framework.py 191.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'is_compiled_with_xpu',
52
    'Variable',
53
    'ComplexVariable',
54
    'load_op_library',
55
    'require_version',
56
    'device_guard',
G
guofei 已提交
57 58
    'set_flags',
    'get_flags',
59
]
Y
Yu Yang 已提交
60

Q
qiaolongfei 已提交
61 62 63 64
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
65 66
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
67
_dygraph_tracer_ = None
68
_global_expected_place_ = None
69
_current_device = None
70 71
global_prog_seed = 0

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
180
def in_dygraph_mode():
L
lujun 已提交
181
    """
182 183 184 185
    :alias_main: paddle.in_dygraph_mode
	:alias: paddle.in_dygraph_mode
	:old_api: paddle.fluid.framework.in_dygraph_mode

Y
Youwei Song 已提交
186
    This function checks whether the program runs in dynamic graph mode or not.
187 188 189
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
190 191

    Returns:
Y
Youwei Song 已提交
192
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
193 194 195 196

    Examples:
        .. code-block:: python

197
            import paddle.fluid as fluid
L
lujun 已提交
198

199 200 201 202
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
203
    """
L
lujun 已提交
204
    return _dygraph_tracer_ is not None
205 206


207 208 209
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
210
        ), "We don't support %s in imperative mode" % func.__name__
211 212 213 214 215 216 217 218
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
219
        ), "We Only support %s in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative Mode" % func.__name__
220 221 222 223 224
        return func(*args, **kwargs)

    return __impl__


225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


241 242
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
243
fake_interface_only = wrap_decorator(_fake_interface_only_)
244 245


L
lujun 已提交
246 247
def _dygraph_tracer():
    return _dygraph_tracer_
248

W
Wu Yi 已提交
249

M
minqiyang 已提交
250
def _current_expected_place():
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
            _global_expected_place_ = core.CUDAPlace(0)
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
271 272


L
Leo Chen 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
290
def _cpu_num():
291
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
292 293 294 295 296 297 298 299
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
300
        os.environ['CPU_NUM'] = str(1)
301
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
302 303 304 305 306 307 308 309 310 311
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
312 313


314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
344
def cuda_places(device_ids=None):
L
lujun 已提交
345
    """
346 347 348 349 350
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
351 352

    If :code:`device_ids` is None, environment variable of
353
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
354 355 356
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
357
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
358 359

    If :code:`device_ids` is not None, it should be the device
360
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
361 362 363
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
364 365
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
366 367

    Returns:
368
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
369 370 371 372

    Examples:
        .. code-block:: python

373
            import paddle.fluid as fluid
L
lujun 已提交
374 375 376
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
377 378 379
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
380
        device_ids = _cuda_ids()
S
sneaxiy 已提交
381 382 383 384 385 386
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
387
    """
388
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
389 390 391
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
392 393
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
394 395
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
396

397 398
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
399 400

    Returns:
401
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
402 403 404 405

    Examples:
        .. code-block:: python

406
            import paddle.fluid as fluid
L
lujun 已提交
407 408 409
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
410 411 412 413 414 415
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
416
    """
417
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
418 419 420

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
421 422 423 424
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
425

426 427
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
428 429

    Returns:
430
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
431 432 433 434

    Examples:
        .. code-block:: python

435
            import paddle.fluid as fluid
L
lujun 已提交
436 437 438 439 440
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
441 442 443
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
444 445
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
446 447


448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
474
@signature_safe_contextmanager
475 476
def name_scope(prefix=None):
    """
477 478
    :api_attr: Static Graph

479 480
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
481 482 483
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
484 485

    Args:
T
Tao Luo 已提交
486
        prefix(str, optional): prefix. Default is none.
487 488 489

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
490

491
          import paddle.fluid as fluid
492
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
493 494 495 496 497 498
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
499
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
500
                f = fluid.layers.pow(d, 2.0)
501
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
521 522
    """
    # TODO(panyx0718): Only [0-9a-z].
523
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
524 525 526
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
527
        assert prefix, "namescope prefix can not be empty."
528 529
        global _name_scope
        _name_scope = _name_scope.child(prefix)
530 531 532 533
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
534 535 536 537 538 539 540 541 542 543 544 545


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
546 547 548
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
549 550 551 552


def grad_var_name(var_name):
    """
553 554
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
555 556 557
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
558

559
def convert_np_dtype_to_dtype_(np_dtype):
560 561
    """
    Convert the data type in numpy to the data type in Paddle
562

563
    Args:
564
        np_dtype(np.dtype): the data type in numpy.
565

566 567
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
568 569

    """
570 571
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
572
        return core.VarDesc.VarType.FP32
573
    elif dtype == np.float64:
574
        return core.VarDesc.VarType.FP64
575
    elif dtype == np.float16:
576
        return core.VarDesc.VarType.FP16
577
    elif dtype == np.int32:
578
        return core.VarDesc.VarType.INT32
579
    elif dtype == np.int16:
580
        return core.VarDesc.VarType.INT16
581
    elif dtype == np.int64:
582
        return core.VarDesc.VarType.INT64
583
    elif dtype == np.bool:
584
        return core.VarDesc.VarType.BOOL
585 586
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
587 588
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
589 590
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
591
    else:
M
minqiyang 已提交
592
        raise ValueError("Not supported numpy dtype %s" % dtype)
593 594 595


def dtype_is_floating(dtype):
596 597 598
    """
    Check the data type is floating or not.
    Args:
599
        dtype(np.dtype|core.VarDesc.VarType): data type.
600 601 602 603 604
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
605
    if not isinstance(dtype, core.VarDesc.VarType):
606 607
        dtype = convert_np_dtype_to_dtype_(dtype)

608 609 610 611
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
612 613


Y
Yang Yang(Tony) 已提交
614
def _debug_string_(proto, throw_on_error=True):
615 616 617 618 619 620 621 622 623 624 625
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
626
    error_fields = list()
Y
Yang Yang(Tony) 已提交
627
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
628 629
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
630 631 632
    return proto.__str__()


633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
690
    target_block = default_main_program().current_block()
691 692 693 694 695 696 697 698 699 700 701

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
702
            })
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
742
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
743
                fill_constant([1], 1, force_cpu=True, out=temp_1)
744
                temp_end = target_block.create_var(dtype=slice_item.dtype)
745
                target_block.append_op(
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
785

786
    # starts
L
Leo Chen 已提交
787
    if contain_var(slice_start):
788 789 790 791 792 793 794 795
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
796 797 798 799
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
800 801 802 803 804 805 806
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
807 808 809
    else:
        attrs['ends'] = slice_end

810 811
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
812
        if contain_var(slice_step):
813 814 815 816 817 818 819
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
820 821
        else:
            attrs['strides'] = slice_step
822 823 824 825 826 827
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
828
        slice_out_var = target_block.create_var(
829 830 831
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

832
        target_block.append_op(
833 834 835 836 837 838 839
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
840
        strided_slice_out_var = target_block.create_var(
841 842 843
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
844
        target_block.append_op(
845 846 847 848 849 850 851 852
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
853
        reverse_out_var = target_block.create_var(
854 855 856
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
857
        target_block.append_op(
858 859 860 861 862 863 864 865 866 867 868
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
869
class Variable(object):
870
    """
J
Jiabin Yang 已提交
871
    **Notes**:
872
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
873

874 875
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
876 877 878
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
879
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
880 881
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
882

883
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
884
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
885

T
tianshuo78520a 已提交
886
    Most of a Variable's member variables can be set to be None. It mean
887
    it is not available or will be specified later.
888

889
    Examples:
890 891
        In Static Graph Mode:

892 893
        .. code-block:: python

894
            import paddle.fluid as fluid
895
            cur_program = fluid.Program()
896 897 898 899
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
900
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
901 902 903 904 905 906 907 908 909

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

910 911
    """

Y
Yu Yang 已提交
912 913
    def __init__(self,
                 block,
Y
Yu Yang 已提交
914
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
915 916 917 918
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
919
                 capacity=None,
Q
QI JUN 已提交
920
                 persistable=None,
F
fengjiayi 已提交
921
                 error_clip=None,
Y
Yu Yang 已提交
922
                 stop_gradient=False,
F
fengjiayi 已提交
923
                 is_data=False,
H
Huihuang Zheng 已提交
924
                 need_check_feed=False,
H
hong 已提交
925
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
926
                 **kwargs):
Y
Yu Yang 已提交
927 928
        self.block = block
        if name is None:
Y
Yu Yang 已提交
929
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
930

Y
Yu Yang 已提交
931
        if dtype is not None:
932
            if not isinstance(dtype, core.VarDesc.VarType):
933
                dtype = convert_np_dtype_to_dtype_(dtype)
934

H
hong 已提交
935 936
        self.belong_to_optimizer = belong_to_optimizer

937 938 939 940 941
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
942

943 944 945
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
946

947 948 949 950 951 952 953
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
954

955
        if shape is not None:
956
            if is_new_var:
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
998

999 1000
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1001

1002 1003 1004 1005 1006 1007 1008
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1009

1010 1011 1012 1013
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1014

1015
    @fake_interface_only
1016 1017
    def detach(self):
        """
J
Jiabin Yang 已提交
1018
        **Notes**:
T
tianshuo78520a 已提交
1019
            **This API is ONLY available in Dygraph mode**
1020

1021
        Returns a new Variable, detached from the current graph.
1022

1023
        Returns:
J
Jiabin Yang 已提交
1024
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1025

1026

1027 1028 1029 1030 1031
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1032
                from paddle.fluid.dygraph import Linear
1033 1034 1035 1036
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1037
                    linear = Linear(32, 64)
1038
                    data = to_variable(data)
1039
                    x = linear(data)
1040 1041 1042
                    y = x.detach()

        """
1043
        pass
1044

1045
    @fake_interface_only
1046
    def numpy(self):
1047
        """
J
Jiabin Yang 已提交
1048
        **Notes**:
T
tianshuo78520a 已提交
1049
            **This API is ONLY available in Dygraph mode**
1050

J
Jiabin Yang 已提交
1051
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1052 1053 1054 1055 1056

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1057
            ndarray: dtype is same as current Variable
1058 1059 1060 1061 1062 1063

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1064
                from paddle.fluid.dygraph import Linear
1065 1066 1067 1068
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1069
                    linear = Linear(32, 64)
1070
                    data = to_variable(data)
1071
                    x = linear(data)
1072 1073 1074
                    print(x.numpy())

        """
1075
        pass
1076

1077
    @fake_interface_only
1078 1079
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1080
        **Notes**:
T
tianshuo78520a 已提交
1081
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1093
                from paddle.fluid.dygraph import Linear
1094 1095
                import numpy as np

1096
                data = np.ones([3, 1024], dtype='float32')
1097
                with fluid.dygraph.guard():
1098
                    linear = fluid.dygraph.Linear(1024, 4)
1099
                    t = to_variable(data)
1100
                    linear(t)  # call with default weight
1101
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1102 1103
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1104 1105

        """
1106
        pass
1107

1108
    @fake_interface_only
1109
    def backward(self, backward_strategy=None):
1110
        """
J
Jiabin Yang 已提交
1111
        **Notes**:
T
tianshuo78520a 已提交
1112
            **This API is ONLY available in Dygraph mode**
1113 1114 1115

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1116 1117
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1118

J
Jiabin Yang 已提交
1119 1120
        Returns:
            NoneType: None
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1133 1134
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1135 1136 1137 1138 1139 1140 1141 1142 1143
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1144
        pass
1145

1146
    @fake_interface_only
1147
    def gradient(self):
1148
        """
J
Jiabin Yang 已提交
1149
        **Notes**:
T
tianshuo78520a 已提交
1150
            **This API is ONLY available in Dygraph mode**
1151 1152 1153

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1154
        Returns:
1155
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1156 1157 1158 1159 1160 1161 1162

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1163
                # example1: return ndarray
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1191
        """
1192
        pass
1193

1194
    @fake_interface_only
1195
    def clear_gradient(self):
1196
        """
J
Jiabin Yang 已提交
1197
        **Notes**:
T
tianshuo78520a 已提交
1198
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1199 1200

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1201

J
Jiabin Yang 已提交
1202
        Clear  (set to ``0`` ) the Gradient of Current Variable
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1229
        pass
X
Xin Pan 已提交
1230

1231
    def __str__(self):
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1276

F
update  
fengjiayi 已提交
1277
    def to_string(self, throw_on_error, with_details=False):
1278 1279 1280
        """
        Get debug string.

J
Jiabin Yang 已提交
1281 1282 1283 1284 1285
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1286

1287 1288
        Returns:
            str: The debug string.
1289 1290 1291 1292 1293

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1294

1295 1296 1297 1298 1299
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1300
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1301
                print("=============with detail===============")
1302
                print(new_variable.to_string(True, True))
1303
        """
F
update  
fengjiayi 已提交
1304 1305
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1306
        protostr = self.desc.serialize_to_string()
1307
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1308 1309 1310 1311
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1312 1313 1314
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1315
        return res_str
1316 1317 1318

    __repr__ = __str__

1319
    @property
1320
    def stop_gradient(self):
J
Jiabin Yang 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1336 1337
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1338 1339 1340
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1341 1342
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1343 1344 1345 1346
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1347
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1348 1349
                assert (out1.gradient() == 0).all()
        """
1350
        return self._stop_gradient
1351

1352 1353
    @stop_gradient.setter
    def stop_gradient(self, s):
1354
        self._stop_gradient = s
1355

1356 1357
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1379
        return self.desc.persistable()
1380

Y
Yu Yang 已提交
1381 1382
    @persistable.setter
    def persistable(self, p):
1383
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1384

Y
Yu Yang 已提交
1385 1386
    @property
    def name(self):
J
Jiabin Yang 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1403
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1425 1426
    @name.setter
    def name(self, new_name):
1427
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1428

Y
Yu Yang 已提交
1429 1430
    @property
    def shape(self):
J
Jiabin Yang 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1448
        # convert to tuple, make it as same as numpy API.
1449
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1450 1451

    @property
F
fengjiayi 已提交
1452
    def dtype(self):
J
Jiabin Yang 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1469
        return self.desc.dtype()
Y
Yu Yang 已提交
1470 1471 1472

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1494 1495 1496
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1497
        return self.desc.lod_level()
Y
Yu Yang 已提交
1498

Y
Yu Yang 已提交
1499 1500
    @property
    def type(self):
J
Jiabin Yang 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1517
        return self.desc.type()
Y
Yu Yang 已提交
1518

W
Wu Yi 已提交
1519
    def _set_error_clip(self, error_clip):
1520 1521 1522 1523 1524 1525 1526 1527 1528
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1529 1530
        self.error_clip = error_clip

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1571
            raise ValueError("slice step can not be zero")
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1647
    def _cloneVar(self, copy=False):
1648 1649
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1650 1651
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1652 1653 1654 1655
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1656
        new_var = self._cloneVar()
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1667
        new_var = self._cloneVar()
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1678
                return self._cloneVar(True)
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1697
                return self._cloneVar(True)
1698
            index = int(item)
1699
            if (index > 0 and index >= self.shape[axis]) \
1700 1701 1702 1703 1704 1705 1706
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1707
        return _getitem_impl_(self, item)
1708

Y
Yu Yang 已提交
1709

F
fengjiayi 已提交
1710 1711 1712
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1713

1714 1715
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1716 1717 1718 1719
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1720
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1721 1722 1723 1724
        ret_values.append(op_proto)
    return ret_values


1725 1726
class ComplexVariable(object):
    """
1727 1728
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1729 1730 1731
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1732
        **The constructor of ComplexTensor should not be invoked directly.**
1733

1734
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1735 1736

    Args:
1737 1738
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1739 1740 1741 1742
    
    Examples:
        .. code-block:: python

1743
            import paddle
1744 1745
            import numpy as np

1746 1747 1748 1749 1750 1751 1752 1753
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1754 1755
    """

1756 1757 1758 1759 1760
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1807 1808 1809
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1810 1811 1812 1813

    __repr__ = __str__


F
fengjiayi 已提交
1814
class OpProtoHolder(object):
1815 1816 1817 1818
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1828
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1829 1830 1831 1832 1833 1834
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1835 1836 1837 1838 1839 1840 1841 1842
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1843 1844
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1845 1846
        return self.op_proto_map[type]

1847 1848 1849 1850 1851 1852
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1853 1854 1855 1856
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1857
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1858
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1859 1860
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1861 1862
        }

F
fengjiayi 已提交
1863

X
Xin Pan 已提交
1864
class Operator(object):
1865
    """
1866 1867 1868 1869 1870 1871 1872
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1873
        type(str): The type of operator. Default None.
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1894
        Block.append_op or Block._prepend_op instead.
1895 1896 1897 1898

    Examples:
        .. code-block:: python

1899
            import paddle.fluid as fluid
1900
            cur_program = fluid.Program()
1901 1902 1903 1904 1905
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1906
    """
1907
    OP_WITHOUT_KERNEL_SET = {
1908 1909
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1910 1911
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1912
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1913
    }
1914

Y
Yu Yang 已提交
1915 1916
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1917
                 desc,
Y
Yu Yang 已提交
1918 1919 1920
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1921
                 attrs=None):
L
lujun 已提交
1922
        if in_dygraph_mode():
1923 1924
            if type is None:
                raise ValueError(
1925
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1926
            self._type = type
M
minqiyang 已提交
1927
            self.attrs = attrs if attrs else {}
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1942
                )] = self.block.program._op_role
1943 1944 1945

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1946 1947
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1948 1949 1950 1951 1952 1953 1954 1955

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1956
                    "`type` to initialized an Operator can not be None.")
1957 1958
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1959 1960 1961 1962 1963 1964 1965
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1966 1967 1968 1969 1970 1971 1972

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2004
                        if not isinstance(in_args, (list, tuple)):
2005 2006 2007 2008 2009 2010
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2011
                        for index, arg in enumerate(in_args):
2012 2013 2014 2015
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2016
                            elif isinstance(arg, (Variable, core.VarBase)):
2017
                                in_arg_names.append(cpt.to_text(arg.name))
2018
                            else:
2019 2020 2021 2022
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2023 2024
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2051
                        if not in_dygraph_mode():
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2071
    def _has_kernel(self, op_type):
2072 2073
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2074
    def to_string(self, throw_on_error):
2075
        """
2076 2077
        Get debug string.

2078
        Args:
2079 2080
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2081

2082 2083
        Returns:
            str: The debug string.
2084 2085

        """
2086
        protostr = self.desc.serialize_to_string()
2087
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2088 2089
        return _debug_string_(proto, throw_on_error)

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2183
    def __str__(self):
2184
        return self._to_readable_code()
2185 2186 2187

    __repr__ = __str__

F
fengjiayi 已提交
2188 2189
    @property
    def type(self):
2190
        return self.desc.type()
F
fengjiayi 已提交
2191 2192

    def input(self, name):
2193
        """
2194
        Get the input arguments according to the input parameter name.
2195

2196 2197
        Args:
            name(str): The input parameter name.
2198

2199 2200 2201
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2202
        """
F
fengjiayi 已提交
2203 2204
        return self.desc.input(name)

W
Wu Yi 已提交
2205
    def _rename_input(self, old_name, new_name):
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2216
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2217

W
Wu Yi 已提交
2218
    def _rename_output(self, old_name, new_name):
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2229
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2230

F
fengjiayi 已提交
2231 2232 2233 2234
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2235 2236 2237 2238 2239 2240 2241 2242
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2243
    def output(self, name):
2244
        """
2245
        Get output arguments by the output parameter name.
2246

2247 2248
        Args:
            name(str): The output parameter name.
2249

2250 2251 2252
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2253
        """
F
fengjiayi 已提交
2254 2255 2256 2257 2258 2259
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2260 2261 2262 2263 2264 2265 2266 2267
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2268
    def has_attr(self, name):
2269
        """
2270 2271
        Whether this Operator has the attribute with name or not.

2272
        Args:
2273
            name(str): the attribute name.
2274

2275 2276
        Returns:
            bool: True if has this attribute.
2277 2278

        """
F
fengjiayi 已提交
2279 2280 2281
        return self.desc.has_attr(name)

    def attr_type(self, name):
2282
        """
2283
        Get the type of attribute by attribute's name.
2284

2285 2286
        Args:
            name(str): the attribute name.
2287

2288 2289
        Returns:
            core.AttrType: the attribute type.
2290
        """
F
fengjiayi 已提交
2291 2292
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2293
    def _set_attr(self, name, val):
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2304 2305
        self._update_desc_attr(name, val)

2306 2307 2308
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2320 2321
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2322 2323
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2324
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2325 2326 2327 2328
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2329
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2330

F
fengjiayi 已提交
2331 2332 2333 2334 2335
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2336
        """
2337 2338
        Get the attribute by name.

2339
        Args:
2340
            name(str): the attribute name.
2341

2342 2343
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2344 2345
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2346
        return self.desc.attr(name)
Y
Yu Yang 已提交
2347

W
Wu Yi 已提交
2348
    def _block_attr_id(self, name):
2349
        """
G
gongweibao 已提交
2350
        Get the block attribute's id by name.
2351

2352 2353
        Args:
            name(str): the attribute name.
2354

2355 2356
        Returns:
            int: the block index.
2357
        """
W
Wu Yi 已提交
2358
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2359

W
Wu Yi 已提交
2360
    def _block_attr(self, name):
G
gongweibao 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2371
        id = self._block_attr_id(name)
G
gongweibao 已提交
2372 2373 2374
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2375
    def _blocks_attr(self, name):
G
gongweibao 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2386
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2387 2388 2389 2390 2391
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2392
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2403
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2404

J
JiayiFeng 已提交
2405
    def all_attrs(self):
F
fengjiayi 已提交
2406
        """
2407 2408 2409
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2410
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2411 2412 2413 2414
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2415 2416
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2417
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2418 2419 2420
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2421
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2422 2423 2424 2425
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2426 2427
        return attr_map

2428 2429 2430
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2431 2432 2433 2434

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2435 2436 2437
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2438 2439 2440 2441 2442 2443 2444 2445

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2446 2447
            return False

2448 2449 2450 2451 2452 2453
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2454

Y
Yu Yang 已提交
2455
class Block(object):
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2470
        use `Program._create_block()` to create a block.
2471 2472 2473 2474

    Examples:
        .. code-block:: python

2475 2476 2477
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2478 2479 2480 2481 2482 2483 2484 2485 2486
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2487
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2488
        self.desc = program.desc.block(idx)
2489
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2490
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2491
        self.program = program
2492
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2493

2494
    def __str__(self):
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2541

F
fengjiayi 已提交
2542 2543
    def to_string(self, throw_on_error, with_details=False):
        """
2544 2545
        Get debug string.

F
fengjiayi 已提交
2546 2547
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2548
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2549
            with_details(bool): more details about variables and parameters
2550 2551
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2552

2553 2554
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2555 2556 2557 2558
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2559
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2560 2561
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2562
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2563
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2564
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2565
            for op in self.ops:
F
fengjiayi 已提交
2566 2567
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2568 2569 2570
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2571 2572
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2573 2574
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2575 2576 2577

    __repr__ = __str__

Y
Yu Yang 已提交
2578 2579
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2580
        return self.desc.parent
Y
Yu Yang 已提交
2581

Y
Yu Yang 已提交
2582 2583 2584 2585
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2586
    def _set_forward_block_idx(self, idx):
2587 2588 2589 2590 2591 2592 2593 2594 2595
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2596
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2597

2598 2599 2600 2601 2602 2603 2604 2605
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2606 2607
    @property
    def idx(self):
Y
Yu Yang 已提交
2608
        return self.desc.id
Y
Yu Yang 已提交
2609

Q
Qiao Longfei 已提交
2610
    def var(self, name):
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2624
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2625 2626 2627
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2628 2629
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2630
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2631
        return v
Q
Qiao Longfei 已提交
2632

X
Xin Pan 已提交
2633
    def _find_var_recursive(self, name):
2634 2635 2636 2637 2638 2639 2640
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2641
            Variable: the Variable with the giving name. Or None if not found.
2642
        """
Y
Yu Yang 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2667
        return None
Y
Yu Yang 已提交
2668

X
Xin Pan 已提交
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2688

Q
Qiao Longfei 已提交
2689
    def all_parameters(self):
2690
        return list(self.iter_parameters())
2691

2692
    def iter_parameters(self):
M
minqiyang 已提交
2693
        return (item[1] for item in six.iteritems(self.vars)
2694
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2695

Y
Yu Yang 已提交
2696
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2697 2698 2699
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2700 2701 2702
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2703
        return var
Y
Yu Yang 已提交
2704

Q
Qiao Longfei 已提交
2705 2706 2707
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2708
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2709 2710
        """
        Rename variable in vars and ops' inputs and outputs
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2723
        """
M
minqiyang 已提交
2724 2725
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2726

T
typhoonzero 已提交
2727
        if not self.has_var(name):
2728
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2729 2730
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2731
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2732 2733 2734 2735 2736 2737
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2738
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2739 2740 2741 2742
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2743
        orig_var_type = v.type
M
minqiyang 已提交
2744
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2745
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2746
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2747
        if var_type == "Parameter":
L
Leo Chen 已提交
2748 2749
            if in_dygraph_mode():
                var = ParamBase(
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2760 2761
                var = Parameter(
                    self,
2762 2763 2764 2765 2766 2767 2768 2769 2770
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2771
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2772 2773
            var = Variable(
                self,
T
typhoonzero 已提交
2774
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2775 2776 2777 2778
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2779
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2780 2781 2782
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2783
        self._sync_with_cpp()
2784
        return var
T
typhoonzero 已提交
2785

W
Wu Yi 已提交
2786 2787
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2788
        self.desc._remove_var(cpt.to_bytes(name))
2789 2790
        del self.vars[name]

Y
Yu Yang 已提交
2791 2792
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2793
        param = None
L
Leo Chen 已提交
2794
        if in_dygraph_mode():
2795
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2796 2797
        else:
            param = Parameter(global_block, *args, **kwargs)
2798
        if 'initializer' in kwargs:
2799 2800 2801 2802 2803

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2804 2805 2806 2807 2808
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2820
                # TODO already inited, do nothing, should log a warning
2821 2822 2823
                pass
            else:
                initializer(param, self)
2824
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2825
        return param
Y
Yu Yang 已提交
2826

Y
Yu Yang 已提交
2827
    def append_op(self, *args, **kwargs):
2828 2829 2830 2831 2832 2833
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2834
        if in_dygraph_mode():
2835
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2836
            type = kwargs.get("type", None)
2837 2838 2839
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2840
                type=type,
M
minqiyang 已提交
2841 2842
                inputs=None,
                outputs=None,
2843
                attrs=attrs)
2844

M
minqiyang 已提交
2845 2846 2847
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2848
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2849 2850

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2851
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2852 2853
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2854
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2855
        else:
2856 2857 2858 2859 2860 2861 2862 2863 2864
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2865
            self.ops.append(op)
M
minqiyang 已提交
2866

2867 2868
        return op

W
Wu Yi 已提交
2869
    def _insert_op(self, index, *args, **kwargs):
2870 2871 2872 2873 2874 2875 2876 2877 2878
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2879 2880
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2881 2882 2883 2884
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2885
    def _remove_op(self, index):
2886 2887 2888 2889 2890 2891 2892 2893 2894
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2895 2896
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2897 2898
        del self.ops[index]

W
Wu Yi 已提交
2899
    def _slice_ops(self, start, end):
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2910
        return self.ops[start:end]
Y
Yancey1989 已提交
2911

W
Wu Yi 已提交
2912
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2913
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2914 2915
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2916
            op = Operator(
J
Jiabin Yang 已提交
2917
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2918

J
Jiabin Yang 已提交
2919
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2920
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2921 2922
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2923
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2924
        else:
2925 2926 2927 2928 2929 2930 2931 2932
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2933
            self.ops.insert(0, op)
2934

Y
Yu Yang 已提交
2935 2936
        return op

W
Wu Yi 已提交
2937
    def _sync_with_cpp(self):
2938
        """
2939 2940
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2941
        """
Q
Qiao Longfei 已提交
2942 2943 2944 2945 2946
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2947
        # sync variables removed from c++ end
2948
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2949
            if not self.desc.find_var(cpt.to_bytes(var)):
2950 2951
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2952
        # sync operators from cpp
2953 2954 2955 2956
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2973 2974 2975 2976 2977

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2978
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2979 2980 2981 2982 2983 2984 2985

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2999 3000 3001 3002
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3003
    def _copy_param_info_from(self, other):
3004
        """
3005 3006
        Copy the information of parameters from the other block.

3007
        Args:
3008 3009 3010 3011 3012
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3013 3014 3015 3016 3017

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3018 3019
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3020
        for p in other.iter_parameters():
3021 3022 3023
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3024 3025
                # if the Parameter is pruned, v may be None
                continue
3026
            assert isinstance(v, Variable)
3027
            new_p = None
L
Leo Chen 已提交
3028 3029
            if in_dygraph_mode():
                new_p = ParamBase(
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3041 3042
                new_p = Parameter(
                    block=self,
3043 3044 3045
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3046 3047
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3048 3049 3050 3051 3052 3053
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3054 3055
            self.vars[new_p.name] = new_p

3056
    def _clone_variable(self, var, force_persistable=True):
3057 3058
        """
        Clone a variable into current block.
3059

3060 3061
        Args:
            var: the variable to be cloned.
3062 3063 3064
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3065 3066

        Returns:
3067
            Variable: the new  variable cloned from 'var' in current block.
3068 3069
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3070 3071 3072 3073 3074
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3075 3076
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3077
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3078 3079 3080 3081 3082 3083
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3084
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3085 3086
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3087 3088 3089 3090 3091 3092 3093
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3094
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3095 3096
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3097
        return ret_var
3098

Y
Yu Yang 已提交
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3195
    def remove_input_by_id(self, node_id):
3196 3197 3198 3199 3200 3201
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3202
        self.node.remove_input(node_id)
3203

3204
    def remove_input(self, node):
3205 3206 3207 3208
        """
        Remove a node from inputs.

        Args:
3209
            node(IrNode): the node being removed.
3210
        """
3211
        self.node.remove_input(node.node)
3212

3213
    def append_input(self, node):
3214 3215 3216 3217
        """
        Append a node in inputs.

        Args:
3218
            node(IrNode): the node being appended.
3219
        """
3220
        self.node.append_input(node.node)
3221 3222 3223 3224 3225 3226 3227 3228

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3229
    def remove_output_by_id(self, node_id):
3230 3231 3232 3233 3234 3235
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3236
        self.node.remove_output(node_id)
3237

3238
    def remove_output(self, node):
3239 3240 3241 3242
        """
        Remove a node from outputs.

        Args:
3243
            node(IrNode): the node being removed.
3244
        """
3245
        self.node.remove_output(node.node)
3246

3247
    def append_output(self, node):
3248 3249 3250 3251
        """
        Append a node in outputs.

        Args:
3252
            node(IrNode): the node being appended.
3253
        """
3254
        self.node.append_output(node.node)
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3302
            "The node variable description can not be None."
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3313
            "The node variable description can not be None."
3314 3315
        return self.node.var().persistable()

3316 3317 3318 3319 3320 3321 3322 3323
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3324
            "The node variable description can not be None."
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3335
            "The node variable description can not be None."
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3346
            "The node variable description can not be None."
3347 3348
        return self.node.var().shape()

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3396
            "The node operator description can not be None."
3397 3398
        self.node.op()._rename_input(old_input_name, new_input_name)

3399 3400 3401 3402 3403 3404 3405 3406 3407
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3408
            "The node operator description can not be None."
3409 3410
        self.node.op()._rename_output(old_output_name, new_output_name)

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3422
            "The node operator description can not be None."
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3436
            "The node operator description can not be None."
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3447
            "The node operator description can not be None."
3448 3449
        return self.node.op().set_type(new_type)

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3465
            "The node operator description can not be None."
3466 3467 3468 3469
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3470
                all(isinstance(v, Block) for v in val):
3471 3472
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3473
                isinstance(val, core.ProgramDesc):
3474 3475 3476 3477
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3478 3479 3480 3481 3482 3483 3484 3485
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3486
            "The node operator description can not be None."
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3497
            "The node operator description can not be None."
3498 3499
        return self.node.op().output_arg_names()

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3521 3522
class IrGraph(object):
    """
3523
    Python IrGraph. Beneath it is a core.Graph, which is used for
3524
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3525 3526
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3527 3528 3529 3530
    """

    def __init__(self, graph, for_test=False):
        """
3531 3532
        Construct an IrGraph using core.Graph.

3533 3534 3535 3536 3537 3538 3539 3540 3541
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3542 3543 3544 3545
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3546 3547 3548
        Warns:
            The method only clones the graph structure, not its attributes.

3549 3550 3551
        Returns:
            IrGraph: A new and duplicated graph.
        """
3552
        g = self.graph.clone()
3553 3554
        return IrGraph(g, self._for_test)

3555
    def is_test(self):
3556 3557 3558
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3559 3560
        return self._for_test

W
WangZhen 已提交
3561
    def all_nodes(self):
3562 3563 3564
        """
        Return all nodes included in the graph as a set.
        """
3565
        return {IrNode(node) for node in self.graph.nodes()}
3566

3567
    def all_var_nodes(self):
3568 3569 3570
        """
        Return all variable nodes included in the graph as a set.
        """
3571
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3572

3573
    def all_persistable_nodes(self):
3574 3575 3576
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3577 3578 3579 3580 3581
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3582
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3583

3584
    def all_op_nodes(self):
3585 3586 3587
        """
        Return all operator nodes included in the graph as a set.
        """
3588
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3589

3590
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3602
            IrVarNode: the created persistable variable node.
3603
        """
3604 3605 3606 3607 3608
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3609
        return IrVarNode(self.graph.create_var_node(var_desc))
3610 3611

    def create_var_node(self, name, var_type, shape, var_dtype):
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3623
            IrVarNode: the created variable node.
3624 3625
        """

3626 3627 3628 3629
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3630
        return IrVarNode(self.graph.create_var_node(var_desc))
3631

3632 3633 3634 3635 3636 3637
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3638
    def create_var_node_from_desc(self, var_desc):
3639 3640 3641 3642 3643 3644 3645 3646
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3647
            IrVarNode: the created variable node.
3648
        """
3649
        return IrVarNode(self.graph.create_var_node(var_desc))
3650 3651

    def create_op_node(self, op_type, attrs, inputs, outputs):
3652 3653 3654 3655 3656 3657 3658
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3659
            outputs(dict): the outputs of the operator node.
3660 3661

        Returns:
3662
            IrOpNode: the created operator node.
3663
        """
3664 3665
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3666
        for attr, value in six.iteritems(attrs):
3667
            self._update_desc_attr(op_desc, attr, value)
3668
        for input_name, var_nodes in six.iteritems(inputs):
3669 3670 3671 3672
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3673
        for output_name, var_nodes in six.iteritems(outputs):
3674 3675 3676 3677
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3678
        return IrOpNode(self.graph.create_op_node(op_desc))
3679 3680

    def create_op_node_from_desc(self, op_desc):
3681 3682 3683 3684 3685 3686 3687
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3688
            IrOpNode: the created operator node.
3689
        """
3690
        return IrOpNode(self.graph.create_op_node(op_desc))
3691 3692

    def update_input_link(self, old_input_node, new_input_node, op_node):
3693 3694 3695 3696
        """
        Update the input's link of a operator node.

        Args:
3697 3698 3699
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3700
        """
3701
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3702 3703
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3704 3705 3706 3707
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3708
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3709

3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3720 3721
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3722 3723 3724 3725 3726 3727
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3728
    def link_to(self, node_in, node_out):
3729 3730 3731 3732
        """
        Connect two nodes.

        Args:
3733 3734
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3735
        """
3736
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3737
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3738 3739
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3740 3741

    def safe_remove_nodes(self, remove_nodes):
3742 3743 3744 3745 3746 3747 3748
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3749
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3750 3751 3752 3753
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3754 3755
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3756

Z
Zhen Wang 已提交
3757 3758 3759 3760 3761 3762 3763 3764
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3765
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3766 3767 3768 3769
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3770
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3771 3772 3773
                        ]
                    else:
                        var_nodes[each_var_name].append(
3774 3775
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3776 3777
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3778
    def has_circle(self):
3779 3780 3781 3782 3783 3784
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3785 3786 3787
        return core.has_circle(self.graph)

    def graph_num(self):
3788 3789 3790 3791 3792 3793
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3794 3795 3796
        return core.graph_num(self.graph)

    def topology_sort(self):
3797 3798 3799
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3800
        Notes: the `graph` can not contain a circle.
3801 3802

        Returns:
Z
Zhen Wang 已提交
3803
            list(IrNode): nodes in topology order.
3804
        """
3805
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3806
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3807 3808

    def build_adjacency_list(self):
3809 3810 3811 3812
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3813
            dict{IrNode: set(IrNode)}: the adjacency list.
3814
        """
3815 3816 3817 3818 3819
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3820

3821 3822 3823 3824 3825 3826 3827 3828
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3829
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3830 3831 3832 3833 3834
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3835 3836 3837
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3838
                                          + ' -o ' + pdf_save_path, shell=True)
3839 3840 3841 3842 3843
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3844
        remove_ctr_vars = set()
3845
        if remove_ctr_var:
3846
            for node in self.all_var_nodes():
3847 3848 3849
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3850 3851
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3852 3853
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3854 3855 3856 3857 3858 3859
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3860 3861 3862 3863
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3864 3865
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3866 3867 3868 3869 3870 3871 3872
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3873 3874 3875
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3876
        WARN: When the graph includes backward operator nodes, the
3877 3878 3879 3880 3881 3882
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3883
        convert_pass = core.get_pass('graph_to_program_pass')
3884 3885
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3886 3887 3888 3889
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3917
class Program(object):
D
dzhwinter 已提交
3918
    """
3919 3920
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3921
    it will contain nested block.
3922

J
Jiabin Yang 已提交
3923 3924 3925
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3926

J
Jiabin Yang 已提交
3927
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3928
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3929 3930 3931 3932 3933 3934 3935
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3936 3937 3938 3939
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3940 3941

    Returns:
J
Jiabin Yang 已提交
3942
        Program: An empty Program.
D
dzhwinter 已提交
3943 3944

    Examples:
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3958 3959 3960

    """

3961 3962
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3963 3964
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3965 3966
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3967
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3968
        self.__op_role_var = []
T
tangwei12 已提交
3969

3970 3971
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3972
        self._is_distributed = False
3973
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3974
        self._is_chief = False
3975 3976 3977
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3978
        self._endpoints = []
3979 3980 3981
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3982
        self._trainers_endpoints = []
3983
        # the distributed lookup table names
T
tangwei12 已提交
3984
        self._distributed_lookup_table = None
3985 3986 3987

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3988 3989
        self._use_lamb = False

3990 3991 3992
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3993

3994 3995 3996
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3997
        self._program_config = None
3998

H
hutuxian 已提交
3999 4000 4001
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4002 4003 4004
        # appending gradients times
        self._appending_grad_times = 0

4005 4006 4007 4008
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4009 4010 4011
        # compiled program, i.e. Graph
        self._graph = None

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4039
    @property
4040
    def _op_role(self):
Y
yuyang18 已提交
4041 4042 4043 4044 4045 4046 4047 4048
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4049
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4050 4051 4052 4053
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4054 4055
        return self._current_role

4056 4057
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4058 4059 4060
        self._current_role = role

    @property
4061
    def _op_role_var(self):
Y
yuyang18 已提交
4062
        """
4063
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4064

4065
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4066 4067 4068

        Notes: This is a very low-level API. Users should not use it directly.
        """
4069
        return self.__op_role_var
Y
yuyang18 已提交
4070

4071
    @signature_safe_contextmanager
4072 4073 4074 4075 4076
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4077 4078 4079 4080
        try:
            yield
        finally:
            self._current_role = tmp_role
4081

S
rename  
sneaxiy 已提交
4082
    @signature_safe_contextmanager
W
Wu Yi 已提交
4083
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4084 4085 4086 4087 4088 4089 4090
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4091
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4092 4093 4094

        Examples:

4095
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4096
            >>> p, g = backward(...)
W
Wu Yi 已提交
4097
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4098 4099
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4100
        tmp_role = self._current_role
4101
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4102

Y
yuyang18 已提交
4103 4104
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4105
        self.__op_role_var = [
4106 4107 4108
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4109 4110 4111 4112 4113
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4114

S
rename  
sneaxiy 已提交
4115
    @signature_safe_contextmanager
X
Xin Pan 已提交
4116
    def _lr_schedule_guard(self, is_with_opt=False):
4117 4118 4119 4120 4121 4122 4123
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4124 4125 4126 4127
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4128 4129 4130

        Examples:

4131
            >>> import paddle.fluid as fluid
4132 4133 4134 4135
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4136 4137

        tmp_role = self._current_role
4138
        tmp_var = self.__op_role_var
4139

4140 4141
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4142 4143
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4144
        # TODO(typhoonzero): how to set target learning rate var
4145
        self.__op_role_var = []
4146 4147 4148 4149 4150
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4151

4152
    def __str__(self):
Y
yuyang18 已提交
4153 4154 4155 4156 4157 4158 4159 4160 4161
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4201
            program_str += '\n'
4202
        return program_str
Y
Yang Yang(Tony) 已提交
4203

F
fengjiayi 已提交
4204 4205 4206
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4207

J
Jiabin Yang 已提交
4208 4209 4210
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4211

J
Jiabin Yang 已提交
4212
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4213

H
haowang101779990 已提交
4214
        Returns:
J
Jiabin Yang 已提交
4215
            str: The debug string describe current Program.
Y
yuyang18 已提交
4216 4217

        Raises:
J
Jiabin Yang 已提交
4218
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4219

4220 4221 4222 4223 4224 4225
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4226 4227
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4228
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4229
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4230
                print("program string without detail: {}".format(prog_string))
4231
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4232
        """
4233 4234 4235 4236 4237 4238 4239 4240 4241
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4242 4243 4244 4245 4246 4247
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4248 4249
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4250 4251
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4252

W
Wu Yi 已提交
4253
    def _get_desc(self):
Y
yuyang18 已提交
4254 4255 4256 4257 4258 4259 4260
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4261 4262
        return self.desc

X
version  
Xin Pan 已提交
4263 4264 4265
    def _version(self):
        return self.desc._version()

4266
    def clone(self, for_test=False):
Y
yuyang18 已提交
4267
        """
4268
        **Notes**:
J
Jiabin Yang 已提交
4269 4270 4271 4272
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4273
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4274

4275
        Create a new Program with forward content of original one when ``for_test=True``.
4276
        Create a new Program as same as the original one when ``for_test=False``.
4277

J
Jiabin Yang 已提交
4278
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4279 4280 4281
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4282

4283 4284
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4285 4286
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4287
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4288

J
Jiabin Yang 已提交
4289
        For Example:
4290
          ::
L
Luo Tao 已提交
4291

4292 4293 4294 4295 4296 4297 4298 4299
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4300

J
Jiabin Yang 已提交
4301
        Args:
4302

4303 4304
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4305

J
Jiabin Yang 已提交
4306
        Returns:
4307
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4308

Y
yuyang18 已提交
4309 4310 4311

        Examples:

J
Jiabin Yang 已提交
4312
        **Notes: The Program's order maybe different after** :code:`clone` **and
4313
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4314
        example we give you an simple method** :code:`print_prog(program)` **to
4315
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4316
        after** :code:`clone`:
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4353 4354 4355

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4356 4357 4358 4359 4360 4361 4362 4363 4364
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4365
                            test_program = train_program.clone(for_test=True)
4366
                    print_prog(test_program)
J
Jiabin Yang 已提交
4367 4368 4369 4370 4371 4372 4373 4374 4375

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4398 4399
                    
                    def network():
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4414 4415 4416
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4417
                    # the test startup program is not used.
4418
                    with fluid.program_guard(test_program_2, startup_program_2):
4419
                        with fluid.unique_name.guard():
4420 4421
                            avg_loss = network()
                    print_prog(test_program_2)
4422 4423

        The two code snippets above will generate and print same programs.
4424
        """
4425 4426 4427 4428 4429

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4430
        pruned_origin_block_id_map = None
4431
        if for_test:
4432 4433 4434 4435 4436 4437 4438 4439 4440
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4441
        else:
4442
            p = Program()
G
gongweibao 已提交
4443 4444
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4445
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4446 4447 4448
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4449 4450

            p._current_role = self._current_role
4451
            p.__op_role_var = self.__op_role_var
4452
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4453

4454 4455
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4456
            p._sync_with_cpp()
4457

W
Wu Yi 已提交
4458
        p._copy_param_info_from(self)
4459
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4460
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4461
        return p
4462

4463
    def _prune(self, targets):
Y
yuyang18 已提交
4464 4465 4466 4467 4468 4469 4470 4471
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4472
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4473 4474 4475 4476
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4477
        """
4478
        return self._prune_with_input([], targets)
4479 4480

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4481
        """
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4492
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4493 4494 4495 4496 4497 4498
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4499 4500 4501 4502
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4503 4504
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4505 4506
        if not isinstance(targets, list):
            targets = [targets]
4507 4508 4509

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4510 4511 4512
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4513

4514 4515 4516 4517
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4518 4519 4520
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4521
                else:
4522 4523 4524
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4525 4526 4527 4528 4529 4530 4531 4532

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4549 4550 4551 4552 4553 4554 4555 4556
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4557

4558
        res = Program()
4559 4560 4561
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4562 4563 4564
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4565
        res._sync_with_cpp()
4566 4567 4568 4569 4570

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4571 4572
        return res

X
Xin Pan 已提交
4573
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4574
        """
F
fengjiayi 已提交
4575 4576 4577 4578 4579
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4580
        3. change the :code:`is_test`
Y
yuyang18 已提交
4581 4582 4583
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4584
        Args:
X
Xin Pan 已提交
4585 4586
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4587

Y
yuyang18 已提交
4588 4589 4590 4591 4592 4593
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4594
        res = Program()
4595
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4596 4597 4598 4599

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4600
        if prune_read_op:
4601 4602 4603 4604 4605 4606 4607 4608 4609
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4610
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4611 4612

        # change all `is_test` attributes to True
M
minqiyang 已提交
4613
        for i in six.moves.range(res.desc.num_blocks()):
4614
            block = res.desc.block(i)
M
minqiyang 已提交
4615
            for j in six.moves.range(block.op_size()):
4616 4617
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4618
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4619 4620 4621
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4622
        res._sync_with_cpp()
4623 4624
        return res

4625 4626
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4627
        """
J
Jiabin Yang 已提交
4628 4629 4630 4631
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4632

4633 4634
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4635

J
Jiabin Yang 已提交
4636
        Args:
Y
yuyang18 已提交
4637

J
Jiabin Yang 已提交
4638
            binary_str_type (str): the binary prootbuf string.
4639

J
Jiabin Yang 已提交
4640 4641
        Returns:
            Program: A deserialized Program.
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4664
        """
4665 4666
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4667
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4668
        p._sync_with_cpp()
4669
        return p
Y
Yu Yang 已提交
4670

4671
    @staticmethod
4672
    def _construct_from_desc(desc):
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4688 4689
    @property
    def random_seed(self):
Y
yuyang18 已提交
4690
        """
J
Jiabin Yang 已提交
4691
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4692 4693
        the random seed from random device.

J
Jiabin Yang 已提交
4694 4695 4696 4697
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4698

4699 4700 4701 4702 4703 4704 4705 4706

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4707
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4708 4709 4710
                print(random_seed)
                ## 0
                ## the default random seed is 0
4711 4712

                # Here we need to set random seed before we use fluid.layers.dropout
4713
                prog.random_seed = 1
4714 4715
                z_var = fluid.layers.dropout(x_var, 0.7)

4716
                print(prog.random_seed)
4717 4718
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4719
        """
D
dzhwinter 已提交
4720 4721
        return self._seed

Q
qiaolongfei 已提交
4722 4723
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4724
        """
4725 4726
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4727 4728 4729 4730
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4731

4732 4733 4734 4735 4736 4737 4738 4739 4740

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4741 4742


Y
yuyang18 已提交
4743
        """
Q
qiaolongfei 已提交
4744 4745
        return self.desc.num_blocks()

D
dzhwinter 已提交
4746 4747 4748
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4749 4750 4751
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4752 4753
        self._seed = seed

Y
Yu Yang 已提交
4754
    def __repr__(self):
4755
        return self.__str__()
4756

Y
Yu Yang 已提交
4757
    def global_block(self):
Y
yuyang18 已提交
4758
        """
J
Jiabin Yang 已提交
4759 4760
        **Notes**:
            **This API has no effect in Dygraph mode**
4761 4762 4763

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4764 4765
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4766

4767 4768 4769 4770 4771 4772 4773 4774 4775

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4776

Y
yuyang18 已提交
4777
        """
Y
Yu Yang 已提交
4778 4779
        return self.blocks[0]

Q
Qiao Longfei 已提交
4780
    def block(self, index):
Y
yuyang18 已提交
4781
        """
J
Jiabin Yang 已提交
4782 4783
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4784

4785 4786
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4787 4788
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4789

J
Jiabin Yang 已提交
4790 4791
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4792 4793 4794 4795 4796 4797 4798 4799 4800

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4801
        """
Q
Qiao Longfei 已提交
4802 4803
        return self.blocks[index]

Y
Yu Yang 已提交
4804
    def current_block(self):
Y
yuyang18 已提交
4805
        """
J
Jiabin Yang 已提交
4806 4807
        **Notes**:
            **This API has no effect in Dygraph mode**
4808

J
Jiabin Yang 已提交
4809 4810
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4811

J
Jiabin Yang 已提交
4812 4813
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4814

4815 4816 4817 4818 4819 4820 4821 4822
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4823
        """
Y
Yu Yang 已提交
4824 4825
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4826
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4827 4828 4829 4830 4831
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4832

Y
yuyang18 已提交
4833 4834 4835 4836 4837
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4838
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4839 4840 4841
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4842 4843 4844 4845
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4846
    def _rollback(self):
Y
yuyang18 已提交
4847 4848 4849 4850 4851
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4852 4853
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4854
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4865 4866 4867
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4868
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4869

W
Wu Yi 已提交
4870
    def _copy_param_info_from(self, other):
4871
        """
4872
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4873

Y
yuyang18 已提交
4874 4875 4876
        Notes: This is a very low level API. Users should not invoke it
        directly.

4877 4878 4879 4880 4881 4882 4883
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4884 4885 4886
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4887

W
Wu Yi 已提交
4888
        self.global_block()._copy_param_info_from(other.global_block())
4889

4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4901 4902 4903
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4904 4905
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4906
        self._parameters_on_pservers = other._parameters_on_pservers
4907
        self._endpoints = other._endpoints
4908
        self._ps_endpoint = other._ps_endpoint
4909 4910
        self._distributed_lookup_table = other._distributed_lookup_table

4911
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4912 4913
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4914

Y
yuyang18 已提交
4915 4916 4917
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4918 4919
        Args:
            other(Program): Other program
4920 4921 4922 4923
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4924 4925 4926 4927 4928

        Returns:
            None
        """
        if not isinstance(other, Program):
4929 4930 4931
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4932

4933 4934 4935 4936 4937
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4938 4939 4940

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4941 4942
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4943
            for var in list(block.vars.values()):
4944 4945 4946 4947 4948 4949 4950
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4951

4952
    def list_vars(self):
Y
yuyang18 已提交
4953
        """
J
Jiabin Yang 已提交
4954
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4955

J
Jiabin Yang 已提交
4956 4957
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4969
        """
4970
        for each_block in self.blocks:
4971
            for each_var in list(each_block.vars.values()):
4972 4973
                yield each_var

4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5032

5033
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5034
class Parameter(Variable):
5035
    """
5036
    Parameter is derived from Variable. A parameter is a persistable
5037
    Variable, and will be updated by optimizers after each iteration.
5038
    The training of a neural network is essentially the updating of
5039 5040
    its parameters.

5041
    Relative to a general Variable, a Parameter has several its own
5042 5043
    member variables:

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5054 5055
    """

5056 5057 5058 5059 5060 5061
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5062 5063 5064 5065 5066
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5067
        if len(shape) == 0:
5068 5069
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5070 5071 5072

        for each in shape:
            if each < 0:
5073 5074 5075
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5076 5077

        Variable.__init__(
5078 5079 5080 5081 5082 5083 5084
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5085 5086 5087 5088
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5089 5090
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5091
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5092

5093 5094
        self.is_distributed = False

F
fengjiayi 已提交
5095
    def __str__(self):
5096
        return self._to_readable_code()
F
fengjiayi 已提交
5097

F
update  
fengjiayi 已提交
5098 5099 5100
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5101

F
update  
fengjiayi 已提交
5102 5103 5104 5105 5106 5107 5108 5109
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5110 5111 5112 5113 5114 5115 5116 5117 5118
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5119 5120 5121 5122 5123 5124
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5125
                               "do_model_average")
F
update  
fengjiayi 已提交
5126
            for attr_name in additional_attr:
5127 5128
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5129 5130
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5131 5132 5133 5134
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5135

5136 5137
class ParamBase(core.VarBase):
    """
5138 5139 5140
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5141 5142 5143
    The training of a neural network is essentially the updating of
    its ParamBase.

5144
    Relative to a general Tensor, a ParamBase has several its own
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5187 5188
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5189 5190 5191 5192 5193 5194 5195 5196

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False
5197
        # self.block = default_main_program().global_block()
5198

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5212
    def __str__(self):
5213
        """
5214
        Convert a ParamBase object to a readable string.
5215

5216
        Returns(str): A readable string.
5217 5218 5219 5220

        Examples:
            .. code-block:: python

5221
                import paddle
5222
                paddle.disable_static()
5223 5224 5225 5226 5227 5228 5229 5230
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5231
                paddle.enable_static()
5232
        """
5233 5234
        return "Parameter containing:\n  {}\n  - stop_gradient: {}".format(
            super(ParamBase, self).__str__(), self.stop_gradient)
5235 5236 5237 5238

    __repr__ = __str__


Y
Yu Yang 已提交
5239
# program is a global instance.
Y
Yu Yang 已提交
5240 5241
_main_program_ = Program()
_startup_program_ = Program()
5242

5243

5244
def default_startup_program():
Y
Yu Yang 已提交
5245
    """
Y
yuyang18 已提交
5246 5247
    Get default/global startup program.

J
Jiabin Yang 已提交
5248 5249 5250
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5251 5252 5253
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5254
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5255

J
Jiabin Yang 已提交
5256
    Returns: current default startup :ref:`api_fluid_Program`
5257

J
Jiabin Yang 已提交
5258
    Returns type: :ref:`api_fluid_Program`
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5274
    """
Y
Yu Yang 已提交
5275
    return _startup_program_
5276

5277

5278
def default_main_program():
Y
Yu Yang 已提交
5279
    """
5280 5281 5282 5283 5284
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5285

5286 5287
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5288
    :code:`default_main_program` when the program is not specified.
5289

5290 5291
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5292
    Returns:
5293
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5294 5295 5296 5297 5298

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5299

5300
            # Sample Network:
5301 5302
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5322
            #print the number of blocks in the program, 1 in this case
5323
            print(fluid.default_main_program().num_blocks)
5324 5325

            #print the description of variable 'image'
5326
            print(fluid.default_main_program().blocks[0].var('image'))
5327

Y
Yu Yang 已提交
5328
    """
Y
Yu Yang 已提交
5329
    return _main_program_
Y
Yu Yang 已提交
5330 5331 5332 5333 5334


def switch_main_program(program):
    """
    Switch the main program to a new program.
5335

Y
Yu Yang 已提交
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5350
    Switch the startup program to a new program
Y
Yu Yang 已提交
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5363
@signature_safe_contextmanager
Y
Yu Yang 已提交
5364 5365
def program_guard(main_program, startup_program=None):
    """
5366 5367
    :api_attr: Static Graph

5368 5369
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
5370
    variables to the new main programs.
5371

G
guofei 已提交
5372 5373 5374 5375 5376 5377 5378
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5379
    Examples:
5380 5381 5382
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
5383

5384 5385 5386
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
5387
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
5388
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5389 5390 5391

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5392

Y
Yu Yang 已提交
5393
    Examples:
5394
       .. code-block:: python
Y
yuyang18 已提交
5395

5396 5397 5398 5399 5400
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
5401 5402
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
5403
    """
5404 5405
    from .data_feeder import check_type
    check_type(main_program, 'main_program', Program, 'fluid.program_guard')
Y
Yu Yang 已提交
5406 5407
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5408 5409
        check_type(startup_program, 'startup_program', Program,
                   'fluid.program_guard')
Y
Yu Yang 已提交
5410
        startup_program = switch_startup_program(startup_program)
5411 5412 5413 5414 5415 5416
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5417 5418


W
Wu Yi 已提交
5419
def _get_var(name, program=None):
X
xuwei06 已提交
5420
    """
Y
yuyang18 已提交
5421
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5422

X
xuwei06 已提交
5423 5424 5425
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5426
        If None, default_global_program() will be used.
X
xuwei06 已提交
5427 5428 5429 5430 5431 5432 5433

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5434
    assert isinstance(program, Program)
X
xuwei06 已提交
5435 5436

    return program.global_block().var(name)
5437 5438


S
rename  
sneaxiy 已提交
5439
@signature_safe_contextmanager
L
lujun 已提交
5440 5441 5442 5443
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5444
    core._switch_tracer(tracer)
M
minqiyang 已提交
5445

5446 5447 5448 5449 5450
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5451 5452


S
rename  
sneaxiy 已提交
5453
@signature_safe_contextmanager
L
lujun 已提交
5454
def _dygraph_place_guard(place):
5455 5456 5457
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5458

5459 5460 5461
    try:
        yield
    finally:
5462
        _global_expected_place_ = tmp_place
5463 5464 5465 5466


def load_op_library(lib_filename):
    """
5467 5468
    :api_attr: Static Graph
    
5469 5470 5471
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5472
    Please note, the type of custom operators can't have the same type
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5539 5540 5541 5542 5543
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5544 5545 5546 5547
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5548 5549
    if index:
        device = ":".join([device, index])
5550
    pre_device = switch_device(device)
5551 5552 5553 5554
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value