framework.py 47.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18

Y
Yu Yang 已提交
19
import numpy as np
Q
qiaolongfei 已提交
20

21
import proto.framework_pb2 as framework_pb2
Q
qiaolongfei 已提交
22
from . import core
Y
Yu Yang 已提交
23
import unique_name
Y
Yu Yang 已提交
24

25
__all__ = [
26 27 28 29 30 31 32 33 34
    'Block',
    'Variable',
    'Program',
    'Operator',
    'default_startup_program',
    'default_main_program',
    'program_guard',
    'switch_startup_program',
    'switch_main_program',
X
xuwei06 已提交
35
    'get_var',
36
]
Y
Yu Yang 已提交
37

Q
qiaolongfei 已提交
38 39 40 41 42 43 44 45 46 47 48 49
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
    return gradient name for a certain var name
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
50

51
def convert_np_dtype_to_dtype_(np_dtype):
52 53 54 55 56
    """
    Convert the data type in numpy to the data type in Paddle
    Args:
        np_dtype(np.dtype): the data type in numpy

57
    Returns(core.VarDesc.VarType): the data type in Paddle
58 59

    """
60 61
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
62
        return core.VarDesc.VarType.FP32
63
    elif dtype == np.float64:
64
        return core.VarDesc.VarType.FP64
65
    elif dtype == np.float16:
66
        return core.VarDesc.VarType.FP16
67
    elif dtype == np.int32:
68
        return core.VarDesc.VarType.INT32
69
    elif dtype == np.int16:
70
        return core.VarDesc.VarType.INT16
71
    elif dtype == np.int64:
72
        return core.VarDesc.VarType.INT64
73
    elif dtype == np.bool:
74
        return core.VarDesc.VarType.BOOL
75 76
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
77 78
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
79 80 81 82 83
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
84 85 86
    """
    Check the data type is floating or not.
    Args:
87
        dtype(np.dtype|core.VarDesc.VarType): data type.
88 89 90 91 92
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
93
    if not isinstance(dtype, core.VarDesc.VarType):
94 95
        dtype = convert_np_dtype_to_dtype_(dtype)

96 97 98 99
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
100 101


Y
Yang Yang(Tony) 已提交
102
def _debug_string_(proto, throw_on_error=True):
103 104 105 106 107 108 109 110 111 112 113
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
114
    error_fields = list()
Y
Yang Yang(Tony) 已提交
115
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
116 117
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
118 119 120
    return proto.__str__()


Y
Yu Yang 已提交
121
class Variable(object):
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    """
    Python variable. Every input and output of an operator is a variable. Every
    variable belongs to a block. The variable has a name and two variables in
    different blocks could have the same name.

    There are many kinds of variables. Please reference the framework.proto for
    details.

    Notes: The constructor of Variable should not be invoked directly. Please
    use `Block.create_var` to create a variable.

    >>> cur_program = Program()
    >>> cur_block = cur_program.current_block()
    >>> new_variable = cur_block.create_var(
    >>>                    name="X", shape=[-1, 23, 48], dtype='float32')

    Args:
        block(Block): The associated block. It will be passed by
            `Block.create_var` automatically.
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
        shape(tuple|list|None): The shape of variable. -1 means the batch size.
            Some kinds of variable do not contain shape, just set it to None.
145
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of variable.
146
        lod_level(int): The level of lod tensor. 0 means it is not a time
147
            series data.
148 149
        capacity(int): The capacity of Channel variable. Ignored
            for other types.
150 151 152 153 154 155
        persistable(bool): True if the variable should be saved as check point.
            Defaults to False.
        stop_gradient(bool): True if the variable will stop to calculate
            gradients when backward. Defaults to False.
    """

Y
Yu Yang 已提交
156 157
    def __init__(self,
                 block,
Y
Yu Yang 已提交
158
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
159 160 161 162
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
163
                 capacity=None,
Q
QI JUN 已提交
164
                 persistable=None,
F
fengjiayi 已提交
165
                 error_clip=None,
Y
Yu Yang 已提交
166
                 stop_gradient=False,
F
fengjiayi 已提交
167
                 is_data=False,
Y
Yu Yang 已提交
168
                 **kwargs):
Y
Yu Yang 已提交
169
        self.block = block
F
fengjiayi 已提交
170
        self.error_clip = error_clip
Y
Yu Yang 已提交
171 172

        if name is None:
Y
Yu Yang 已提交
173
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
174 175 176 177
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
178
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
179
            is_new_var = True
Y
Yu Yang 已提交
180

Y
Yu Yang 已提交
181 182 183 184 185 186 187 188
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
189
        if shape is not None:
Y
Yu Yang 已提交
190
            if is_new_var:
191
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
192 193 194 195 196 197 198 199
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
200
        if dtype is not None:
201
            if not isinstance(dtype, core.VarDesc.VarType):
202
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
203
            if is_new_var:
F
fengjiayi 已提交
204
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
205
            else:
F
fengjiayi 已提交
206
                old_dtype = self.dtype
Q
QI JUN 已提交
207
                if dtype != old_dtype:
Y
Yu Yang 已提交
208 209 210 211 212
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
213 214

        if lod_level is not None:
Y
Yu Yang 已提交
215
            if is_new_var:
216
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
217 218 219 220 221 222 223
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
224 225 226 227 228 229 230 231 232 233 234
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

235 236 237 238 239 240 241 242
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
243
        self.block.vars[name] = self
Y
Yu Yang 已提交
244
        self.op = None
Y
Yu Yang 已提交
245
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
246
        self.is_data = is_data
Y
Yu Yang 已提交
247

248
    def __str__(self):
Y
Yang Yang(Tony) 已提交
249 250
        return self.to_string(True)

F
update  
fengjiayi 已提交
251
    def to_string(self, throw_on_error, with_details=False):
252 253 254 255 256 257
        """
        Get debug string.

        Args:
            throw_on_error(bool): True if raise an exception when self is not
                intialized.
F
update  
fengjiayi 已提交
258 259
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True
260 261 262 263

        Returns(str): The debug string.

        """
F
update  
fengjiayi 已提交
264 265
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
266 267
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
F
update  
fengjiayi 已提交
268 269 270 271 272 273 274
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        return res_str
275 276 277

    __repr__ = __str__

278 279 280
    def set_desc(self, input):
        self.desc = input

281 282 283 284
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
285 286 287 288
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
289 290
    @property
    def name(self):
291
        return self.desc.name()
Y
Yu Yang 已提交
292

T
typhoonzero 已提交
293 294 295 296
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
297 298 299
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
300
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
301 302

    @property
F
fengjiayi 已提交
303 304
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
305 306 307

    @property
    def lod_level(self):
308
        return self.desc.lod_level()
Y
Yu Yang 已提交
309

Y
Yu Yang 已提交
310 311 312 313
    @property
    def type(self):
        return self.desc.type()

314 315 316
    def set_error_clip(self, error_clip):
        self.error_clip = error_clip

Y
Yu Yang 已提交
317

F
fengjiayi 已提交
318 319 320
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
321 322 323

    Returns(list): list of OpProto

F
fengjiayi 已提交
324 325 326 327 328 329 330 331 332 333
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
334 335 336 337
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
338 339 340 341 342 343 344 345 346
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
347
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
348 349 350 351 352 353
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
354 355 356 357 358 359 360 361
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
362 363
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
364 365
        return self.op_proto_map[type]

366 367 368 369 370 371 372
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
373

Y
Yu Yang 已提交
374
class Operator(object):
375
    """
376 377
    Python Operator class. The operator represents the build in instructions in a
    Block. Users can use the build in instructions to describe their neural
378 379
    network.
    """
380 381 382 383 384
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
385
        'channel_recv', 'select', 'checkpoint_notify'
T
tangwei12 已提交
386
        , 'gen_nccl_id'
387
    }
388

Y
Yu Yang 已提交
389 390
    def __init__(self,
                 block,
Y
Yu Yang 已提交
391
                 desc,
Y
Yu Yang 已提交
392 393 394 395
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
396 397 398 399 400 401 402 403 404 405 406 407 408 409
        """
        Constructor.

        Notes: The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

        >>> cur_program = Program()
        >>> cur_block = cur_program.current_block()
        >>> # var1 += var2 + var3
        >>> cur_block.append_op(type="sum",
        >>>                     inputs={"X": [var1, var2, var3]},
        >>>                     outputs={"Out": [var1]})

        Args:
C
caoying03 已提交
410 411
            block(Block): The block has the current operator.
            desc(core.OpDesc): The protobuf description.
412 413 414
            type(str): The type of operator.
            inputs(dict): The input dictionary. Key is the input parameter name.
                Value is a list of variables.
C
caoying03 已提交
415 416
            outputs(dict): The output dictionary which has the same format with
                           inputs.
417 418 419 420
            attrs(dict): The attributes dictionary. Key is attribute name. Value
                is the attribute value. The attribute type should be as same as
                the type registered in C++
        """
Y
Yu Yang 已提交
421
        self.block = block
Y
Yu Yang 已提交
422
        self.desc = desc
T
typhoonzero 已提交
423
        self.attrs = attrs
Y
yuyang18 已提交
424 425 426 427 428 429 430 431
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
432 433 434 435 436 437 438 439

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
440

F
fengjiayi 已提交
441 442 443 444 445
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
446
        self.desc.set_type(type)
F
fengjiayi 已提交
447
        proto = OpProtoHolder.instance().get_op_proto(type)
448

Y
Yang Yang(Tony) 已提交
449 450
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
451
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
452 453
                    return True
            return False
Q
QI JUN 已提交
454

Y
Yang Yang(Tony) 已提交
455 456 457 458 459 460 461
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
462 463 464 465
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
466 467
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
468 469 470
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
471 472 473 474
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
475
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
476 477
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
478

Y
Yu Yang 已提交
479
        if outputs is not None:
480 481 482 483 484 485 486
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
487 488
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
489 490
                                 (type, ", ".join(str(e) for e in need),
                                  ", ".join(str(e) for e in given)))
491

F
fengjiayi 已提交
492
            for out_proto in proto.outputs:
493 494 495 496
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
497 498
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
499 500 501 502 503 504
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
505

Y
yuyang18 已提交
506 507
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
508
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
509
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
510
                attr_name = attr.name
Y
yuyang18 已提交
511 512
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
513
                    continue
Y
yuyang18 已提交
514 515 516 517 518
                if isinstance(self.attrs[attr_name], Block):
                    self.desc.set_block_attr(attr_name,
                                             self.attrs[attr_name].desc)
                elif isinstance(self.attrs[attr_name], core.BlockDesc) or \
                        isinstance(self.attrs[attr_name], core.ProgramDesc):
T
typhoonzero 已提交
519
                    self.desc.set_serialized_attr(
Y
yuyang18 已提交
520
                        attr_name, self.attrs[attr_name].serialize_to_string())
Y
Yang Yang(Tony) 已提交
521
                else:
Y
yuyang18 已提交
522
                    self.desc.set_attr(attr_name, self.attrs[attr_name])
523
        self.desc.check_attrs()
524
        if self.has_kernel(type):
Q
QI JUN 已提交
525
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
526
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
527

528 529 530
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
531
    def to_string(self, throw_on_error):
532 533 534 535 536 537 538 539 540
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True

        Returns(str): The debug string.

        """
541 542
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
543 544 545 546
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
547 548 549

    __repr__ = __str__

F
fengjiayi 已提交
550 551 552 553 554
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
555 556 557 558 559 560 561 562 563
        """
        Get input arguments by the input parameter name
        Args:
            name(str): The input parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
564 565
        return self.desc.input(name)

T
typhoonzero 已提交
566 567 568 569 570 571
    def rename_input(self, old_name, new_name):
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
572 573
    @property
    def input_names(self):
574 575 576 577 578
        """
        Get all input parameter names
        Returns(list): return a list of input parameter names

        """
F
fengjiayi 已提交
579 580
        return self.desc.input_names()

T
typhoonzero 已提交
581 582 583 584 585 586 587 588
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
589
    def output(self, name):
590 591 592 593 594 595 596 597 598
        """
        Get output arguments by the output parameter name
        Args:
            name(str): The output parameter name

        Returns(list): return the list of argument names associated with the
            specific parameter name.

        """
F
fengjiayi 已提交
599 600 601 602
        return self.desc.output(name)

    @property
    def output_names(self):
603 604 605 606 607
        """
        Get all output parameter names
        Returns(list): return a list of output parameter names

        """
F
fengjiayi 已提交
608 609
        return self.desc.output_names()

610 611
    @property
    def idx(self):
612 613 614 615 616 617
        """
        Return the array index of current operator.
        Returns(int): The array index in block.ops array
        Raises:
            ValueError: when the operator is not found.
        """
618 619 620 621 622 623
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
624
    def has_attr(self, name):
625 626 627 628 629 630 631 632
        """
        operator has the attribute with name or not.
        Args:
            name(str): the attribute name

        Returns(bool): True if has this attribute.

        """
F
fengjiayi 已提交
633 634 635
        return self.desc.has_attr(name)

    def attr_type(self, name):
636 637 638 639 640 641 642 643
        """
        Get the type of attribute by attribute name
        Args:
            name(str): the attribute name

        Returns(core.AttrType): the attribute type

        """
F
fengjiayi 已提交
644 645
        return self.desc.attr_type(name)

Y
yuyang18 已提交
646 647 648 649
    def set_attr(self, name, val):
        self.attrs[name] = val
        self.desc.set_attr(name, val)

F
fengjiayi 已提交
650 651
    @property
    def attr_names(self):
652 653 654 655 656
        """
        Get all attribute names
        Returns(list): The list of attribute name

        """
F
fengjiayi 已提交
657 658 659
        return self.desc.attr_names()

    def attr(self, name):
660 661 662 663 664 665 666 667 668
        """
        Get attribute by name
        Args:
            name(str): the attribute name

        Returns(bool|int|str|float|list): The attribute value. The return value
            can be any valid attribute type.

        """
F
fengjiayi 已提交
669
        return self.desc.attr(name)
Y
Yu Yang 已提交
670

F
fengjiayi 已提交
671
    def block_attr(self, name):
672 673 674 675 676 677 678 679
        """
        Get the block attribute by name
        Args:
            name(str): the attribute name

        Returns(int): the block index

        """
F
fengjiayi 已提交
680
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
681

J
JiayiFeng 已提交
682
    def all_attrs(self):
F
fengjiayi 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695
        """
        Get the attribute dict
        Returns(dict): The Operator's attribute dict
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
696

Y
Yu Yang 已提交
697 698
class Block(object):
    def __init__(self, program, idx):
Y
Yu Yang 已提交
699
        self.desc = program.desc.block(idx)
700
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
701
        self.ops = list()  # operator list
Y
Yu Yang 已提交
702
        self.program = program
703
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
704

705
    def __str__(self):
Y
Yang Yang(Tony) 已提交
706 707
        return self.to_string(True)

F
fengjiayi 已提交
708 709 710 711 712 713
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
F
update  
fengjiayi 已提交
714 715
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True
F
fengjiayi 已提交
716 717 718 719 720 721 722

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
723
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
724 725 726
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
            for var in self.vars.itervalues():
F
fengjiayi 已提交
727
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
728
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
729
            for op in self.ops:
F
fengjiayi 已提交
730 731
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
732 733 734 735 736 737
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.BlockDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
738 739 740

    __repr__ = __str__

Y
Yu Yang 已提交
741 742
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
743
        return self.desc.parent
Y
Yu Yang 已提交
744

Y
Yu Yang 已提交
745 746 747 748 749 750 751
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

    def set_forward_block_idx(self, idx):
        self.desc.set_forward_block_idx(idx)

Y
Yu Yang 已提交
752 753
    @property
    def idx(self):
Y
Yu Yang 已提交
754
        return self.desc.id
Y
Yu Yang 已提交
755

Q
Qiao Longfei 已提交
756
    def var(self, name):
Y
Yu Yang 已提交
757
        if not isinstance(name, basestring):
758 759 760
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
761 762
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
763
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
764
        return v
Q
Qiao Longfei 已提交
765

F
fengjiayi 已提交
766
    def var_recursive(self, name):
Y
Yu Yang 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
793

Q
Qiao Longfei 已提交
794
    def all_parameters(self):
795 796 797 798 799
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
800

Y
Yu Yang 已提交
801
    def create_var(self, *args, **kwargs):
802
        var = Variable(block=self, *args, **kwargs)
803 804
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
805
        return var
Y
Yu Yang 已提交
806

Q
Qiao Longfei 已提交
807 808 809
    def has_var(self, name):
        return name in self.vars

T
typhoonzero 已提交
810 811 812 813 814
    def rename_var(self, name, new_name):
        """
        Rename variable in vars and ops' inputs and outputs
        """
        if not self.has_var(name):
815
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
816 817
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
818
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
819 820 821 822 823 824 825
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
826
            var_type = "Variable"
T
wip  
typhoonzero 已提交
827 828 829 830
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
831
        orig_var_type = v.type
T
typhoonzero 已提交
832
        self.desc.rename_var(name, new_name)
T
typhoonzero 已提交
833
        # NOTE: v is destroyed by C++ after calling rename_var.
T
wip  
typhoonzero 已提交
834
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
835
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
836 837 838 839
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
840
                type=orig_var_type,
T
wip  
typhoonzero 已提交
841 842 843 844 845 846 847
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
848
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
849 850
            var = Variable(
                self,
T
typhoonzero 已提交
851
                type=orig_var_type,
T
wip  
typhoonzero 已提交
852 853 854 855 856 857 858 859
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

        # rename the python side, sync_with_cpp will only add
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
T
typhoonzero 已提交
860
        self.sync_with_cpp()
861
        return var
T
typhoonzero 已提交
862

863 864 865 866 867
    def remove_var(self, name):
        self.sync_with_cpp()
        self.desc.remove_var(name)
        del self.vars[name]

Y
Yu Yang 已提交
868 869
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
870
        param = Parameter(global_block, *args, **kwargs)
871 872
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
873
        return param
Y
Yu Yang 已提交
874

Y
Yu Yang 已提交
875
    def append_op(self, *args, **kwargs):
Y
Yu Yang 已提交
876
        op_desc = self.desc.append_op()
877
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
878 879 880
        self.ops.append(op)
        return op

Q
qiaolongfei 已提交
881 882 883 884 885 886 887
    def insert_op(self, index, *args, **kwargs):
        self.sync_with_cpp()
        op_desc = self.desc.insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

888 889 890 891 892
    def remove_op(self, index):
        self.sync_with_cpp()
        self.desc.remove_op(index, index + 1)
        del self.ops[index]

Y
Yancey1989 已提交
893
    def slice_ops(self, start, end):
Q
qiaolongfei 已提交
894
        return self.ops[start:end]
Y
Yancey1989 已提交
895

Y
Yu Yang 已提交
896
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
897 898
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
899
        self.ops.insert(0, op)
Y
Yu Yang 已提交
900 901
        return op

Q
Qiao Longfei 已提交
902
    def sync_with_cpp(self):
903
        """
G
gongweibao 已提交
904
        Sync from the desc on the c++ end.
905 906 907

        This method is used to synchronize the c++ desc instance generated by backward.
        """
Q
Qiao Longfei 已提交
908 909 910 911 912
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

913 914 915 916 917
        # sync variables removed from c++ end
        for var in self.vars.keys():
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
918
        # sync operators from cpp
919 920 921 922
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
939 940 941 942 943

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
944
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
945 946 947 948 949 950 951

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

952 953 954 955 956 957 958 959 960 961 962 963 964
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
965 966 967 968
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

969 970
    def copy_param_info_from(self, other):
        """
971
        Copy the information of parameters from the other block
972
        Args:
973
            other(Block): the other block
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
997
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
998
                error_clip=p.error_clip,
999 1000 1001
                name=v.name)
            self.vars[new_p.name] = new_p

1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    def clone_variable(self, var):
        """
        Clone a variable into current block.
        Args:
            var: the variable to be cloned.

        Returns:
            The new  variable cloned from 'var' in current block.
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1012 1013 1014 1015 1016
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1017 1018 1019 1020 1021 1022
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1023 1024
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1025 1026 1027 1028 1029 1030 1031
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1032 1033
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1034
        return ret_var
1035

Y
Yu Yang 已提交
1036 1037

class Program(object):
D
dzhwinter 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
    default_main_program run in every minibatch and adjust the weights.

    Args:
        None

    Returns:
        Python Program

    Examples:
       .. code-block:: python

         main_program = Program()
         startup_program = Program()
         with fluid.program_guard(main_program=main_program, startup_program=startup_program):
            fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
            fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
            fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")

    """

1069 1070
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1071 1072
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1073
        self._seed = 0
Y
yuyang18 已提交
1074
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1075
        self._op_role_var = []
Y
yuyang18 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

    @property
    def op_role(self):
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1091
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1092 1093 1094 1095 1096

    @contextlib.contextmanager
    def optimized_guard(self, var):
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
Y
yuyang18 已提交
1097
        self._op_role_var = [var.name if isinstance(var, Variable) else var]
Y
yuyang18 已提交
1098
        yield
Y
yuyang18 已提交
1099
        self._op_role_var = []
Y
yuyang18 已提交
1100
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1101

1102
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1103 1104
        return self.to_string(True)

F
fengjiayi 已提交
1105 1106 1107 1108 1109 1110
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
F
update  
fengjiayi 已提交
1111 1112
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True
F
fengjiayi 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1128

1129 1130 1131
    def get_desc(self):
        return self.desc

1132 1133
    def clone(self, for_test=False):
        """Clone the Program object
D
dzhwinter 已提交
1134 1135
        Args:
           for_test(bool): indicate whether clone for test.
1136 1137

        Set for_test to False when we want to clone the program for training.
1138
        Set for_test to True when we want to clone the program for testing.
1139 1140 1141 1142 1143

        Args:
            for_test(bool): Some operators, such as batch_norm and drop_out ops,
                behave differently in training and testing. If for_test is True,
                the is_test attributes in these operators will be set to True for
1144 1145
                testing purposes, otherwise, they remain unchanged.

D
dzhwinter 已提交
1146 1147 1148
        Returns:
            Program: The cloned Program object.

1149 1150
        """
        if for_test:
1151
            p = self.inference_optimize()
1152
        else:
1153
            p = Program()
1154
            p.desc = core.ProgramDesc(self.desc)
1155 1156 1157
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
            p.sync_with_cpp()

1158
        p.copy_param_info_from(self)
F
fengjiayi 已提交
1159
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1160
        return p
1161

1162 1163 1164 1165 1166 1167 1168
    def prune(self, targets):
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1169 1170
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1171
                    # and we need to find the current op that generate this
1172 1173 1174 1175 1176 1177 1178 1179
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1180
                    t = t.op
1181 1182 1183 1184
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1185
                else:
1186 1187
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1188 1189 1190 1191 1192 1193 1194 1195

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1196
    def inference_optimize(self):
1197 1198
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1199
        res = Program()
1200 1201 1202 1203 1204 1205 1206
        res.desc = core.ProgramDesc(self.desc)
        for i in xrange(res.desc.num_blocks()):
            block = res.desc.block(i)
            for j in xrange(block.op_size()):
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1207 1208 1209 1210
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1211 1212 1213 1214
    @staticmethod
    def parse_from_string(binary_str):
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1215
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
1216 1217
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
1218

D
dzhwinter 已提交
1219 1220 1221 1222
    @property
    def random_seed(self):
        return self._seed

Q
qiaolongfei 已提交
1223 1224 1225 1226
    @property
    def num_blocks(self):
        return self.desc.num_blocks()

D
dzhwinter 已提交
1227 1228 1229 1230 1231 1232
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1233 1234
    def __repr__(self):
        return str(self)
1235

Y
Yu Yang 已提交
1236 1237 1238
    def global_block(self):
        return self.blocks[0]

Q
Qiao Longfei 已提交
1239 1240 1241
    def block(self, index):
        return self.blocks[index]

Y
Yu Yang 已提交
1242 1243 1244
    def current_block(self):
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1245
    def create_block(self, parent_idx=None):
Y
Yu Yang 已提交
1246
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1247 1248 1249
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1250 1251 1252 1253 1254 1255 1256
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
1257 1258 1259 1260 1261 1262
    def sync_with_cpp(self):
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

1263 1264
    def copy_param_info_from(self, other):
        """
1265
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

F
fengjiayi 已提交
1282 1283 1284
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1285

F
fengjiayi 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        for var in other.global_block().vars.itervalues():
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1303 1304 1305 1306 1307
    def list_vars(self):
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
1308

Y
Yu Yang 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
class Parameter(Variable):
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1320 1321 1322

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1323 1324 1325 1326
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1327 1328
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1329
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1330

W
wanghaoshuang 已提交
1331
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1332

F
fengjiayi 已提交
1333 1334 1335
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1336 1337 1338
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1339

F
update  
fengjiayi 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1354
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1355 1356 1357 1358 1359
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1360 1361 1362 1363
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1364

Y
Yu Yang 已提交
1365
# program is a global instance.
Y
Yu Yang 已提交
1366 1367
_main_program_ = Program()
_startup_program_ = Program()
1368

1369

1370
def default_startup_program():
Y
Yu Yang 已提交
1371 1372 1373
    """
    Get default startup program. In startup program, Paddle will initialize
    parameters, initialize nccl handle, etc.
1374

Y
Yu Yang 已提交
1375 1376 1377
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1378
    return _startup_program_
1379

1380

1381
def default_main_program():
Y
Yu Yang 已提交
1382 1383
    """
    Get default main program. The main program is used for training or testing.
1384

Y
Yu Yang 已提交
1385 1386 1387
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1388
    return _main_program_
Y
Yu Yang 已提交
1389 1390 1391 1392 1393


def switch_main_program(program):
    """
    Switch the main program to a new program.
1394

Y
Yu Yang 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1409
    Switch the startup program to a new program
Y
Yu Yang 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
    Switch program with `with` statement
1426

Y
Yu Yang 已提交
1427 1428 1429 1430
    Examples:
        >>> with program_guard(Program()):
        >>>   data = fluid.layers.data(...)
        >>>   hidden = fluid.layers.fc(...)
1431

Y
Yu Yang 已提交
1432 1433
    Args:
        main_program(Program): New main program inside `with` statement
1434
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
            None means do not change startup program.

    Returns:
        None
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466


def get_var(name, program=None):
    """
    Get a variable by name from the global block of a program
    Args:
        name(str): name of the variable
        program(Program|None): program object.
             If None, default_global_program() will be used.

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1467
    assert isinstance(program, Program)
X
xuwei06 已提交
1468 1469

    return program.global_block().var(name)