3279 3280

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3281
    def remove_output_by_id(self, node_id):
3282 3283 3284 3285 3286 3287
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3288
        self.node.remove_output(node_id)
3289

3290
    def remove_output(self, node):
3291 3292 3293 3294
        """
        Remove a node from outputs.

        Args:
3295
            node(IrNode): the node being removed.
3296
        """
3297
        self.node.remove_output(node.node)
3298

3299
    def append_output(self, node):
3300 3301 3302 3303
        """
        Append a node in outputs.

        Args:
3304
            node(IrNode): the node being appended.
3305
        """
3306
        self.node.append_output(node.node)
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3354
            "The node variable description can not be None."
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3365
            "The node variable description can not be None."
3366 3367
        return self.node.var().persistable()

3368 3369 3370 3371 3372 3373 3374 3375
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3376
            "The node variable description can not be None."
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3387
            "The node variable description can not be None."
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3398
            "The node variable description can not be None."
3399 3400
        return self.node.var().shape()

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3448
            "The node operator description can not be None."
3449 3450
        self.node.op()._rename_input(old_input_name, new_input_name)

3451 3452 3453 3454 3455 3456 3457 3458 3459
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3460
            "The node operator description can not be None."
3461 3462
        self.node.op()._rename_output(old_output_name, new_output_name)

3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3474
            "The node operator description can not be None."
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3488
            "The node operator description can not be None."
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3499
            "The node operator description can not be None."
3500 3501
        return self.node.op().set_type(new_type)

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3517
            "The node operator description can not be None."
3518 3519 3520 3521
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3522
                all(isinstance(v, Block) for v in val):
3523 3524
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3525
                isinstance(val, core.ProgramDesc):
3526 3527 3528 3529
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3530 3531 3532 3533 3534 3535 3536 3537
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3538
            "The node operator description can not be None."
3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3549
            "The node operator description can not be None."
3550 3551
        return self.node.op().output_arg_names()

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3573 3574
class IrGraph(object):
    """
3575
    Python IrGraph. Beneath it is a core.Graph, which is used for
3576
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3577 3578
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3579 3580 3581 3582
    """

    def __init__(self, graph, for_test=False):
        """
3583 3584
        Construct an IrGraph using core.Graph.

3585 3586 3587 3588 3589 3590 3591 3592 3593
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3594 3595 3596 3597
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3598 3599 3600
        Warns:
            The method only clones the graph structure, not its attributes.

3601 3602 3603
        Returns:
            IrGraph: A new and duplicated graph.
        """
3604
        g = self.graph.clone()
3605 3606
        return IrGraph(g, self._for_test)

3607
    def is_test(self):
3608 3609 3610
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3611 3612
        return self._for_test

W
WangZhen 已提交
3613
    def all_nodes(self):
3614 3615 3616
        """
        Return all nodes included in the graph as a set.
        """
3617
        return {IrNode(node) for node in self.graph.nodes()}
3618

3619
    def all_var_nodes(self):
3620 3621 3622
        """
        Return all variable nodes included in the graph as a set.
        """
3623
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3624

3625
    def all_persistable_nodes(self):
3626 3627 3628
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3629 3630 3631 3632 3633
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3634
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3635

3636
    def all_op_nodes(self):
3637 3638 3639
        """
        Return all operator nodes included in the graph as a set.
        """
3640
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3641

3642
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3654
            IrVarNode: the created persistable variable node.
3655
        """
3656 3657 3658 3659 3660
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3661
        return IrVarNode(self.graph.create_var_node(var_desc))
3662 3663

    def create_var_node(self, name, var_type, shape, var_dtype):
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3675
            IrVarNode: the created variable node.
3676 3677
        """

3678 3679 3680 3681
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3682
        return IrVarNode(self.graph.create_var_node(var_desc))
3683

3684 3685 3686 3687 3688 3689
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3690
    def create_var_node_from_desc(self, var_desc):
3691 3692 3693 3694 3695 3696 3697 3698
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3699
            IrVarNode: the created variable node.
3700
        """
3701
        return IrVarNode(self.graph.create_var_node(var_desc))
3702 3703

    def create_op_node(self, op_type, attrs, inputs, outputs):
3704 3705 3706 3707 3708 3709 3710
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3711
            outputs(dict): the outputs of the operator node.
3712 3713

        Returns:
3714
            IrOpNode: the created operator node.
3715
        """
3716 3717
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3718
        for attr, value in six.iteritems(attrs):
3719
            self._update_desc_attr(op_desc, attr, value)
3720
        for input_name, var_nodes in six.iteritems(inputs):
3721 3722 3723 3724
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3725
        for output_name, var_nodes in six.iteritems(outputs):
3726 3727 3728 3729
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3730
        return IrOpNode(self.graph.create_op_node(op_desc))
3731 3732

    def create_op_node_from_desc(self, op_desc):
3733 3734 3735 3736 3737 3738 3739
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3740
            IrOpNode: the created operator node.
3741
        """
3742
        return IrOpNode(self.graph.create_op_node(op_desc))
3743 3744

    def update_input_link(self, old_input_node, new_input_node, op_node):
3745 3746 3747 3748
        """
        Update the input's link of a operator node.

        Args:
3749 3750 3751
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3752
        """
3753
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3754 3755
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3756 3757 3758 3759
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3760
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3761

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3772 3773
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3774 3775 3776 3777 3778 3779
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3780
    def link_to(self, node_in, node_out):
3781 3782 3783 3784
        """
        Connect two nodes.

        Args:
3785 3786
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3787
        """
3788
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3789
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3790 3791
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3792 3793

    def safe_remove_nodes(self, remove_nodes):
3794 3795 3796 3797 3798 3799 3800
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3801
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3802 3803 3804 3805
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3806 3807
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3808

Z
Zhen Wang 已提交
3809 3810 3811 3812 3813 3814 3815 3816
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3817
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3818 3819 3820 3821
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3822
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3823 3824 3825
                        ]
                    else:
                        var_nodes[each_var_name].append(
3826 3827
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3828 3829
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3830
    def has_circle(self):
3831 3832 3833 3834 3835 3836
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3837 3838 3839
        return core.has_circle(self.graph)

    def graph_num(self):
3840 3841 3842 3843 3844 3845
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3846 3847 3848
        return core.graph_num(self.graph)

    def topology_sort(self):
3849 3850 3851
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3852
        Notes: the `graph` can not contain a circle.
3853 3854

        Returns:
Z
Zhen Wang 已提交
3855
            list(IrNode): nodes in topology order.
3856
        """
3857
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3858
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3859 3860

    def build_adjacency_list(self):
3861 3862 3863 3864
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3865
            dict{IrNode: set(IrNode)}: the adjacency list.
3866
        """
3867 3868 3869 3870 3871
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3872

3873 3874 3875 3876 3877 3878 3879 3880
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3881
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3882 3883 3884 3885 3886
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3887 3888 3889
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3890
                                          + ' -o ' + pdf_save_path, shell=True)
3891 3892 3893 3894 3895
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3896
        remove_ctr_vars = set()
3897
        if remove_ctr_var:
3898
            for node in self.all_var_nodes():
3899 3900 3901
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3902 3903
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3904 3905
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3906 3907 3908 3909 3910 3911
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3912 3913 3914 3915
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3916 3917
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3918 3919 3920 3921 3922 3923 3924
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3925 3926 3927
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3928
        WARN: When the graph includes backward operator nodes, the
3929 3930 3931 3932 3933 3934
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3935
        convert_pass = core.get_pass('graph_to_program_pass')
3936 3937
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3938 3939 3940 3941
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3969
class Program(object):
D
dzhwinter 已提交
3970
    """
3971
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3972
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3973
    it will contain nested block.
3974

J
Jiabin Yang 已提交
3975 3976 3977
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3978

J
Jiabin Yang 已提交
3979
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3980
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3981 3982 3983 3984 3985 3986 3987
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3988
    **Notes**:
3989 3990 3991
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3992 3993

    Returns:
J
Jiabin Yang 已提交
3994
        Program: An empty Program.
D
dzhwinter 已提交
3995 3996

    Examples:
3997 3998
        .. code-block:: python

3999 4000 4001 4002
            import paddle
            import paddle.static as static

            paddle.enable_static()
4003

4004 4005 4006 4007 4008
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4009
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4010 4011 4012

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4013 4014 4015

    """

4016 4017
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4018 4019
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4020 4021
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4022
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4023
        self.__op_role_var = []
T
tangwei12 已提交
4024

4025 4026
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4027
        self._is_distributed = False
4028
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4029
        self._is_chief = False
4030 4031 4032
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4033
        self._endpoints = []
4034 4035 4036
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4037
        self._trainers_endpoints = []
4038
        # the distributed lookup table names
T
tangwei12 已提交
4039
        self._distributed_lookup_table = None
4040 4041 4042

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4043 4044
        self._use_lamb = False

4045 4046 4047
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4048

4049 4050 4051
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4052
        self._program_config = None
4053

H
hutuxian 已提交
4054 4055 4056
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4057 4058 4059
        # appending gradients times
        self._appending_grad_times = 0

4060 4061 4062 4063
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4064 4065 4066
        # compiled program, i.e. Graph
        self._graph = None

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4077 4078
                import paddle
                import paddle.static as static
4079

4080 4081 4082
                paddle.enable_static()

                prog = static.default_main_program()
4083 4084 4085 4086 4087
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4088
                prog1 = static.default_main_program()
4089 4090 4091 4092 4093 4094 4095 4096
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4097
    @property
4098
    def _op_role(self):
Y
yuyang18 已提交
4099 4100 4101 4102 4103 4104 4105 4106
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4107
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4108 4109 4110 4111
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4112 4113
        return self._current_role

4114 4115
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4116 4117 4118
        self._current_role = role

    @property
4119
    def _op_role_var(self):
Y
yuyang18 已提交
4120
        """
4121
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4122

4123
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4124 4125 4126

        Notes: This is a very low-level API. Users should not use it directly.
        """
4127
        return self.__op_role_var
Y
yuyang18 已提交
4128

4129
    @signature_safe_contextmanager
4130 4131 4132 4133 4134
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4135 4136 4137 4138
        try:
            yield
        finally:
            self._current_role = tmp_role
4139

S
rename  
sneaxiy 已提交
4140
    @signature_safe_contextmanager
W
Wu Yi 已提交
4141
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4142 4143 4144 4145 4146 4147 4148
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4149
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4150 4151 4152

        Examples:

4153
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4154
            >>> p, g = backward(...)
W
Wu Yi 已提交
4155
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4156 4157
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4158
        tmp_role = self._current_role
4159
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4160

Y
yuyang18 已提交
4161 4162
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4163
        self.__op_role_var = [
4164 4165 4166
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4167 4168 4169 4170 4171
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4172

S
rename  
sneaxiy 已提交
4173
    @signature_safe_contextmanager
X
Xin Pan 已提交
4174
    def _lr_schedule_guard(self, is_with_opt=False):
4175 4176 4177 4178 4179 4180 4181
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4182 4183 4184 4185
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4186 4187 4188

        Examples:

4189
            >>> import paddle.fluid as fluid
4190 4191 4192 4193
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4194 4195

        tmp_role = self._current_role
4196
        tmp_var = self.__op_role_var
4197

4198 4199
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4200 4201
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4202
        # TODO(typhoonzero): how to set target learning rate var
4203
        self.__op_role_var = []
4204 4205 4206 4207 4208
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4209

4210
    def __str__(self):
Y
yuyang18 已提交
4211 4212 4213 4214 4215 4216 4217 4218 4219
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4259
            program_str += '\n'
4260
        return program_str
Y
Yang Yang(Tony) 已提交
4261

F
fengjiayi 已提交
4262 4263 4264
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4265

J
Jiabin Yang 已提交
4266 4267 4268
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4269

J
Jiabin Yang 已提交
4270
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4271

H
haowang101779990 已提交
4272
        Returns:
J
Jiabin Yang 已提交
4273
            str: The debug string describe current Program.
Y
yuyang18 已提交
4274 4275

        Raises:
J
Jiabin Yang 已提交
4276
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4277

4278 4279 4280
        Examples:
            .. code-block:: python

4281 4282 4283 4284
                import paddle
                import paddle.static as static

                paddle.enable_static()
4285

4286 4287 4288
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4289
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4290
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4291
                print("program string without detail: {}".format(prog_string))
4292
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4293
        """
4294 4295 4296 4297 4298 4299 4300 4301 4302
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4303 4304 4305 4306 4307 4308
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4309 4310
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4311 4312
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4313

W
Wu Yi 已提交
4314
    def _get_desc(self):
Y
yuyang18 已提交
4315 4316 4317 4318 4319 4320 4321
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4322 4323
        return self.desc

X
version  
Xin Pan 已提交
4324 4325 4326
    def _version(self):
        return self.desc._version()

4327
    def clone(self, for_test=False):
Y
yuyang18 已提交
4328
        """
4329 4330 4331 4332
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4333

4334
        Create a new Program with forward content of original one when ``for_test=True``.
4335
        Create a new Program as same as the original one when ``for_test=False``.
4336

4337
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4338 4339 4340
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4341

4342 4343
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4344 4345
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4346
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4347

J
Jiabin Yang 已提交
4348
        For Example:
4349
          ::
L
Luo Tao 已提交
4350

4351 4352 4353 4354 4355 4356
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4357
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4358
            loss = paddle.mean(pred)
4359
            # Here we use clone before Momentum
4360 4361
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4362
            optimizer.minimize(loss)
4363

J
Jiabin Yang 已提交
4364
        Args:
4365

4366 4367
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4368

J
Jiabin Yang 已提交
4369
        Returns:
4370
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4371

Y
yuyang18 已提交
4372 4373 4374

        Examples:

4375 4376 4377 4378 4379 4380 4381
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4398
            1. To clone a test program, the sample code is:
4399 4400 4401
                .. code-block:: python

                    import six
4402 4403 4404 4405 4406 4407
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4420 4421
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4422 4423 4424

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4425 4426 4427
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4428
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4429 4430
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4431
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4432 4433
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4434
                            test_program = train_program.clone(for_test=True)
4435
                    print_prog(test_program)
J
Jiabin Yang 已提交
4436 4437 4438 4439 4440 4441 4442 4443 4444

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4445 4446 4447
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4448 4449 4450
                            sgd.minimize(avg_loss)


4451
            2. The clone method can be avoid if you create program for training and program for testing individually.
4452 4453 4454
                .. code-block:: python

                    import six
4455 4456 4457 4458 4459 4460
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4472

4473
                    def network():
4474
                        img = static.data(name='image', shape=[None, 784])
4475
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4476 4477
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4478
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4479 4480
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4481 4482
                        return avg_loss

4483 4484 4485 4486 4487
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4488
                            avg_loss = network()
4489
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4490
                            sgd.minimize(avg_loss)
4491
                    # the test startup program is not used.
4492 4493
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4494 4495
                            avg_loss = network()
                    print_prog(test_program_2)
4496

4497
            The two code snippets above will generate and print same programs.
4498
        """
4499 4500 4501 4502 4503

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4504
        pruned_origin_block_id_map = None
4505
        if for_test:
4506 4507 4508 4509 4510 4511 4512 4513 4514
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4515
        else:
4516
            p = Program()
G
gongweibao 已提交
4517 4518
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4519
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4520 4521 4522
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4523 4524

            p._current_role = self._current_role
4525
            p.__op_role_var = self.__op_role_var
4526
            p._appending_grad_times = self._appending_grad_times
4527 4528
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4529

4530 4531
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4532
            p._sync_with_cpp()
4533

W
Wu Yi 已提交
4534
        p._copy_param_info_from(self)
4535
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4536
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4537
        return p
4538

4539
    def _prune(self, targets):
Y
yuyang18 已提交
4540 4541 4542 4543 4544 4545 4546 4547
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4548
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4549 4550 4551 4552
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4553
        """
4554
        return self._prune_with_input([], targets)
4555 4556

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4557
        """
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4568
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4569 4570 4571 4572 4573 4574
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4575 4576 4577 4578
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4579 4580
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4581 4582
        if not isinstance(targets, list):
            targets = [targets]
4583 4584 4585

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4586 4587 4588
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4589

4590 4591 4592 4593
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4594 4595 4596
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4597
                else:
4598 4599 4600
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4601 4602 4603 4604 4605 4606 4607 4608

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4625 4626 4627 4628 4629 4630 4631 4632
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4633

4634
        res = Program()
4635 4636 4637
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4638 4639 4640
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4641
        res._sync_with_cpp()
4642 4643 4644 4645 4646

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4647 4648
        return res

X
Xin Pan 已提交
4649
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4650
        """
F
fengjiayi 已提交
4651 4652 4653 4654 4655
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4656
        3. change the :code:`is_test`
Y
yuyang18 已提交
4657 4658 4659
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4660
        Args:
X
Xin Pan 已提交
4661 4662
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4663

Y
yuyang18 已提交
4664 4665 4666 4667 4668 4669
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4670
        res = Program()
4671
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4672 4673 4674 4675

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4676
        if prune_read_op:
4677 4678 4679 4680 4681 4682 4683 4684 4685
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4686
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4687 4688

        # change all `is_test` attributes to True
M
minqiyang 已提交
4689
        for i in six.moves.range(res.desc.num_blocks()):
4690
            block = res.desc.block(i)
M
minqiyang 已提交
4691
            for j in six.moves.range(block.op_size()):
4692 4693
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4694
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4695 4696 4697
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4698
        res._sync_with_cpp()
4699 4700
        return res

4701 4702
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4703
        """
4704 4705 4706
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4707

4708 4709
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4710

J
Jiabin Yang 已提交
4711
        Args:
Y
yuyang18 已提交
4712

J
Jiabin Yang 已提交
4713
            binary_str_type (str): the binary prootbuf string.
4714

J
Jiabin Yang 已提交
4715 4716
        Returns:
            Program: A deserialized Program.
4717 4718 4719 4720

        Examples:
            .. code-block:: python

4721 4722 4723 4724
                import paddle
                import paddle.static as static

                paddle.enable_static()
4725

4726 4727 4728 4729
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4730

4731
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4732

4733
                    z = paddle.matmul(x=x, y=y)
4734

4735 4736
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4737

4738
                    print(static.default_main_program())
4739
                    print(prog_restored)
Y
yuyang18 已提交
4740
        """
4741 4742
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4743
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4744
        p._sync_with_cpp()
4745
        return p
Y
Yu Yang 已提交
4746

4747
    @staticmethod
4748
    def _construct_from_desc(desc):
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4764 4765
    @property
    def random_seed(self):
Y
yuyang18 已提交
4766
        """
J
Jiabin Yang 已提交
4767
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4768 4769
        the random seed from random device.

4770 4771
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4772 4773 4774

        Returns:
            int64: Random seed in current Program
4775

4776 4777 4778 4779

        Examples:
            .. code-block:: python

4780 4781 4782
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4783

4784 4785 4786
                paddle.enable_static()

                prog = static.default_main_program()
4787
                random_seed = prog.random_seed
4788
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4789 4790 4791
                print(random_seed)
                ## 0
                ## the default random seed is 0
4792 4793

                # Here we need to set random seed before we use fluid.layers.dropout
4794
                prog.random_seed = 1
4795
                z_var = F.dropout(x_var, 0.7)
4796

4797
                print(prog.random_seed)
4798 4799
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4800
        """
D
dzhwinter 已提交
4801 4802
        return self._seed

Q
qiaolongfei 已提交
4803 4804
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4805
        """
4806 4807
        The number of :ref:`api_guide_Block_en`  in this Program.

4808 4809
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4810 4811 4812

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4813

4814 4815 4816 4817

        Examples:
            .. code-block:: python

4818 4819 4820 4821
                import paddle
                import paddle.static as static

                paddle.enable_static()
4822

4823
                prog = static.default_main_program()
4824 4825
                num_blocks = prog.num_blocks
                print(num_blocks)
4826

4827 4828
                # print result:
                # 1
Y
yuyang18 已提交
4829
        """
Q
qiaolongfei 已提交
4830 4831
        return self.desc.num_blocks()

D
dzhwinter 已提交
4832 4833 4834
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4835 4836 4837
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4838 4839
        self._seed = seed

Y
Yu Yang 已提交
4840
    def __repr__(self):
4841
        return self.__str__()
4842

Y
Yu Yang 已提交
4843
    def global_block(self):
Y
yuyang18 已提交
4844
        """
4845 4846
        .. note::
            This API has no effect in Dygraph mode.
4847 4848 4849

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4850 4851
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4852

4853 4854 4855 4856

        Examples:
            .. code-block:: python

4857 4858 4859 4860
                import paddle
                import paddle.static as static

                paddle.enable_static()
4861

4862
                prog = static.default_main_program()
4863 4864
                gb_block = prog.global_block()
                print(gb_block)
4865

Y
yuyang18 已提交
4866
        """
Y
Yu Yang 已提交
4867 4868
        return self.blocks[0]

Q
Qiao Longfei 已提交
4869
    def block(self, index):
Y
yuyang18 已提交
4870
        """
4871 4872
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4873

4874 4875
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4876 4877
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4878

J
Jiabin Yang 已提交
4879 4880
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4881 4882 4883 4884

        Examples:
            .. code-block:: python

4885 4886 4887 4888
                import paddle
                import paddle.static as static

                paddle.enable_static()
4889

4890
                prog = static.default_main_program()
4891 4892
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4893
        """
Q
Qiao Longfei 已提交
4894 4895
        return self.blocks[index]

Y
Yu Yang 已提交
4896
    def current_block(self):
Y
yuyang18 已提交
4897
        """
4898 4899
        .. note::
            This API has no effect in Dygraph mode.
4900

J
Jiabin Yang 已提交
4901 4902
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4903

J
Jiabin Yang 已提交
4904 4905
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4906

4907 4908 4909
        Examples:
            .. code-block:: python

4910 4911 4912 4913
                import paddle
                import paddle.static as static

                paddle.enable_static()
4914

4915
                prog = static.default_main_program()
4916 4917
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4918
        """
Y
Yu Yang 已提交
4919 4920
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4921
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4922 4923 4924 4925 4926
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4927

Y
yuyang18 已提交
4928 4929 4930 4931 4932
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4933
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4934 4935 4936
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4937 4938 4939 4940
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4941
    def _rollback(self):
Y
yuyang18 已提交
4942 4943 4944 4945 4946
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4947 4948
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4949
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4960 4961 4962
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4963
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4964

W
Wu Yi 已提交
4965
    def _copy_param_info_from(self, other):
4966
        """
4967
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4968

Y
yuyang18 已提交
4969 4970 4971
        Notes: This is a very low level API. Users should not invoke it
        directly.

4972 4973 4974 4975 4976 4977 4978
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4979 4980 4981
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4982

W
Wu Yi 已提交
4983
        self.global_block()._copy_param_info_from(other.global_block())
4984

4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4996 4997 4998
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4999 5000
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5001
        self._parameters_on_pservers = other._parameters_on_pservers
5002
        self._endpoints = other._endpoints
5003
        self._ps_endpoint = other._ps_endpoint
5004 5005
        self._distributed_lookup_table = other._distributed_lookup_table

5006
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5007 5008
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5009

Y
yuyang18 已提交
5010 5011 5012
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5013 5014
        Args:
            other(Program): Other program
5015 5016 5017 5018
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5019 5020 5021 5022 5023

        Returns:
            None
        """
        if not isinstance(other, Program):
5024 5025 5026
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5027

5028 5029 5030 5031 5032
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5033 5034 5035

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5036 5037
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5038
            for var in list(block.vars.values()):
5039 5040 5041 5042 5043 5044 5045
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5046

5047
    def list_vars(self):
Y
yuyang18 已提交
5048
        """
5049
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5050

J
Jiabin Yang 已提交
5051
        Returns:
5052
            iterable Tensors: The Generator will yield every Tensor in this program.
5053 5054 5055 5056

        Examples:
            .. code-block:: python

5057 5058
                import paddle
                import paddle.static as static
5059

5060 5061 5062 5063 5064
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5065 5066
                for var in prog.list_vars():
                    print(var)
5067 5068 5069
                
                # var img : fluid.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5070
        """
5071
        for each_block in self.blocks:
5072
            for each_var in list(each_block.vars.values()):
5073 5074
                yield each_var

5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5085 5086 5087 5088
                import paddle
                import paddle.static as static

                paddle.enable_static()
5089

5090 5091
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5092
                hidden = static.nn.fc(x=data, size=10)
5093 5094
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5095 5096 5097 5098 5099 5100 5101

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5102 5103
                # persist trainable param fc_0.w_0 : fluid.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : fluid.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5114

5115
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5116
class Parameter(Variable):
5117
    """
5118
    Parameter is derived from Variable. A parameter is a persistable
5119
    Variable, and will be updated by optimizers after each iteration.
5120
    The training of a neural network is essentially the updating of
5121 5122
    its parameters.

5123
    Relative to a general Variable, a Parameter has several its own
5124 5125
    member variables:

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5136 5137
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5138 5139
    """

5140 5141 5142 5143 5144 5145
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5146 5147 5148 5149 5150
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5151
        if len(shape) == 0:
5152 5153
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5154 5155 5156

        for each in shape:
            if each < 0:
5157 5158 5159
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5160 5161

        Variable.__init__(
5162 5163 5164 5165 5166 5167 5168
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5169 5170 5171 5172
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5173 5174
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5175
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5176

5177 5178
        self.need_clip = kwargs.get('need_clip', True)

5179 5180
        self.is_distributed = False

F
fengjiayi 已提交
5181
    def __str__(self):
5182
        return self._to_readable_code()
F
fengjiayi 已提交
5183

F
update  
fengjiayi 已提交
5184 5185 5186
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5187

F
update  
fengjiayi 已提交
5188 5189 5190 5191 5192 5193 5194 5195
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5196 5197 5198 5199 5200 5201 5202 5203 5204
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5205 5206 5207 5208 5209 5210
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5211
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5212
            for attr_name in additional_attr:
5213 5214
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5215 5216
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5217 5218 5219 5220
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5221

5222 5223
class ParamBase(core.VarBase):
    """
5224 5225 5226
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5227 5228 5229
    The training of a neural network is essentially the updating of
    its ParamBase.

5230
    Relative to a general Tensor, a ParamBase has several its own
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5243 5244
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5275 5276
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5277 5278 5279 5280 5281 5282 5283

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5284 5285
        self.need_clip = kwargs.get('need_clip', True)

5286
        self.is_distributed = False
5287
        # self.block = default_main_program().global_block()
5288

5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5302
    def __str__(self):
5303
        """
5304
        Convert a ParamBase object to a readable string.
5305

5306
        Returns(str): A readable string.
5307 5308 5309 5310

        Examples:
            .. code-block:: python

5311
                import paddle
5312
                paddle.disable_static()
5313 5314 5315 5316 5317 5318 5319 5320
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5321
                paddle.enable_static()
5322
        """
5323 5324
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5325 5326 5327 5328

    __repr__ = __str__


Y
Yu Yang 已提交
5329
# program is a global instance.
Y
Yu Yang 已提交
5330 5331
_main_program_ = Program()
_startup_program_ = Program()
5332

5333

5334
def default_startup_program():
Y
Yu Yang 已提交
5335
    """
Y
yuyang18 已提交
5336 5337
    Get default/global startup program.

5338 5339 5340 5341 5342
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
  
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5343

5344 5345
    Returns:
        Program: current default startup program.
5346

5347
    Returns type: 
5348 5349 5350 5351

    Examples:
        .. code-block:: python

5352
            import paddle
5353

5354 5355 5356 5357 5358 5359
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program=main_program, startup_program=startup_program):
                x = paddle.data(name="x", shape=[-1, 784], dtype='float32')
                y = paddle.data(name="y", shape=[-1, 1], dtype='int32')
5360
                z = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
5361

5362 5363
                print("main program is: {}".format(paddle.static.default_main_program()))
                print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5364
    """
Y
Yu Yang 已提交
5365
    return _startup_program_
5366

5367

5368
def default_main_program():
Y
Yu Yang 已提交
5369
    """
5370
    This API can be used to get ``default main program`` which store the 
5371
    descriptions of Ops and tensors.
5372
    
5373 5374
    For example ``z = paddle.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5375

5376 5377
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5378
    :code:`default_main_program` when the program is not specified.
5379

5380
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
5381
    
Y
Yu Yang 已提交
5382
    Returns:
5383
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5384 5385 5386 5387

    Examples:
        ..  code-block:: python

5388 5389 5390
            import paddle
            
            paddle.enable_static()
5391
            # Sample Network:
5392 5393
            data = paddle.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = paddle.data(name='label', shape=[None, 1], dtype='int64')
5394
            
5395 5396 5397 5398 5399 5400
            conv1 = paddle.static.nn.conv2d(data, 4, 5, 1, act=None)
            bn1 = paddle.static.nn.batch_norm(conv1, act='relu')
            pool1 = paddle.nn.functional.pool2d(bn1, 2, 'max', 2)
            conv2 = paddle.static.nn.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = paddle.static.nn.batch_norm(conv2, act='relu')
            pool2 = paddle.nn.functional.pool2d(bn2, 2, 'max', 2)
5401
            
5402 5403
            fc1 = paddle.static.nn.fc(x=pool2, size=50, activation='relu')
            fc2 = paddle.static.nn.fc(x=fc1, size=102, activation='softmax')
5404
            
5405 5406 5407
            loss = paddle.nn.functional.loss.cross_entropy(input=fc2, label=label)
            loss = paddle.mean(loss)
            opt = paddle.optimizer.Momentum(
5408 5409
                learning_rate=0.1,
                momentum=0.9,
5410
                weight_decay=paddle.regularizer.L2Decay(1e-4))
5411 5412
            opt.minimize(loss)
            
5413
            #print the number of blocks in the program, 1 in this case
5414
            print(paddle.static.default_main_program().num_blocks) #[1]
5415 5416

            #print the description of variable 'image'
5417
            print(paddle.static.default_main_program())
5418

Y
Yu Yang 已提交
5419
    """
Y
Yu Yang 已提交
5420
    return _main_program_
Y
Yu Yang 已提交
5421 5422 5423 5424 5425


def switch_main_program(program):
    """
    Switch the main program to a new program.
5426

Y
Yu Yang 已提交
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5441
    Switch the startup program to a new program
Y
Yu Yang 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5454
@signature_safe_contextmanager
Y
Yu Yang 已提交
5455 5456
def program_guard(main_program, startup_program=None):
    """
5457 5458
    :api_attr: Static Graph

5459 5460 5461
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5462

G
guofei 已提交
5463
    Args:
5464 5465
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5466 5467 5468 5469
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5470
    Examples:
5471 5472
       .. code-block:: python
       
5473
          import paddle
Y
yuyang18 已提交
5474

5475 5476 5477 5478 5479
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5480
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5481 5482 5483

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5484

Y
Yu Yang 已提交
5485
    Examples:
5486
       .. code-block:: python
Y
yuyang18 已提交
5487

5488
          import paddle
5489

5490 5491 5492 5493 5494
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
G
guofei 已提交
5495
    
Y
Yu Yang 已提交
5496
    """
5497
    from .data_feeder import check_type
5498 5499
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5500 5501
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5502
        check_type(startup_program, 'startup_program', Program,
5503
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5504
        startup_program = switch_startup_program(startup_program)
5505 5506 5507 5508 5509 5510
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5511 5512


W
Wu Yi 已提交
5513
def _get_var(name, program=None):
X
xuwei06 已提交
5514
    """
Y
yuyang18 已提交
5515
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5516

X
xuwei06 已提交
5517 5518 5519
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5520
        If None, default_global_program() will be used.
X
xuwei06 已提交
5521 5522 5523 5524 5525 5526 5527

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5528
    assert isinstance(program, Program)
X
xuwei06 已提交
5529 5530

    return program.global_block().var(name)
5531 5532


S
rename  
sneaxiy 已提交
5533
@signature_safe_contextmanager
L
lujun 已提交
5534 5535 5536 5537
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5538
    core._switch_tracer(tracer)
M
minqiyang 已提交
5539

5540 5541 5542 5543 5544
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5545 5546


S
rename  
sneaxiy 已提交
5547
@signature_safe_contextmanager
L
lujun 已提交
5548
def _dygraph_place_guard(place):
5549 5550 5551
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5552

5553 5554 5555
    try:
        yield
    finally:
5556
        _global_expected_place_ = tmp_place
5557 5558 5559 5560


def load_op_library(lib_filename):
    """
5561 5562
    :api_attr: Static Graph
    
5563 5564 5565
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5566
    Please note, the type of custom operators can't have the same type
5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5633 5634 5635 5636 5637
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5638 5639 5640 5641
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5642 5643
    if index:
        device = ":".join([device, index])
5644
    pre_device = switch_device(device)
5645 5646 5647 5648
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value