framework.py 156.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40 41 42
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
43
    'name_scope',
S
sneaxiy 已提交
44 45 46
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
47
    'in_dygraph_mode',
C
chengduo 已提交
48
    'is_compiled_with_cuda',
49
    'Variable',
50
    'load_op_library',
51
]
Y
Yu Yang 已提交
52

Q
qiaolongfei 已提交
53 54 55 56
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
59 60
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
61 62


L
lujun 已提交
63
def in_dygraph_mode():
L
lujun 已提交
64
    """
Y
Youwei Song 已提交
65 66
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
67 68

    Returns:
Y
Youwei Song 已提交
69
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
70 71 72 73

    Examples:
        .. code-block:: python

74
            import paddle.fluid as fluid
L
lujun 已提交
75
            if fluid.in_dygraph_mode():
Y
Youwei Song 已提交
76 77 78
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
79 80

    """
L
lujun 已提交
81
    return _dygraph_tracer_ is not None
82 83


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
106 107
def _dygraph_tracer():
    return _dygraph_tracer_
108

W
Wu Yi 已提交
109

M
minqiyang 已提交
110
def _current_expected_place():
L
lujun 已提交
111
    return _dygraph_current_expected_place_
M
minqiyang 已提交
112 113


S
sneaxiy 已提交
114
def _cpu_num():
115
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
116 117 118 119 120 121 122 123
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
124
        os.environ['CPU_NUM'] = str(1)
125
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
126 127 128 129 130 131 132 133 134 135
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
136 137


C
chengduo 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


H
hong 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165
def _var_base_to_np(var_base):
    """
    convert VarBase tp numpy
    
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase

    """
    var = var_base._copy_to(core.CPUPlace(), True)
    return np.array(var.value().get_tensor())


S
sneaxiy 已提交
166
def cuda_places(device_ids=None):
L
lujun 已提交
167
    """
168 169 170 171 172
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
173 174

    If :code:`device_ids` is None, environment variable of
175
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
176 177 178
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
179
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
180 181

    If :code:`device_ids` is not None, it should be the device
182
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
183 184 185
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
186 187
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
188 189

    Returns:
190
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
191 192 193 194

    Examples:
        .. code-block:: python

195
            import paddle.fluid as fluid
L
lujun 已提交
196 197 198
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
199 200 201
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
202
        device_ids = _cuda_ids()
S
sneaxiy 已提交
203 204 205 206 207 208
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
209
    """
210
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
211 212 213
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
214 215
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
216 217
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
218

219 220
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
221 222

    Returns:
223
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
224 225 226 227

    Examples:
        .. code-block:: python

228
            import paddle.fluid as fluid
L
lujun 已提交
229 230 231
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
232 233 234 235 236 237
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
238
    """
239
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
240 241 242

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
243 244 245 246
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
247

248 249
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
250 251

    Returns:
252
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
253 254 255 256

    Examples:
        .. code-block:: python

257
            import paddle.fluid as fluid
L
lujun 已提交
258 259 260 261 262
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
263 264 265 266 267 268 269
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
296
@signature_safe_contextmanager
297 298 299 300 301 302 303 304 305 306 307 308
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
309

310
          import paddle.fluid as fluid
311 312 313 314 315 316 317 318 319 320 321
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
322 323
    """
    # TODO(panyx0718): Only [0-9a-z].
324 325 326 327 328 329 330 331 332
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
333 334 335 336 337 338 339 340 341 342 343 344


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
345 346 347
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
348 349 350 351


def grad_var_name(var_name):
    """
352 353
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
354 355 356
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
357

358
def convert_np_dtype_to_dtype_(np_dtype):
359 360
    """
    Convert the data type in numpy to the data type in Paddle
361

362
    Args:
363
        np_dtype(np.dtype): the data type in numpy.
364

365 366
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
367 368

    """
369 370
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
371
        return core.VarDesc.VarType.FP32
372
    elif dtype == np.float64:
373
        return core.VarDesc.VarType.FP64
374
    elif dtype == np.float16:
375
        return core.VarDesc.VarType.FP16
376
    elif dtype == np.int32:
377
        return core.VarDesc.VarType.INT32
378
    elif dtype == np.int16:
379
        return core.VarDesc.VarType.INT16
380
    elif dtype == np.int64:
381
        return core.VarDesc.VarType.INT64
382
    elif dtype == np.bool:
383
        return core.VarDesc.VarType.BOOL
384 385
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
386 387
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
388 389
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
390
    else:
M
minqiyang 已提交
391
        raise ValueError("Not supported numpy dtype %s" % dtype)
392 393 394


def dtype_is_floating(dtype):
395 396 397
    """
    Check the data type is floating or not.
    Args:
398
        dtype(np.dtype|core.VarDesc.VarType): data type.
399 400 401 402 403
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
404
    if not isinstance(dtype, core.VarDesc.VarType):
405 406
        dtype = convert_np_dtype_to_dtype_(dtype)

407 408 409 410
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
411 412


Y
Yang Yang(Tony) 已提交
413
def _debug_string_(proto, throw_on_error=True):
414 415 416 417 418 419 420 421 422 423 424
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
425
    error_fields = list()
Y
Yang Yang(Tony) 已提交
426
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
427 428
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
429 430 431
    return proto.__str__()


X
Xin Pan 已提交
432
class Variable(object):
433
    """
J
Jiabin Yang 已提交
434
    **Notes**:
435
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
436

437 438
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
439 440 441
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
442
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
443 444
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
445

446
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
447
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
448

449
    Most of a Variable's member variables can be setted to be None. It mean
450
    it is not available or will be specified later.
451

452
    Examples:
453 454
        In Static Graph Mode:

455 456
        .. code-block:: python

457
            import paddle.fluid as fluid
458
            cur_program = fluid.Program()
459 460 461 462
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
463
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
464 465 466 467 468 469 470 471 472

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

473 474
    """

Y
Yu Yang 已提交
475 476
    def __init__(self,
                 block,
Y
Yu Yang 已提交
477
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
478 479 480 481
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
482
                 capacity=None,
Q
QI JUN 已提交
483
                 persistable=None,
F
fengjiayi 已提交
484
                 error_clip=None,
Y
Yu Yang 已提交
485
                 stop_gradient=False,
F
fengjiayi 已提交
486
                 is_data=False,
H
Huihuang Zheng 已提交
487
                 need_check_feed=False,
H
hong 已提交
488
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
489
                 **kwargs):
Y
Yu Yang 已提交
490 491
        self.block = block
        if name is None:
Y
Yu Yang 已提交
492
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
493

Y
Yu Yang 已提交
494
        if dtype is not None:
495
            if not isinstance(dtype, core.VarDesc.VarType):
496
                dtype = convert_np_dtype_to_dtype_(dtype)
497

H
hong 已提交
498 499
        self.belong_to_optimizer = belong_to_optimizer

L
lujun 已提交
500
        if in_dygraph_mode():
M
minqiyang 已提交
501
            # record vars in tracer rather than blocks
M
minqiyang 已提交
502
            self._ivar = kwargs.get("ivar", None)
503
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
504
            if not self._ivar:
505
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
506 507 508
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
509
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
510
                    if persistable else False)
M
minqiyang 已提交
511
            if persistable:
L
lujun 已提交
512
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
513
            self.op = None
M
minqiyang 已提交
514
        else:
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
579 580 581
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

582 583 584 585 586 587 588 589
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
590
            self.block.vars[name] = self
591
            self.op = None
592
            self._stop_gradient = stop_gradient
593
            self.is_data = is_data
Y
Yu Yang 已提交
594

595
    @dygraph_only
596 597
    def detach(self):
        """
J
Jiabin Yang 已提交
598 599
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
600

601
        Returns a new Variable, detached from the current graph.
602

603
        Returns:
J
Jiabin Yang 已提交
604
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
605

606

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

634
    @dygraph_only
635
    def numpy(self):
636
        """
J
Jiabin Yang 已提交
637 638
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
639

J
Jiabin Yang 已提交
640
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
641 642 643 644 645

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
646
            ndarray: dtype is same as current Variable
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
668
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
669
        return np.array(new_ivar.value().get_tensor())
670

671 672 673
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
674 675 676
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
H
hong 已提交
700 701 702 703
        assert isinstance(value, (Variable, np.ndarray, core.VarBase)), \
                "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
704
        if isinstance(value, Variable):
H
hong 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718
            value_np = value.numpy()
        elif isinstance(value, core.VarBase):
            value_np = _var_base_to_np(value)
        self_tensor = self._ivar.value().get_tensor()

        self_tensor_np = np.array(self_tensor)

        assert self_tensor_np.shape == value_np.shape,  \
                                      "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format( self._ivar.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype,  \
                                      "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format( self._ivar.name, self_tensor_np.dtype, value_np.dtype)

        self_tensor.set(value_np, _current_expected_place())
719

720
    @dygraph_only
721
    def backward(self, backward_strategy=None):
722
        """
J
Jiabin Yang 已提交
723 724
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
725 726 727

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
728 729
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
730

J
Jiabin Yang 已提交
731 732
        Returns:
            NoneType: None
733 734 735 736 737 738 739 740 741 742 743 744

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
745 746
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
747 748 749 750 751 752 753 754 755
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
756 757 758 759 760
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
761

J
Jiabin Yang 已提交
762 763 764 765
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
766

767
    @dygraph_only
768
    def gradient(self):
769
        """
J
Jiabin Yang 已提交
770 771
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
772 773 774

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
775 776
        Returns:
            ndarray: Numpy value of the gradient of current Variable
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
807 808
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
809

810
    @dygraph_only
811
    def clear_gradient(self):
812
        """
J
Jiabin Yang 已提交
813 814 815 816
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
817

J
Jiabin Yang 已提交
818
        Clear  (set to ``0`` ) the Gradient of Current Variable
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
845
        self._ivar._clear_gradient()
X
Xin Pan 已提交
846

847
    def __str__(self):
Y
Yang Yang(Tony) 已提交
848 849
        return self.to_string(True)

F
update  
fengjiayi 已提交
850
    def to_string(self, throw_on_error, with_details=False):
851 852 853
        """
        Get debug string.

J
Jiabin Yang 已提交
854 855 856 857 858
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
859

860 861
        Returns:
            str: The debug string.
862 863 864 865 866

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
867

868 869 870 871 872
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
873
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
874
                print("=============with detail===============")
875
                print(new_variable.to_string(True, True))
876
        """
L
lujun 已提交
877
        if in_dygraph_mode():
L
lujun 已提交
878
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
879 880 881 882 883 884 885
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
886

F
update  
fengjiayi 已提交
887 888
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
889
        protostr = self.desc.serialize_to_string()
890
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
891 892 893 894
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
895 896 897
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
898
        return res_str
899 900 901

    __repr__ = __str__

902
    @property
903
    def stop_gradient(self):
J
Jiabin Yang 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
                fc = fluid.FC("fc1", size=5, dtype="float32")
                fc2 = fluid.FC("fc2", size=3, dtype="float32")
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
                out1 = fc(a)
                out2 = fc2(b)
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

                assert (fc._w.gradient() == 0).all()
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
933
        if in_dygraph_mode():
M
minqiyang 已提交
934 935
            return self._ivar.stop_gradient
        else:
936
            return self._stop_gradient
937

938 939
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
940
        if in_dygraph_mode():
M
minqiyang 已提交
941
            self._ivar.stop_gradient = s
942
        else:
943
            self._stop_gradient = s
944

945 946
    @property
    def persistable(self):
J
Jiabin Yang 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
968
        if in_dygraph_mode():
969 970 971
            return self._ivar.persistable
        else:
            return self.desc.persistable()
972

Y
Yu Yang 已提交
973 974
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
975
        if in_dygraph_mode():
976 977 978
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
979 980
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
981

Y
Yu Yang 已提交
982 983
    @property
    def name(self):
J
Jiabin Yang 已提交
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1000
        if in_dygraph_mode():
1001 1002 1003
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1004

T
typhoonzero 已提交
1005 1006
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1007
        if in_dygraph_mode():
1008 1009 1010
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1011

Y
Yu Yang 已提交
1012 1013
    @property
    def shape(self):
J
Jiabin Yang 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1031
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1032
        if in_dygraph_mode():
1033 1034 1035
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1036 1037

    @property
F
fengjiayi 已提交
1038
    def dtype(self):
J
Jiabin Yang 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1055
        if in_dygraph_mode():
1056 1057 1058
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1059 1060

    @property
1061
    @dygraph_not_support
Y
Yu Yang 已提交
1062
    def lod_level(self):
J
Jiabin Yang 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1084
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1085 1086
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1087
        return self.desc.lod_level()
Y
Yu Yang 已提交
1088

Y
Yu Yang 已提交
1089 1090
    @property
    def type(self):
J
Jiabin Yang 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1107
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1108
            return self._ivar.type
1109 1110
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1111

W
Wu Yi 已提交
1112
    def _set_error_clip(self, error_clip):
1113 1114 1115 1116 1117 1118 1119 1120 1121
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1122 1123
        self.error_clip = error_clip

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1211
    def _cloneVar(self, copy=False):
1212 1213
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1214 1215
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1216 1217 1218 1219
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1220
        new_var = self._cloneVar()
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1231
        new_var = self._cloneVar()
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1242
                return self._cloneVar(True)
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1261
                return self._cloneVar(True)
1262
            index = int(item)
1263
            if (index > 0 and index >= self.shape[axis]) \
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1329
            else:
H
Hongyu Liu 已提交
1330 1331 1332
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1412
                inputs=inputs,
H
Hongyu Liu 已提交
1413
                outputs={'Out': [slice_out_var]},
1414
                attrs=attrs)
H
Hongyu Liu 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1432

Y
Yu Yang 已提交
1433

F
fengjiayi 已提交
1434 1435 1436
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1437

1438 1439
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1440 1441 1442 1443
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1444
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1445 1446 1447 1448 1449
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1450 1451 1452 1453
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1463
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1464 1465 1466 1467 1468 1469
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1470 1471 1472 1473 1474 1475 1476 1477
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1478 1479
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1480 1481
        return self.op_proto_map[type]

1482 1483 1484 1485 1486 1487
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1488 1489 1490 1491
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1492
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1493 1494
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1495 1496
        }

F
fengjiayi 已提交
1497

X
Xin Pan 已提交
1498
class Operator(object):
1499
    """
1500 1501 1502 1503 1504 1505 1506
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1507
        type(str): The type of operator. Default None.
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1528
        Block.append_op or Block._prepend_op instead.
1529 1530 1531 1532

    Examples:
        .. code-block:: python

1533
            import paddle.fluid as fluid
1534
            cur_program = fluid.Program()
1535 1536 1537 1538 1539
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1540
    """
1541
    OP_WITHOUT_KERNEL_SET = {
1542 1543
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1544 1545
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1546
        'c_sync_comm_stream'
1547
    }
1548

Y
Yu Yang 已提交
1549 1550
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1551
                 desc,
Y
Yu Yang 已提交
1552 1553 1554
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1555
                 attrs=None):
L
lujun 已提交
1556
        if in_dygraph_mode():
1557 1558
            if type is None:
                raise ValueError(
1559
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1560
            self._type = type
M
minqiyang 已提交
1561
            self.attrs = attrs if attrs else {}
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1576
                )] = self.block.program._op_role
1577 1578 1579

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1580 1581
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1582 1583 1584 1585 1586 1587 1588 1589

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1590
                    "`type` to initialized an Operator can not be None.")
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1622
                        for index, arg in enumerate(in_args):
1623 1624 1625 1626
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1627
                            elif isinstance(arg, Variable):
1628
                                in_arg_names.append(cpt.to_text(arg.name))
1629 1630 1631 1632
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1659
                        if not in_dygraph_mode():
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1679
    def _has_kernel(self, op_type):
1680 1681
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1682
    def to_string(self, throw_on_error):
1683
        """
1684 1685
        Get debug string.

1686
        Args:
1687 1688
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1689

1690 1691
        Returns:
            str: The debug string.
1692 1693

        """
1694
        protostr = self.desc.serialize_to_string()
1695
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1696 1697 1698 1699
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1700 1701 1702

    __repr__ = __str__

F
fengjiayi 已提交
1703 1704
    @property
    def type(self):
L
lujun 已提交
1705
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1706
            return self._type
1707 1708
        else:
            return self.desc.type()
F
fengjiayi 已提交
1709 1710

    def input(self, name):
1711
        """
1712
        Get the input arguments according to the input parameter name.
1713

1714 1715
        Args:
            name(str): The input parameter name.
1716

1717 1718 1719
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1720
        """
F
fengjiayi 已提交
1721 1722
        return self.desc.input(name)

W
Wu Yi 已提交
1723
    def _rename_input(self, old_name, new_name):
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1734
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1735

W
Wu Yi 已提交
1736
    def _rename_output(self, old_name, new_name):
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1747
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1748

F
fengjiayi 已提交
1749 1750 1751 1752
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1753 1754 1755 1756 1757 1758 1759 1760
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1761
    def output(self, name):
1762
        """
1763
        Get output arguments by the output parameter name.
1764

1765 1766
        Args:
            name(str): The output parameter name.
1767

1768 1769 1770
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1771
        """
F
fengjiayi 已提交
1772 1773 1774 1775 1776 1777
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1778 1779 1780 1781 1782 1783 1784 1785
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1786
    def has_attr(self, name):
1787
        """
1788 1789
        Whether this Operator has the attribute with name or not.

1790
        Args:
1791
            name(str): the attribute name.
1792

1793 1794
        Returns:
            bool: True if has this attribute.
1795 1796

        """
F
fengjiayi 已提交
1797 1798 1799
        return self.desc.has_attr(name)

    def attr_type(self, name):
1800
        """
1801
        Get the type of attribute by attribute's name.
1802

1803 1804
        Args:
            name(str): the attribute name.
1805

1806 1807
        Returns:
            core.AttrType: the attribute type.
1808
        """
F
fengjiayi 已提交
1809 1810
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1811
    def _set_attr(self, name, val):
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1822 1823
        self._update_desc_attr(name, val)

1824 1825 1826
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1838 1839
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1840 1841
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1842
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1843 1844 1845 1846
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1847
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1848

F
fengjiayi 已提交
1849 1850 1851 1852 1853
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1854
        """
1855 1856
        Get the attribute by name.

1857
        Args:
1858
            name(str): the attribute name.
1859

1860 1861
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1862 1863
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1864
        return self.desc.attr(name)
Y
Yu Yang 已提交
1865

W
Wu Yi 已提交
1866
    def _block_attr_id(self, name):
1867
        """
G
gongweibao 已提交
1868
        Get the block attribute's id by name.
1869

1870 1871
        Args:
            name(str): the attribute name.
1872

1873 1874
        Returns:
            int: the block index.
1875
        """
W
Wu Yi 已提交
1876
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1877

W
Wu Yi 已提交
1878
    def _block_attr(self, name):
G
gongweibao 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1889
        id = self._block_attr_id(name)
G
gongweibao 已提交
1890 1891 1892
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1893
    def _blocks_attr(self, name):
G
gongweibao 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1904
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1905 1906 1907 1908 1909
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1910
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1921
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1922

J
JiayiFeng 已提交
1923
    def all_attrs(self):
F
fengjiayi 已提交
1924
        """
1925 1926 1927
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1928
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1929 1930 1931 1932
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1933 1934
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1935
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1936 1937 1938
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1939
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1940 1941 1942 1943
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1944 1945
        return attr_map

Y
Yu Yang 已提交
1946

Y
Yu Yang 已提交
1947
class Block(object):
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1962
        use `Program._create_block()` to create a block.
1963 1964 1965 1966

    Examples:
        .. code-block:: python

1967 1968 1969
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1970 1971 1972 1973 1974 1975 1976 1977 1978
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1979
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1980
        self.desc = program.desc.block(idx)
1981
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1982
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1983
        self.program = program
1984
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1985

1986
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1987 1988
        return self.to_string(True)

F
fengjiayi 已提交
1989 1990
    def to_string(self, throw_on_error, with_details=False):
        """
1991 1992
        Get debug string.

F
fengjiayi 已提交
1993 1994
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1995
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1996
            with_details(bool): more details about variables and parameters
1997 1998
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1999

2000 2001
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2002 2003 2004 2005
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2006
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2007 2008
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2009
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2010
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2011
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2012
            for op in self.ops:
F
fengjiayi 已提交
2013 2014
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2015 2016 2017
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2018 2019
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2020 2021
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2022 2023 2024

    __repr__ = __str__

Y
Yu Yang 已提交
2025 2026
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2027
        return self.desc.parent
Y
Yu Yang 已提交
2028

Y
Yu Yang 已提交
2029 2030 2031 2032
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2033
    def _set_forward_block_idx(self, idx):
2034 2035 2036 2037 2038 2039 2040 2041 2042
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2043
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2044

Y
Yu Yang 已提交
2045 2046
    @property
    def idx(self):
Y
Yu Yang 已提交
2047
        return self.desc.id
Y
Yu Yang 已提交
2048

Q
Qiao Longfei 已提交
2049
    def var(self, name):
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2063
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2064 2065 2066
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2067 2068
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2069
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2070
        return v
Q
Qiao Longfei 已提交
2071

X
Xin Pan 已提交
2072
    def _find_var_recursive(self, name):
2073 2074 2075 2076 2077 2078 2079
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2080
            Variable: the Variable with the giving name. Or None if not found.
2081
        """
Y
Yu Yang 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2106
        return None
Y
Yu Yang 已提交
2107

X
Xin Pan 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2127

Q
Qiao Longfei 已提交
2128
    def all_parameters(self):
2129
        return list(self.iter_parameters())
2130

2131
    def iter_parameters(self):
M
minqiyang 已提交
2132
        return (item[1] for item in six.iteritems(self.vars)
2133
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2134

Y
Yu Yang 已提交
2135
    def create_var(self, *args, **kwargs):
2136
        var = Variable(block=self, *args, **kwargs)
2137 2138
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2139
        return var
Y
Yu Yang 已提交
2140

Q
Qiao Longfei 已提交
2141 2142 2143
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2144
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2145 2146
        """
        Rename variable in vars and ops' inputs and outputs
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2159
        """
M
minqiyang 已提交
2160 2161
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2162

T
typhoonzero 已提交
2163
        if not self.has_var(name):
2164
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2165 2166
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2167
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2168 2169 2170 2171 2172 2173 2174
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2175
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2176 2177 2178 2179
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2180
        orig_var_type = v.type
M
minqiyang 已提交
2181
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2182
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2183
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2184
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2185 2186 2187 2188
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2189
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2190 2191 2192 2193 2194 2195 2196
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2197
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2198 2199
            var = Variable(
                self,
T
typhoonzero 已提交
2200
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2201 2202 2203 2204
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2205
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2206 2207 2208
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2209
        self._sync_with_cpp()
2210
        return var
T
typhoonzero 已提交
2211

W
Wu Yi 已提交
2212 2213
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2214
        self.desc._remove_var(cpt.to_bytes(name))
2215 2216
        del self.vars[name]

Y
Yu Yang 已提交
2217 2218
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2219
        param = Parameter(global_block, *args, **kwargs)
2220
        if 'initializer' in kwargs:
2221 2222 2223 2224 2225

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2226 2227 2228 2229 2230
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2246
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2247
        return param
Y
Yu Yang 已提交
2248

Y
Yu Yang 已提交
2249
    def append_op(self, *args, **kwargs):
2250 2251 2252 2253 2254 2255
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2256
        if in_dygraph_mode():
2257 2258 2259
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2260 2261 2262 2263 2264
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2265

J
Jiabin Yang 已提交
2266 2267
            type = kwargs.get("type", None)

2268 2269 2270
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2271
                type=type,
M
minqiyang 已提交
2272 2273
                inputs=None,
                outputs=None,
2274
                attrs=attrs)
2275

M
minqiyang 已提交
2276 2277 2278
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2279
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2280 2281

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2282
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2283 2284
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2285
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2286
        else:
2287 2288 2289 2290 2291 2292 2293 2294 2295
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2296
            self.ops.append(op)
M
minqiyang 已提交
2297

2298 2299
        return op

W
Wu Yi 已提交
2300
    def _insert_op(self, index, *args, **kwargs):
2301 2302 2303 2304 2305 2306 2307 2308 2309
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2310 2311
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2312 2313 2314 2315
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2316
    def _remove_op(self, index):
2317 2318 2319 2320 2321 2322 2323 2324 2325
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2326 2327
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2328 2329
        del self.ops[index]

W
Wu Yi 已提交
2330
    def _slice_ops(self, start, end):
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2341
        return self.ops[start:end]
Y
Yancey1989 已提交
2342

W
Wu Yi 已提交
2343
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2344
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2345 2346
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2347
            op = Operator(
J
Jiabin Yang 已提交
2348
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2349

J
Jiabin Yang 已提交
2350
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2351
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2352 2353
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2354
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2355
        else:
2356 2357 2358 2359 2360 2361 2362 2363
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2364
            self.ops.insert(0, op)
2365

Y
Yu Yang 已提交
2366 2367
        return op

W
Wu Yi 已提交
2368
    def _sync_with_cpp(self):
2369
        """
2370 2371
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2372
        """
Q
Qiao Longfei 已提交
2373 2374 2375 2376 2377
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2378
        # sync variables removed from c++ end
2379
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2380
            if not self.desc.find_var(cpt.to_bytes(var)):
2381 2382
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2383
        # sync operators from cpp
2384 2385 2386 2387
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2404 2405 2406 2407 2408

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2409
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2410 2411 2412 2413 2414 2415 2416

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2430 2431 2432 2433
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2434
    def _copy_param_info_from(self, other):
2435
        """
2436 2437
        Copy the information of parameters from the other block.

2438
        Args:
2439 2440 2441 2442 2443
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2444 2445 2446 2447 2448

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2449 2450
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2451
        for p in other.iter_parameters():
2452 2453 2454
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2455
                raise ValueError("_copy_param_info_from should be invoked with "
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2468
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2469
                error_clip=p.error_clip,
2470 2471 2472
                name=v.name)
            self.vars[new_p.name] = new_p

2473
    def _clone_variable(self, var, force_persistable=True):
2474 2475
        """
        Clone a variable into current block.
2476

2477 2478
        Args:
            var: the variable to be cloned.
2479 2480 2481
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2482 2483

        Returns:
2484
            Variable: the new  variable cloned from 'var' in current block.
2485 2486
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2487 2488 2489 2490 2491
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2492 2493
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2494
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2495 2496 2497 2498 2499 2500
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2501
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2502 2503
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2504 2505 2506 2507 2508 2509 2510
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2511
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2512 2513
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2514
        return ret_var
2515

Y
Yu Yang 已提交
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2612
    def remove_input_by_id(self, node_id):
2613 2614 2615 2616 2617 2618
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2619
        self.node.remove_input(node_id)
2620

2621
    def remove_input(self, node):
2622 2623 2624 2625
        """
        Remove a node from inputs.

        Args:
2626
            node(IrNode): the node being removed.
2627
        """
2628
        self.node.remove_input(node.node)
2629

2630
    def append_input(self, node):
2631 2632 2633 2634
        """
        Append a node in inputs.

        Args:
2635
            node(IrNode): the node being appended.
2636
        """
2637
        self.node.append_input(node.node)
2638 2639 2640 2641 2642 2643 2644 2645

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2646
    def remove_output_by_id(self, node_id):
2647 2648 2649 2650 2651 2652
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2653
        self.node.remove_output(node_id)
2654

2655
    def remove_output(self, node):
2656 2657 2658 2659
        """
        Remove a node from outputs.

        Args:
2660
            node(IrNode): the node being removed.
2661
        """
2662
        self.node.remove_output(node.node)
2663

2664
    def append_output(self, node):
2665 2666 2667 2668
        """
        Append a node in outputs.

        Args:
2669
            node(IrNode): the node being appended.
2670
        """
2671
        self.node.append_output(node.node)
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
2889
                all(isinstance(v, Block) for v in val):
2890 2891
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
2892
                isinstance(val, core.ProgramDesc):
2893 2894 2895 2896
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2940 2941
class IrGraph(object):
    """
2942
    Python IrGraph. Beneath it is a core.Graph, which is used for
2943
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2944 2945
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2946 2947 2948 2949
    """

    def __init__(self, graph, for_test=False):
        """
2950 2951
        Construct an IrGraph using core.Graph.

2952 2953 2954 2955 2956 2957 2958 2959 2960
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2961 2962 2963 2964
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2965 2966 2967
        Warns:
            The method only clones the graph structure, not its attributes.

2968 2969 2970
        Returns:
            IrGraph: A new and duplicated graph.
        """
2971
        g = self.graph.clone()
2972 2973
        return IrGraph(g, self._for_test)

2974
    def is_test(self):
2975 2976 2977
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2978 2979
        return self._for_test

W
WangZhen 已提交
2980
    def all_nodes(self):
2981 2982 2983
        """
        Return all nodes included in the graph as a set.
        """
2984
        return {IrNode(node) for node in self.graph.nodes()}
2985

2986
    def all_var_nodes(self):
2987 2988 2989
        """
        Return all variable nodes included in the graph as a set.
        """
2990
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2991

2992
    def all_persistable_nodes(self):
2993 2994 2995
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2996 2997 2998 2999 3000
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3001
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3002

3003
    def all_op_nodes(self):
3004 3005 3006
        """
        Return all operator nodes included in the graph as a set.
        """
3007
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3008

3009
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3021
            IrVarNode: the created persistable variable node.
3022
        """
3023 3024 3025 3026 3027
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3028
        return IrVarNode(self.graph.create_var_node(var_desc))
3029 3030

    def create_var_node(self, name, var_type, shape, var_dtype):
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3042
            IrVarNode: the created variable node.
3043 3044
        """

3045 3046 3047 3048
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3049
        return IrVarNode(self.graph.create_var_node(var_desc))
3050 3051

    def create_var_node_from_desc(self, var_desc):
3052 3053 3054 3055 3056 3057 3058 3059
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3060
            IrVarNode: the created variable node.
3061
        """
3062
        return IrVarNode(self.graph.create_var_node(var_desc))
3063 3064

    def create_op_node(self, op_type, attrs, inputs, outputs):
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3075
            IrOpNode: the created operator node.
3076
        """
3077 3078
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3079
        for attr, value in six.iteritems(attrs):
3080
            self._update_desc_attr(op_desc, attr, value)
3081
        for input_name, var_nodes in six.iteritems(inputs):
3082 3083 3084 3085
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3086
        for output_name, var_nodes in six.iteritems(outputs):
3087 3088 3089 3090
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3091
        return IrOpNode(self.graph.create_op_node(op_desc))
3092 3093

    def create_op_node_from_desc(self, op_desc):
3094 3095 3096 3097 3098 3099 3100
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3101
            IrOpNode: the created operator node.
3102
        """
3103
        return IrOpNode(self.graph.create_op_node(op_desc))
3104 3105

    def update_input_link(self, old_input_node, new_input_node, op_node):
3106 3107 3108 3109
        """
        Update the input's link of a operator node.

        Args:
3110 3111 3112
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3113
        """
3114
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3115 3116
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3117 3118 3119 3120
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3121
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3122

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3141
    def link_to(self, node_in, node_out):
3142 3143 3144 3145
        """
        Connect two nodes.

        Args:
3146 3147
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3148
        """
3149
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3150
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3151 3152
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3153 3154

    def safe_remove_nodes(self, remove_nodes):
3155 3156 3157 3158 3159 3160 3161
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3162
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3163 3164 3165 3166
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3167 3168
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3169

Z
Zhen Wang 已提交
3170 3171 3172 3173 3174 3175 3176 3177
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3178
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3179 3180 3181 3182
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3183
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3184 3185 3186
                        ]
                    else:
                        var_nodes[each_var_name].append(
3187 3188
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3189 3190
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3191
    def has_circle(self):
3192 3193 3194 3195 3196 3197
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3198 3199 3200
        return core.has_circle(self.graph)

    def graph_num(self):
3201 3202 3203 3204 3205 3206
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3207 3208 3209
        return core.graph_num(self.graph)

    def topology_sort(self):
3210 3211 3212 3213 3214 3215
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3216
            list(IrNode): nodes in topology order.
3217
        """
3218
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3219
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3220 3221

    def build_adjacency_list(self):
3222 3223 3224 3225
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3226
            dict{IrNode: set(IrNode)}: the adjacency list.
3227
        """
3228 3229 3230 3231 3232
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3233

3234 3235 3236 3237 3238 3239 3240 3241
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3242
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3243 3244 3245 3246 3247
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3248 3249 3250
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3251
                                          + ' -o ' + pdf_save_path, shell=True)
3252 3253 3254 3255 3256
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3257
        remove_ctr_vars = set()
3258
        if remove_ctr_var:
3259
            for node in self.all_var_nodes():
3260 3261 3262
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3263 3264
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3265 3266
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3267 3268 3269 3270 3271 3272
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3273 3274 3275 3276
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3277 3278
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3279 3280 3281 3282 3283 3284 3285
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3286 3287 3288
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3289
        WARN: When the graph includes backward operator nodes, the
3290 3291 3292 3293 3294 3295
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3296
        convert_pass = core.get_pass('graph_to_program_pass')
3297 3298
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3299 3300 3301 3302
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3330
class Program(object):
D
dzhwinter 已提交
3331
    """
3332 3333
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3334
    it will contain nested block.
3335

J
Jiabin Yang 已提交
3336 3337 3338
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3339

J
Jiabin Yang 已提交
3340
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3341
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3342 3343 3344 3345 3346 3347 3348
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3349 3350 3351 3352
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3353 3354

    Returns:
J
Jiabin Yang 已提交
3355
        Program: An empty Program.
D
dzhwinter 已提交
3356 3357

    Examples:
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3371 3372 3373

    """

3374 3375
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3376 3377
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3378
        self._seed = 0
Y
yuyang18 已提交
3379
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3380
        self.__op_role_var = []
T
tangwei12 已提交
3381

3382 3383
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3384
        self._is_distributed = False
3385
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3386
        self._is_chief = False
3387 3388 3389
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3390
        self._endpoints = []
3391 3392 3393
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3394
        self._trainers_endpoints = []
3395
        # the distributed lookup table names
T
tangwei12 已提交
3396
        self._distributed_lookup_table = None
3397 3398 3399

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3400 3401
        self._use_lamb = False

3402 3403 3404
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3405

3406 3407 3408
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3409
        self._program_config = None
3410

H
hutuxian 已提交
3411 3412 3413
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3414 3415 3416
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3417
    @property
3418
    def _op_role(self):
Y
yuyang18 已提交
3419 3420 3421 3422 3423 3424 3425 3426
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3427
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3428 3429 3430 3431
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3432 3433
        return self._current_role

3434 3435
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3436 3437 3438
        self._current_role = role

    @property
3439
    def _op_role_var(self):
Y
yuyang18 已提交
3440
        """
3441
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3442

3443
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3444 3445 3446

        Notes: This is a very low-level API. Users should not use it directly.
        """
3447
        return self.__op_role_var
Y
yuyang18 已提交
3448

3449 3450 3451 3452 3453 3454 3455 3456 3457
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3458
    @signature_safe_contextmanager
W
Wu Yi 已提交
3459
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3460 3461 3462 3463 3464 3465 3466
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3467
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3468 3469 3470

        Examples:

3471
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3472
            >>> p, g = backward(...)
W
Wu Yi 已提交
3473
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3474 3475
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3476
        tmp_role = self._current_role
3477
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3478

Y
yuyang18 已提交
3479 3480
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3481
        self.__op_role_var = [
3482 3483 3484
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3485
        yield
3486
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3487
        self._current_role = tmp_role
Y
Yu Yang 已提交
3488

S
rename  
sneaxiy 已提交
3489
    @signature_safe_contextmanager
X
Xin Pan 已提交
3490
    def _lr_schedule_guard(self, is_with_opt=False):
3491 3492 3493 3494 3495 3496 3497
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3498 3499 3500 3501
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3502 3503 3504

        Examples:

3505
            >>> import paddle.fluid as fluid
3506 3507 3508 3509
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3510 3511

        tmp_role = self._current_role
3512
        tmp_var = self.__op_role_var
3513

3514 3515
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3516 3517
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3518
        # TODO(typhoonzero): how to set target learning rate var
3519
        self.__op_role_var = []
3520
        yield
3521
        self.__op_role_var = tmp_var
3522
        self._current_role = tmp_role
3523

3524
    def __str__(self):
Y
yuyang18 已提交
3525 3526 3527 3528 3529 3530 3531 3532 3533
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3534 3535
        return self.to_string(True)

F
fengjiayi 已提交
3536 3537 3538
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3539

J
Jiabin Yang 已提交
3540 3541 3542
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3543

J
Jiabin Yang 已提交
3544
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3545

H
haowang101779990 已提交
3546
        Returns:
J
Jiabin Yang 已提交
3547
            str: The debug string describe current Program.
Y
yuyang18 已提交
3548 3549

        Raises:
J
Jiabin Yang 已提交
3550
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3551

3552 3553 3554 3555 3556 3557 3558
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
J
Jiabin Yang 已提交
3559 3560 3561
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3571 3572
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3573 3574
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3575

W
Wu Yi 已提交
3576
    def _get_desc(self):
Y
yuyang18 已提交
3577 3578 3579 3580 3581 3582 3583
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3584 3585
        return self.desc

X
version  
Xin Pan 已提交
3586 3587 3588
    def _version(self):
        return self.desc._version()

3589
    @dygraph_not_support
3590
    def clone(self, for_test=False):
Y
yuyang18 已提交
3591
        """
3592
        **Notes**:
J
Jiabin Yang 已提交
3593 3594 3595 3596
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3597
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3598

3599 3600
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3601

3602

J
Jiabin Yang 已提交
3603
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3604 3605 3606
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3607

Y
yuyang18 已提交
3608
        * Set for_test to False when we want to clone the program for training.
3609
        * Set for_test to True when we want to clone the program for testing.
3610 3611
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3612
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3613

J
Jiabin Yang 已提交
3614 3615
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3616

J
Jiabin Yang 已提交
3617 3618 3619 3620
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3621

J
Jiabin Yang 已提交
3622
        Args:
3623

J
Jiabin Yang 已提交
3624
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3625

J
Jiabin Yang 已提交
3626 3627
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3628

Y
yuyang18 已提交
3629 3630 3631

        Examples:

J
Jiabin Yang 已提交
3632
        **Notes: The Program's order maybe different after** :code:`clone` **and
3633
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3634
        example we give you an simple method** :code:`print_prog(program)` **to
3635
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3636
        after** :code:`clone`:
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3674 3675 3676

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3744 3745
        """
        if for_test:
3746
            if self._appending_grad_times > 0:
3747 3748 3749 3750 3751 3752 3753
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3754 3755 3756
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3757
        else:
3758
            p = Program()
G
gongweibao 已提交
3759 3760
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3761
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3762 3763 3764
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3765 3766

            p._current_role = self._current_role
3767
            p.__op_role_var = self.__op_role_var
3768
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3769

W
Wu Yi 已提交
3770
            p._sync_with_cpp()
3771

W
Wu Yi 已提交
3772
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3773
        p._copy_data_info_from(self)
3774
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3775
        return p
3776

3777
    def _prune(self, targets):
Y
yuyang18 已提交
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3791 3792 3793 3794
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3795

3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
3830
        """
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

3848 3849
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3850 3851
        if not isinstance(targets, list):
            targets = [targets]
3852 3853 3854 3855 3856 3857

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3858 3859 3860 3861
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3862 3863
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3864
                    # and we need to find the current op that generate this
3865 3866 3867 3868 3869 3870 3871 3872
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3873
                    t = t.op
3874 3875 3876 3877
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3878
                else:
3879 3880
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3881 3882 3883

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3884
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3885 3886 3887
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3888
        res._sync_with_cpp()
3889 3890
        return res

X
Xin Pan 已提交
3891
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3892
        """
F
fengjiayi 已提交
3893 3894 3895 3896 3897
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3898
        3. change the :code:`is_test`
Y
yuyang18 已提交
3899 3900 3901
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3902
        Args:
X
Xin Pan 已提交
3903 3904
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3905

Y
yuyang18 已提交
3906 3907 3908 3909 3910 3911
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3912
        res = Program()
3913
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3914 3915 3916 3917

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3918
        if prune_read_op:
3919 3920 3921 3922 3923 3924 3925 3926 3927
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3928
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3929 3930

        # change all `is_test` attributes to True
M
minqiyang 已提交
3931
        for i in six.moves.range(res.desc.num_blocks()):
3932
            block = res.desc.block(i)
M
minqiyang 已提交
3933
            for j in six.moves.range(block.op_size()):
3934 3935
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3936
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3937 3938 3939
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3940
        res._sync_with_cpp()
3941 3942
        return res

3943 3944
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3945
        """
J
Jiabin Yang 已提交
3946 3947 3948 3949
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3950

3951 3952
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
3953

J
Jiabin Yang 已提交
3954
        Args:
Y
yuyang18 已提交
3955

J
Jiabin Yang 已提交
3956
            binary_str_type (str): the binary prootbuf string.
3957

J
Jiabin Yang 已提交
3958 3959
        Returns:
            Program: A deserialized Program.
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
3982
        """
3983 3984
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3985
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3986
        p._sync_with_cpp()
3987
        return p
Y
Yu Yang 已提交
3988

3989
    @staticmethod
3990
    def _construct_from_desc(desc):
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4006 4007
    @property
    def random_seed(self):
Y
yuyang18 已提交
4008
        """
J
Jiabin Yang 已提交
4009
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4010 4011
        the random seed from random device.

J
Jiabin Yang 已提交
4012 4013 4014 4015
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4016

4017 4018 4019 4020 4021 4022 4023 4024

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4025 4026 4027
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4028 4029
                print(random_seed)
                prog.random_seed = 1
4030 4031
                z_var = fluid.layers.dropout(x_var, 0.7)

4032
                print(prog.random_seed)
Y
yuyang18 已提交
4033
        """
D
dzhwinter 已提交
4034 4035
        return self._seed

Q
qiaolongfei 已提交
4036 4037
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4038
        """
4039 4040
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4041 4042 4043 4044
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4045

4046 4047 4048 4049 4050 4051 4052 4053 4054

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4055 4056


Y
yuyang18 已提交
4057
        """
Q
qiaolongfei 已提交
4058 4059
        return self.desc.num_blocks()

D
dzhwinter 已提交
4060 4061 4062 4063 4064 4065
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4066
    def __repr__(self):
4067
        return self.__str__()
4068

Y
Yu Yang 已提交
4069
    def global_block(self):
Y
yuyang18 已提交
4070
        """
J
Jiabin Yang 已提交
4071 4072
        **Notes**:
            **This API has no effect in Dygraph mode**
4073 4074 4075

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4076 4077
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4078

4079 4080 4081 4082 4083 4084 4085 4086 4087

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4088

Y
yuyang18 已提交
4089
        """
Y
Yu Yang 已提交
4090 4091
        return self.blocks[0]

Q
Qiao Longfei 已提交
4092
    def block(self, index):
Y
yuyang18 已提交
4093
        """
J
Jiabin Yang 已提交
4094 4095
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4096

4097 4098
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4099 4100
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4101

J
Jiabin Yang 已提交
4102 4103
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4104 4105 4106 4107 4108 4109 4110 4111 4112

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4113
        """
Q
Qiao Longfei 已提交
4114 4115
        return self.blocks[index]

Y
Yu Yang 已提交
4116
    def current_block(self):
Y
yuyang18 已提交
4117
        """
J
Jiabin Yang 已提交
4118 4119
        **Notes**:
            **This API has no effect in Dygraph mode**
4120

J
Jiabin Yang 已提交
4121 4122
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4123

J
Jiabin Yang 已提交
4124 4125
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4126

4127 4128 4129 4130 4131 4132 4133 4134
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4135
        """
Y
Yu Yang 已提交
4136 4137
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4138
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4139 4140 4141 4142 4143
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4144

Y
yuyang18 已提交
4145 4146 4147 4148 4149
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4150
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4151 4152 4153
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4154 4155 4156 4157
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4158
    def _rollback(self):
Y
yuyang18 已提交
4159 4160 4161 4162 4163
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4164 4165
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4166
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4177 4178 4179
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4180
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4181

W
Wu Yi 已提交
4182
    def _copy_param_info_from(self, other):
4183
        """
4184
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4185

Y
yuyang18 已提交
4186 4187 4188
        Notes: This is a very low level API. Users should not invoke it
        directly.

4189 4190 4191 4192 4193 4194 4195
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4196
            raise TypeError("_copy_param_info_from should be invoked with "
4197 4198 4199
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4200
            raise ValueError("_copy_param_info_from should be invoked with two "
4201
                             "program, with represent the same topology")
W
Wu Yi 已提交
4202
        self.global_block()._copy_param_info_from(other.global_block())
4203

4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4219
        self._parameters_on_pservers = other._parameters_on_pservers
4220
        self._endpoints = other._endpoints
4221
        self._ps_endpoint = other._ps_endpoint
4222 4223
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4224
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4225 4226
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4227

Y
yuyang18 已提交
4228 4229 4230
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4231 4232 4233 4234 4235 4236 4237
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4238
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4239 4240 4241
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4242
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4243
                             "program, with represent the same topology")
4244
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4245 4246
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4247 4248
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4249

4250
    @dygraph_not_support
4251
    def list_vars(self):
Y
yuyang18 已提交
4252
        """
J
Jiabin Yang 已提交
4253
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4254

J
Jiabin Yang 已提交
4255 4256
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4268
        """
4269
        for each_block in self.blocks:
4270
            for each_var in list(each_block.vars.values()):
4271 4272
                yield each_var

Y
Yu Yang 已提交
4273

Y
Yu Yang 已提交
4274
class Parameter(Variable):
4275
    """
4276
    Parameter is derived from Variable. A parameter is a persistable
4277
    Variable, and will be updated by optimizers after each iteration.
4278
    The training of a neural network is essentially the updating of
4279 4280
    its parameters.

4281
    Relative to a general Variable, a Parameter has several its own
4282 4283
    member variables:

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4296 4297
    """

Y
Yu Yang 已提交
4298
    def __init__(self, block, shape, dtype, **kwargs):
4299 4300 4301 4302 4303
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4304
        if len(shape) == 0:
4305 4306
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4307 4308 4309

        for each in shape:
            if each < 0:
4310 4311 4312
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4313 4314 4315

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4316 4317 4318 4319
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4320 4321
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4322
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4323

W
wanghaoshuang 已提交
4324
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4325

4326 4327
        self.is_distributed = False

F
fengjiayi 已提交
4328 4329 4330
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4331 4332 4333
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4334

F
update  
fengjiayi 已提交
4335 4336 4337 4338 4339 4340 4341 4342
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4343 4344 4345 4346 4347 4348 4349 4350 4351
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4352 4353 4354 4355 4356 4357
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4358
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4359
            for attr_name in additional_attr:
4360 4361
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4362 4363
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4364 4365 4366 4367
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4368

Y
Yu Yang 已提交
4369
# program is a global instance.
Y
Yu Yang 已提交
4370 4371
_main_program_ = Program()
_startup_program_ = Program()
4372

4373

4374
def default_startup_program():
Y
Yu Yang 已提交
4375
    """
Y
yuyang18 已提交
4376 4377
    Get default/global startup program.

J
Jiabin Yang 已提交
4378 4379 4380
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4381 4382 4383
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4384
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4385

J
Jiabin Yang 已提交
4386
    Returns: current default startup :ref:`api_fluid_Program`
4387

J
Jiabin Yang 已提交
4388
    Returns type: :ref:`api_fluid_Program`
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4404
    """
Y
Yu Yang 已提交
4405
    return _startup_program_
4406

4407

4408
def default_main_program():
Y
Yu Yang 已提交
4409
    """
Y
yuyang18 已提交
4410 4411 4412 4413 4414 4415 4416 4417 4418
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
4419

Y
Yu Yang 已提交
4420 4421
    Returns:
        Program: main program
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4450 4451
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
4452
    """
Y
Yu Yang 已提交
4453
    return _main_program_
Y
Yu Yang 已提交
4454 4455 4456 4457 4458


def switch_main_program(program):
    """
    Switch the main program to a new program.
4459

Y
Yu Yang 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4474
    Switch the startup program to a new program
Y
Yu Yang 已提交
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4487
@signature_safe_contextmanager
Y
Yu Yang 已提交
4488 4489
def program_guard(main_program, startup_program=None):
    """
4490 4491
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4492
    variables to the new main programs.
4493

Y
Yu Yang 已提交
4494
    Examples:
4495 4496 4497
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4498

4499 4500 4501 4502 4503
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4504 4505 4506

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4507

Y
Yu Yang 已提交
4508
    Examples:
4509
       .. code-block:: python
Y
yuyang18 已提交
4510

4511 4512 4513 4514 4515 4516
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
4517

Y
Yu Yang 已提交
4518
    Args:
4519 4520 4521
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4534 4535


W
Wu Yi 已提交
4536
def _get_var(name, program=None):
X
xuwei06 已提交
4537
    """
Y
yuyang18 已提交
4538
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4539

X
xuwei06 已提交
4540 4541 4542
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4543
        If None, default_global_program() will be used.
X
xuwei06 已提交
4544 4545 4546 4547 4548 4549 4550

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4551
    assert isinstance(program, Program)
X
xuwei06 已提交
4552 4553

    return program.global_block().var(name)
4554 4555


S
rename  
sneaxiy 已提交
4556
@signature_safe_contextmanager
L
lujun 已提交
4557 4558 4559 4560
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4561

4562
    yield
P
Paddle CI 已提交
4563

L
lujun 已提交
4564
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4565 4566


S
rename  
sneaxiy 已提交
4567
@signature_safe_contextmanager
L
lujun 已提交
4568 4569 4570 4571
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4572

4573
    yield
M
minqiyang 已提交
4574

L
lujun 已提交
4575
    _dygraph_current_expected_place_ = tmp_place
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()