framework.py 193.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27

Y
Yu Yang 已提交
28
import numpy as np
29
import subprocess
S
sneaxiy 已提交
30
import multiprocessing
31
import sys
32
import logging
M
minqiyang 已提交
33
from .. import compat as cpt
34
from .proto import framework_pb2
35 36

from . import core
37
from . import unique_name
38 39
import paddle.version as fluid_version
import warnings
40
import functools
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
S
sneaxiy 已提交
48 49 50
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
51
    'in_dygraph_mode',
C
chengduo 已提交
52
    'is_compiled_with_cuda',
53
    'is_compiled_with_xpu',
54
    'Variable',
55
    'load_op_library',
56
    'require_version',
57
    'device_guard',
G
guofei 已提交
58 59
    'set_flags',
    'get_flags',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
68
_dygraph_tracer_ = None
69
_global_expected_place_ = None
70
_current_device = None
71 72
global_prog_seed = 0

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
181
def in_dygraph_mode():
L
lujun 已提交
182
    """
183

184 185 186 187 188 189 190
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
191 192

    Returns:
193
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198 199 200 201 202 203 204 205
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
206 207

    """
L
lujun 已提交
208
    return _dygraph_tracer_ is not None
209 210


211 212 213
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
214
        ), "We don't support %s in imperative mode" % func.__name__
215 216 217 218 219 220 221 222
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
223 224 225 226 227 228 229 230 231
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
232
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
233 234 235 236 237
        return func(*args, **kwargs)

    return __impl__


238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


273 274
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
275
static_only = wrap_decorator(_static_only_)
276
fake_interface_only = wrap_decorator(_fake_interface_only_)
277 278


L
lujun 已提交
279 280
def _dygraph_tracer():
    return _dygraph_tracer_
281

W
Wu Yi 已提交
282

M
minqiyang 已提交
283
def _current_expected_place():
284 285 286
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
287 288 289 290 291 292 293 294 295 296 297
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
314 315


L
Leo Chen 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
333
def _cpu_num():
334
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
335 336 337 338 339 340 341 342
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
343
        os.environ['CPU_NUM'] = str(1)
344
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
345 346 347 348 349 350 351 352 353 354
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
355 356


357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
372 373 374 375
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

376
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
377 378 379 380

    Examples:
        .. code-block:: python

381 382
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
383 384 385 386
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
387
def cuda_places(device_ids=None):
L
lujun 已提交
388
    """
389 390 391 392
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
393
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
394 395

    If :code:`device_ids` is None, environment variable of
396
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
397
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
398
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
399
    If :code:`FLAGS_selected_gpus` is not set, all visible
400
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
401 402

    If :code:`device_ids` is not None, it should be the device
403
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
404
    the returned list would be 
C
Chen Weihang 已提交
405
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
406
    
407 408
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
409 410

    Returns:
C
Chen Weihang 已提交
411
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
412 413 414 415

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
416 417 418 419 420 421
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
422 423

    """
S
sneaxiy 已提交
424 425 426
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
427
        device_ids = _cuda_ids()
S
sneaxiy 已提交
428 429 430 431 432 433
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
434
    """
C
Chen Weihang 已提交
435
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
436 437 438
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
439 440
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
441 442
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
443

444 445
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
446 447

    Returns:
C
Chen Weihang 已提交
448
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
449 450 451 452

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
453 454 455 456 457 458
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
459 460
    """

S
sneaxiy 已提交
461 462 463 464 465 466
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
467
    """
468
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
469 470 471

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
472 473 474 475
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
476

477 478
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
479 480

    Returns:
481
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
482 483 484 485

    Examples:
        .. code-block:: python

486
            import paddle.fluid as fluid
L
lujun 已提交
487 488 489 490 491
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
492 493 494
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
495 496
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
497 498


499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
525
@signature_safe_contextmanager
526 527
def name_scope(prefix=None):
    """
528 529
    :api_attr: Static Graph

530
    Generate hierarchical name prefix for the operators in Static Graph.
531

T
Tao Luo 已提交
532 533 534
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
535
        Don't use it in dygraph, since it will cause memory leak.
536 537

    Args:
T
Tao Luo 已提交
538
        prefix(str, optional): prefix. Default is none.
539 540 541

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
542

543 544 545
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
546
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
547
             b = a + 1
548
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
549
                c = b * 1
550
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
551
                d = c / 1
552 553 554
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
555 556 557
                g = f - 1

          # Op are created in the default main program.  
558
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
574 575
    """
    # TODO(panyx0718): Only [0-9a-z].
576
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
577 578 579
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
580
        assert prefix, "namescope prefix can not be empty."
581 582
        global _name_scope
        _name_scope = _name_scope.child(prefix)
583 584 585 586
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
587 588 589 590 591 592 593 594 595 596 597 598


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
599 600 601
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
602 603 604 605


def grad_var_name(var_name):
    """
606 607
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
608 609 610
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
611

612
def convert_np_dtype_to_dtype_(np_dtype):
613 614
    """
    Convert the data type in numpy to the data type in Paddle
615

616
    Args:
617
        np_dtype(np.dtype): the data type in numpy.
618

619 620
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
621 622

    """
623 624
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
625
        return core.VarDesc.VarType.FP32
626
    elif dtype == np.float64:
627
        return core.VarDesc.VarType.FP64
628
    elif dtype == np.float16:
629
        return core.VarDesc.VarType.FP16
630
    elif dtype == np.int32:
631
        return core.VarDesc.VarType.INT32
632
    elif dtype == np.int16:
633
        return core.VarDesc.VarType.INT16
634
    elif dtype == np.int64:
635
        return core.VarDesc.VarType.INT64
636
    elif dtype == np.bool:
637
        return core.VarDesc.VarType.BOOL
638
    elif dtype == np.uint16:
639 640 641
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
642 643
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
644 645
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
646 647 648 649
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
650
    else:
M
minqiyang 已提交
651
        raise ValueError("Not supported numpy dtype %s" % dtype)
652 653 654


def dtype_is_floating(dtype):
655 656 657
    """
    Check the data type is floating or not.
    Args:
658
        dtype(np.dtype|core.VarDesc.VarType): data type.
659 660 661 662 663
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
664
    if not isinstance(dtype, core.VarDesc.VarType):
665 666
        dtype = convert_np_dtype_to_dtype_(dtype)

667 668 669 670
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
671 672


Y
Yang Yang(Tony) 已提交
673
def _debug_string_(proto, throw_on_error=True):
674 675 676 677 678 679 680 681 682 683 684
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
685
    error_fields = list()
Y
Yang Yang(Tony) 已提交
686
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
687 688
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
689 690 691
    return proto.__str__()


692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
749
    target_block = default_main_program().current_block()
750 751 752 753 754 755 756 757 758 759 760

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
761
            })
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
801
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
802
                fill_constant([1], 1, force_cpu=True, out=temp_1)
803
                temp_end = target_block.create_var(dtype=slice_item.dtype)
804
                target_block.append_op(
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
844

845
    # starts
L
Leo Chen 已提交
846
    if contain_var(slice_start):
847 848 849 850 851 852 853 854
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
855 856 857 858
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
859 860 861 862 863 864 865
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
866 867 868
    else:
        attrs['ends'] = slice_end

869 870
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
871
        if contain_var(slice_step):
872 873 874 875 876 877 878
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
879 880
        else:
            attrs['strides'] = slice_step
881 882 883 884 885 886
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
887
        slice_out_var = target_block.create_var(
888 889 890
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

891
        target_block.append_op(
892 893 894 895 896 897 898
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
899
        strided_slice_out_var = target_block.create_var(
900 901 902
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
903
        target_block.append_op(
904 905 906 907 908 909 910 911
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
912
        reverse_out_var = target_block.create_var(
913 914 915
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
916
        target_block.append_op(
917 918 919 920 921 922 923 924 925 926 927
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
928
class Variable(object):
929
    """
J
Jiabin Yang 已提交
930
    **Notes**:
931
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
932

933 934
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
935 936 937
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
938
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
939 940
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
941

942
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
943
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
944

T
tianshuo78520a 已提交
945
    Most of a Variable's member variables can be set to be None. It mean
946
    it is not available or will be specified later.
947

948
    Examples:
949 950
        In Static Graph Mode:

951 952
        .. code-block:: python

953
            import paddle.fluid as fluid
954
            cur_program = fluid.Program()
955 956 957 958
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
959
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
960 961 962 963 964 965 966 967 968

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

969 970
    """

Y
Yu Yang 已提交
971 972
    def __init__(self,
                 block,
Y
Yu Yang 已提交
973
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
974 975 976 977
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
978
                 capacity=None,
Q
QI JUN 已提交
979
                 persistable=None,
F
fengjiayi 已提交
980
                 error_clip=None,
Y
Yu Yang 已提交
981
                 stop_gradient=False,
F
fengjiayi 已提交
982
                 is_data=False,
H
Huihuang Zheng 已提交
983
                 need_check_feed=False,
H
hong 已提交
984
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
985
                 **kwargs):
Y
Yu Yang 已提交
986 987
        self.block = block
        if name is None:
Y
Yu Yang 已提交
988
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
989

Y
Yu Yang 已提交
990
        if dtype is not None:
991
            if not isinstance(dtype, core.VarDesc.VarType):
992
                dtype = convert_np_dtype_to_dtype_(dtype)
993

H
hong 已提交
994 995
        self.belong_to_optimizer = belong_to_optimizer

996 997 998 999 1000
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1001

1002 1003 1004
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1005

1006 1007 1008 1009 1010 1011 1012
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1013

1014
        if shape is not None:
1015
            if is_new_var:
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1057

1058 1059
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1060

1061 1062 1063 1064 1065 1066 1067
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1068

1069 1070 1071 1072
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1073

1074
    @fake_interface_only
1075 1076
    def detach(self):
        """
J
Jiabin Yang 已提交
1077
        **Notes**:
T
tianshuo78520a 已提交
1078
            **This API is ONLY available in Dygraph mode**
1079

1080
        Returns a new Variable, detached from the current graph.
1081

1082
        Returns:
J
Jiabin Yang 已提交
1083
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1084

1085

1086 1087 1088 1089 1090
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1091
                from paddle.fluid.dygraph import Linear
1092 1093 1094 1095
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1096
                    linear = Linear(32, 64)
1097
                    data = to_variable(data)
1098
                    x = linear(data)
1099 1100 1101
                    y = x.detach()

        """
1102
        pass
1103

1104
    @fake_interface_only
1105
    def numpy(self):
1106
        """
J
Jiabin Yang 已提交
1107
        **Notes**:
T
tianshuo78520a 已提交
1108
            **This API is ONLY available in Dygraph mode**
1109

J
Jiabin Yang 已提交
1110
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1111 1112 1113 1114 1115

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1116
            ndarray: dtype is same as current Variable
1117 1118 1119 1120 1121 1122

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1123
                from paddle.fluid.dygraph import Linear
1124 1125 1126 1127
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1128
                    linear = Linear(32, 64)
1129
                    data = to_variable(data)
1130
                    x = linear(data)
1131 1132 1133
                    print(x.numpy())

        """
1134
        pass
1135

1136
    @fake_interface_only
1137 1138
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1139
        **Notes**:
T
tianshuo78520a 已提交
1140
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1152
                from paddle.fluid.dygraph import Linear
1153 1154
                import numpy as np

1155
                data = np.ones([3, 1024], dtype='float32')
1156
                with fluid.dygraph.guard():
1157
                    linear = fluid.dygraph.Linear(1024, 4)
1158
                    t = to_variable(data)
1159
                    linear(t)  # call with default weight
1160
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1161 1162
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1163 1164

        """
1165
        pass
1166

1167
    @fake_interface_only
1168
    def backward(self, retain_graph=False):
1169
        """
J
Jiabin Yang 已提交
1170
        **Notes**:
T
tianshuo78520a 已提交
1171
            **This API is ONLY available in Dygraph mode**
1172

1173
        Run backward of current Graph which starts from current Tensor.
1174

J
Jiabin Yang 已提交
1175
        Args:
1176 1177 1178 1179
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1180

J
Jiabin Yang 已提交
1181 1182
        Returns:
            NoneType: None
1183 1184 1185 1186 1187

        Examples:
            .. code-block:: python

                import numpy as np
1188 1189
                import paddle
                paddle.disable_static()
1190 1191

                x = np.ones([2, 2], np.float32)
1192 1193 1194 1195 1196 1197 1198
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1199 1200
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1201
                loss.backward()
1202 1203

        """
1204
        pass
1205

1206
    @fake_interface_only
1207
    def gradient(self):
1208
        """
J
Jiabin Yang 已提交
1209
        **Notes**:
T
tianshuo78520a 已提交
1210
            **This API is ONLY available in Dygraph mode**
1211 1212 1213

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1214
        Returns:
1215
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1216 1217 1218 1219 1220 1221 1222

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1223
                # example1: return ndarray
1224 1225 1226 1227 1228 1229 1230 1231 1232
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1233
                    loss2.backward()
1234 1235
                    print(loss2.gradient())

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1249
        """
1250
        pass
1251

1252
    @fake_interface_only
1253
    def clear_gradient(self):
1254
        """
J
Jiabin Yang 已提交
1255
        **Notes**:
T
tianshuo78520a 已提交
1256
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1257 1258

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1259

J
Jiabin Yang 已提交
1260
        Clear  (set to ``0`` ) the Gradient of Current Variable
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1279
                    loss2.backward()
1280 1281 1282 1283 1284
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1285
        pass
X
Xin Pan 已提交
1286

1287
    def __str__(self):
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1304 1305
                import paddle
                import paddle.static as static
1306

1307 1308 1309
                paddle.enable_static()

                cur_program = static.Program()
1310 1311 1312 1313 1314 1315
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1316 1317
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1318
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1319 1320 1321
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
                format(name=self.name, type=type_str, shape=self.shape, dtype=dtype_str, stop_gradient=self.stop_gradient)
1322
        else:
1323 1324
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1338

F
update  
fengjiayi 已提交
1339
    def to_string(self, throw_on_error, with_details=False):
1340 1341 1342
        """
        Get debug string.

J
Jiabin Yang 已提交
1343 1344 1345 1346 1347
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1348

1349 1350
        Returns:
            str: The debug string.
1351 1352 1353 1354 1355

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1356
                import paddle
1357

1358
                paddle.enable_static()
1359 1360 1361 1362 1363
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1364
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1365
                print("=============with detail===============")
1366
                print(new_variable.to_string(True, True))
1367
        """
F
update  
fengjiayi 已提交
1368 1369
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1370
        protostr = self.desc.serialize_to_string()
1371
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1372 1373 1374 1375
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1376 1377 1378
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1379
        return res_str
1380 1381 1382

    __repr__ = __str__

1383
    @property
1384
    def stop_gradient(self):
J
Jiabin Yang 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1400 1401
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1402 1403 1404
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1405 1406
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1407 1408 1409 1410
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1411
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1412 1413
                assert (out1.gradient() == 0).all()
        """
1414
        return self._stop_gradient
1415

1416 1417
    @stop_gradient.setter
    def stop_gradient(self, s):
1418
        self._stop_gradient = s
1419

1420 1421
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1443
        return self.desc.persistable()
1444

Y
Yu Yang 已提交
1445 1446
    @persistable.setter
    def persistable(self, p):
1447
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1448

Y
Yu Yang 已提交
1449 1450
    @property
    def name(self):
J
Jiabin Yang 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1467
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1468

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1489 1490
    @name.setter
    def name(self, new_name):
1491
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1492

Y
Yu Yang 已提交
1493 1494
    @property
    def shape(self):
J
Jiabin Yang 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1512
        # convert to tuple, make it as same as numpy API.
1513
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1514 1515

    @property
F
fengjiayi 已提交
1516
    def dtype(self):
J
Jiabin Yang 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1533
        return self.desc.dtype()
Y
Yu Yang 已提交
1534 1535 1536

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1558 1559 1560
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1561
        return self.desc.lod_level()
Y
Yu Yang 已提交
1562

Y
Yu Yang 已提交
1563 1564
    @property
    def type(self):
J
Jiabin Yang 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1581
        return self.desc.type()
Y
Yu Yang 已提交
1582

W
Wu Yi 已提交
1583
    def _set_error_clip(self, error_clip):
1584 1585 1586 1587 1588 1589 1590 1591 1592
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1593 1594
        self.error_clip = error_clip

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1635
            raise ValueError("slice step can not be zero")
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1711
    def _cloneVar(self, copy=False):
1712 1713
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1714 1715
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1716 1717 1718 1719
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1720
        new_var = self._cloneVar()
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1731
        new_var = self._cloneVar()
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1742
                return self._cloneVar(True)
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1761
                return self._cloneVar(True)
1762
            index = int(item)
1763
            if (index > 0 and index >= self.shape[axis]) \
1764 1765 1766 1767 1768 1769 1770
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1771
        return _getitem_impl_(self, item)
1772

Y
Yu Yang 已提交
1773

F
fengjiayi 已提交
1774 1775 1776
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1777

1778 1779
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1780 1781 1782 1783
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1784
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1785 1786 1787 1788 1789
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1790 1791 1792 1793
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1803
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1804 1805 1806 1807 1808 1809
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1810 1811 1812 1813 1814 1815 1816 1817
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1818 1819
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1820 1821
        return self.op_proto_map[type]

1822 1823 1824 1825 1826 1827
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1828 1829 1830 1831
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1832
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1833
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1834 1835
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1836 1837
        }

F
fengjiayi 已提交
1838

X
Xin Pan 已提交
1839
class Operator(object):
1840
    """
1841 1842 1843 1844 1845 1846 1847
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1848
        type(str): The type of operator. Default None.
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1869
        Block.append_op or Block._prepend_op instead.
1870 1871 1872 1873

    Examples:
        .. code-block:: python

1874
            import paddle.fluid as fluid
1875
            cur_program = fluid.Program()
1876 1877 1878 1879 1880
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1881
    """
1882
    OP_WITHOUT_KERNEL_SET = {
1883 1884
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1885 1886
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1887
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1888
    }
1889

Y
Yu Yang 已提交
1890 1891
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1892
                 desc,
Y
Yu Yang 已提交
1893 1894 1895
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1896
                 attrs=None):
L
lujun 已提交
1897
        if in_dygraph_mode():
1898 1899
            if type is None:
                raise ValueError(
1900
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1901
            self._type = type
M
minqiyang 已提交
1902
            self.attrs = attrs if attrs else {}
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1917
                )] = self.block.program._op_role
1918 1919 1920

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1921 1922
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1923 1924 1925 1926 1927 1928 1929 1930

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1931
                    "`type` to initialized an Operator can not be None.")
1932 1933
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1934 1935 1936 1937 1938 1939 1940
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1941 1942 1943 1944 1945 1946 1947

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
1979
                        if not isinstance(in_args, (list, tuple)):
1980 1981 1982 1983 1984 1985
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1986
                        for index, arg in enumerate(in_args):
1987 1988 1989 1990
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1991
                            elif isinstance(arg, (Variable, core.VarBase)):
1992
                                in_arg_names.append(cpt.to_text(arg.name))
1993
                            else:
1994 1995 1996 1997
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1998 1999
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2024 2025 2026 2027
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2028
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2029
                        if not in_dygraph_mode():
2030 2031 2032 2033
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2052
    def _has_kernel(self, op_type):
2053 2054
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2055
    def to_string(self, throw_on_error):
2056
        """
2057 2058
        Get debug string.

2059
        Args:
2060 2061
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2062

2063 2064
        Returns:
            str: The debug string.
2065 2066

        """
2067
        protostr = self.desc.serialize_to_string()
2068
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2069 2070
        return _debug_string_(proto, throw_on_error)

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2164
    def __str__(self):
2165
        return self._to_readable_code()
2166 2167 2168

    __repr__ = __str__

F
fengjiayi 已提交
2169 2170
    @property
    def type(self):
2171
        return self.desc.type()
F
fengjiayi 已提交
2172 2173

    def input(self, name):
2174
        r"""
2175
        Get the input arguments according to the input parameter name.
2176

2177 2178
        Args:
            name(str): The input parameter name.
2179

2180 2181 2182
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2183
        """
F
fengjiayi 已提交
2184 2185
        return self.desc.input(name)

W
Wu Yi 已提交
2186
    def _rename_input(self, old_name, new_name):
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2197
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2198

W
Wu Yi 已提交
2199
    def _rename_output(self, old_name, new_name):
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2210
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2211

F
fengjiayi 已提交
2212 2213 2214 2215
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2216 2217 2218 2219 2220 2221 2222 2223
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2224
    def output(self, name):
2225
        r"""
2226
        Get output arguments by the output parameter name.
2227

2228 2229
        Args:
            name(str): The output parameter name.
2230

2231 2232 2233
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2234
        """
F
fengjiayi 已提交
2235 2236 2237 2238 2239 2240
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2241 2242 2243 2244 2245 2246 2247 2248
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2249
    def has_attr(self, name):
2250
        """
2251 2252
        Whether this Operator has the attribute with name or not.

2253
        Args:
2254
            name(str): the attribute name.
2255

2256 2257
        Returns:
            bool: True if has this attribute.
2258 2259

        """
F
fengjiayi 已提交
2260 2261 2262
        return self.desc.has_attr(name)

    def attr_type(self, name):
2263
        """
2264
        Get the type of attribute by attribute's name.
2265

2266 2267
        Args:
            name(str): the attribute name.
2268

2269 2270
        Returns:
            core.AttrType: the attribute type.
2271
        """
F
fengjiayi 已提交
2272 2273
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2274
    def _set_attr(self, name, val):
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2285 2286
        self._update_desc_attr(name, val)

2287 2288 2289
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2301 2302
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2303 2304
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2305
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2306 2307 2308 2309
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2310
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2311

F
fengjiayi 已提交
2312 2313 2314 2315 2316
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2317
        """
2318 2319
        Get the attribute by name.

2320
        Args:
2321
            name(str): the attribute name.
2322

2323 2324
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2325 2326
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2327
        return self.desc.attr(name)
Y
Yu Yang 已提交
2328

W
Wu Yi 已提交
2329
    def _block_attr_id(self, name):
2330
        """
G
gongweibao 已提交
2331
        Get the block attribute's id by name.
2332

2333 2334
        Args:
            name(str): the attribute name.
2335

2336 2337
        Returns:
            int: the block index.
2338
        """
W
Wu Yi 已提交
2339
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2340

W
Wu Yi 已提交
2341
    def _block_attr(self, name):
G
gongweibao 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2352
        id = self._block_attr_id(name)
G
gongweibao 已提交
2353 2354 2355
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2356
    def _blocks_attr(self, name):
G
gongweibao 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2367
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2368 2369 2370 2371 2372
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2373
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2384
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2385

J
JiayiFeng 已提交
2386
    def all_attrs(self):
F
fengjiayi 已提交
2387
        """
2388 2389 2390
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2391
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2392 2393 2394 2395
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2396 2397
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2398
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2399 2400 2401
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2402
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2403 2404 2405 2406
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2407 2408
        return attr_map

2409 2410 2411
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2412 2413 2414 2415

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2416 2417 2418
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2419 2420 2421 2422 2423 2424 2425 2426

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2427 2428
            return False

2429 2430 2431 2432 2433 2434
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2435

Y
Yu Yang 已提交
2436
class Block(object):
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2451
        use `Program._create_block()` to create a block.
2452 2453 2454 2455

    Examples:
        .. code-block:: python

2456 2457 2458
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2459 2460 2461 2462 2463 2464 2465 2466 2467
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2468
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2469
        self.desc = program.desc.block(idx)
2470
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2471
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2472
        self.program = program
2473
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2474

2475
    def __str__(self):
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2522

F
fengjiayi 已提交
2523 2524
    def to_string(self, throw_on_error, with_details=False):
        """
2525 2526
        Get debug string.

F
fengjiayi 已提交
2527 2528
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2529
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2530
            with_details(bool): more details about variables and parameters
2531 2532
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2533

2534 2535
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2536 2537 2538 2539
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2540
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2541 2542
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2543
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2544
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2545
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2546
            for op in self.ops:
F
fengjiayi 已提交
2547 2548
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2549 2550 2551
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2552 2553
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2554 2555
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2556 2557 2558

    __repr__ = __str__

Y
Yu Yang 已提交
2559 2560
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2561
        return self.desc.parent
Y
Yu Yang 已提交
2562

Y
Yu Yang 已提交
2563 2564 2565 2566
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2567
    def _set_forward_block_idx(self, idx):
2568 2569 2570 2571 2572 2573 2574 2575 2576
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2577
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2578

2579 2580 2581 2582 2583 2584 2585 2586
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2587 2588
    @property
    def idx(self):
Y
Yu Yang 已提交
2589
        return self.desc.id
Y
Yu Yang 已提交
2590

Q
Qiao Longfei 已提交
2591
    def var(self, name):
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2605
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2606 2607 2608
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2609 2610
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2611
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2612
        return v
Q
Qiao Longfei 已提交
2613

X
Xin Pan 已提交
2614
    def _find_var_recursive(self, name):
2615 2616 2617 2618 2619 2620 2621
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2622
            Variable: the Variable with the giving name. Or None if not found.
2623
        """
Y
Yu Yang 已提交
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2648
        return None
Y
Yu Yang 已提交
2649

X
Xin Pan 已提交
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2669

Q
Qiao Longfei 已提交
2670
    def all_parameters(self):
2671
        return list(self.iter_parameters())
2672

2673
    def iter_parameters(self):
M
minqiyang 已提交
2674
        return (item[1] for item in six.iteritems(self.vars)
2675
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2676

Y
Yu Yang 已提交
2677
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2678 2679 2680
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2681 2682 2683
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2684
        return var
Y
Yu Yang 已提交
2685

Q
Qiao Longfei 已提交
2686 2687 2688
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2689
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2690 2691
        """
        Rename variable in vars and ops' inputs and outputs
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2704
        """
M
minqiyang 已提交
2705 2706
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2707

T
typhoonzero 已提交
2708
        if not self.has_var(name):
2709
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2710 2711
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2712
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2713 2714 2715 2716 2717 2718
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2719
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2720 2721 2722 2723
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2724
        orig_var_type = v.type
M
minqiyang 已提交
2725
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2726
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2727
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2728
        if var_type == "Parameter":
L
Leo Chen 已提交
2729 2730
            if in_dygraph_mode():
                var = ParamBase(
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2741 2742
                var = Parameter(
                    self,
2743 2744 2745 2746 2747 2748 2749 2750 2751
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2752
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2753 2754
            var = Variable(
                self,
T
typhoonzero 已提交
2755
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2756 2757 2758 2759
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2760
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2761 2762 2763
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2764
        self._sync_with_cpp()
2765
        return var
T
typhoonzero 已提交
2766

2767 2768 2769
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
2770
        self.desc._remove_var(cpt.to_bytes(name))
2771 2772
        del self.vars[name]

Y
Yu Yang 已提交
2773 2774
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2775
        param = None
L
Leo Chen 已提交
2776
        if in_dygraph_mode():
2777
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2778 2779
        else:
            param = Parameter(global_block, *args, **kwargs)
2780 2781 2782 2783 2784 2785
            # NOTE: Why only set stop_gradient=False in static mode
            # Because in dygraph mode, the `stop_gradient` and `trainable`
            # are related, and `trainable` default vallue is `True` or
            # it is specified by users, there is no need to set
            # `stop_gradient` for ParamBase here.
            param.stop_gradient = False
2786
        if 'initializer' in kwargs:
2787 2788 2789 2790 2791

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2792 2793 2794 2795 2796
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2808
                # TODO already inited, do nothing, should log a warning
2809 2810 2811
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
2812
        return param
Y
Yu Yang 已提交
2813

Y
Yu Yang 已提交
2814
    def append_op(self, *args, **kwargs):
2815 2816 2817 2818 2819 2820
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2821
        if in_dygraph_mode():
2822
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2823
            type = kwargs.get("type", None)
2824 2825 2826
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2827
                type=type,
M
minqiyang 已提交
2828 2829
                inputs=None,
                outputs=None,
2830
                attrs=attrs)
2831

M
minqiyang 已提交
2832 2833 2834
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2835
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2836 2837

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2838
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2839 2840
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2841
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2842
        else:
2843 2844 2845 2846 2847 2848 2849 2850 2851
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2852
            self.ops.append(op)
M
minqiyang 已提交
2853

2854 2855
        return op

W
Wu Yi 已提交
2856
    def _insert_op(self, index, *args, **kwargs):
2857 2858 2859 2860 2861 2862 2863 2864 2865
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2866 2867
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2868 2869 2870 2871
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
2889 2890 2891 2892 2893 2894 2895 2896 2897
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
2898 2899
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
2900
        self.desc._remove_op(index, index + 1)
2901 2902
        del self.ops[index]

W
Wu Yi 已提交
2903
    def _slice_ops(self, start, end):
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2914
        return self.ops[start:end]
Y
Yancey1989 已提交
2915

W
Wu Yi 已提交
2916
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2917
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2918 2919
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2920
            op = Operator(
J
Jiabin Yang 已提交
2921
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2922

J
Jiabin Yang 已提交
2923
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2924
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2925 2926
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2927
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2928
        else:
2929 2930 2931 2932 2933 2934 2935 2936
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2937
            self.ops.insert(0, op)
2938

Y
Yu Yang 已提交
2939 2940
        return op

W
Wu Yi 已提交
2941
    def _sync_with_cpp(self):
2942
        """
2943 2944
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2945
        """
Q
Qiao Longfei 已提交
2946 2947 2948 2949 2950
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2951
        # sync variables removed from c++ end
2952
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2953
            if not self.desc.find_var(cpt.to_bytes(var)):
2954 2955
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2956
        # sync operators from cpp
2957 2958 2959 2960
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2977 2978 2979 2980 2981

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2982
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2983 2984 2985 2986 2987 2988 2989

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3003 3004 3005 3006
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3007
    def _copy_param_info_from(self, other):
3008
        """
3009 3010
        Copy the information of parameters from the other block.

3011
        Args:
3012 3013 3014 3015 3016
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3017 3018 3019 3020 3021

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3022 3023
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3024
        for p in other.iter_parameters():
3025 3026 3027
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3028 3029
                # if the Parameter is pruned, v may be None
                continue
3030
            assert isinstance(v, Variable)
3031
            new_p = None
L
Leo Chen 已提交
3032 3033
            if in_dygraph_mode():
                new_p = ParamBase(
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3045 3046
                new_p = Parameter(
                    block=self,
3047 3048 3049
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3050 3051
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3052 3053 3054 3055 3056 3057
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3058 3059
            self.vars[new_p.name] = new_p

3060
    def _clone_variable(self, var, force_persistable=True):
3061 3062
        """
        Clone a variable into current block.
3063

3064 3065
        Args:
            var: the variable to be cloned.
3066 3067 3068
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3069 3070

        Returns:
3071
            Variable: the new  variable cloned from 'var' in current block.
3072 3073
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3074 3075 3076 3077 3078
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3079 3080
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3081
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3082 3083 3084 3085 3086 3087
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3088
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3089 3090
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3091 3092 3093 3094 3095 3096 3097
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3098
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3099 3100
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3101
        return ret_var
3102

Y
Yu Yang 已提交
3103

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3199
    def remove_input_by_id(self, node_id):
3200 3201 3202 3203 3204 3205
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3206
        self.node.remove_input(node_id)
3207

3208
    def remove_input(self, node):
3209 3210 3211 3212
        """
        Remove a node from inputs.

        Args:
3213
            node(IrNode): the node being removed.
3214
        """
3215
        self.node.remove_input(node.node)
3216

3217
    def append_input(self, node):
3218 3219 3220 3221
        """
        Append a node in inputs.

        Args:
3222
            node(IrNode): the node being appended.
3223
        """
3224
        self.node.append_input(node.node)
3225 3226 3227 3228 3229 3230 3231 3232

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3233
    def remove_output_by_id(self, node_id):
3234 3235 3236 3237 3238 3239
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3240
        self.node.remove_output(node_id)
3241

3242
    def remove_output(self, node):
3243 3244 3245 3246
        """
        Remove a node from outputs.

        Args:
3247
            node(IrNode): the node being removed.
3248
        """
3249
        self.node.remove_output(node.node)
3250

3251
    def append_output(self, node):
3252 3253 3254 3255
        """
        Append a node in outputs.

        Args:
3256
            node(IrNode): the node being appended.
3257
        """
3258
        self.node.append_output(node.node)
3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3306
            "The node variable description can not be None."
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3317
            "The node variable description can not be None."
3318 3319
        return self.node.var().persistable()

3320 3321 3322 3323 3324 3325 3326 3327
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3328
            "The node variable description can not be None."
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3339
            "The node variable description can not be None."
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3350
            "The node variable description can not be None."
3351 3352
        return self.node.var().shape()

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3400
            "The node operator description can not be None."
3401 3402
        self.node.op()._rename_input(old_input_name, new_input_name)

3403 3404 3405 3406 3407 3408 3409 3410 3411
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3412
            "The node operator description can not be None."
3413 3414
        self.node.op()._rename_output(old_output_name, new_output_name)

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3426
            "The node operator description can not be None."
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3440
            "The node operator description can not be None."
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3451
            "The node operator description can not be None."
3452 3453
        return self.node.op().set_type(new_type)

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3469
            "The node operator description can not be None."
3470 3471 3472 3473
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3474
                all(isinstance(v, Block) for v in val):
3475 3476
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3477
                isinstance(val, core.ProgramDesc):
3478 3479 3480 3481
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3482 3483 3484 3485 3486 3487 3488 3489
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3490
            "The node operator description can not be None."
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3501
            "The node operator description can not be None."
3502 3503
        return self.node.op().output_arg_names()

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3525 3526
class IrGraph(object):
    """
3527
    Python IrGraph. Beneath it is a core.Graph, which is used for
3528
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3529 3530
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3531 3532 3533 3534
    """

    def __init__(self, graph, for_test=False):
        """
3535 3536
        Construct an IrGraph using core.Graph.

3537 3538 3539 3540 3541 3542 3543 3544 3545
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3546 3547 3548 3549
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3550 3551 3552
        Warns:
            The method only clones the graph structure, not its attributes.

3553 3554 3555
        Returns:
            IrGraph: A new and duplicated graph.
        """
3556
        g = self.graph.clone()
3557 3558
        return IrGraph(g, self._for_test)

3559
    def is_test(self):
3560 3561 3562
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3563 3564
        return self._for_test

W
WangZhen 已提交
3565
    def all_nodes(self):
3566 3567 3568
        """
        Return all nodes included in the graph as a set.
        """
3569
        return {IrNode(node) for node in self.graph.nodes()}
3570

3571
    def all_var_nodes(self):
3572 3573 3574
        """
        Return all variable nodes included in the graph as a set.
        """
3575
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3576

3577
    def all_persistable_nodes(self):
3578 3579 3580
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3581 3582 3583 3584 3585
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3586
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3587

3588
    def all_op_nodes(self):
3589 3590 3591
        """
        Return all operator nodes included in the graph as a set.
        """
3592
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3593

3594
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3606
            IrVarNode: the created persistable variable node.
3607
        """
3608 3609 3610 3611 3612
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3613
        return IrVarNode(self.graph.create_var_node(var_desc))
3614 3615

    def create_var_node(self, name, var_type, shape, var_dtype):
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3627
            IrVarNode: the created variable node.
3628 3629
        """

3630 3631 3632 3633
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3634
        return IrVarNode(self.graph.create_var_node(var_desc))
3635

3636 3637 3638 3639 3640 3641
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3642
    def create_var_node_from_desc(self, var_desc):
3643 3644 3645 3646 3647 3648 3649 3650
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3651
            IrVarNode: the created variable node.
3652
        """
3653
        return IrVarNode(self.graph.create_var_node(var_desc))
3654 3655

    def create_op_node(self, op_type, attrs, inputs, outputs):
3656 3657 3658 3659 3660 3661 3662
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3663
            outputs(dict): the outputs of the operator node.
3664 3665

        Returns:
3666
            IrOpNode: the created operator node.
3667
        """
3668 3669
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3670
        for attr, value in six.iteritems(attrs):
3671
            self._update_desc_attr(op_desc, attr, value)
3672
        for input_name, var_nodes in six.iteritems(inputs):
3673 3674 3675 3676
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3677
        for output_name, var_nodes in six.iteritems(outputs):
3678 3679 3680 3681
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3682
        return IrOpNode(self.graph.create_op_node(op_desc))
3683 3684

    def create_op_node_from_desc(self, op_desc):
3685 3686 3687 3688 3689 3690 3691
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3692
            IrOpNode: the created operator node.
3693
        """
3694
        return IrOpNode(self.graph.create_op_node(op_desc))
3695 3696

    def update_input_link(self, old_input_node, new_input_node, op_node):
3697 3698 3699 3700
        """
        Update the input's link of a operator node.

        Args:
3701 3702 3703
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3704
        """
3705
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3706 3707
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3708 3709 3710 3711
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3712
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3713

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3724 3725
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3726 3727 3728 3729 3730 3731
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3732
    def link_to(self, node_in, node_out):
3733 3734 3735 3736
        """
        Connect two nodes.

        Args:
3737 3738
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3739
        """
3740
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3741
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3742 3743
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3744 3745

    def safe_remove_nodes(self, remove_nodes):
3746 3747 3748 3749 3750 3751 3752
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3753
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3754 3755 3756 3757
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3758 3759
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3760

Z
Zhen Wang 已提交
3761 3762 3763 3764 3765 3766 3767 3768
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3769
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3770 3771 3772 3773
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3774
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3775 3776 3777
                        ]
                    else:
                        var_nodes[each_var_name].append(
3778 3779
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3780 3781
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3782
    def has_circle(self):
3783 3784 3785 3786 3787 3788
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3789 3790 3791
        return core.has_circle(self.graph)

    def graph_num(self):
3792 3793 3794 3795 3796 3797
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3798 3799 3800
        return core.graph_num(self.graph)

    def topology_sort(self):
3801 3802 3803
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3804
        Notes: the `graph` can not contain a circle.
3805 3806

        Returns:
Z
Zhen Wang 已提交
3807
            list(IrNode): nodes in topology order.
3808
        """
3809
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3810
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3811 3812

    def build_adjacency_list(self):
3813 3814 3815 3816
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3817
            dict{IrNode: set(IrNode)}: the adjacency list.
3818
        """
3819 3820 3821 3822 3823
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3824

3825 3826 3827 3828 3829 3830 3831 3832
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3833
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3834 3835 3836 3837 3838
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3839 3840 3841
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3842
                                          + ' -o ' + pdf_save_path, shell=True)
3843 3844 3845 3846 3847
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3848
        remove_ctr_vars = set()
3849
        if remove_ctr_var:
3850
            for node in self.all_var_nodes():
3851 3852 3853
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3854 3855
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3856 3857
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3858 3859 3860 3861 3862 3863
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3864 3865 3866 3867
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3868 3869
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3870 3871 3872 3873 3874 3875 3876
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3877 3878 3879
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3880
        WARN: When the graph includes backward operator nodes, the
3881 3882 3883 3884 3885 3886
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3887
        convert_pass = core.get_pass('graph_to_program_pass')
3888 3889
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3890 3891 3892 3893
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3921
class Program(object):
D
dzhwinter 已提交
3922
    """
3923
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3924
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3925
    it will contain nested block.
3926

J
Jiabin Yang 已提交
3927 3928 3929
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3930

J
Jiabin Yang 已提交
3931
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3932
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3933 3934 3935 3936 3937 3938 3939
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3940
    **Notes**:
3941 3942 3943
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3944 3945

    Returns:
J
Jiabin Yang 已提交
3946
        Program: An empty Program.
D
dzhwinter 已提交
3947 3948

    Examples:
3949 3950
        .. code-block:: python

3951 3952 3953 3954
            import paddle
            import paddle.static as static

            paddle.enable_static()
3955

3956 3957 3958 3959 3960
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
3961
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
3962 3963 3964

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3965 3966 3967

    """

3968 3969
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3970 3971
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3972 3973
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3974
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3975
        self.__op_role_var = []
T
tangwei12 已提交
3976

3977 3978
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3979
        self._is_distributed = False
3980
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3981
        self._is_chief = False
3982 3983 3984
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3985
        self._endpoints = []
3986 3987 3988
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3989
        self._trainers_endpoints = []
3990
        # the distributed lookup table names
T
tangwei12 已提交
3991
        self._distributed_lookup_table = None
3992 3993 3994

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3995 3996
        self._use_lamb = False

3997 3998 3999
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4000

4001 4002 4003
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4004
        self._program_config = None
4005

H
hutuxian 已提交
4006 4007 4008
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4009 4010 4011
        # appending gradients times
        self._appending_grad_times = 0

4012 4013 4014 4015
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4016 4017 4018
        # compiled program, i.e. Graph
        self._graph = None

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4029 4030
                import paddle
                import paddle.static as static
4031

4032 4033 4034
                paddle.enable_static()

                prog = static.default_main_program()
4035 4036 4037 4038 4039
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4040
                prog1 = static.default_main_program()
4041 4042 4043 4044 4045 4046 4047 4048
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4049
    @property
4050
    def _op_role(self):
Y
yuyang18 已提交
4051 4052 4053 4054 4055 4056 4057 4058
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4059
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4060 4061 4062 4063
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4064 4065
        return self._current_role

4066 4067
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4068 4069 4070
        self._current_role = role

    @property
4071
    def _op_role_var(self):
Y
yuyang18 已提交
4072
        """
4073
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4074

4075
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4076 4077 4078

        Notes: This is a very low-level API. Users should not use it directly.
        """
4079
        return self.__op_role_var
Y
yuyang18 已提交
4080

4081
    @signature_safe_contextmanager
4082 4083 4084 4085 4086
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4087 4088 4089 4090
        try:
            yield
        finally:
            self._current_role = tmp_role
4091

S
rename  
sneaxiy 已提交
4092
    @signature_safe_contextmanager
W
Wu Yi 已提交
4093
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4094 4095 4096 4097 4098 4099 4100
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4101
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4102 4103 4104

        Examples:

4105
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4106
            >>> p, g = backward(...)
W
Wu Yi 已提交
4107
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4108 4109
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4110
        tmp_role = self._current_role
4111
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4112

Y
yuyang18 已提交
4113 4114
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4115
        self.__op_role_var = [
4116 4117 4118
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4119 4120 4121 4122 4123
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4124

S
rename  
sneaxiy 已提交
4125
    @signature_safe_contextmanager
X
Xin Pan 已提交
4126
    def _lr_schedule_guard(self, is_with_opt=False):
4127 4128 4129 4130 4131 4132 4133
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4134 4135 4136 4137
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4138 4139 4140

        Examples:

4141
            >>> import paddle.fluid as fluid
4142 4143 4144 4145
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4146 4147

        tmp_role = self._current_role
4148
        tmp_var = self.__op_role_var
4149

4150 4151
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4152 4153
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4154
        # TODO(typhoonzero): how to set target learning rate var
4155
        self.__op_role_var = []
4156 4157 4158 4159 4160
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4161

4162
    def __str__(self):
Y
yuyang18 已提交
4163 4164 4165 4166 4167 4168 4169 4170 4171
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4192 4193
            import paddle
            import paddle.static as static
4194

4195 4196 4197
            paddle.enable_static()

            cur_program = static.Program()
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4214
            program_str += '\n'
4215
        return program_str
Y
Yang Yang(Tony) 已提交
4216

F
fengjiayi 已提交
4217 4218 4219
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4220

J
Jiabin Yang 已提交
4221 4222 4223
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4224

J
Jiabin Yang 已提交
4225
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4226

H
haowang101779990 已提交
4227
        Returns:
J
Jiabin Yang 已提交
4228
            str: The debug string describe current Program.
Y
yuyang18 已提交
4229 4230

        Raises:
J
Jiabin Yang 已提交
4231
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4232

4233 4234 4235
        Examples:
            .. code-block:: python

4236 4237 4238 4239
                import paddle
                import paddle.static as static

                paddle.enable_static()
4240

4241 4242 4243
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4244
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4245
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4246
                print("program string without detail: {}".format(prog_string))
4247
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4248
        """
4249 4250 4251 4252 4253 4254 4255 4256 4257
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4258 4259 4260 4261 4262 4263
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4264 4265
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4266 4267
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4268

W
Wu Yi 已提交
4269
    def _get_desc(self):
Y
yuyang18 已提交
4270 4271 4272 4273 4274 4275 4276
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4277 4278
        return self.desc

X
version  
Xin Pan 已提交
4279 4280 4281
    def _version(self):
        return self.desc._version()

4282
    def clone(self, for_test=False):
Y
yuyang18 已提交
4283
        """
4284 4285 4286 4287
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4288

4289
        Create a new Program with forward content of original one when ``for_test=True``.
4290
        Create a new Program as same as the original one when ``for_test=False``.
4291

4292
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4293 4294 4295
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4296

4297 4298
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4299 4300
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4301
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4302

J
Jiabin Yang 已提交
4303
        For Example:
4304
          ::
L
Luo Tao 已提交
4305

4306 4307 4308 4309 4310 4311
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4312
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4313
            loss = paddle.mean(pred)
4314
            # Here we use clone before Momentum
4315 4316
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4317
            optimizer.minimize(loss)
4318

J
Jiabin Yang 已提交
4319
        Args:
4320

4321 4322
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4323

J
Jiabin Yang 已提交
4324
        Returns:
4325
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4326

Y
yuyang18 已提交
4327 4328 4329

        Examples:

4330 4331 4332 4333 4334 4335 4336
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4353
            1. To clone a test program, the sample code is:
4354 4355 4356
                .. code-block:: python

                    import six
4357 4358 4359 4360 4361 4362
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4375 4376
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4377 4378 4379

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4380 4381 4382
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4383
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4384 4385
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4386
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4387 4388
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4389
                            test_program = train_program.clone(for_test=True)
4390
                    print_prog(test_program)
J
Jiabin Yang 已提交
4391 4392 4393 4394

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4395
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4396 4397 4398 4399
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4400 4401 4402
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4403 4404 4405
                            sgd.minimize(avg_loss)


4406
            2. The clone method can be avoid if you create program for training and program for testing individually.
4407 4408 4409
                .. code-block:: python

                    import six
4410 4411 4412 4413 4414 4415
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4427

4428
                    def network():
4429
                        img = static.data(name='image', shape=[None, 784])
4430
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4431 4432
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4433
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4434 4435
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4436 4437
                        return avg_loss

4438 4439 4440 4441 4442
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4443
                            avg_loss = network()
4444
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4445
                            sgd.minimize(avg_loss)
4446
                    # the test startup program is not used.
4447 4448
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4449 4450
                            avg_loss = network()
                    print_prog(test_program_2)
4451

4452
            The two code snippets above will generate and print same programs.
4453
        """
4454 4455 4456 4457 4458

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4459
        pruned_origin_block_id_map = None
4460
        if for_test:
4461 4462 4463 4464 4465 4466 4467 4468 4469
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4470
        else:
4471
            p = Program()
G
gongweibao 已提交
4472 4473
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4474
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4475 4476 4477
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4478 4479

            p._current_role = self._current_role
4480
            p.__op_role_var = self.__op_role_var
4481
            p._appending_grad_times = self._appending_grad_times
4482 4483
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4484

4485 4486
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4487
            p._sync_with_cpp()
4488

W
Wu Yi 已提交
4489
        p._copy_param_info_from(self)
4490
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4491
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4492
        return p
4493

4494
    def _prune(self, targets):
Y
yuyang18 已提交
4495 4496 4497 4498 4499 4500 4501 4502
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4503
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4504 4505 4506 4507
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4508
        """
4509
        return self._prune_with_input([], targets)
4510 4511

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4512
        """
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4523
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4524 4525 4526 4527 4528 4529
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4530 4531 4532 4533
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4534 4535
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4536 4537
        if not isinstance(targets, list):
            targets = [targets]
4538 4539 4540

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4541 4542 4543
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4544

4545 4546 4547 4548
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4549 4550 4551
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4552
                else:
4553 4554 4555
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4556 4557 4558 4559 4560 4561 4562 4563

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4580 4581 4582 4583 4584 4585 4586 4587
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4588

4589
        res = Program()
4590 4591 4592
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4593 4594 4595
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4596
        res._sync_with_cpp()
4597 4598 4599 4600 4601

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4602 4603
        return res

X
Xin Pan 已提交
4604
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4605
        """
F
fengjiayi 已提交
4606 4607 4608 4609 4610
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4611
        3. change the :code:`is_test`
Y
yuyang18 已提交
4612 4613 4614
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4615
        Args:
X
Xin Pan 已提交
4616 4617
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4618

Y
yuyang18 已提交
4619 4620 4621 4622 4623 4624
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4625
        res = Program()
4626
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4627 4628 4629 4630

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4631
        if prune_read_op:
4632 4633 4634 4635 4636 4637 4638 4639 4640
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4641
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4642 4643

        # change all `is_test` attributes to True
M
minqiyang 已提交
4644
        for i in six.moves.range(res.desc.num_blocks()):
4645
            block = res.desc.block(i)
M
minqiyang 已提交
4646
            for j in six.moves.range(block.op_size()):
4647 4648
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4649
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4650 4651 4652
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4653
        res._sync_with_cpp()
4654 4655
        return res

4656 4657
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4658
        """
4659 4660 4661
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4662

4663 4664
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4665

J
Jiabin Yang 已提交
4666
        Args:
Y
yuyang18 已提交
4667

J
Jiabin Yang 已提交
4668
            binary_str_type (str): the binary prootbuf string.
4669

J
Jiabin Yang 已提交
4670 4671
        Returns:
            Program: A deserialized Program.
4672 4673 4674 4675

        Examples:
            .. code-block:: python

4676 4677 4678 4679
                import paddle
                import paddle.static as static

                paddle.enable_static()
4680

4681 4682 4683 4684
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4685

4686
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4687

4688
                    z = paddle.matmul(x=x, y=y)
4689

4690 4691
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4692

4693
                    print(static.default_main_program())
4694
                    print(prog_restored)
Y
yuyang18 已提交
4695
        """
4696 4697
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4698
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4699
        p._sync_with_cpp()
4700
        return p
Y
Yu Yang 已提交
4701

4702
    @staticmethod
4703
    def _construct_from_desc(desc):
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4719 4720
    @property
    def random_seed(self):
Y
yuyang18 已提交
4721
        """
J
Jiabin Yang 已提交
4722
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4723 4724
        the random seed from random device.

4725 4726
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4727 4728 4729

        Returns:
            int64: Random seed in current Program
4730

4731 4732 4733 4734

        Examples:
            .. code-block:: python

4735 4736 4737
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4738

4739 4740 4741
                paddle.enable_static()

                prog = static.default_main_program()
4742
                random_seed = prog.random_seed
4743
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4744 4745 4746
                print(random_seed)
                ## 0
                ## the default random seed is 0
4747

4748
                # Here we need to set random seed before we use paddle.nn.functional.dropout
4749
                prog.random_seed = 1
4750
                z_var = F.dropout(x_var, 0.7)
4751

4752
                print(prog.random_seed)
4753 4754
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4755
        """
D
dzhwinter 已提交
4756 4757
        return self._seed

Q
qiaolongfei 已提交
4758 4759
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4760
        """
4761 4762
        The number of :ref:`api_guide_Block_en`  in this Program.

4763 4764
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4765 4766 4767

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4768

4769 4770 4771 4772

        Examples:
            .. code-block:: python

4773 4774 4775 4776
                import paddle
                import paddle.static as static

                paddle.enable_static()
4777

4778
                prog = static.default_main_program()
4779 4780
                num_blocks = prog.num_blocks
                print(num_blocks)
4781

4782 4783
                # print result:
                # 1
Y
yuyang18 已提交
4784
        """
Q
qiaolongfei 已提交
4785 4786
        return self.desc.num_blocks()

D
dzhwinter 已提交
4787 4788 4789
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4790 4791 4792
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4793 4794
        self._seed = seed

Y
Yu Yang 已提交
4795
    def __repr__(self):
4796
        return self.__str__()
4797

Y
Yu Yang 已提交
4798
    def global_block(self):
Y
yuyang18 已提交
4799
        """
4800 4801
        .. note::
            This API has no effect in Dygraph mode.
4802 4803 4804

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4805 4806
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4807

4808 4809 4810 4811

        Examples:
            .. code-block:: python

4812 4813 4814 4815
                import paddle
                import paddle.static as static

                paddle.enable_static()
4816

4817
                prog = static.default_main_program()
4818 4819
                gb_block = prog.global_block()
                print(gb_block)
4820

Y
yuyang18 已提交
4821
        """
Y
Yu Yang 已提交
4822 4823
        return self.blocks[0]

Q
Qiao Longfei 已提交
4824
    def block(self, index):
Y
yuyang18 已提交
4825
        """
4826 4827
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4828

4829 4830
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4831 4832
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4833

J
Jiabin Yang 已提交
4834 4835
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4836 4837 4838 4839

        Examples:
            .. code-block:: python

4840 4841 4842 4843
                import paddle
                import paddle.static as static

                paddle.enable_static()
4844

4845
                prog = static.default_main_program()
4846 4847
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4848
        """
Q
Qiao Longfei 已提交
4849 4850
        return self.blocks[index]

Y
Yu Yang 已提交
4851
    def current_block(self):
Y
yuyang18 已提交
4852
        """
4853 4854
        .. note::
            This API has no effect in Dygraph mode.
4855

J
Jiabin Yang 已提交
4856 4857
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4858

J
Jiabin Yang 已提交
4859 4860
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4861

4862 4863 4864
        Examples:
            .. code-block:: python

4865 4866 4867 4868
                import paddle
                import paddle.static as static

                paddle.enable_static()
4869

4870
                prog = static.default_main_program()
4871 4872
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4873
        """
Y
Yu Yang 已提交
4874 4875
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4876
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4877 4878 4879 4880 4881
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4882

Y
yuyang18 已提交
4883 4884 4885 4886 4887
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4888
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4889 4890 4891
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4892 4893 4894 4895
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4896
    def _rollback(self):
Y
yuyang18 已提交
4897 4898 4899 4900 4901
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4902 4903
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4904
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4915 4916 4917
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4918
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4919

W
Wu Yi 已提交
4920
    def _copy_param_info_from(self, other):
4921
        """
4922
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4923

Y
yuyang18 已提交
4924 4925 4926
        Notes: This is a very low level API. Users should not invoke it
        directly.

4927 4928 4929 4930 4931 4932 4933
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4934 4935 4936
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4937

W
Wu Yi 已提交
4938
        self.global_block()._copy_param_info_from(other.global_block())
4939

4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4951 4952 4953
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4954 4955
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4956
        self._parameters_on_pservers = other._parameters_on_pservers
4957
        self._endpoints = other._endpoints
4958
        self._ps_endpoint = other._ps_endpoint
4959 4960
        self._distributed_lookup_table = other._distributed_lookup_table

4961
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4962 4963
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4964

Y
yuyang18 已提交
4965 4966 4967
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4968 4969
        Args:
            other(Program): Other program
4970 4971 4972 4973
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4974 4975 4976 4977 4978

        Returns:
            None
        """
        if not isinstance(other, Program):
4979 4980 4981
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4982

4983 4984 4985 4986 4987
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4988 4989 4990

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4991 4992
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4993
            for var in list(block.vars.values()):
4994 4995 4996 4997 4998 4999 5000
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5001

5002
    def list_vars(self):
Y
yuyang18 已提交
5003
        """
5004
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5005

J
Jiabin Yang 已提交
5006
        Returns:
5007
            iterable Tensors: The Generator will yield every Tensor in this program.
5008 5009 5010 5011

        Examples:
            .. code-block:: python

5012 5013
                import paddle
                import paddle.static as static
5014

5015 5016 5017 5018 5019
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5020 5021
                for var in prog.list_vars():
                    print(var)
5022
                
5023 5024
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5025
        """
5026
        for each_block in self.blocks:
5027
            for each_var in list(each_block.vars.values()):
5028 5029
                yield each_var

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5040 5041 5042 5043
                import paddle
                import paddle.static as static

                paddle.enable_static()
5044

5045 5046
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5047
                hidden = static.nn.fc(x=data, size=10)
5048 5049
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5050 5051 5052 5053 5054 5055 5056

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5057 5058
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5069

5070
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5071
class Parameter(Variable):
5072
    """
5073
    Parameter is derived from Variable. A parameter is a persistable
5074
    Variable, and will be updated by optimizers after each iteration.
5075
    The training of a neural network is essentially the updating of
5076 5077
    its parameters.

5078
    Relative to a general Variable, a Parameter has several its own
5079 5080
    member variables:

5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5091 5092
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5093 5094
    """

5095 5096 5097 5098 5099 5100
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5101 5102 5103 5104 5105
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5106
        if len(shape) == 0:
5107 5108
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5109 5110 5111

        for each in shape:
            if each < 0:
5112 5113 5114
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5115 5116

        Variable.__init__(
5117 5118 5119 5120 5121 5122 5123
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5124 5125 5126 5127
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5128 5129
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5130
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5131

5132 5133
        self.need_clip = kwargs.get('need_clip', True)

5134 5135
        self.is_distributed = False

F
fengjiayi 已提交
5136
    def __str__(self):
5137
        return self._to_readable_code()
F
fengjiayi 已提交
5138

F
update  
fengjiayi 已提交
5139 5140 5141
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5142

F
update  
fengjiayi 已提交
5143 5144 5145 5146 5147 5148 5149 5150
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5151 5152 5153 5154 5155 5156 5157 5158 5159
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5160 5161 5162 5163 5164 5165
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5166
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5167
            for attr_name in additional_attr:
5168 5169
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5170 5171
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5172 5173 5174 5175
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5176

5177 5178
class ParamBase(core.VarBase):
    """
5179 5180 5181
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5182 5183 5184
    The training of a neural network is essentially the updating of
    its ParamBase.

5185
    Relative to a general Tensor, a ParamBase has several its own
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5198 5199
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5230 5231
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5232 5233 5234 5235 5236 5237 5238

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5239 5240
        self.need_clip = kwargs.get('need_clip', True)

5241
        self.is_distributed = False
5242
        # self.block = default_main_program().global_block()
5243

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5257
    def __str__(self):
5258
        """
5259
        Convert a ParamBase object to a readable string.
5260

5261
        Returns(str): A readable string.
5262 5263 5264 5265

        Examples:
            .. code-block:: python

5266
                import paddle
5267 5268 5269 5270 5271 5272 5273
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5274
        """
5275 5276
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5277

5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
                
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5308 5309 5310
    __repr__ = __str__


Y
Yu Yang 已提交
5311
# program is a global instance.
Y
Yu Yang 已提交
5312 5313
_main_program_ = Program()
_startup_program_ = Program()
5314

5315

5316
def default_startup_program():
Y
Yu Yang 已提交
5317
    """
Y
yuyang18 已提交
5318 5319
    Get default/global startup program.

5320 5321 5322 5323 5324
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
  
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5325

5326 5327
    Returns:
        Program: current default startup program.
5328

5329
    Returns type: 
5330 5331 5332 5333

    Examples:
        .. code-block:: python

5334
            import paddle
5335

5336
            paddle.enable_static()
5337 5338 5339 5340
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5341
    """
Y
Yu Yang 已提交
5342
    return _startup_program_
5343

5344

5345
def default_main_program():
Y
Yu Yang 已提交
5346
    """
5347
    This API can be used to get ``default main program`` which store the 
5348
    descriptions of Ops and tensors.
5349
    
5350
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5351
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5352

5353 5354
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5355
    :code:`default_main_program` when the program is not specified.
5356

5357
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
5358
    
Y
Yu Yang 已提交
5359
    Returns:
5360
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5361 5362 5363 5364

    Examples:
        ..  code-block:: python

5365
            import paddle
5366

5367
            paddle.enable_static()
5368
            # Sample Network:
5369 5370 5371
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5372

5373 5374 5375
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5376
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5377
    """
Y
Yu Yang 已提交
5378
    return _main_program_
Y
Yu Yang 已提交
5379 5380 5381 5382 5383


def switch_main_program(program):
    """
    Switch the main program to a new program.
5384

Y
Yu Yang 已提交
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5399
    Switch the startup program to a new program
Y
Yu Yang 已提交
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5412
@signature_safe_contextmanager
Y
Yu Yang 已提交
5413 5414
def program_guard(main_program, startup_program=None):
    """
5415 5416
    :api_attr: Static Graph

5417 5418 5419
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5420

G
guofei 已提交
5421
    Args:
5422 5423
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5424 5425 5426 5427
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5428
    Examples:
5429 5430
       .. code-block:: python
       
5431
          import paddle
Y
yuyang18 已提交
5432

5433 5434 5435 5436 5437
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5438
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5439 5440 5441

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5442

Y
Yu Yang 已提交
5443
    Examples:
5444
       .. code-block:: python
Y
yuyang18 已提交
5445

5446
          import paddle
5447

5448 5449 5450 5451 5452
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
G
guofei 已提交
5453
    
Y
Yu Yang 已提交
5454
    """
5455
    from .data_feeder import check_type
5456 5457
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5458 5459
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5460
        check_type(startup_program, 'startup_program', Program,
5461
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5462
        startup_program = switch_startup_program(startup_program)
5463 5464 5465 5466 5467 5468
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5469 5470


W
Wu Yi 已提交
5471
def _get_var(name, program=None):
X
xuwei06 已提交
5472
    """
Y
yuyang18 已提交
5473
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5474

X
xuwei06 已提交
5475 5476 5477
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5478
        If None, default_global_program() will be used.
X
xuwei06 已提交
5479 5480 5481 5482 5483 5484 5485

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5486
    assert isinstance(program, Program)
X
xuwei06 已提交
5487 5488

    return program.global_block().var(name)
5489 5490


S
rename  
sneaxiy 已提交
5491
@signature_safe_contextmanager
L
lujun 已提交
5492 5493 5494 5495
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5496
    core._switch_tracer(tracer)
M
minqiyang 已提交
5497

5498 5499 5500 5501 5502
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5503 5504


S
rename  
sneaxiy 已提交
5505
@signature_safe_contextmanager
L
lujun 已提交
5506
def _dygraph_place_guard(place):
5507 5508 5509
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5510

5511 5512 5513
    try:
        yield
    finally:
5514
        _global_expected_place_ = tmp_place
5515 5516 5517 5518


def load_op_library(lib_filename):
    """
5519 5520
    :api_attr: Static Graph
    
5521 5522 5523
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5524
    Please note, the type of custom operators can't have the same type
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5591 5592 5593 5594 5595
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5596 5597 5598 5599
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5600 5601
    if index:
        device = ":".join([device, index])
5602
    pre_device = switch_device(device)
5603 5604 5605 5606
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value