framework.py 128.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
C
chengduo 已提交
47
    'is_compiled_with_cuda',
48
]
Y
Yu Yang 已提交
49

Q
qiaolongfei 已提交
50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
54 55
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
56 57
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
58 59


L
lujun 已提交
60
def in_dygraph_mode():
L
lujun 已提交
61 62 63 64 65 66 67 68 69
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

70
            import paddle.fluid as fluid
L
lujun 已提交
71 72 73 74
            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
75
    return _dygraph_tracer_ is not None
76 77


L
lujun 已提交
78 79
def _dygraph_tracer():
    return _dygraph_tracer_
80

W
Wu Yi 已提交
81

M
minqiyang 已提交
82
def _current_expected_place():
L
lujun 已提交
83
    return _dygraph_current_expected_place_
M
minqiyang 已提交
84 85


S
sneaxiy 已提交
86
def _cpu_num():
87
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
88 89 90 91 92 93 94 95
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
96
        os.environ['CPU_NUM'] = str(1)
97
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
98 99 100 101 102 103 104 105 106 107
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
108 109


C
chengduo 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
125
def cuda_places(device_ids=None):
L
lujun 已提交
126
    """
S
add doc  
sneaxiy 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
146 147 148 149

    Examples:
        .. code-block:: python

150
            import paddle.fluid as fluid
L
lujun 已提交
151 152 153
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
154 155 156
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
157
        device_ids = _cuda_ids()
S
sneaxiy 已提交
158 159 160 161 162 163
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
164
    """
S
add doc  
sneaxiy 已提交
165 166 167 168
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
169 170
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
171 172 173 174 175 176

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
177 178 179 180

    Examples:
        .. code-block:: python

181
            import paddle.fluid as fluid
L
lujun 已提交
182 183 184
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
185 186 187 188 189 190
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
191
    """
S
add doc  
sneaxiy 已提交
192 193 194 195 196 197 198 199 200 201 202 203
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
204 205 206 207

    Examples:
        .. code-block:: python

208
            import paddle.fluid as fluid
L
lujun 已提交
209 210 211 212 213
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
214 215 216 217 218 219 220
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
247
@signature_safe_contextmanager
248 249 250 251 252 253 254 255 256 257 258 259
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
260

261
          import paddle.fluid as fluid
262 263 264 265 266 267 268 269 270 271 272
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
273 274
    """
    # TODO(panyx0718): Only [0-9a-z].
275 276 277 278 279 280 281 282 283
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
284 285 286 287 288 289 290 291 292 293 294 295


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
296 297 298
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
299 300 301 302


def grad_var_name(var_name):
    """
303 304
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
305 306 307
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
308

309
def convert_np_dtype_to_dtype_(np_dtype):
310 311
    """
    Convert the data type in numpy to the data type in Paddle
312

313
    Args:
314
        np_dtype(np.dtype): the data type in numpy.
315

316 317
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
318 319

    """
320 321
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
322
        return core.VarDesc.VarType.FP32
323
    elif dtype == np.float64:
324
        return core.VarDesc.VarType.FP64
325
    elif dtype == np.float16:
326
        return core.VarDesc.VarType.FP16
327
    elif dtype == np.int32:
328
        return core.VarDesc.VarType.INT32
329
    elif dtype == np.int16:
330
        return core.VarDesc.VarType.INT16
331
    elif dtype == np.int64:
332
        return core.VarDesc.VarType.INT64
333
    elif dtype == np.bool:
334
        return core.VarDesc.VarType.BOOL
335 336
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
337 338
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
339 340
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
341
    else:
M
minqiyang 已提交
342
        raise ValueError("Not supported numpy dtype %s" % dtype)
343 344 345


def dtype_is_floating(dtype):
346 347 348
    """
    Check the data type is floating or not.
    Args:
349
        dtype(np.dtype|core.VarDesc.VarType): data type.
350 351 352 353 354
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
355
    if not isinstance(dtype, core.VarDesc.VarType):
356 357
        dtype = convert_np_dtype_to_dtype_(dtype)

358 359 360 361
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
362 363


Y
Yang Yang(Tony) 已提交
364
def _debug_string_(proto, throw_on_error=True):
365 366 367 368 369 370 371 372 373 374 375
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
376
    error_fields = list()
Y
Yang Yang(Tony) 已提交
377
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
378 379
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
380 381 382
    return proto.__str__()


X
Xin Pan 已提交
383
class Variable(object):
384
    """
385 386 387
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
388
    two variables in different blocks could have the same name.
389

390
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
391
    and usages. Please refer to the framework.proto for details.
392

393
    Most of a Variable's member variables can be setted to be None. It mean
394
    it is not available or will be specified later.
395 396

    Args:
397
        block(Block): The block that the variable belongs to.
398 399
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
400 401
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
402
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
403
            Some kinds of variable do not contain shape, just set it to None.
404 405 406
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
407
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
408
            series data.
409
            Default: None
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

427
            import paddle.fluid as fluid
428 429 430 431 432
            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
433 434
    """

Y
Yu Yang 已提交
435 436
    def __init__(self,
                 block,
Y
Yu Yang 已提交
437
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
438 439 440 441
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
442
                 capacity=None,
Q
QI JUN 已提交
443
                 persistable=None,
F
fengjiayi 已提交
444
                 error_clip=None,
Y
Yu Yang 已提交
445
                 stop_gradient=False,
F
fengjiayi 已提交
446
                 is_data=False,
Y
Yu Yang 已提交
447
                 **kwargs):
Y
Yu Yang 已提交
448 449
        self.block = block
        if name is None:
Y
Yu Yang 已提交
450
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
451

Y
Yu Yang 已提交
452
        if dtype is not None:
453
            if not isinstance(dtype, core.VarDesc.VarType):
454
                dtype = convert_np_dtype_to_dtype_(dtype)
455

L
lujun 已提交
456
        if in_dygraph_mode():
M
minqiyang 已提交
457
            # record vars in tracer rather than blocks
M
minqiyang 已提交
458 459
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
460 461 462
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
463 464
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
465
            if persistable:
L
lujun 已提交
466
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
467
            self.op = None
M
minqiyang 已提交
468
        else:
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
541
            self.block.vars[name] = self
542
            self.op = None
543
            self._stop_gradient = stop_gradient
544
            self.is_data = is_data
Y
Yu Yang 已提交
545

546
    def numpy(self):
M
minqiyang 已提交
547
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
548
        return np.array(new_ivar.value().get_tensor())
549

550 551
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
552
        if backward_strategy is None:
553 554
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
555 556 557

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
558

559
    def gradient(self):
560 561
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
562

563
    def clear_gradient(self):
X
Xin Pan 已提交
564
        self._ivar._clear_gradient()
X
Xin Pan 已提交
565

566
    def __str__(self):
Y
Yang Yang(Tony) 已提交
567 568
        return self.to_string(True)

F
update  
fengjiayi 已提交
569
    def to_string(self, throw_on_error, with_details=False):
570 571 572 573
        """
        Get debug string.

        Args:
574 575
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
576
            with_details(bool): more details about variables and parameters
577 578
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
579

580 581
        Returns:
            str: The debug string.
582
        """
L
lujun 已提交
583
        if in_dygraph_mode():
L
lujun 已提交
584
            # TODO(panyx0718): add more dygraph debug info.
585 586 587
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
588

F
update  
fengjiayi 已提交
589 590
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
591
        protostr = self.desc.serialize_to_string()
592
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
593 594 595 596
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
597 598
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
599
        return res_str
600 601 602

    __repr__ = __str__

603
    def set_desc(self, input):
604 605 606 607 608 609 610 611 612
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
613 614
        self.desc = input

615
    @property
616
    def stop_gradient(self):
L
lujun 已提交
617
        if in_dygraph_mode():
M
minqiyang 已提交
618 619
            return self._ivar.stop_gradient
        else:
620
            return self._stop_gradient
621

622 623
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
624
        if in_dygraph_mode():
M
minqiyang 已提交
625
            self._ivar.stop_gradient = s
626
        else:
627
            self._stop_gradient = s
628

629 630
    @property
    def persistable(self):
L
lujun 已提交
631
        if in_dygraph_mode():
632 633 634
            return self._ivar.persistable
        else:
            return self.desc.persistable()
635

Y
Yu Yang 已提交
636 637
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
638
        if in_dygraph_mode():
639 640 641
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
642

Y
Yu Yang 已提交
643 644
    @property
    def name(self):
L
lujun 已提交
645
        if in_dygraph_mode():
646 647 648
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
649

T
typhoonzero 已提交
650 651
    @name.setter
    def name(self, new_name):
L
lujun 已提交
652
        if in_dygraph_mode():
653 654 655
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
656

Y
Yu Yang 已提交
657 658 659
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
660
        if in_dygraph_mode():
661 662 663
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
664 665

    @property
F
fengjiayi 已提交
666
    def dtype(self):
L
lujun 已提交
667
        if in_dygraph_mode():
668 669 670
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
671 672 673

    @property
    def lod_level(self):
L
lujun 已提交
674
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
675 676
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
677
        return self.desc.lod_level()
Y
Yu Yang 已提交
678

Y
Yu Yang 已提交
679 680
    @property
    def type(self):
L
lujun 已提交
681
        if in_dygraph_mode():
682 683 684
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
685

W
Wu Yi 已提交
686
    def _set_error_clip(self, error_clip):
687 688 689 690 691 692 693 694 695
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
696 697
        self.error_clip = error_clip

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
785
    def _cloneVar(self, copy=False):
786 787
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
788 789
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
790 791 792 793
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
794
        new_var = self._cloneVar()
795 796 797 798 799 800 801 802 803 804
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
805
        new_var = self._cloneVar()
806 807 808 809 810 811 812 813 814 815
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
816
                return self._cloneVar(True)
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
835
                return self._cloneVar(True)
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
888
            else:
H
Hongyu Liu 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
                # int
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

        out = self
        if len(slice_axis) > 0:
            # append slice_op here

            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
                inputs={'Input': [out]},
                outputs={'Out': [slice_out_var]},
                attrs={
                    'axes': slice_axis,
                    'starts': slice_start,
                    'ends': slice_end,
                    'decrease_axis': decrease_axis
                })

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
932

Y
Yu Yang 已提交
933

F
fengjiayi 已提交
934 935 936
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
937

938 939
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
940 941 942 943
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
944
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
945 946 947 948 949
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
950 951 952 953
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
954 955 956 957 958 959 960 961 962
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
963
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
964 965 966 967 968 969
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
970 971 972 973 974 975 976 977
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
978 979
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
980 981
        return self.op_proto_map[type]

982 983 984 985
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
986
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
987 988
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
989 990
        }

F
fengjiayi 已提交
991

X
Xin Pan 已提交
992
class Operator(object):
993
    """
994 995 996 997 998 999 1000
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1001
        type(str): The type of operator. Default None.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1022
        Block.append_op or Block._prepend_op instead.
1023 1024 1025 1026

    Examples:
        .. code-block:: python

1027
            import paddle.fluid as fluid
1028 1029 1030 1031 1032 1033
            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1034
    """
1035
    OP_WITHOUT_KERNEL_SET = {
1036 1037
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1038 1039 1040
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id',
        'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
        'c_sync_comm_stream'
1041
    }
1042

Y
Yu Yang 已提交
1043 1044
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1045
                 desc,
Y
Yu Yang 已提交
1046 1047 1048
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1049
                 attrs=None):
L
lujun 已提交
1050
        if in_dygraph_mode():
1051 1052
            if type is None:
                raise ValueError(
1053
                    "`type` to initialized an Operator can not be None.")
1054
            self.iop = core.OpBase(type)
M
minqiyang 已提交
1055
            self.previous_ops = []
M
minqiyang 已提交
1056

M
minqiyang 已提交
1057
            self.attrs = attrs if attrs else {}
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1072
                )] = self.block.program._op_role
1073 1074 1075

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1076 1077
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1078 1079 1080 1081 1082 1083 1084 1085

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1086
                    "`type` to initialized an Operator can not be None.")
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1118
                        for index, arg in enumerate(in_args):
1119 1120 1121 1122
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1123
                            elif isinstance(arg, Variable):
1124
                                in_arg_names.append(cpt.to_text(arg.name))
1125 1126 1127 1128
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1155
                        if not in_dygraph_mode():
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1175
    def _has_kernel(self, op_type):
1176 1177
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1178
    def to_string(self, throw_on_error):
1179
        """
1180 1181
        Get debug string.

1182
        Args:
1183 1184
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1185

1186 1187
        Returns:
            str: The debug string.
1188 1189

        """
1190
        protostr = self.desc.serialize_to_string()
1191
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1192 1193 1194 1195
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1196 1197 1198

    __repr__ = __str__

F
fengjiayi 已提交
1199 1200
    @property
    def type(self):
L
lujun 已提交
1201
        if in_dygraph_mode():
1202 1203 1204
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1205 1206

    def input(self, name):
1207
        """
1208
        Get the input arguments according to the input parameter name.
1209

1210 1211
        Args:
            name(str): The input parameter name.
1212

1213 1214 1215
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1216
        """
F
fengjiayi 已提交
1217 1218
        return self.desc.input(name)

W
Wu Yi 已提交
1219
    def _rename_input(self, old_name, new_name):
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1230
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1231

W
Wu Yi 已提交
1232
    def _rename_output(self, old_name, new_name):
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1243
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1244

F
fengjiayi 已提交
1245 1246 1247 1248
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1249 1250 1251 1252 1253 1254 1255 1256
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1257
    def output(self, name):
1258
        """
1259
        Get output arguments by the output parameter name.
1260

1261 1262
        Args:
            name(str): The output parameter name.
1263

1264 1265 1266
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1267
        """
F
fengjiayi 已提交
1268 1269 1270 1271 1272 1273
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1274 1275 1276 1277 1278 1279 1280 1281
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1282
    def has_attr(self, name):
1283
        """
1284 1285
        Whether this Operator has the attribute with name or not.

1286
        Args:
1287
            name(str): the attribute name.
1288

1289 1290
        Returns:
            bool: True if has this attribute.
1291 1292

        """
F
fengjiayi 已提交
1293 1294 1295
        return self.desc.has_attr(name)

    def attr_type(self, name):
1296
        """
1297
        Get the type of attribute by attribute's name.
1298

1299 1300
        Args:
            name(str): the attribute name.
1301

1302 1303
        Returns:
            core.AttrType: the attribute type.
1304
        """
F
fengjiayi 已提交
1305 1306
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1307
    def _set_attr(self, name, val):
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1318 1319
        self._update_desc_attr(name, val)

1320 1321 1322
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1334 1335
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1336 1337
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1338
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1339 1340 1341 1342
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1343
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1344

F
fengjiayi 已提交
1345 1346 1347 1348 1349
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1350
        """
1351 1352
        Get the attribute by name.

1353
        Args:
1354
            name(str): the attribute name.
1355

1356 1357
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1358 1359
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1360
        return self.desc.attr(name)
Y
Yu Yang 已提交
1361

W
Wu Yi 已提交
1362
    def _block_attr_id(self, name):
1363
        """
G
gongweibao 已提交
1364
        Get the block attribute's id by name.
1365

1366 1367
        Args:
            name(str): the attribute name.
1368

1369 1370
        Returns:
            int: the block index.
1371
        """
W
Wu Yi 已提交
1372
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1373

W
Wu Yi 已提交
1374
    def _block_attr(self, name):
G
gongweibao 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1385
        id = self._block_attr_id(name)
G
gongweibao 已提交
1386 1387 1388
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1389
    def _blocks_attr(self, name):
G
gongweibao 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1400
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1401 1402 1403 1404 1405
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1406
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1417
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1418

J
JiayiFeng 已提交
1419
    def all_attrs(self):
F
fengjiayi 已提交
1420
        """
1421 1422 1423
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1424
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1425 1426 1427 1428
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1429 1430
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1431
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1432 1433 1434
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1435
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1436 1437 1438 1439
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1440 1441
        return attr_map

Y
Yu Yang 已提交
1442

Y
Yu Yang 已提交
1443
class Block(object):
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1458
        use `Program._create_block()` to create a block.
1459 1460 1461 1462

    Examples:
        .. code-block:: python

1463 1464 1465
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1466 1467 1468 1469 1470 1471 1472 1473 1474
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1475
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1476
        self.desc = program.desc.block(idx)
1477
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1478
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1479
        self.program = program
1480
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1481

1482
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1483 1484
        return self.to_string(True)

F
fengjiayi 已提交
1485 1486
    def to_string(self, throw_on_error, with_details=False):
        """
1487 1488
        Get debug string.

F
fengjiayi 已提交
1489 1490
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1491
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1492
            with_details(bool): more details about variables and parameters
1493 1494
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1495

1496 1497
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1498 1499 1500 1501
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1502
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1503 1504
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1505
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1506
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1507
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1508
            for op in self.ops:
F
fengjiayi 已提交
1509 1510
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1511 1512 1513
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1514 1515
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1516 1517
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1518 1519 1520

    __repr__ = __str__

Y
Yu Yang 已提交
1521 1522
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1523
        return self.desc.parent
Y
Yu Yang 已提交
1524

Y
Yu Yang 已提交
1525 1526 1527 1528
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1529
    def _set_forward_block_idx(self, idx):
1530 1531 1532 1533 1534 1535 1536 1537 1538
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1539
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1540

Y
Yu Yang 已提交
1541 1542
    @property
    def idx(self):
Y
Yu Yang 已提交
1543
        return self.desc.id
Y
Yu Yang 已提交
1544

Q
Qiao Longfei 已提交
1545
    def var(self, name):
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1559
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1560 1561 1562
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1563 1564
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1565
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1566
        return v
Q
Qiao Longfei 已提交
1567

X
Xin Pan 已提交
1568
    def _find_var_recursive(self, name):
1569 1570 1571 1572 1573 1574 1575
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1576
            Variable: the Variable with the giving name. Or None if not found.
1577
        """
Y
Yu Yang 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1602
        return None
Y
Yu Yang 已提交
1603

X
Xin Pan 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1623

Q
Qiao Longfei 已提交
1624
    def all_parameters(self):
1625
        return list(self.iter_parameters())
1626

1627
    def iter_parameters(self):
M
minqiyang 已提交
1628
        return (item[1] for item in six.iteritems(self.vars)
1629
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1630

Y
Yu Yang 已提交
1631
    def create_var(self, *args, **kwargs):
1632
        var = Variable(block=self, *args, **kwargs)
1633 1634
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1635
        return var
Y
Yu Yang 已提交
1636

Q
Qiao Longfei 已提交
1637 1638 1639
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1640
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1641 1642
        """
        Rename variable in vars and ops' inputs and outputs
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1655
        """
M
minqiyang 已提交
1656 1657
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1658

T
typhoonzero 已提交
1659
        if not self.has_var(name):
1660
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1661 1662
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1663
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1664 1665 1666 1667 1668 1669 1670
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1671
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1672 1673 1674 1675
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1676
        orig_var_type = v.type
M
minqiyang 已提交
1677
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1678
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1679
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1680
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1681 1682 1683 1684
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1685
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1686 1687 1688 1689 1690 1691 1692
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1693
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1694 1695
            var = Variable(
                self,
T
typhoonzero 已提交
1696
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1697 1698 1699 1700
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1701
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1702 1703 1704
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1705
        self._sync_with_cpp()
1706
        return var
T
typhoonzero 已提交
1707

W
Wu Yi 已提交
1708 1709
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1710
        self.desc._remove_var(cpt.to_bytes(name))
1711 1712
        del self.vars[name]

Y
Yu Yang 已提交
1713 1714
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1715
        param = Parameter(global_block, *args, **kwargs)
1716
        if 'initializer' in kwargs:
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1737
        return param
Y
Yu Yang 已提交
1738

Y
Yu Yang 已提交
1739
    def append_op(self, *args, **kwargs):
1740 1741 1742 1743 1744 1745
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1746
        if in_dygraph_mode():
1747 1748 1749
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1750 1751 1752 1753 1754
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1755

1756 1757 1758 1759
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1760 1761
                inputs=None,
                outputs=None,
1762
                attrs=attrs)
1763

M
minqiyang 已提交
1764 1765 1766
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1767
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1768 1769 1770 1771
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1772
        else:
1773 1774 1775 1776 1777 1778 1779 1780 1781
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1782
            self.ops.append(op)
M
minqiyang 已提交
1783

1784 1785
        return op

W
Wu Yi 已提交
1786
    def _insert_op(self, index, *args, **kwargs):
1787 1788 1789 1790 1791 1792 1793 1794 1795
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1796 1797
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1798 1799 1800 1801
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1802
    def _remove_op(self, index):
1803 1804 1805 1806 1807 1808 1809 1810 1811
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1812 1813
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1814 1815
        del self.ops[index]

W
Wu Yi 已提交
1816
    def _slice_ops(self, start, end):
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1827
        return self.ops[start:end]
Y
Yancey1989 已提交
1828

W
Wu Yi 已提交
1829
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1830
        if in_dygraph_mode():
1831 1832 1833 1834
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1835 1836 1837 1838 1839 1840 1841 1842
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1843
        else:
1844 1845 1846 1847 1848 1849 1850 1851
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1852
            self.ops.insert(0, op)
1853

Y
Yu Yang 已提交
1854 1855
        return op

W
Wu Yi 已提交
1856
    def _sync_with_cpp(self):
1857
        """
1858 1859
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1860
        """
Q
Qiao Longfei 已提交
1861 1862 1863 1864 1865
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1866
        # sync variables removed from c++ end
1867
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1868
            if not self.desc.find_var(cpt.to_bytes(var)):
1869 1870
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1871
        # sync operators from cpp
1872 1873 1874 1875
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1892 1893 1894 1895 1896

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1897
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1898 1899 1900 1901 1902 1903 1904

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1918 1919 1920 1921
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1922
    def _copy_param_info_from(self, other):
1923
        """
1924 1925
        Copy the information of parameters from the other block.

1926
        Args:
1927 1928 1929 1930 1931
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1932 1933 1934 1935 1936

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1937 1938
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1939
        for p in other.iter_parameters():
1940 1941 1942
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1943
                raise ValueError("_copy_param_info_from should be invoked with "
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1956
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1957
                error_clip=p.error_clip,
1958 1959 1960
                name=v.name)
            self.vars[new_p.name] = new_p

1961
    def _clone_variable(self, var, force_persistable=True):
1962 1963
        """
        Clone a variable into current block.
1964

1965 1966
        Args:
            var: the variable to be cloned.
1967 1968 1969
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1970 1971

        Returns:
1972
            Variable: the new  variable cloned from 'var' in current block.
1973 1974
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1975 1976 1977 1978 1979
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1980 1981
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1982
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1983 1984 1985 1986 1987 1988
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1989
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1990
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1991 1992 1993 1994 1995 1996 1997
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1998
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1999
                is_data=var.is_data)
T
update  
typhoonzero 已提交
2000
        return ret_var
2001

Y
Yu Yang 已提交
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2098
    def remove_input_by_id(self, node_id):
2099 2100 2101 2102 2103 2104
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2105
        self.node.remove_input(node_id)
2106

2107
    def remove_input(self, node):
2108 2109 2110 2111
        """
        Remove a node from inputs.

        Args:
2112
            node(IrNode): the node being removed.
2113
        """
2114
        self.node.remove_input(node.node)
2115

2116
    def append_input(self, node):
2117 2118 2119 2120
        """
        Append a node in inputs.

        Args:
2121
            node(IrNode): the node being appended.
2122
        """
2123
        self.node.append_input(node.node)
2124 2125 2126 2127 2128 2129 2130 2131

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2132
    def remove_output_by_id(self, node_id):
2133 2134 2135 2136 2137 2138
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2139
        self.node.remove_output(node_id)
2140

2141
    def remove_output(self, node):
2142 2143 2144 2145
        """
        Remove a node from outputs.

        Args:
2146
            node(IrNode): the node being removed.
2147
        """
2148
        self.node.remove_output(node.node)
2149

2150
    def append_output(self, node):
2151 2152 2153 2154
        """
        Append a node in outputs.

        Args:
2155
            node(IrNode): the node being appended.
2156
        """
2157
        self.node.append_output(node.node)
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2412 2413
class IrGraph(object):
    """
2414
    Python IrGraph. Beneath it is a core.Graph, which is used for
2415
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2416 2417
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2418 2419 2420 2421
    """

    def __init__(self, graph, for_test=False):
        """
2422 2423
        Construct an IrGraph using core.Graph.

2424 2425 2426 2427 2428 2429 2430 2431 2432
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2433 2434 2435 2436
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2437 2438 2439
        Warns:
            The method only clones the graph structure, not its attributes.

2440 2441 2442
        Returns:
            IrGraph: A new and duplicated graph.
        """
2443
        g = self.graph.clone()
2444 2445
        return IrGraph(g, self._for_test)

2446
    def is_test(self):
2447 2448 2449
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2450 2451
        return self._for_test

W
WangZhen 已提交
2452
    def all_nodes(self):
2453 2454 2455
        """
        Return all nodes included in the graph as a set.
        """
2456
        return {IrNode(node) for node in self.graph.nodes()}
2457

2458
    def all_var_nodes(self):
2459 2460 2461
        """
        Return all variable nodes included in the graph as a set.
        """
2462
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2463

2464
    def all_persistable_nodes(self):
2465 2466 2467
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2468 2469 2470 2471 2472
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2473
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2474

2475
    def all_op_nodes(self):
2476 2477 2478
        """
        Return all operator nodes included in the graph as a set.
        """
2479
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2480

2481
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2493
            IrVarNode: the created persistable variable node.
2494
        """
2495 2496 2497 2498 2499
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2500
        return IrVarNode(self.graph.create_var_node(var_desc))
2501 2502

    def create_var_node(self, name, var_type, shape, var_dtype):
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2514
            IrVarNode: the created variable node.
2515 2516
        """

2517 2518 2519 2520
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2521
        return IrVarNode(self.graph.create_var_node(var_desc))
2522 2523

    def create_var_node_from_desc(self, var_desc):
2524 2525 2526 2527 2528 2529 2530 2531
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2532
            IrVarNode: the created variable node.
2533
        """
2534
        return IrVarNode(self.graph.create_var_node(var_desc))
2535 2536

    def create_op_node(self, op_type, attrs, inputs, outputs):
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2547
            IrOpNode: the created operator node.
2548
        """
2549 2550
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2551
        for attr, value in six.iteritems(attrs):
2552
            self._update_desc_attr(op_desc, attr, value)
2553
        for input_name, var_nodes in six.iteritems(inputs):
2554 2555 2556 2557
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2558
        for output_name, var_nodes in six.iteritems(outputs):
2559 2560 2561 2562
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2563
        return IrOpNode(self.graph.create_op_node(op_desc))
2564 2565

    def create_op_node_from_desc(self, op_desc):
2566 2567 2568 2569 2570 2571 2572
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2573
            IrOpNode: the created operator node.
2574
        """
2575
        return IrOpNode(self.graph.create_op_node(op_desc))
2576 2577

    def update_input_link(self, old_input_node, new_input_node, op_node):
2578 2579 2580 2581
        """
        Update the input's link of a operator node.

        Args:
2582 2583 2584
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2585
        """
2586 2587
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2588
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2589 2590 2591 2592
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2593
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2594 2595

    def link_to(self, node_in, node_out):
2596 2597 2598 2599
        """
        Connect two nodes.

        Args:
2600 2601
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2602
        """
2603
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2604
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2605 2606
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2607 2608

    def safe_remove_nodes(self, remove_nodes):
2609 2610 2611 2612 2613 2614 2615
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2616
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2617 2618 2619 2620
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2621 2622
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2623

Z
Zhen Wang 已提交
2624 2625 2626 2627 2628 2629 2630 2631
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2632
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2633 2634 2635 2636
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2637
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2638 2639 2640
                        ]
                    else:
                        var_nodes[each_var_name].append(
2641 2642
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2643 2644
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2645
    def has_circle(self):
2646 2647 2648 2649 2650 2651
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2652 2653 2654
        return core.has_circle(self.graph)

    def graph_num(self):
2655 2656 2657 2658 2659 2660
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2661 2662 2663
        return core.graph_num(self.graph)

    def topology_sort(self):
2664 2665 2666 2667 2668 2669
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2670
            list(IrNode): nodes in topology order.
2671
        """
2672
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2673
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2674 2675

    def build_adjacency_list(self):
2676 2677 2678 2679
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2680
            dict{IrNode: set(IrNode)}: the adjacency list.
2681
        """
2682 2683 2684 2685 2686
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2687

2688 2689 2690 2691 2692 2693 2694 2695
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2696
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2697 2698 2699 2700 2701
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2702 2703 2704 2705 2706 2707 2708 2709 2710
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2711
        remove_ctr_vars = set()
2712
        if remove_ctr_var:
2713
            for node in self.all_var_nodes():
2714 2715 2716
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2717 2718
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2719 2720
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2721 2722 2723 2724 2725 2726
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2738 2739 2740
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2741
        WARN: When the graph includes backward operator nodes, the
2742 2743 2744 2745 2746 2747
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2748
        convert_pass = core.get_pass('graph_to_program_pass')
2749 2750
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2751 2752 2753 2754
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2782
class Program(object):
D
dzhwinter 已提交
2783 2784 2785 2786 2787
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
J
Jiabin Yang 已提交
2788
    it will contain nested block.
D
dzhwinter 已提交
2789 2790
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
2800 2801 2802
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2803
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2804 2805

    Returns:
Y
yuyang18 已提交
2806
        A empty program.
D
dzhwinter 已提交
2807 2808

    Examples:
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2822 2823 2824

    """

2825 2826
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2827 2828
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2829
        self._seed = 0
Y
yuyang18 已提交
2830
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2831
        self.__op_role_var = []
T
tangwei12 已提交
2832

2833 2834
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2835
        self._is_distributed = False
2836
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2837
        self._is_chief = False
2838 2839 2840
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2841
        self._endpoints = []
2842 2843 2844
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2845
        self._trainers_endpoints = []
2846
        # the distributed lookup table names
T
tangwei12 已提交
2847
        self._distributed_lookup_table = None
2848 2849 2850

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2851 2852
        self._use_lamb = False

2853 2854 2855
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
2856

D
dzhwinter 已提交
2857
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2858
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2859
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2860

2861 2862 2863
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2864
        self._program_config = None
2865

H
hutuxian 已提交
2866 2867 2868
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2869 2870 2871
        # appending gradients times
        self._appending_grad_times = 0

D
dzhwinter 已提交
2872
    @property
D
dzhwinter 已提交
2873
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2874 2875
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2876
        return self.__is_mem_optimized
D
dzhwinter 已提交
2877

D
dzhwinter 已提交
2878 2879 2880
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2881 2882

    @property
2883
    def _op_role(self):
Y
yuyang18 已提交
2884 2885 2886 2887 2888 2889 2890 2891
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2892
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2893 2894 2895 2896
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2897 2898
        return self._current_role

2899 2900
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2901 2902 2903
        self._current_role = role

    @property
2904
    def _op_role_var(self):
Y
yuyang18 已提交
2905
        """
2906
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2907

2908
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2909 2910 2911

        Notes: This is a very low-level API. Users should not use it directly.
        """
2912
        return self.__op_role_var
Y
yuyang18 已提交
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2923
    @signature_safe_contextmanager
W
Wu Yi 已提交
2924
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2925 2926 2927 2928 2929 2930 2931
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2932
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2933 2934 2935

        Examples:

2936
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
2937
            >>> p, g = backward(...)
W
Wu Yi 已提交
2938
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2939 2940
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2941
        tmp_role = self._current_role
2942
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2943

Y
yuyang18 已提交
2944 2945
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2946
        self.__op_role_var = [
2947 2948 2949
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2950
        yield
2951
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2952
        self._current_role = tmp_role
Y
Yu Yang 已提交
2953

S
rename  
sneaxiy 已提交
2954
    @signature_safe_contextmanager
X
Xin Pan 已提交
2955
    def _lr_schedule_guard(self, is_with_opt=False):
2956 2957 2958 2959 2960 2961 2962
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2963 2964 2965 2966
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2967 2968 2969

        Examples:

2970
            >>> import paddle.fluid as fluid
2971 2972 2973 2974
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2975 2976

        tmp_role = self._current_role
2977
        tmp_var = self.__op_role_var
2978

2979 2980
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2981 2982
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2983
        # TODO(typhoonzero): how to set target learning rate var
2984
        self.__op_role_var = []
2985
        yield
2986
        self.__op_role_var = tmp_var
2987
        self._current_role = tmp_role
2988

2989
    def __str__(self):
Y
yuyang18 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2999 3000
        return self.to_string(True)

F
fengjiayi 已提交
3001 3002 3003
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3004

F
fengjiayi 已提交
3005
        Args:
Y
yuyang18 已提交
3006 3007
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
3008

Y
yuyang18 已提交
3009 3010 3011 3012
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
3013 3014
        Returns:
            str : The debug string.
Y
yuyang18 已提交
3015 3016 3017 3018

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3019

3020 3021 3022 3023 3024 3025 3026 3027 3028
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3038 3039
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3040 3041
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3042

W
Wu Yi 已提交
3043
    def _get_desc(self):
Y
yuyang18 已提交
3044 3045 3046 3047 3048 3049 3050
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3051 3052
        return self.desc

X
version  
Xin Pan 已提交
3053 3054 3055
    def _version(self):
        return self.desc._version()

3056
    def clone(self, for_test=False):
Y
yuyang18 已提交
3057 3058 3059
        """
        Create a new, duplicated program.

3060

Y
yuyang18 已提交
3061 3062 3063 3064
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3065

Y
yuyang18 已提交
3066
        * Set for_test to False when we want to clone the program for training.
3067 3068 3069 3070
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
3071

3072 3073 3074 3075
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
3076

3077 3078 3079 3080 3081
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3082 3083

        Args:
Y
yuyang18 已提交
3084 3085
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3086

D
dzhwinter 已提交
3087
        Returns:
Y
yuyang18 已提交
3088 3089 3090 3091
            Program: The new, duplicated Program object.

        Examples:

3092 3093 3094 3095 3096 3097
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3135 3136 3137

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3205 3206
        """
        if for_test:
X
Xin Pan 已提交
3207
            p = self._inference_optimize(prune_read_op=False)
3208
        else:
3209
            p = Program()
G
gongweibao 已提交
3210 3211
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3212
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3213 3214 3215
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3216 3217

            p._current_role = self._current_role
3218
            p.__op_role_var = self.__op_role_var
3219
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3220

W
Wu Yi 已提交
3221
            p._sync_with_cpp()
3222

W
Wu Yi 已提交
3223
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3224
        p._copy_data_info_from(self)
3225
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3226
        return p
3227

W
Wu Yi 已提交
3228
    def _prune(self, targets):
Y
yuyang18 已提交
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3244 3245 3246 3247 3248 3249
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3250 3251
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3252
                    # and we need to find the current op that generate this
3253 3254 3255 3256 3257 3258 3259 3260
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3261
                    t = t.op
3262 3263 3264 3265
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3266
                else:
3267 3268
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3269 3270 3271 3272

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3273 3274 3275
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3276
        res._sync_with_cpp()
3277 3278
        return res

X
Xin Pan 已提交
3279
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3280
        """
F
fengjiayi 已提交
3281 3282 3283 3284 3285
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3286
        3. change the :code:`is_test`
Y
yuyang18 已提交
3287 3288 3289
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3290
        Args:
X
Xin Pan 已提交
3291 3292
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3293

Y
yuyang18 已提交
3294 3295 3296 3297 3298 3299
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3300
        res = Program()
3301
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3302 3303 3304 3305

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3306
        if prune_read_op:
3307 3308 3309 3310 3311 3312 3313 3314 3315
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3316
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3317 3318

        # change all `is_test` attributes to True
M
minqiyang 已提交
3319
        for i in six.moves.range(res.desc.num_blocks()):
3320
            block = res.desc.block(i)
M
minqiyang 已提交
3321
            for j in six.moves.range(block.op_size()):
3322 3323
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3324
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3325 3326 3327
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3328
        res._sync_with_cpp()
3329 3330
        return res

3331 3332
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3333 3334 3335 3336 3337 3338 3339
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3340
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3341 3342 3343 3344

        Returns:
            Program: A deserialized program desc.
        """
3345 3346
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3347
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3348
        p._sync_with_cpp()
3349
        return p
Y
Yu Yang 已提交
3350

3351
    @staticmethod
3352
    def _construct_from_desc(desc):
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3368 3369
    @property
    def random_seed(self):
Y
yuyang18 已提交
3370 3371 3372 3373 3374
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3386
        """
D
dzhwinter 已提交
3387 3388
        return self._seed

Q
qiaolongfei 已提交
3389 3390
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3391 3392
        """
        The number of blocks in this program.
3393 3394 3395 3396 3397 3398 3399 3400 3401

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3402
        """
Q
qiaolongfei 已提交
3403 3404
        return self.desc.num_blocks()

D
dzhwinter 已提交
3405 3406 3407 3408 3409 3410
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3411
    def __repr__(self):
3412
        return self.__str__()
3413

Y
Yu Yang 已提交
3414
    def global_block(self):
Y
yuyang18 已提交
3415 3416
        """
        Get the first block of this program.
3417 3418 3419 3420 3421 3422 3423 3424 3425

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3426
        """
Y
Yu Yang 已提交
3427 3428
        return self.blocks[0]

Q
Qiao Longfei 已提交
3429
    def block(self, index):
Y
yuyang18 已提交
3430 3431 3432 3433 3434 3435 3436
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3437 3438 3439 3440 3441 3442 3443 3444 3445

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3446
        """
Q
Qiao Longfei 已提交
3447 3448
        return self.blocks[index]

Y
Yu Yang 已提交
3449
    def current_block(self):
Y
yuyang18 已提交
3450 3451 3452
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3453 3454 3455 3456 3457 3458 3459 3460 3461

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3462
        """
Y
Yu Yang 已提交
3463 3464
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3465
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3476
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3477 3478 3479
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3480 3481 3482 3483
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3484
    def _rollback(self):
Y
yuyang18 已提交
3485 3486 3487 3488 3489
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3490 3491
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3492
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3503 3504 3505
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3506
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3507

W
Wu Yi 已提交
3508
    def _copy_param_info_from(self, other):
3509
        """
3510
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3511

Y
yuyang18 已提交
3512 3513 3514
        Notes: This is a very low level API. Users should not invoke it
        directly.

3515 3516 3517 3518 3519 3520 3521
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3522
            raise TypeError("_copy_param_info_from should be invoked with "
3523 3524 3525
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3526
            raise ValueError("_copy_param_info_from should be invoked with two "
3527
                             "program, with represent the same topology")
W
Wu Yi 已提交
3528
        self.global_block()._copy_param_info_from(other.global_block())
3529

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3545
        self._parameters_on_pservers = other._parameters_on_pservers
3546
        self._endpoints = other._endpoints
3547
        self._ps_endpoint = other._ps_endpoint
3548 3549
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3550
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3551 3552
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3553

Y
yuyang18 已提交
3554 3555 3556
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3557 3558 3559 3560 3561 3562 3563
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3564
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3565 3566 3567
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3568
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3569
                             "program, with represent the same topology")
3570
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3571 3572 3573
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3574
    def list_vars(self):
Y
yuyang18 已提交
3575 3576 3577 3578 3579
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3591
        """
3592
        for each_block in self.blocks:
3593
            for each_var in list(each_block.vars.values()):
3594 3595
                yield each_var

Y
Yu Yang 已提交
3596

Y
Yu Yang 已提交
3597
class Parameter(Variable):
3598
    """
3599
    Parameter is derived from Variable. A parameter is a persistable
3600
    Variable, and will be updated by optimizers after each iteration.
3601
    The training of a neural network is essentially the updating of
3602 3603
    its parameters.

3604
    Relative to a general Variable, a Parameter has several its own
3605 3606
    member variables:

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3619 3620
    """

Y
Yu Yang 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3631 3632 3633

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3634 3635 3636 3637
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3638 3639
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3640
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3641

W
wanghaoshuang 已提交
3642
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3643

3644 3645
        self.is_distributed = False

F
fengjiayi 已提交
3646 3647 3648
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3649 3650 3651
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3652

F
update  
fengjiayi 已提交
3653 3654 3655 3656 3657 3658 3659 3660
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3661 3662 3663 3664 3665 3666 3667 3668 3669
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3670 3671 3672 3673 3674 3675
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3676
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3677
            for attr_name in additional_attr:
3678 3679
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3680 3681
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3682 3683 3684 3685
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3686

Y
Yu Yang 已提交
3687
# program is a global instance.
Y
Yu Yang 已提交
3688 3689
_main_program_ = Program()
_startup_program_ = Program()
3690

3691

3692
def default_startup_program():
Y
Yu Yang 已提交
3693
    """
Y
yuyang18 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3703

Y
Yu Yang 已提交
3704 3705
    Returns:
        Program: startup program
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3721
    """
Y
Yu Yang 已提交
3722
    return _startup_program_
3723

3724

3725
def default_main_program():
Y
Yu Yang 已提交
3726
    """
Y
yuyang18 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3736

Y
Yu Yang 已提交
3737 3738
    Returns:
        Program: main program
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
3767 3768
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
3769
    """
Y
Yu Yang 已提交
3770
    return _main_program_
Y
Yu Yang 已提交
3771 3772 3773 3774 3775


def switch_main_program(program):
    """
    Switch the main program to a new program.
3776

Y
Yu Yang 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3791
    Switch the startup program to a new program
Y
Yu Yang 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3804
@signature_safe_contextmanager
Y
Yu Yang 已提交
3805 3806
def program_guard(main_program, startup_program=None):
    """
3807 3808
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3809
    variables to the new main programs.
3810

Y
Yu Yang 已提交
3811
    Examples:
3812 3813 3814
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3815

3816 3817 3818 3819 3820
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3821 3822 3823

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3824

Y
Yu Yang 已提交
3825
    Examples:
3826
       .. code-block:: python
Y
yuyang18 已提交
3827

3828 3829 3830 3831 3832 3833
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3834

Y
Yu Yang 已提交
3835
    Args:
3836 3837 3838
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3851 3852


W
Wu Yi 已提交
3853
def _get_var(name, program=None):
X
xuwei06 已提交
3854
    """
Y
yuyang18 已提交
3855
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3856

X
xuwei06 已提交
3857 3858 3859
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3860
        If None, default_global_program() will be used.
X
xuwei06 已提交
3861 3862 3863 3864 3865 3866 3867

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3868
    assert isinstance(program, Program)
X
xuwei06 已提交
3869 3870

    return program.global_block().var(name)
3871 3872


S
rename  
sneaxiy 已提交
3873
@signature_safe_contextmanager
L
lujun 已提交
3874 3875 3876 3877
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3878

3879
    yield
P
Paddle CI 已提交
3880

L
lujun 已提交
3881
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3882 3883


S
rename  
sneaxiy 已提交
3884
@signature_safe_contextmanager
L
lujun 已提交
3885 3886 3887 3888
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3889

3890
    yield
M
minqiyang 已提交
3891

L
lujun 已提交
3892
    _dygraph_current_expected_place_ = tmp_place