framework.py 229.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
48 49
    'eager_guard',
    'in_eager_mode',
50
    'program_guard',
51
    'name_scope',
S
sneaxiy 已提交
52 53
    'cuda_places',
    'cpu_places',
54
    'xpu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'is_compiled_with_npu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
75
_dygraph_tracer_ = None
76
_global_expected_place_ = None
77
_current_device = None
78
global_prog_seed = 0
79
_current_pipeline_stage = None
80
_global_flags_ = core.globals()
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
_eager_mode_ = False


@signature_safe_contextmanager
def eager_guard():
    global _eager_mode_
    _eager_mode_ = True
    try:
        yield
    finally:
        _eager_mode_ = False


def in_eager_mode():
    return _eager_mode_
96

97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
205
def in_dygraph_mode():
L
lujun 已提交
206
    """
207

208 209 210 211 212 213 214
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
215 216

    Returns:
217
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
218 219 220 221

    Examples:
        .. code-block:: python

222 223 224 225 226 227 228 229
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
230 231

    """
L
lujun 已提交
232
    return _dygraph_tracer_ is not None
233 234


235 236 237
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
238
        ), "We don't support %s in imperative mode" % func.__name__
239 240 241 242 243 244 245 246
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
247 248 249 250 251 252 253 254 255
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
256
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
257 258 259 260 261
        return func(*args, **kwargs)

    return __impl__


262 263 264 265 266
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


267 268 269 270 271 272
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
273
# same base class.
274 275 276
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
277 278 279 280 281
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
282 283 284 285

    return __impl__


T
tangwei12 已提交
286 287
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


305 306
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
307
static_only = wrap_decorator(_static_only_)
308
fake_interface_only = wrap_decorator(_fake_interface_only_)
309 310


L
lujun 已提交
311 312
def _dygraph_tracer():
    return _dygraph_tracer_
313

W
Wu Yi 已提交
314

315 316 317 318
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
319
def _current_expected_place():
320 321 322
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
323 324 325 326 327 328 329 330 331 332 333
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
334 335 336 337 338 339 340 341 342 343 344 345
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
361 362 363 364
    if in_eager_mode():
        return core.eager._set_expected_place(place)
    else:
        _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
365 366


L
Leo Chen 已提交
367 368 369 370
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
371

L
Leo Chen 已提交
372 373 374 375 376 377 378 379 380 381 382 383
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
384
def _cpu_num():
385
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
386 387 388 389 390 391 392 393
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
394
        os.environ['CPU_NUM'] = str(1)
395
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
396 397 398 399 400 401 402 403 404 405
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
406 407


408 409 410 411 412 413 414 415 416
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


417 418 419 420 421 422 423 424 425
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
496 497 498 499
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

500
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
501 502 503 504

    Examples:
        .. code-block:: python

505
            import paddle
506
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
507 508 509 510
    """
    return core.is_compiled_with_cuda()


511 512 513 514 515 516 517 518 519 520
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
521
            support_gpu = paddle.device.is_compiled_with_rocm()
522 523 524 525
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
526
def cuda_places(device_ids=None):
L
lujun 已提交
527
    """
528 529 530 531
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
532
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
533 534

    If :code:`device_ids` is None, environment variable of
535
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
536
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
537
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
538
    If :code:`FLAGS_selected_gpus` is not set, all visible
539
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
540 541

    If :code:`device_ids` is not None, it should be the device
542
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
543
    the returned list would be 
C
Chen Weihang 已提交
544
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
545

546
    Parameters:
547
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
548 549

    Returns:
C
Chen Weihang 已提交
550
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
551 552 553 554

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
555 556
            import paddle
            import paddle.static as static
T
tangwei12 已提交
557

558 559
            # required: gpu
            
C
Chen Weihang 已提交
560 561 562
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
563 564

    """
S
sneaxiy 已提交
565 566 567
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
568
        device_ids = _cuda_ids()
S
sneaxiy 已提交
569 570 571 572 573
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


574 575 576 577
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
578 579 580 581 582 583 584 585 586 587 588
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
589 590 591 592 593 594 595
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
596

597 598
            # required: xpu

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
655
def cpu_places(device_count=None):
L
lujun 已提交
656
    """
C
Chen Weihang 已提交
657
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
658

S
add doc  
sneaxiy 已提交
659 660
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
661 662
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
663 664
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
665

666 667
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
668 669

    Returns:
C
Chen Weihang 已提交
670
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
671 672 673 674

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
675 676
            import paddle
            import paddle.static as static
T
tangwei12 已提交
677

C
Chen Weihang 已提交
678 679 680
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
681 682
    """

S
sneaxiy 已提交
683 684 685 686 687 688
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
689
    """
690
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
691 692 693

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
694 695 696 697
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
698

699 700
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
701 702

    Returns:
703
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
704 705 706 707

    Examples:
        .. code-block:: python

708
            import paddle.fluid as fluid
L
lujun 已提交
709 710 711 712 713
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
714 715 716
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
717 718
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
719 720


721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
747
@signature_safe_contextmanager
748 749
def name_scope(prefix=None):
    """
750 751
    :api_attr: Static Graph

752
    Generate hierarchical name prefix for the operators in Static Graph.
753

T
Tao Luo 已提交
754 755 756
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
757
        Don't use it in dygraph, since it will cause memory leak.
758 759

    Args:
T
Tao Luo 已提交
760
        prefix(str, optional): prefix. Default is none.
761 762 763

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
764

765 766 767
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
768
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
769
             b = a + 1
770
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
771
                c = b * 1
772
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
773
                d = c / 1
774 775 776
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
777 778 779
                g = f - 1

          # Op are created in the default main program.  
780
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
796 797
    """
    # TODO(panyx0718): Only [0-9a-z].
798
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
799 800 801
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
802
        assert prefix, "namescope prefix can not be empty."
803 804
        global _name_scope
        _name_scope = _name_scope.child(prefix)
805 806 807 808
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
809 810 811 812 813 814 815 816 817 818 819 820


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
821 822 823
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
824 825 826 827


def grad_var_name(var_name):
    """
828 829
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
830 831 832
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
833

834
def convert_np_dtype_to_dtype_(np_dtype):
835 836
    """
    Convert the data type in numpy to the data type in Paddle
837

838
    Args:
839
        np_dtype(np.dtype): the data type in numpy.
840

841 842
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
843 844

    """
845 846
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
847
        return core.VarDesc.VarType.FP32
848
    elif dtype == np.float64:
849
        return core.VarDesc.VarType.FP64
850
    elif dtype == np.float16:
851
        return core.VarDesc.VarType.FP16
852
    elif dtype == np.int32:
853
        return core.VarDesc.VarType.INT32
854
    elif dtype == np.int16:
855
        return core.VarDesc.VarType.INT16
856
    elif dtype == np.int64:
857
        return core.VarDesc.VarType.INT64
858
    elif dtype == np.bool:
859
        return core.VarDesc.VarType.BOOL
860
    elif dtype == np.uint16:
861 862 863
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
864 865
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
866 867
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
868 869 870 871
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
872
    else:
M
minqiyang 已提交
873
        raise ValueError("Not supported numpy dtype %s" % dtype)
874 875 876


def dtype_is_floating(dtype):
877 878 879
    """
    Check the data type is floating or not.
    Args:
880
        dtype(np.dtype|core.VarDesc.VarType): data type.
881 882 883 884 885
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
886
    if not isinstance(dtype, core.VarDesc.VarType):
887 888
        dtype = convert_np_dtype_to_dtype_(dtype)

889 890 891 892
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
893 894


Y
Yang Yang(Tony) 已提交
895
def _debug_string_(proto, throw_on_error=True):
896 897 898 899 900 901 902 903 904 905 906
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
907
    error_fields = list()
Y
Yang Yang(Tony) 已提交
908
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
909 910
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
911 912 913
    return proto.__str__()


914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
951
class Variable(object):
952
    """
J
Jiabin Yang 已提交
953
    **Notes**:
954
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
955

956 957
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
958 959 960
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
961
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
962 963
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
964

965
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
966
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
967

T
tianshuo78520a 已提交
968
    Most of a Variable's member variables can be set to be None. It mean
969
    it is not available or will be specified later.
970

971
    Examples:
972 973
        In Static Graph Mode:

974 975
        .. code-block:: python

976
            import paddle.fluid as fluid
977
            cur_program = fluid.Program()
978 979 980 981
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
982

J
Jiabin Yang 已提交
983
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
984 985 986 987 988 989 990 991 992

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

993 994
    """

Y
Yu Yang 已提交
995 996
    def __init__(self,
                 block,
Y
Yu Yang 已提交
997
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
998 999 1000 1001
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1002
                 capacity=None,
Q
QI JUN 已提交
1003
                 persistable=None,
F
fengjiayi 已提交
1004
                 error_clip=None,
Y
Yu Yang 已提交
1005
                 stop_gradient=False,
F
fengjiayi 已提交
1006
                 is_data=False,
H
Huihuang Zheng 已提交
1007
                 need_check_feed=False,
H
hong 已提交
1008
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1009
                 **kwargs):
Y
Yu Yang 已提交
1010 1011
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1012
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1013

Y
Yu Yang 已提交
1014
        if dtype is not None:
1015
            if not isinstance(dtype, core.VarDesc.VarType):
1016
                dtype = convert_np_dtype_to_dtype_(dtype)
1017

S
Steffy-zxf 已提交
1018 1019 1020 1021
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1022 1023
        self.belong_to_optimizer = belong_to_optimizer

1024 1025 1026 1027 1028
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1029

1030 1031 1032
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1033

1034 1035 1036
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1037 1038
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1039 1040
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1041

1042
        if shape is not None:
1043
            if is_new_var:
1044 1045 1046 1047 1048 1049
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1050 1051
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1052 1053 1054 1055 1056 1057 1058
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1059 1060
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1061 1062 1063 1064 1065 1066 1067 1068 1069
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1070 1071
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1072 1073 1074 1075 1076 1077 1078 1079 1080
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1081 1082
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1083 1084
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1085

1086 1087
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1088

1089 1090 1091 1092 1093 1094 1095
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1096

1097 1098
        self.block.vars[name] = self
        self.op = None
1099
        self.stop_gradient = stop_gradient
1100
        self.is_data = is_data
Y
Yu Yang 已提交
1101

1102 1103 1104
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1105 1106
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1107

1108
        Returns:
J
Jiabin Yang 已提交
1109
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1110 1111 1112 1113

        Examples:
            .. code-block:: python

1114
                import paddle
1115

1116 1117 1118 1119
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1120

1121 1122
                # create a detached Variable
                y = x.detach()
1123
        """
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1139

1140
    @fake_interface_only
1141
    def numpy(self):
1142
        """
J
Jiabin Yang 已提交
1143
        **Notes**:
T
tianshuo78520a 已提交
1144
            **This API is ONLY available in Dygraph mode**
1145

J
Jiabin Yang 已提交
1146
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1147 1148 1149 1150 1151

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1152
            ndarray: dtype is same as current Variable
1153 1154 1155 1156 1157 1158

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1159
                from paddle.fluid.dygraph import Linear
1160 1161 1162 1163
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1164
                    linear = Linear(32, 64)
1165
                    data = to_variable(data)
1166
                    x = linear(data)
1167 1168 1169
                    print(x.numpy())

        """
1170
        pass
1171

1172
    @fake_interface_only
1173
    def backward(self, retain_graph=False):
1174
        """
J
Jiabin Yang 已提交
1175
        **Notes**:
T
tianshuo78520a 已提交
1176
            **This API is ONLY available in Dygraph mode**
1177

1178
        Run backward of current Graph which starts from current Tensor.
1179

J
Jiabin Yang 已提交
1180
        Args:
1181 1182 1183 1184
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1185

J
Jiabin Yang 已提交
1186 1187
        Returns:
            NoneType: None
1188 1189 1190 1191 1192

        Examples:
            .. code-block:: python

                import numpy as np
1193 1194
                import paddle
                paddle.disable_static()
1195 1196

                x = np.ones([2, 2], np.float32)
1197 1198 1199 1200 1201 1202 1203
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1204 1205
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1206
                loss.backward()
1207 1208

        """
1209
        pass
1210

1211
    @fake_interface_only
1212
    def gradient(self):
1213
        """
J
Jiabin Yang 已提交
1214
        **Notes**:
T
tianshuo78520a 已提交
1215
            **This API is ONLY available in Dygraph mode**
1216 1217 1218

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1219
        Returns:
1220
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1221 1222 1223 1224 1225 1226 1227

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1228
                # example1: return ndarray
1229 1230 1231 1232 1233 1234 1235 1236 1237
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1238
                    loss2.backward()
1239 1240
                    print(loss2.gradient())

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1254
        """
1255
        pass
1256

1257
    @fake_interface_only
1258
    def clear_gradient(self):
1259
        """
J
Jiabin Yang 已提交
1260
        **Notes**:
T
tianshuo78520a 已提交
1261
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1262 1263

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1264

J
Jiabin Yang 已提交
1265
        Clear  (set to ``0`` ) the Gradient of Current Variable
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1284
                    loss2.backward()
1285 1286 1287 1288 1289
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1290
        pass
X
Xin Pan 已提交
1291

1292 1293 1294 1295
    @fake_interface_only
    def register_hook(self, hook):
        pass

1296
    def __str__(self):
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1313 1314
                import paddle
                import paddle.static as static
1315

1316 1317 1318
                paddle.enable_static()

                cur_program = static.Program()
1319 1320 1321 1322 1323 1324
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1325 1326
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1327
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1328 1329
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1330 1331
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1332
        else:
1333 1334
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1335

1336
        if self.is_parameter:
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1347
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1348
        dist_context = get_default_distributed_context()
1349 1350
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1351
            var_str += ", {name} = {value}".format(
1352
                name="dist_attr", value=dist_tensor)
1353

1354
        return var_str
Y
Yang Yang(Tony) 已提交
1355

F
update  
fengjiayi 已提交
1356
    def to_string(self, throw_on_error, with_details=False):
1357 1358 1359
        """
        Get debug string.

J
Jiabin Yang 已提交
1360 1361 1362 1363 1364
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1365

1366 1367
        Returns:
            str: The debug string.
1368 1369 1370 1371 1372

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1373
                import paddle
1374

1375
                paddle.enable_static()
1376 1377 1378 1379 1380
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1381
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1382
                print("=============with detail===============")
1383
                print(new_variable.to_string(True, True))
1384
        """
F
update  
fengjiayi 已提交
1385 1386
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1387
        protostr = self.desc.serialize_to_string()
1388
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1389 1390
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1391
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1392
            for attr_name in additional_attr:
1393 1394 1395
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1396
        return res_str
1397 1398 1399

    __repr__ = __str__

1400
    @property
1401
    def stop_gradient(self):
J
Jiabin Yang 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1417 1418
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1419 1420 1421
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1422 1423
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1424 1425 1426 1427
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1428
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1429 1430
                assert (out1.gradient() == 0).all()
        """
1431
        return self.desc.stop_gradient()
1432

1433 1434
    @stop_gradient.setter
    def stop_gradient(self, s):
1435
        self.desc.set_stop_gradient(s)
1436

1437 1438
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1460
        return self.desc.persistable()
1461

Y
Yu Yang 已提交
1462 1463
    @persistable.setter
    def persistable(self, p):
1464
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1465

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1491 1492
    @property
    def name(self):
J
Jiabin Yang 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1509
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1510

1511 1512 1513 1514 1515 1516
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1517 1518
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1531 1532
    @name.setter
    def name(self, new_name):
1533
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1534

Y
Yu Yang 已提交
1535 1536
    @property
    def shape(self):
J
Jiabin Yang 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1554
        # convert to tuple, make it as same as numpy API.
1555
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1556 1557

    @property
F
fengjiayi 已提交
1558
    def dtype(self):
J
Jiabin Yang 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1575
        return self.desc.dtype()
Y
Yu Yang 已提交
1576 1577 1578

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1600 1601 1602
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1603
        return self.desc.lod_level()
Y
Yu Yang 已提交
1604

Y
Yu Yang 已提交
1605 1606
    @property
    def type(self):
J
Jiabin Yang 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1623
        return self.desc.type()
Y
Yu Yang 已提交
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1708
    def _set_error_clip(self, error_clip):
1709 1710 1711 1712 1713 1714 1715 1716 1717
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1718 1719
        self.error_clip = error_clip

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1760
            raise ValueError("slice step can not be zero")
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1836
    def _cloneVar(self, copy=False):
1837 1838
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1839 1840
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1841 1842 1843 1844
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1845
        new_var = self._cloneVar()
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1856
        new_var = self._cloneVar()
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1867
                return self._cloneVar(True)
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1886
                return self._cloneVar(True)
1887
            index = int(item)
1888
            if (index > 0 and index >= self.shape[axis]) \
1889 1890 1891 1892 1893 1894 1895
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1896
        return _getitem_impl_(self, item)
1897

1898
    def __setitem__(self, item, value):
1899
        return _setitem_impl_(self, item, value)
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2047 2048 2049 2050
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2051 2052 2053 2054 2055 2056 2057
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2167

F
fengjiayi 已提交
2168 2169 2170
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2171

2172 2173
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2174 2175 2176 2177
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2178
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2179 2180 2181 2182 2183
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2184 2185 2186 2187
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2197
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2198 2199 2200 2201 2202 2203
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2204 2205 2206 2207 2208 2209 2210 2211
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2212 2213
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2214 2215
        return self.op_proto_map[type]

2216 2217
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2218
        custom_op_names = []
2219 2220 2221
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2222 2223 2224
                custom_op_names.append(proto.type)

        return custom_op_names
2225

2226 2227 2228 2229
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2230
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2231
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2232 2233
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2234 2235
        }

F
fengjiayi 已提交
2236

X
Xin Pan 已提交
2237
class Operator(object):
2238
    """
2239 2240 2241 2242 2243 2244 2245
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2246
        type(str): The type of operator. Default None.
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2267
        Block.append_op or Block._prepend_op instead.
2268 2269 2270 2271

    Examples:
        .. code-block:: python

2272
            import paddle.fluid as fluid
2273
            cur_program = fluid.Program()
2274 2275 2276 2277 2278
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2279
    """
2280
    OP_WITHOUT_KERNEL_SET = {
2281 2282
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2283
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2284 2285
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2286
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2287 2288
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2289
    }
2290

Y
Yu Yang 已提交
2291 2292
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2293
                 desc,
Y
Yu Yang 已提交
2294 2295 2296
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2297
                 attrs=None):
L
lujun 已提交
2298
        if in_dygraph_mode():
2299 2300
            if type is None:
                raise ValueError(
2301
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2302
            self._type = type
M
minqiyang 已提交
2303
            self.attrs = attrs if attrs else {}
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2318
                )] = self.block.program._op_role
2319 2320 2321

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2322 2323
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2324 2325 2326 2327 2328

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2329 2330 2331 2332 2333
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2334 2335 2336
                return
            if type is None:
                raise ValueError(
2337
                    "`type` to initialized an Operator can not be None.")
2338 2339
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2340 2341 2342 2343 2344 2345 2346
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2347 2348 2349 2350 2351 2352 2353

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2371 2372 2373 2374 2375
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2390
                        if not isinstance(in_args, (list, tuple)):
2391 2392 2393 2394 2395 2396
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2397
                        for index, arg in enumerate(in_args):
2398 2399 2400 2401
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2402
                            elif isinstance(arg, (Variable, core.VarBase)):
2403
                                in_arg_names.append(cpt.to_text(arg.name))
2404
                            else:
2405 2406 2407 2408
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2409 2410
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2435 2436 2437 2438
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2439
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2440
                        if not in_dygraph_mode():
2441 2442 2443 2444
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2463
    def _has_kernel(self, op_type):
2464 2465
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2466
    def to_string(self, throw_on_error):
2467
        """
2468 2469
        Get debug string.

2470
        Args:
2471 2472
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2473

2474 2475
        Returns:
            str: The debug string.
2476 2477

        """
2478
        protostr = self.desc.serialize_to_string()
2479
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2480 2481
        return _debug_string_(proto, throw_on_error)

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2514
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2567
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2568
        dist_context = get_default_distributed_context()
2569 2570
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2571
            attrs_str += ", {name} = {value}".format(
2572
                name="dist_attr", value=dist_op)
2573

2574 2575
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2576 2577
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2578 2579 2580 2581 2582
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2583
    def __str__(self):
2584
        return self._to_readable_code()
2585 2586 2587

    __repr__ = __str__

F
fengjiayi 已提交
2588 2589
    @property
    def type(self):
2590
        return self.desc.type()
F
fengjiayi 已提交
2591 2592

    def input(self, name):
2593
        r"""
2594
        Get the input arguments according to the input parameter name.
2595

2596 2597
        Args:
            name(str): The input parameter name.
2598

2599 2600 2601
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2602
        """
F
fengjiayi 已提交
2603 2604
        return self.desc.input(name)

W
Wu Yi 已提交
2605
    def _rename_input(self, old_name, new_name):
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2616
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2617

W
Wu Yi 已提交
2618
    def _rename_output(self, old_name, new_name):
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2629
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2630

F
fengjiayi 已提交
2631 2632 2633 2634
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2635 2636 2637 2638 2639 2640 2641 2642
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2643
    def output(self, name):
2644
        r"""
2645
        Get output arguments by the output parameter name.
2646

2647 2648
        Args:
            name(str): The output parameter name.
2649

2650 2651 2652
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2653
        """
F
fengjiayi 已提交
2654 2655 2656 2657 2658 2659
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2660 2661 2662 2663 2664 2665 2666 2667
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2668
    def has_attr(self, name):
2669
        """
2670 2671
        Whether this Operator has the attribute with name or not.

2672
        Args:
2673
            name(str): the attribute name.
2674

2675 2676
        Returns:
            bool: True if has this attribute.
2677 2678

        """
F
fengjiayi 已提交
2679 2680 2681
        return self.desc.has_attr(name)

    def attr_type(self, name):
2682
        """
2683
        Get the type of attribute by attribute's name.
2684

2685 2686
        Args:
            name(str): the attribute name.
2687

2688 2689
        Returns:
            core.AttrType: the attribute type.
2690
        """
F
fengjiayi 已提交
2691 2692
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2693
    def _set_attr(self, name, val):
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2704 2705
        self._update_desc_attr(name, val)

2706 2707 2708
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2720 2721
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2722 2723
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2724
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2725 2726 2727 2728
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2729
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2730

F
fengjiayi 已提交
2731 2732 2733 2734 2735
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2736
        """
2737 2738
        Get the attribute by name.

2739
        Args:
2740
            name(str): the attribute name.
2741

2742 2743
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2744 2745
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2746
        return self.desc.attr(name)
Y
Yu Yang 已提交
2747

W
Wu Yi 已提交
2748
    def _block_attr_id(self, name):
2749
        """
G
gongweibao 已提交
2750
        Get the block attribute's id by name.
2751

2752 2753
        Args:
            name(str): the attribute name.
2754

2755 2756
        Returns:
            int: the block index.
2757
        """
W
Wu Yi 已提交
2758
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2759

W
Wu Yi 已提交
2760
    def _block_attr(self, name):
G
gongweibao 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2771
        id = self._block_attr_id(name)
G
gongweibao 已提交
2772 2773 2774
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2775
    def _blocks_attr(self, name):
G
gongweibao 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2786
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2787 2788 2789 2790 2791
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2792
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2803
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2804

J
JiayiFeng 已提交
2805
    def all_attrs(self):
F
fengjiayi 已提交
2806
        """
2807 2808 2809
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2810
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2811 2812 2813 2814
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2815 2816
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2817
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2818 2819 2820
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2821
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2822 2823 2824 2825
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2826 2827
        return attr_map

2828 2829 2830
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2831 2832 2833 2834

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2835 2836 2837
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2838 2839 2840 2841 2842 2843 2844 2845

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2846 2847
            return False

2848 2849 2850 2851 2852 2853
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2879

Y
Yu Yang 已提交
2880
class Block(object):
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2895
        use `Program._create_block()` to create a block.
2896 2897 2898 2899

    Examples:
        .. code-block:: python

2900 2901 2902
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2903 2904 2905 2906 2907 2908 2909 2910 2911
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2912
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2913
        self.desc = program.desc.block(idx)
2914
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2915
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2916
        self.program = program
2917
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2918

2919
    def __str__(self):
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2954
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2966

F
fengjiayi 已提交
2967 2968
    def to_string(self, throw_on_error, with_details=False):
        """
2969 2970
        Get debug string.

F
fengjiayi 已提交
2971 2972
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2973
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2974
            with_details(bool): more details about variables and parameters
2975 2976
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2977

2978 2979
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2980 2981 2982 2983
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2984
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2985 2986
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2987
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2988
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2989
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2990
            for op in self.ops:
F
fengjiayi 已提交
2991 2992
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2993 2994 2995
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2996 2997
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2998 2999
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3000 3001 3002

    __repr__ = __str__

Y
Yu Yang 已提交
3003 3004
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3005
        return self.desc.parent
Y
Yu Yang 已提交
3006

Y
Yu Yang 已提交
3007 3008 3009 3010
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3011
    def _set_forward_block_idx(self, idx):
3012 3013 3014 3015 3016 3017 3018 3019 3020
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3021
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3022

3023 3024 3025 3026 3027 3028 3029 3030
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3031 3032
    @property
    def idx(self):
Y
Yu Yang 已提交
3033
        return self.desc.id
Y
Yu Yang 已提交
3034

Q
Qiao Longfei 已提交
3035
    def var(self, name):
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3049
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3050 3051 3052
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3053 3054
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3055
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3056
        return v
Q
Qiao Longfei 已提交
3057

X
Xin Pan 已提交
3058
    def _find_var_recursive(self, name):
3059 3060 3061 3062 3063 3064 3065
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3066
            Variable: the Variable with the giving name. Or None if not found.
3067
        """
Y
Yu Yang 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3092
        return None
Y
Yu Yang 已提交
3093

X
Xin Pan 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3113

Q
Qiao Longfei 已提交
3114
    def all_parameters(self):
3115
        return list(self.iter_parameters())
3116

3117
    def iter_parameters(self):
M
minqiyang 已提交
3118
        return (item[1] for item in six.iteritems(self.vars)
3119
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3120

Y
Yu Yang 已提交
3121
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3122 3123 3124
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3125 3126 3127
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3128
        return var
Y
Yu Yang 已提交
3129

Q
Qiao Longfei 已提交
3130 3131 3132
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3133
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3134 3135
        """
        Rename variable in vars and ops' inputs and outputs
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3148
        """
M
minqiyang 已提交
3149 3150
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3151

T
typhoonzero 已提交
3152
        if not self.has_var(name):
3153
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3154 3155
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3156
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3157 3158 3159 3160 3161 3162
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3163
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3164 3165 3166 3167
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3168
        orig_var_type = v.type
M
minqiyang 已提交
3169
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3170
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3171
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3172
        if var_type == "Parameter":
L
Leo Chen 已提交
3173 3174
            if in_dygraph_mode():
                var = ParamBase(
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3185 3186
                var = Parameter(
                    self,
3187 3188 3189 3190 3191 3192 3193 3194 3195
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3196
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3197 3198
            var = Variable(
                self,
T
typhoonzero 已提交
3199
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3200 3201 3202 3203
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3204
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3205 3206 3207
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3208
        self._sync_with_cpp()
3209
        return var
T
typhoonzero 已提交
3210

3211 3212 3213
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3214
        self.desc._remove_var(cpt.to_bytes(name))
3215 3216
        del self.vars[name]

Y
Yu Yang 已提交
3217 3218
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3219
        param = None
L
Leo Chen 已提交
3220
        if in_dygraph_mode():
3221
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3222 3223
        else:
            param = Parameter(global_block, *args, **kwargs)
3224

3225
        if 'initializer' in kwargs:
3226 3227 3228 3229 3230

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3231
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3232
                        # are treated as initialization ops that cause error.
3233
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3234 3235 3236 3237 3238
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3239
                            continue
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3251
                # TODO already inited, do nothing, should log a warning
3252 3253 3254
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3255
        return param
Y
Yu Yang 已提交
3256

Y
Yu Yang 已提交
3257
    def append_op(self, *args, **kwargs):
3258 3259 3260 3261 3262 3263
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3264
        if in_dygraph_mode():
3265
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3266
            type = kwargs.get("type", None)
3267 3268 3269
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3270
                type=type,
M
minqiyang 已提交
3271 3272
                inputs=None,
                outputs=None,
3273
                attrs=attrs)
3274

M
minqiyang 已提交
3275 3276 3277
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3278
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3279 3280

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3281
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3282 3283
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3284
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3285
        else:
3286 3287
            from paddle.fluid.dygraph.base import param_guard

3288
            op_desc = self.desc.append_op()
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3302

M
minqiyang 已提交
3303
            self.ops.append(op)
M
minqiyang 已提交
3304

3305 3306
        return op

W
Wu Yi 已提交
3307
    def _insert_op(self, index, *args, **kwargs):
3308 3309 3310 3311 3312 3313 3314 3315 3316
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3317
        self._sync_with_cpp()
F
fangshuixun007 已提交
3318
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3337 3338 3339 3340 3341 3342 3343 3344 3345
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3346 3347
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3348
        self.desc._remove_op(index, index + 1)
3349 3350
        del self.ops[index]

W
Wu Yi 已提交
3351
    def _slice_ops(self, start, end):
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3362
        return self.ops[start:end]
Y
Yancey1989 已提交
3363

W
Wu Yi 已提交
3364
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3365
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3366 3367
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3368
            op = Operator(
J
Jiabin Yang 已提交
3369
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3370

J
Jiabin Yang 已提交
3371
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3372
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3373 3374
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3375
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3376
        else:
3377 3378 3379 3380 3381 3382 3383 3384
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3385
            self.ops.insert(0, op)
3386

Y
Yu Yang 已提交
3387 3388
        return op

W
Wu Yi 已提交
3389
    def _sync_with_cpp(self):
3390
        """
3391 3392
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3393
        """
Q
Qiao Longfei 已提交
3394 3395 3396
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3414

3415
        # sync variables removed from c++ end
3416
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3417
            if not self.desc.find_var(cpt.to_bytes(var)):
3418 3419
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3420
        # sync operators from cpp
3421 3422 3423 3424
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3441 3442 3443 3444 3445

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3446
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3447 3448 3449 3450 3451 3452 3453

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3467 3468 3469 3470
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3471
    def _copy_param_info_from(self, other):
3472
        """
3473 3474
        Copy the information of parameters from the other block.

3475
        Args:
3476 3477 3478 3479 3480
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3481 3482 3483 3484 3485

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3486 3487
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3488
        for p in other.iter_parameters():
3489 3490 3491
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3492 3493
                # if the Parameter is pruned, v may be None
                continue
3494
            assert isinstance(v, Variable)
3495
            new_p = None
L
Leo Chen 已提交
3496 3497
            if in_dygraph_mode():
                new_p = ParamBase(
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3509 3510
                new_p = Parameter(
                    block=self,
3511 3512 3513
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3514 3515
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3516 3517 3518 3519 3520 3521
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3522 3523
            self.vars[new_p.name] = new_p

3524
    def _clone_variable(self, var, force_persistable=True):
3525 3526
        """
        Clone a variable into current block.
3527

3528 3529
        Args:
            var: the variable to be cloned.
3530 3531 3532
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3533 3534

        Returns:
3535
            Variable: the new  variable cloned from 'var' in current block.
3536 3537
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3538 3539 3540 3541 3542
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3543 3544
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3545
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3546 3547 3548 3549 3550 3551
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3552
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3553 3554
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3555 3556 3557 3558 3559 3560 3561
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3562
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3563 3564
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3565
        return ret_var
3566

Y
Yu Yang 已提交
3567

3568 3569 3570 3571 3572 3573
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3685
    def remove_input_by_id(self, node_id):
3686 3687 3688 3689 3690 3691
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3692
        self.node.remove_input(node_id)
3693

3694
    def remove_input(self, node):
3695 3696 3697 3698
        """
        Remove a node from inputs.

        Args:
3699
            node(IrNode): the node being removed.
3700
        """
3701
        self.node.remove_input(node.node)
3702

3703
    def append_input(self, node):
3704 3705 3706 3707
        """
        Append a node in inputs.

        Args:
3708
            node(IrNode): the node being appended.
3709
        """
3710
        self.node.append_input(node.node)
3711 3712 3713 3714 3715 3716 3717 3718

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3719
    def remove_output_by_id(self, node_id):
3720 3721 3722 3723 3724 3725
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3726
        self.node.remove_output(node_id)
3727

3728
    def remove_output(self, node):
3729 3730 3731 3732
        """
        Remove a node from outputs.

        Args:
3733
            node(IrNode): the node being removed.
3734
        """
3735
        self.node.remove_output(node.node)
3736

3737
    def append_output(self, node):
3738 3739 3740 3741
        """
        Append a node in outputs.

        Args:
3742
            node(IrNode): the node being appended.
3743
        """
3744
        self.node.append_output(node.node)
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3792
            "The node variable description can not be None."
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3803
            "The node variable description can not be None."
3804 3805
        return self.node.var().persistable()

3806 3807 3808 3809 3810 3811 3812 3813
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3814
            "The node variable description can not be None."
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3825
            "The node variable description can not be None."
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3836
            "The node variable description can not be None."
3837 3838
        return self.node.var().shape()

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3886
            "The node operator description can not be None."
3887 3888
        self.node.op()._rename_input(old_input_name, new_input_name)

3889 3890 3891 3892 3893 3894 3895 3896 3897
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3898
            "The node operator description can not be None."
3899 3900
        self.node.op()._rename_output(old_output_name, new_output_name)

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3912
            "The node operator description can not be None."
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3926
            "The node operator description can not be None."
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3937
            "The node operator description can not be None."
3938 3939
        return self.node.op().set_type(new_type)

3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3955
            "The node operator description can not be None."
3956 3957 3958 3959
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3960
                all(isinstance(v, Block) for v in val):
3961 3962
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3963
                isinstance(val, core.ProgramDesc):
3964 3965 3966 3967
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3968 3969 3970 3971 3972 3973 3974 3975
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3976
            "The node operator description can not be None."
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3987
            "The node operator description can not be None."
3988 3989
        return self.node.op().output_arg_names()

3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4011 4012
class IrGraph(object):
    """
4013
    Python IrGraph. Beneath it is a core.Graph, which is used for
4014
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4015 4016
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4017 4018 4019 4020
    """

    def __init__(self, graph, for_test=False):
        """
4021 4022
        Construct an IrGraph using core.Graph.

4023 4024 4025 4026 4027 4028 4029 4030 4031
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4032 4033 4034 4035
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4036 4037 4038
        Warns:
            The method only clones the graph structure, not its attributes.

4039 4040 4041
        Returns:
            IrGraph: A new and duplicated graph.
        """
4042
        g = self.graph.clone()
4043 4044
        return IrGraph(g, self._for_test)

4045
    def is_test(self):
4046 4047 4048
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4049 4050
        return self._for_test

W
WangZhen 已提交
4051
    def all_nodes(self):
4052 4053 4054
        """
        Return all nodes included in the graph as a set.
        """
4055
        return {IrNode(node) for node in self.graph.nodes()}
4056

4057
    def all_var_nodes(self):
4058 4059 4060
        """
        Return all variable nodes included in the graph as a set.
        """
4061
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4062

4063
    def all_persistable_nodes(self):
4064 4065 4066
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4067 4068 4069 4070 4071
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4072
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4073

4074
    def all_op_nodes(self):
4075 4076 4077
        """
        Return all operator nodes included in the graph as a set.
        """
4078
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4079

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4097
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4109
            IrVarNode: the created persistable variable node.
4110
        """
4111 4112 4113 4114 4115
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4116
        return IrVarNode(self.graph.create_var_node(var_desc))
4117 4118

    def create_var_node(self, name, var_type, shape, var_dtype):
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4130
            IrVarNode: the created variable node.
4131 4132
        """

4133 4134 4135 4136
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4137
        return IrVarNode(self.graph.create_var_node(var_desc))
4138

4139 4140 4141 4142 4143 4144
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4145
    def create_var_node_from_desc(self, var_desc):
4146 4147 4148 4149 4150 4151 4152 4153
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4154
            IrVarNode: the created variable node.
4155
        """
4156
        return IrVarNode(self.graph.create_var_node(var_desc))
4157 4158

    def create_op_node(self, op_type, attrs, inputs, outputs):
4159 4160 4161 4162 4163 4164 4165
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4166
            outputs(dict): the outputs of the operator node.
4167 4168

        Returns:
4169
            IrOpNode: the created operator node.
4170
        """
4171 4172
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4173
        for attr, value in six.iteritems(attrs):
4174
            self._update_desc_attr(op_desc, attr, value)
4175
        for input_name, var_nodes in six.iteritems(inputs):
4176 4177 4178 4179
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4180
        for output_name, var_nodes in six.iteritems(outputs):
4181 4182 4183 4184
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4185
        return IrOpNode(self.graph.create_op_node(op_desc))
4186 4187

    def create_op_node_from_desc(self, op_desc):
4188 4189 4190 4191 4192 4193 4194
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4195
            IrOpNode: the created operator node.
4196
        """
4197
        return IrOpNode(self.graph.create_op_node(op_desc))
4198 4199

    def update_input_link(self, old_input_node, new_input_node, op_node):
4200 4201 4202 4203
        """
        Update the input's link of a operator node.

        Args:
4204 4205 4206
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4207
        """
4208
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4209
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4210
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4211 4212 4213 4214
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4215
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4216

4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4227
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4228
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4229 4230 4231 4232 4233 4234
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4235
    def link_to(self, node_in, node_out):
4236 4237 4238 4239
        """
        Connect two nodes.

        Args:
4240 4241
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4242
        """
4243 4244 4245 4246
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4247 4248
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4249 4250

    def safe_remove_nodes(self, remove_nodes):
4251 4252 4253 4254 4255 4256 4257
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4258
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4259 4260 4261 4262
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4263 4264
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4265

Z
Zhen Wang 已提交
4266 4267 4268 4269 4270 4271 4272 4273
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4274
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4275 4276 4277 4278
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4279
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4280 4281 4282
                        ]
                    else:
                        var_nodes[each_var_name].append(
4283 4284
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4285 4286
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4287
    def has_circle(self):
4288 4289 4290 4291 4292 4293
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4294 4295 4296
        return core.has_circle(self.graph)

    def graph_num(self):
4297 4298 4299 4300 4301 4302
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4303 4304 4305
        return core.graph_num(self.graph)

    def topology_sort(self):
4306 4307 4308
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4309
        Notes: the `graph` can not contain a circle.
4310 4311

        Returns:
Z
Zhen Wang 已提交
4312
            list(IrNode): nodes in topology order.
4313
        """
4314
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4315
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4316 4317

    def build_adjacency_list(self):
4318 4319 4320 4321
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4322
            dict{IrNode: set(IrNode)}: the adjacency list.
4323
        """
4324 4325 4326 4327 4328
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4329

4330 4331 4332 4333 4334 4335 4336 4337
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4338
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4339 4340 4341 4342 4343
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4344 4345
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4346 4347 4348
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4349 4350 4351 4352 4353
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4354
        remove_ctr_vars = set()
4355
        if remove_ctr_var:
4356
            for node in self.all_var_nodes():
4357 4358 4359
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4360 4361
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4362 4363
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4364 4365 4366 4367 4368 4369
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4370 4371 4372 4373
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4374 4375
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4376 4377 4378 4379 4380 4381 4382
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4383 4384 4385
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4386
        WARN: When the graph includes backward operator nodes, the
4387 4388 4389 4390 4391 4392
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4393
        convert_pass = core.get_pass('graph_to_program_pass')
4394 4395
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4396 4397 4398 4399
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4400 4401 4402 4403 4404 4405 4406 4407
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4408 4409
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4410 4411
        return target_node

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4428
class Program(object):
D
dzhwinter 已提交
4429
    """
4430
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4431
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4432
    it will contain nested block.
4433

J
Jiabin Yang 已提交
4434 4435 4436
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4437

J
Jiabin Yang 已提交
4438
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4439
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4440 4441 4442 4443 4444 4445 4446
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4447
    **Notes**:
4448 4449 4450
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4451 4452

    Returns:
J
Jiabin Yang 已提交
4453
        Program: An empty Program.
D
dzhwinter 已提交
4454 4455

    Examples:
4456 4457
        .. code-block:: python

4458 4459 4460 4461
            import paddle
            import paddle.static as static

            paddle.enable_static()
4462

4463 4464 4465 4466 4467
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4468
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4469 4470 4471

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4472 4473 4474

    """

4475 4476
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4477 4478
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4479 4480
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4481
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4482
        self.__op_role_var = []
T
tangwei12 已提交
4483

4484 4485
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4486
        self._is_distributed = False
4487
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4488
        self._is_chief = False
4489 4490 4491
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4492
        self._endpoints = []
4493 4494 4495
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4496
        self._trainers_endpoints = []
4497
        # the distributed lookup table names
T
tangwei12 已提交
4498
        self._distributed_lookup_table = None
4499 4500 4501

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4502 4503
        self._use_lamb = False

4504 4505 4506
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4507

4508 4509 4510
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4511
        self._program_config = None
4512

H
hutuxian 已提交
4513 4514 4515
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4516 4517 4518
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4519 4520 4521
        # appending gradients times
        self._appending_grad_times = 0

4522 4523 4524 4525
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4526 4527
        # compiled program, i.e. Graph
        self._graph = None
4528 4529
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4530

4531
    def _find_var_class_kwargs(self, new_desc):
4532 4533 4534 4535 4536 4537 4538 4539
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4609
        assert block_num == self.desc.num_blocks()
4610 4611

        # clear old blocks and desc
4612 4613 4614 4615 4616 4617 4618 4619 4620
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4621

4622
        del desc
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4652 4653
                import paddle
                import paddle.static as static
4654

4655 4656 4657
                paddle.enable_static()

                prog = static.default_main_program()
4658 4659 4660 4661 4662
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4663
                prog1 = static.default_main_program()
4664 4665 4666 4667 4668 4669 4670 4671
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4672
    @property
4673
    def _op_role(self):
Y
yuyang18 已提交
4674 4675 4676 4677 4678 4679 4680 4681
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4682
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4683 4684 4685 4686
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4687 4688
        return self._current_role

4689 4690
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4691 4692 4693
        self._current_role = role

    @property
4694
    def _op_role_var(self):
Y
yuyang18 已提交
4695
        """
4696
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4697

4698
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4699 4700 4701

        Notes: This is a very low-level API. Users should not use it directly.
        """
4702
        return self.__op_role_var
Y
yuyang18 已提交
4703

4704
    @signature_safe_contextmanager
4705 4706 4707 4708 4709
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4710 4711 4712 4713
        try:
            yield
        finally:
            self._current_role = tmp_role
4714

S
rename  
sneaxiy 已提交
4715
    @signature_safe_contextmanager
W
Wu Yi 已提交
4716
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4717 4718 4719 4720 4721 4722 4723
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4724
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4725 4726 4727

        Examples:

4728
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4729
            >>> p, g = backward(...)
W
Wu Yi 已提交
4730
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4731 4732
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4733
        tmp_role = self._current_role
4734
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4735

Y
yuyang18 已提交
4736 4737
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4738
        self.__op_role_var = [
4739 4740 4741
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4742 4743 4744 4745 4746
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4747

S
rename  
sneaxiy 已提交
4748
    @signature_safe_contextmanager
X
Xin Pan 已提交
4749
    def _lr_schedule_guard(self, is_with_opt=False):
4750 4751 4752 4753 4754 4755 4756
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4757 4758 4759 4760
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4761 4762 4763

        Examples:

4764
            >>> import paddle.fluid as fluid
4765 4766 4767 4768
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4769 4770

        tmp_role = self._current_role
4771
        tmp_var = self.__op_role_var
4772

4773 4774
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4775 4776
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4777
        # TODO(typhoonzero): how to set target learning rate var
4778
        self.__op_role_var = []
4779 4780 4781 4782 4783
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4784

4785
    def __str__(self):
Y
yuyang18 已提交
4786 4787 4788 4789 4790 4791 4792 4793 4794
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4815 4816
            import paddle
            import paddle.static as static
4817

4818 4819 4820
            paddle.enable_static()

            cur_program = static.Program()
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4832
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4833 4834 4835 4836
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4837
            program_str += '\n'
4838
        return program_str
Y
Yang Yang(Tony) 已提交
4839

F
fengjiayi 已提交
4840 4841 4842
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4843

J
Jiabin Yang 已提交
4844 4845 4846
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4847

J
Jiabin Yang 已提交
4848
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4849

H
haowang101779990 已提交
4850
        Returns:
J
Jiabin Yang 已提交
4851
            str: The debug string describe current Program.
Y
yuyang18 已提交
4852 4853

        Raises:
J
Jiabin Yang 已提交
4854
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4855

4856 4857 4858
        Examples:
            .. code-block:: python

4859 4860 4861 4862
                import paddle
                import paddle.static as static

                paddle.enable_static()
4863

4864 4865 4866
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4867
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4868
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4869
                print("program string without detail: {}".format(prog_string))
4870
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4871
        """
4872 4873 4874 4875 4876 4877 4878 4879 4880
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4881 4882 4883 4884 4885 4886
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4887 4888
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4889 4890
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4891

W
Wu Yi 已提交
4892
    def _get_desc(self):
Y
yuyang18 已提交
4893 4894 4895 4896 4897 4898 4899
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4900 4901
        return self.desc

X
version  
Xin Pan 已提交
4902 4903 4904
    def _version(self):
        return self.desc._version()

4905
    def clone(self, for_test=False):
Y
yuyang18 已提交
4906
        """
4907 4908 4909 4910
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4911

4912
        Create a new Program with forward content of original one when ``for_test=True``.
4913
        Create a new Program as same as the original one when ``for_test=False``.
4914

4915
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4916 4917 4918
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4919

4920 4921
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4922 4923
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4924
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4925

J
Jiabin Yang 已提交
4926
        For Example:
4927
          ::
L
Luo Tao 已提交
4928

4929 4930 4931 4932 4933 4934
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4935
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4936
            loss = paddle.mean(pred)
4937
            # Here we use clone before Momentum
4938 4939
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4940
            optimizer.minimize(loss)
4941

J
Jiabin Yang 已提交
4942
        Args:
4943

4944 4945
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4946

J
Jiabin Yang 已提交
4947
        Returns:
4948
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4949

Y
yuyang18 已提交
4950 4951 4952

        Examples:

4953 4954 4955 4956 4957 4958 4959
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4976
            1. To clone a test program, the sample code is:
4977 4978 4979
                .. code-block:: python

                    import six
4980 4981 4982 4983 4984 4985
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4998 4999
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5000 5001 5002

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5003 5004 5005
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5006
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5007 5008
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5009
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5010 5011
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5012
                            test_program = train_program.clone(for_test=True)
5013
                    print_prog(test_program)
J
Jiabin Yang 已提交
5014 5015 5016 5017

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5018
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5019 5020 5021 5022
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5023 5024 5025
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5026 5027 5028
                            sgd.minimize(avg_loss)


5029
            2. The clone method can be avoid if you create program for training and program for testing individually.
5030 5031 5032
                .. code-block:: python

                    import six
5033 5034 5035 5036 5037 5038
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5050

5051
                    def network():
5052
                        img = static.data(name='image', shape=[None, 784])
5053
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5054 5055
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5056
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5057 5058
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5059 5060
                        return avg_loss

5061 5062 5063 5064 5065
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5066
                            avg_loss = network()
5067
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5068
                            sgd.minimize(avg_loss)
5069
                    # the test startup program is not used.
5070 5071
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5072 5073
                            avg_loss = network()
                    print_prog(test_program_2)
5074

5075
            The two code snippets above will generate and print same programs.
5076
        """
5077

T
tangwei12 已提交
5078
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5079 5080 5081
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5082
        pruned_origin_block_id_map = None
5083
        if for_test:
5084 5085 5086 5087 5088 5089 5090 5091 5092
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5093
        else:
5094
            p = Program()
G
gongweibao 已提交
5095 5096
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5097
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5098 5099 5100
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5101 5102

            p._current_role = self._current_role
5103
            p.__op_role_var = self.__op_role_var
5104
            p._appending_grad_times = self._appending_grad_times
5105 5106
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5107

T
tangwei12 已提交
5108
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5109
            # its desc.
W
Wu Yi 已提交
5110
            p._sync_with_cpp()
5111

W
Wu Yi 已提交
5112
        p._copy_param_info_from(self)
5113
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5114
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5115
        return p
5116

5117
    def _prune(self, targets):
Y
yuyang18 已提交
5118 5119 5120 5121 5122 5123 5124 5125
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5126
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5127 5128 5129 5130
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5131
        """
5132
        return self._prune_with_input([], targets)
5133 5134

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5135
        """
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5146
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5147 5148 5149 5150 5151 5152
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5153
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5154 5155 5156
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5157 5158
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5159 5160
        if not isinstance(targets, list):
            targets = [targets]
5161 5162 5163

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5164 5165 5166
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5167

5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5184 5185 5186 5187
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5188 5189 5190
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5191
                else:
5192 5193 5194
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5195 5196 5197 5198 5199 5200

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5201 5202 5203
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5204

5205 5206 5207 5208 5209 5210 5211 5212 5213
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5214
                        # Skip optimize op except for optimize op in targets,
5215 5216 5217 5218 5219
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5220

5221
                if target_op is not None:
5222 5223 5224
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5225

5226
        res = Program()
5227 5228 5229
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5230 5231 5232
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5233
        res._sync_with_cpp()
5234 5235 5236 5237 5238

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5239 5240
        return res

X
Xin Pan 已提交
5241
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5242
        """
F
fengjiayi 已提交
5243 5244 5245 5246 5247
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5248
        3. change the :code:`is_test`
Y
yuyang18 已提交
5249 5250 5251
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5252
        Args:
X
Xin Pan 已提交
5253 5254
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5255

Y
yuyang18 已提交
5256 5257 5258 5259 5260 5261
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5262
        res = Program()
5263
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5264 5265 5266 5267

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5268
        if prune_read_op:
5269 5270 5271 5272 5273 5274 5275 5276 5277
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5278
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5279 5280

        # change all `is_test` attributes to True
M
minqiyang 已提交
5281
        for i in six.moves.range(res.desc.num_blocks()):
5282
            block = res.desc.block(i)
M
minqiyang 已提交
5283
            for j in six.moves.range(block.op_size()):
5284 5285
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5286
                    op._set_attr('is_test', True)
5287 5288 5289
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5290 5291 5292
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5293
        res._sync_with_cpp()
5294 5295
        return res

5296
    def _remove_training_info(self, clip_extra=True):
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5386 5387
        return res

5388 5389
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5390
        """
5391 5392 5393
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5394

5395 5396
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5397

J
Jiabin Yang 已提交
5398
        Args:
Y
yuyang18 已提交
5399

J
Jiabin Yang 已提交
5400
            binary_str_type (str): the binary prootbuf string.
5401

J
Jiabin Yang 已提交
5402 5403
        Returns:
            Program: A deserialized Program.
5404 5405 5406 5407

        Examples:
            .. code-block:: python

5408 5409 5410 5411
                import paddle
                import paddle.static as static

                paddle.enable_static()
5412

5413 5414 5415 5416
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5417

5418
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5419

5420
                    z = paddle.matmul(x=x, y=y)
5421

5422 5423
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5424

5425
                    print(static.default_main_program())
5426
                    print(prog_restored)
Y
yuyang18 已提交
5427
        """
5428 5429
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5430
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5431
        p._sync_with_cpp()
5432
        return p
Y
Yu Yang 已提交
5433

5434
    @staticmethod
5435
    def _construct_from_desc(desc):
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5451 5452
    @property
    def random_seed(self):
Y
yuyang18 已提交
5453
        """
J
Jiabin Yang 已提交
5454
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5455 5456
        the random seed from random device.

5457 5458
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5459 5460 5461

        Returns:
            int64: Random seed in current Program
5462

5463 5464 5465 5466

        Examples:
            .. code-block:: python

5467 5468 5469
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5470

5471 5472 5473
                paddle.enable_static()

                prog = static.default_main_program()
5474
                random_seed = prog.random_seed
5475
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5476 5477 5478
                print(random_seed)
                ## 0
                ## the default random seed is 0
5479

5480
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5481
                prog.random_seed = 1
5482
                z_var = F.dropout(x_var, 0.7)
5483

5484
                print(prog.random_seed)
5485 5486
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5487
        """
D
dzhwinter 已提交
5488 5489
        return self._seed

Q
qiaolongfei 已提交
5490 5491
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5492
        """
5493 5494
        The number of :ref:`api_guide_Block_en`  in this Program.

5495 5496
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5497 5498 5499

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5500

5501 5502 5503 5504

        Examples:
            .. code-block:: python

5505 5506 5507 5508
                import paddle
                import paddle.static as static

                paddle.enable_static()
5509

5510
                prog = static.default_main_program()
5511 5512
                num_blocks = prog.num_blocks
                print(num_blocks)
5513

5514 5515
                # print result:
                # 1
Y
yuyang18 已提交
5516
        """
Q
qiaolongfei 已提交
5517 5518
        return self.desc.num_blocks()

D
dzhwinter 已提交
5519 5520 5521
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5522 5523 5524
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5525 5526
        self._seed = seed

Y
Yu Yang 已提交
5527
    def __repr__(self):
5528
        return self.__str__()
5529

Y
Yu Yang 已提交
5530
    def global_block(self):
Y
yuyang18 已提交
5531
        """
5532 5533
        .. note::
            This API has no effect in Dygraph mode.
5534 5535 5536

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5537 5538
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5539

5540 5541 5542 5543

        Examples:
            .. code-block:: python

5544 5545 5546 5547
                import paddle
                import paddle.static as static

                paddle.enable_static()
5548

5549
                prog = static.default_main_program()
5550 5551
                gb_block = prog.global_block()
                print(gb_block)
5552

Y
yuyang18 已提交
5553
        """
Y
Yu Yang 已提交
5554 5555
        return self.blocks[0]

Q
Qiao Longfei 已提交
5556
    def block(self, index):
Y
yuyang18 已提交
5557
        """
5558 5559
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5560

5561 5562
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5563 5564
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5565

J
Jiabin Yang 已提交
5566 5567
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5568 5569 5570 5571

        Examples:
            .. code-block:: python

5572 5573 5574 5575
                import paddle
                import paddle.static as static

                paddle.enable_static()
5576

5577
                prog = static.default_main_program()
5578 5579
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5580
        """
Q
Qiao Longfei 已提交
5581 5582
        return self.blocks[index]

Y
Yu Yang 已提交
5583
    def current_block(self):
Y
yuyang18 已提交
5584
        """
5585 5586
        .. note::
            This API has no effect in Dygraph mode.
5587

J
Jiabin Yang 已提交
5588 5589
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5590

J
Jiabin Yang 已提交
5591 5592
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5593

5594 5595 5596
        Examples:
            .. code-block:: python

5597 5598 5599 5600
                import paddle
                import paddle.static as static

                paddle.enable_static()
5601

5602
                prog = static.default_main_program()
5603 5604
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5605
        """
Y
Yu Yang 已提交
5606 5607
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5608
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5609 5610 5611 5612 5613
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5614

Y
yuyang18 已提交
5615 5616 5617 5618 5619
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5620
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5621 5622 5623
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5624 5625 5626 5627
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5628
    def _rollback(self):
Y
yuyang18 已提交
5629 5630 5631 5632 5633
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5634 5635
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5636
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5647 5648 5649
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5650
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5651

W
Wu Yi 已提交
5652
    def _copy_param_info_from(self, other):
5653
        """
5654
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5655

Y
yuyang18 已提交
5656 5657 5658
        Notes: This is a very low level API. Users should not invoke it
        directly.

5659 5660 5661 5662 5663 5664 5665
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5666 5667 5668
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5669

W
Wu Yi 已提交
5670
        self.global_block()._copy_param_info_from(other.global_block())
5671

5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5683 5684 5685
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5686 5687
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5688
        self._parameters_on_pservers = other._parameters_on_pservers
5689
        self._endpoints = other._endpoints
5690
        self._ps_endpoint = other._ps_endpoint
5691 5692
        self._distributed_lookup_table = other._distributed_lookup_table

5693
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5694 5695
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5696

Y
yuyang18 已提交
5697 5698 5699
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5700 5701
        Args:
            other(Program): Other program
5702 5703 5704 5705
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5706 5707 5708 5709 5710

        Returns:
            None
        """
        if not isinstance(other, Program):
5711 5712 5713
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5714

5715 5716 5717 5718 5719
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5720 5721 5722

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5723 5724
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5725
            for var in list(block.vars.values()):
5726 5727 5728 5729 5730 5731 5732
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5733

5734
    def list_vars(self):
Y
yuyang18 已提交
5735
        """
5736
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5737

J
Jiabin Yang 已提交
5738
        Returns:
5739
            iterable Tensors: The Generator will yield every Tensor in this program.
5740 5741 5742 5743

        Examples:
            .. code-block:: python

5744 5745
                import paddle
                import paddle.static as static
5746

5747 5748 5749 5750 5751
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5752 5753
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5754

5755 5756
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5757
        """
5758
        for each_block in self.blocks:
5759
            for each_var in list(each_block.vars.values()):
5760 5761
                yield each_var

5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5772 5773 5774 5775
                import paddle
                import paddle.static as static

                paddle.enable_static()
5776

5777 5778
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5779
                hidden = static.nn.fc(x=data, size=10)
5780 5781
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5782 5783 5784 5785 5786 5787 5788

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5789 5790
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5968

5969
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5970
class Parameter(Variable):
5971
    """
5972
    Parameter is derived from Variable. A parameter is a persistable
5973
    Variable, and will be updated by optimizers after each iteration.
5974
    The training of a neural network is essentially the updating of
5975 5976
    its parameters.

5977
    Relative to a general Variable, a Parameter has several its own
5978 5979
    member variables:

5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5990 5991
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5992 5993
    """

5994 5995 5996 5997 5998 5999
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6000 6001 6002 6003 6004
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6005
        if len(shape) == 0:
6006 6007
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6008 6009 6010

        for each in shape:
            if each < 0:
6011 6012 6013
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6014 6015

        Variable.__init__(
6016 6017 6018 6019 6020 6021 6022
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6023 6024 6025 6026
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6027 6028
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6029
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6030

6031 6032
        self.need_clip = kwargs.get('need_clip', True)

6033 6034
        self.is_distributed = False

6035 6036
        self.is_parameter = True

F
fengjiayi 已提交
6037
    def __str__(self):
6038
        return self._to_readable_code()
F
fengjiayi 已提交
6039

F
update  
fengjiayi 已提交
6040 6041 6042
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6043

F
update  
fengjiayi 已提交
6044 6045 6046 6047 6048 6049 6050 6051
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6052 6053 6054 6055 6056 6057 6058 6059 6060
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6061 6062 6063 6064 6065 6066
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6067
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6068
            for attr_name in additional_attr:
6069 6070
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6071 6072
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6073 6074 6075 6076
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6077

6078 6079
class ParamBase(core.VarBase):
    """
6080 6081 6082
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6083 6084 6085
    The training of a neural network is essentially the updating of
    its ParamBase.

6086
    Relative to a general Tensor, a ParamBase has several its own
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6099 6100
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6131 6132
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6133 6134 6135 6136 6137 6138 6139

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6140 6141
        self.need_clip = kwargs.get('need_clip', True)

6142
        self.is_distributed = kwargs.get('is_distributed', False)
6143
        # self.block = default_main_program().global_block()
6144

6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6158
    def __str__(self):
6159
        """
6160
        Convert a ParamBase object to a readable string.
6161

6162
        Returns(str): A readable string.
6163 6164 6165 6166

        Examples:
            .. code-block:: python

6167
                import paddle
6168 6169 6170 6171 6172 6173 6174
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6175
        """
6176 6177
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6178

6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6190

6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6209 6210 6211 6212 6213 6214
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

6215 6216 6217
    __repr__ = __str__


Y
Yu Yang 已提交
6218
# program is a global instance.
Y
Yu Yang 已提交
6219 6220
_main_program_ = Program()
_startup_program_ = Program()
6221
_startup_program_._is_start_up_program_ = True
6222

6223

6224
def default_startup_program():
Y
Yu Yang 已提交
6225
    """
Y
yuyang18 已提交
6226 6227
    Get default/global startup program.

6228 6229
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6230

6231 6232
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6233

6234 6235
    Returns:
        Program: current default startup program.
6236

6237
    Returns type: 
6238 6239 6240 6241

    Examples:
        .. code-block:: python

6242
            import paddle
6243

6244
            paddle.enable_static()
6245 6246 6247 6248
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6249
    """
Y
Yu Yang 已提交
6250
    return _startup_program_
6251

6252

6253
def default_main_program():
Y
Yu Yang 已提交
6254
    """
6255
    This API can be used to get ``default main program`` which store the 
6256
    descriptions of Ops and tensors.
T
tangwei12 已提交
6257

6258
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6259
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6260

6261 6262
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6263
    :code:`default_main_program` when the program is not specified.
6264

6265
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6266

Y
Yu Yang 已提交
6267
    Returns:
6268
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6269 6270 6271 6272

    Examples:
        ..  code-block:: python

6273
            import paddle
6274

6275
            paddle.enable_static()
6276
            # Sample Network:
6277 6278 6279
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6280

6281 6282 6283
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6284
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6285
    """
Y
Yu Yang 已提交
6286
    return _main_program_
Y
Yu Yang 已提交
6287 6288 6289 6290 6291


def switch_main_program(program):
    """
    Switch the main program to a new program.
6292

Y
Yu Yang 已提交
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6307
    Switch the startup program to a new program
Y
Yu Yang 已提交
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6320
@signature_safe_contextmanager
Y
Yu Yang 已提交
6321 6322
def program_guard(main_program, startup_program=None):
    """
6323 6324
    :api_attr: Static Graph

6325 6326 6327
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6328

G
guofei 已提交
6329
    Args:
6330 6331
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6332 6333 6334 6335
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6336
    Examples:
6337
       .. code-block:: python
T
tangwei12 已提交
6338

6339
          import paddle
Y
yuyang18 已提交
6340

6341 6342 6343 6344 6345
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6346
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6347 6348 6349

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6350

Y
Yu Yang 已提交
6351
    Examples:
6352
       .. code-block:: python
Y
yuyang18 已提交
6353

6354
          import paddle
6355

6356 6357 6358 6359 6360
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6361

Y
Yu Yang 已提交
6362
    """
6363
    from .data_feeder import check_type
6364 6365
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6366 6367
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6368
        check_type(startup_program, 'startup_program', Program,
6369
                   'paddle.static.program_guard')
6370 6371
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6372
        startup_program = switch_startup_program(startup_program)
6373 6374 6375 6376 6377 6378
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6379 6380


W
Wu Yi 已提交
6381
def _get_var(name, program=None):
X
xuwei06 已提交
6382
    """
Y
yuyang18 已提交
6383
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6384

X
xuwei06 已提交
6385 6386 6387
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6388
        If None, default_global_program() will be used.
X
xuwei06 已提交
6389 6390 6391 6392 6393 6394 6395

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6396
    assert isinstance(program, Program)
X
xuwei06 已提交
6397 6398

    return program.global_block().var(name)
6399 6400


S
rename  
sneaxiy 已提交
6401
@signature_safe_contextmanager
L
lujun 已提交
6402 6403
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6404
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6405
    _dygraph_tracer_ = tracer
6406
    core._switch_tracer(tracer)
M
minqiyang 已提交
6407

6408 6409 6410
    try:
        yield
    finally:
6411 6412
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6413 6414


S
rename  
sneaxiy 已提交
6415
@signature_safe_contextmanager
L
lujun 已提交
6416
def _dygraph_place_guard(place):
6417 6418 6419
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6420

6421 6422
    _set_dygraph_tracer_expected_place(place)

6423 6424 6425
    try:
        yield
    finally:
6426
        _global_expected_place_ = tmp_place
6427
        _set_dygraph_tracer_expected_place(tmp_place)
6428 6429


6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6446 6447
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6448 6449 6450 6451 6452 6453 6454 6455 6456
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6457
            import paddle
6458

Z
Zhang Ting 已提交
6459 6460 6461
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6462
            if support_gpu:
Z
Zhang Ting 已提交
6463
                place = paddle.CUDAPlace(0)
6464 6465

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6466 6467 6468
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6469

Z
Zhang Ting 已提交
6470
            with paddle.static.device_guard("cpu"):
6471
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6472 6473
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6474
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6475
                out = paddle.reshape(data1, shape=shape)
6476

Z
Zhang Ting 已提交
6477 6478
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6479 6480 6481
            result = exe.run(fetch_list=[out])
    """

6482 6483 6484 6485 6486
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6487
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6488
        raise ValueError(
6489
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6490
            "when there is no need to specify device. But received %s" % device)
6491 6492
    if index:
        device = ":".join([device, index])
6493
    pre_device = switch_device(device)
6494 6495 6496 6497
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6498 6499 6500 6501 6502


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6503
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6504 6505 6506 6507 6508 6509 6510

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6511 6512
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6513 6514 6515 6516
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6517 6518
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6519 6520 6521 6522 6523 6524 6525 6526
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6527
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6538
            import paddle
G
guofei 已提交
6539 6540

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6541
            res = paddle.get_flags(flags)
G
guofei 已提交
6542 6543 6544 6545 6546 6547
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6548 6549
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6550 6551 6552 6553 6554 6555 6556
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6557 6558
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6559 6560 6561 6562 6563 6564 6565 6566
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6567 6568 6569 6570 6571 6572 6573


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6574
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6575 6576 6577 6578 6579 6580 6581 6582 6583
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6584

6585 6586 6587
    if (place == "device"):
        return core.Place()

6588
    # GPU
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6604 6605

    # XPU
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6629
    raise ValueError(
6630 6631
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret