framework.py 245.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
J
jianghaicheng 已提交
50
    'ipu_shard_guard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
J
Jiabin Yang 已提交
56
    '_non_static_mode',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
76
_dygraph_tracer_ = None
J
Jiabin Yang 已提交
77
_in_eager_mode_ = False
78
_global_expected_place_ = None
79
_current_device = None
80
global_prog_seed = 0
81
_current_pipeline_stage = None
82
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
83
_already_patch_varbase = False
84
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

# Some explanation of our execution system 2022.03
# For now we have 3 kinds of execution system, since we refactored dygraph mode to 
# build a fast execution system for dynamic mode. But we can't just remove all legacy
# code once we present the new system for some historical reason. That's why we have 
# these flags.
# 
# 1. _non_static_mode():
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode. 
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
# 
# They have a relation ship as below:
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in 
# dygraph mode means you are not in _in_legacy_dygraph.
# 
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
160 161 162


@signature_safe_contextmanager
J
Jiabin Yang 已提交
163 164 165
def _test_eager_guard(place=None):
    _disable_legacy_dygraph()
    from paddle import _C_ops
166
    _C_ops.switch_to_eager_ops()
167
    global _already_patch_eager_tensor
J
Jiabin Yang 已提交
168 169 170
    global _already_patch_varbase
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase
171 172
    if not _already_patch_eager_tensor:
        monkey_patch_varbase()
173
        monkey_patch_math_varbase()
174
        _already_patch_eager_tensor = True
175
    try:
J
Jiabin Yang 已提交
176
        yield
177
    finally:
J
Jiabin Yang 已提交
178 179 180 181 182
        _enable_legacy_dygraph()
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()
            _already_patch_varbase = True
183
        _C_ops.switch_to_core_ops()
184 185


J
jianghaicheng 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
global_ipu_index = None
global_ipu_stage = None
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
def ipu_shard_guard(index=None, stage=None):
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is None, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
            The sharded model will be computed from small to large. The default value is None, 
            which means no pipelining computation order and run Ops in terms of graph.
    
    **Note**:
    Only if the enable_manual_shard=True, the ‘index’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` . 
    Only if the enable_pipelining=True, the ‘stage’ is able to be set not None. Please refer 
    to :code:`paddle.static.IpuStrategy` .
    A index is allowed to match none stage or a stage. A stage is only allowed to match a new or 
    duplicated index.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


352 353
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
354 355
        assert not _non_static_mode(
        ), "We don't support %s in dynamic graph mode" % func.__name__
356 357 358 359 360 361 362
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
363
        assert _non_static_mode(
364 365 366 367 368 369 370 371
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
372
        assert not _non_static_mode(
373
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
374 375 376 377 378
        return func(*args, **kwargs)

    return __impl__


379 380 381 382 383
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


384 385 386 387 388 389
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
390
# same base class.
391 392 393
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
394 395 396 397 398
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
399 400 401 402

    return __impl__


T
tangwei12 已提交
403 404
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


422 423
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
424
static_only = wrap_decorator(_static_only_)
425
fake_interface_only = wrap_decorator(_fake_interface_only_)
426 427


L
lujun 已提交
428 429
def _dygraph_tracer():
    return _dygraph_tracer_
430

W
Wu Yi 已提交
431

432 433 434 435
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
436
def _current_expected_place():
437 438 439
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
440 441 442 443 444 445 446 447 448 449 450
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
451 452 453 454 455 456 457 458 459 460 461 462
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
463 464 465 466 467 468 469 470 471 472 473 474
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.MLUPlace(0)
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
490
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
491 492


L
Leo Chen 已提交
493 494 495 496
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
497

L
Leo Chen 已提交
498 499 500 501 502 503 504 505 506 507 508 509
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
510
def _cpu_num():
511
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
512 513 514 515 516 517 518 519
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
520
        os.environ['CPU_NUM'] = str(1)
521
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
522 523 524 525 526 527 528 529 530 531
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
532 533


534 535 536 537 538 539 540 541 542
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


543 544 545 546 547 548 549 550 551
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


552 553 554 555 556 557 558 559 560
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_mlu_device_count())
    return device_ids


561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
631 632 633 634
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

635
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
636 637 638 639

    Examples:
        .. code-block:: python

640
            import paddle
641
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
642 643 644 645
    """
    return core.is_compiled_with_cuda()


646 647 648 649 650 651 652 653 654 655
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
656
            support_gpu = paddle.device.is_compiled_with_rocm()
657 658 659 660
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
661
def cuda_places(device_ids=None):
L
lujun 已提交
662
    """
663 664 665 666
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
667
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
668 669

    If :code:`device_ids` is None, environment variable of
670
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
671
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
672
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
673
    If :code:`FLAGS_selected_gpus` is not set, all visible
674
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
675 676

    If :code:`device_ids` is not None, it should be the device
677
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
678
    the returned list would be 
C
Chen Weihang 已提交
679
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
680

681
    Parameters:
682
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
683 684

    Returns:
C
Chen Weihang 已提交
685
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
686 687 688 689

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
690 691
            import paddle
            import paddle.static as static
T
tangwei12 已提交
692

693 694
            # required: gpu
            
C
Chen Weihang 已提交
695 696 697
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
698 699

    """
S
sneaxiy 已提交
700 701 702
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
703
        device_ids = _cuda_ids()
S
sneaxiy 已提交
704 705 706 707 708
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


709 710 711 712
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
713 714 715 716 717 718 719 720 721 722 723
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
724 725 726 727 728 729 730
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
731

732 733
            # required: xpu

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
790
def cpu_places(device_count=None):
L
lujun 已提交
791
    """
C
Chen Weihang 已提交
792
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
793

S
add doc  
sneaxiy 已提交
794 795
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
796 797
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
798 799
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
800

801 802
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
803 804

    Returns:
C
Chen Weihang 已提交
805
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
806 807 808 809

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
810 811
            import paddle
            import paddle.static as static
T
tangwei12 已提交
812

C
Chen Weihang 已提交
813 814 815
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
816 817
    """

S
sneaxiy 已提交
818 819 820 821 822 823
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
824
    """
825
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
826 827 828

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
829 830 831 832
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
833

834 835
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
836 837

    Returns:
838
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
839 840 841 842

    Examples:
        .. code-block:: python

843
            import paddle.fluid as fluid
L
lujun 已提交
844 845 846 847 848
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
849 850 851
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
852 853
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
854 855


856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
def mlu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.
        This function creates a list of :code:`paddle.device.MLUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_mlus` would be checked first. For example, if
        :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
        be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
        If :code:`FLAGS_selected_mlus` is not set, all visible
        mlu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be
        [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
    assert core.is_compiled_with_mlu(), \
        "Not compiled with MLU"
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
924
@signature_safe_contextmanager
925 926
def name_scope(prefix=None):
    """
927 928
    :api_attr: Static Graph

929
    Generate hierarchical name prefix for the operators in Static Graph.
930

T
Tao Luo 已提交
931 932 933
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
934
        Don't use it in dygraph, since it will cause memory leak.
935 936

    Args:
T
Tao Luo 已提交
937
        prefix(str, optional): prefix. Default is none.
938 939 940

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
941

942 943 944
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
945
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
946
             b = a + 1
947
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
948
                c = b * 1
949
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
950
                d = c / 1
951 952 953
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
954 955 956
                g = f - 1

          # Op are created in the default main program.  
957
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
973 974
    """
    # TODO(panyx0718): Only [0-9a-z].
975
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
976
    if _non_static_mode():
L
Leo Chen 已提交
977 978
        yield
    else:
T
tianshuo78520a 已提交
979
        assert prefix, "namescope prefix can not be empty."
980 981
        global _name_scope
        _name_scope = _name_scope.child(prefix)
982 983 984 985
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
986 987 988 989 990 991 992 993 994 995 996 997


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
998 999 1000
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1001 1002 1003 1004


def grad_var_name(var_name):
    """
1005 1006
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1007 1008 1009
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1010

1011
def convert_np_dtype_to_dtype_(np_dtype):
1012 1013
    """
    Convert the data type in numpy to the data type in Paddle
1014

1015
    Args:
1016
        np_dtype(np.dtype): the data type in numpy.
1017

1018 1019
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
1020 1021

    """
1022 1023
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
1024
        return core.VarDesc.VarType.FP32
1025
    elif dtype == np.float64:
1026
        return core.VarDesc.VarType.FP64
1027
    elif dtype == np.float16:
1028
        return core.VarDesc.VarType.FP16
1029
    elif dtype == np.int32:
1030
        return core.VarDesc.VarType.INT32
1031
    elif dtype == np.int16:
1032
        return core.VarDesc.VarType.INT16
1033
    elif dtype == np.int64:
1034
        return core.VarDesc.VarType.INT64
1035
    elif dtype == np.bool:
1036
        return core.VarDesc.VarType.BOOL
1037
    elif dtype == np.uint16:
1038 1039 1040
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1041 1042
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1043 1044
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1045 1046 1047 1048
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1049
    else:
M
minqiyang 已提交
1050
        raise ValueError("Not supported numpy dtype %s" % dtype)
1051 1052 1053


def dtype_is_floating(dtype):
1054 1055 1056
    """
    Check the data type is floating or not.
    Args:
1057
        dtype(np.dtype|core.VarDesc.VarType): data type.
1058 1059 1060 1061 1062
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1063
    if not isinstance(dtype, core.VarDesc.VarType):
1064 1065
        dtype = convert_np_dtype_to_dtype_(dtype)

1066 1067 1068 1069
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
1070 1071


Y
Yang Yang(Tony) 已提交
1072
def _debug_string_(proto, throw_on_error=True):
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1084
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1085
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
1086 1087
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
1088 1089 1090
    return proto.__str__()


1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1101
    if _in_eager_mode_:
1102
        eager_tensor = core.eager.Tensor(
1103 1104 1105 1106 1107 1108
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [], name, type
            if type else core.VarDesc.VarType.LOD_TENSOR, True
            if persistable else False)
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1109 1110 1111 1112 1113
    else:
        return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                            list(shape) if shape else [], name, type
                            if type else core.VarDesc.VarType.LOD_TENSOR, True
                            if persistable else False)
1114 1115 1116 1117 1118 1119 1120


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1121
            return issubclass(t, core.eager.Tensor)
1122
        else:
J
Jiabin Yang 已提交
1123 1124
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1125 1126 1127 1128 1129 1130 1131 1132
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1133
            return issubclass(t, EagerParamBase)
1134
        else:
J
Jiabin Yang 已提交
1135 1136
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1137 1138 1139 1140
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
1141
class Variable(object):
1142
    """
J
Jiabin Yang 已提交
1143
    **Notes**:
1144
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
1145

1146 1147
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
1148 1149 1150
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
1151
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1152 1153
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1154

1155
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1156
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1157

T
tianshuo78520a 已提交
1158
    Most of a Variable's member variables can be set to be None. It mean
1159
    it is not available or will be specified later.
1160

1161
    Examples:
1162 1163
        In Static Graph Mode:

1164 1165
        .. code-block:: python

1166
            import paddle.fluid as fluid
1167
            cur_program = fluid.Program()
1168 1169 1170 1171
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1172

J
Jiabin Yang 已提交
1173
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1174 1175 1176 1177 1178 1179 1180 1181 1182

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1183 1184
    """

Y
Yu Yang 已提交
1185 1186
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1187
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
1188 1189 1190 1191
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1192
                 capacity=None,
Q
QI JUN 已提交
1193
                 persistable=None,
F
fengjiayi 已提交
1194
                 error_clip=None,
Y
Yu Yang 已提交
1195
                 stop_gradient=False,
F
fengjiayi 已提交
1196
                 is_data=False,
H
Huihuang Zheng 已提交
1197
                 need_check_feed=False,
H
hong 已提交
1198
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1199
                 **kwargs):
Y
Yu Yang 已提交
1200 1201
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1202
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1203

Y
Yu Yang 已提交
1204
        if dtype is not None:
1205
            if not isinstance(dtype, core.VarDesc.VarType):
1206
                dtype = convert_np_dtype_to_dtype_(dtype)
1207

S
Steffy-zxf 已提交
1208 1209 1210 1211
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1212 1213
        self.belong_to_optimizer = belong_to_optimizer

1214 1215 1216 1217 1218
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1219

1220 1221 1222
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1223

1224 1225 1226
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1227 1228
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1229 1230
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1231

1232
        if shape is not None:
1233
            if is_new_var:
1234 1235 1236 1237 1238 1239
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1240 1241
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1242 1243 1244 1245 1246 1247 1248
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1249 1250
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1251 1252 1253 1254 1255 1256 1257 1258 1259
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1260 1261
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1262 1263 1264 1265 1266 1267 1268 1269 1270
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1271 1272
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1273 1274
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1275

1276 1277
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1278

1279 1280 1281 1282 1283 1284 1285
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1286

1287 1288
        self.block.vars[name] = self
        self.op = None
1289
        self.stop_gradient = stop_gradient
1290
        self.is_data = is_data
Y
Yu Yang 已提交
1291

1292 1293 1294
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1295 1296
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1297

1298
        Returns:
J
Jiabin Yang 已提交
1299
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1300 1301 1302 1303

        Examples:
            .. code-block:: python

1304
                import paddle
1305

1306 1307 1308 1309
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1310

1311 1312
                # create a detached Variable
                y = x.detach()
1313
        """
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1329

1330
    @fake_interface_only
1331
    def numpy(self):
1332
        """
J
Jiabin Yang 已提交
1333
        **Notes**:
T
tianshuo78520a 已提交
1334
            **This API is ONLY available in Dygraph mode**
1335

J
Jiabin Yang 已提交
1336
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1337 1338 1339 1340 1341

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1342
            ndarray: dtype is same as current Variable
1343 1344 1345 1346 1347 1348

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1349
                from paddle.fluid.dygraph import Linear
1350 1351 1352 1353
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1354
                    linear = Linear(32, 64)
1355
                    data = to_variable(data)
1356
                    x = linear(data)
1357 1358 1359
                    print(x.numpy())

        """
1360
        pass
1361

1362
    @fake_interface_only
1363
    def backward(self, retain_graph=False):
1364
        """
J
Jiabin Yang 已提交
1365
        **Notes**:
T
tianshuo78520a 已提交
1366
            **This API is ONLY available in Dygraph mode**
1367

1368
        Run backward of current Graph which starts from current Tensor.
1369

J
Jiabin Yang 已提交
1370
        Args:
1371 1372 1373 1374
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1375

J
Jiabin Yang 已提交
1376 1377
        Returns:
            NoneType: None
1378 1379 1380 1381 1382

        Examples:
            .. code-block:: python

                import numpy as np
1383 1384
                import paddle
                paddle.disable_static()
1385 1386

                x = np.ones([2, 2], np.float32)
1387 1388 1389 1390 1391 1392 1393
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1394 1395
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1396
                loss.backward()
1397 1398

        """
1399
        pass
1400

1401
    @fake_interface_only
1402
    def gradient(self):
1403
        """
J
Jiabin Yang 已提交
1404
        **Notes**:
T
tianshuo78520a 已提交
1405
            **This API is ONLY available in Dygraph mode**
1406 1407 1408

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1409
        Returns:
1410
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1411 1412 1413 1414 1415 1416 1417

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1418
                # example1: return ndarray
1419 1420 1421 1422 1423 1424 1425 1426 1427
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1428
                    loss2.backward()
1429 1430
                    print(loss2.gradient())

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1444
        """
1445
        pass
1446

1447
    @fake_interface_only
1448
    def clear_gradient(self):
1449
        """
J
Jiabin Yang 已提交
1450
        **Notes**:
T
tianshuo78520a 已提交
1451
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1452 1453

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1454

J
Jiabin Yang 已提交
1455
        Clear  (set to ``0`` ) the Gradient of Current Variable
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1474
                    loss2.backward()
1475 1476 1477 1478 1479
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1480
        pass
X
Xin Pan 已提交
1481

1482 1483 1484 1485
    @fake_interface_only
    def register_hook(self, hook):
        pass

1486
    def __str__(self):
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1503 1504
                import paddle
                import paddle.static as static
1505

1506 1507 1508
                paddle.enable_static()

                cur_program = static.Program()
1509 1510 1511 1512 1513 1514
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1515 1516
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1517
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1518 1519
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1520 1521
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1522
        else:
1523 1524
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1525

1526
        if self.is_parameter:
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1537
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1538
        dist_context = get_default_distributed_context()
1539 1540
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1541
            var_str += ", {name} = {value}".format(
1542
                name="dist_attr", value=dist_tensor)
1543

1544
        return var_str
Y
Yang Yang(Tony) 已提交
1545

F
update  
fengjiayi 已提交
1546
    def to_string(self, throw_on_error, with_details=False):
1547 1548 1549
        """
        Get debug string.

J
Jiabin Yang 已提交
1550 1551 1552 1553 1554
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1555

1556 1557
        Returns:
            str: The debug string.
1558 1559 1560 1561 1562

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1563
                import paddle
1564

1565
                paddle.enable_static()
1566 1567 1568 1569 1570
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1571
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1572
                print("=============with detail===============")
1573
                print(new_variable.to_string(True, True))
1574
        """
F
update  
fengjiayi 已提交
1575 1576
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1577
        protostr = self.desc.serialize_to_string()
1578
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1579 1580
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1581
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1582
            for attr_name in additional_attr:
1583 1584 1585
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1586
        return res_str
1587 1588 1589

    __repr__ = __str__

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1617
    @property
1618
    def stop_gradient(self):
J
Jiabin Yang 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1634 1635
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1636 1637 1638
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1639 1640
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1641 1642 1643 1644
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1645
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1646 1647
                assert (out1.gradient() == 0).all()
        """
1648
        return self.desc.stop_gradient()
1649

1650 1651
    @stop_gradient.setter
    def stop_gradient(self, s):
1652
        self.desc.set_stop_gradient(s)
1653

1654 1655
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1677
        return self.desc.persistable()
1678

Y
Yu Yang 已提交
1679 1680
    @persistable.setter
    def persistable(self, p):
1681
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1708 1709
    @property
    def name(self):
J
Jiabin Yang 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1726
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1727

1728 1729 1730 1731 1732 1733
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1734 1735
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1748 1749
    @name.setter
    def name(self, new_name):
1750
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1751

Y
Yu Yang 已提交
1752 1753
    @property
    def shape(self):
J
Jiabin Yang 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1771
        # convert to tuple, make it as same as numpy API.
1772
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1773 1774

    @property
F
fengjiayi 已提交
1775
    def dtype(self):
J
Jiabin Yang 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1792
        return self.desc.dtype()
Y
Yu Yang 已提交
1793 1794 1795

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

1809
            import paddle
J
Jiabin Yang 已提交
1810
            import paddle.fluid as fluid
1811 1812

            paddle.enable_static()
J
Jiabin Yang 已提交
1813 1814 1815 1816 1817 1818 1819
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1820 1821
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1822 1823
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1824
        return self.desc.lod_level()
Y
Yu Yang 已提交
1825

Y
Yu Yang 已提交
1826 1827
    @property
    def type(self):
J
Jiabin Yang 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1844
        return self.desc.type()
Y
Yu Yang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1929
    def _set_error_clip(self, error_clip):
1930 1931 1932 1933 1934 1935 1936 1937 1938
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1939 1940
        self.error_clip = error_clip

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1981
            raise ValueError("slice step can not be zero")
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2057
    def _cloneVar(self, copy=False):
2058 2059
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2060 2061
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
2062 2063 2064 2065
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2066
        new_var = self._cloneVar()
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2077
        new_var = self._cloneVar()
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2088
                return self._cloneVar(True)
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2107
                return self._cloneVar(True)
2108
            index = int(item)
2109
            if (index > 0 and index >= self.shape[axis]) \
2110 2111 2112 2113 2114 2115 2116
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2117
        return _getitem_impl_(self, item)
2118

2119
    def __setitem__(self, item, value):
2120
        return _setitem_impl_(self, item, value)
2121

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2268 2269 2270 2271
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2272 2273 2274 2275
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2276 2277 2278 2279 2280 2281 2282
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2392

F
fengjiayi 已提交
2393 2394 2395
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2396

2397 2398
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2399 2400 2401 2402
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2403
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2404 2405 2406 2407 2408
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2409 2410 2411 2412
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2422
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2423 2424 2425 2426 2427 2428
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2429 2430 2431 2432 2433 2434 2435 2436
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2437 2438
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2439 2440
        return self.op_proto_map[type]

2441 2442
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2443
        custom_op_names = []
2444 2445 2446
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2447 2448 2449
                custom_op_names.append(proto.type)

        return custom_op_names
2450

2451 2452 2453 2454
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2455
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2456
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2457 2458
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2459 2460
        }

F
fengjiayi 已提交
2461

X
Xin Pan 已提交
2462
class Operator(object):
2463
    """
2464 2465 2466 2467 2468 2469 2470
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2471
        type(str): The type of operator. Default None.
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2492
        Block.append_op or Block._prepend_op instead.
2493 2494 2495 2496

    Examples:
        .. code-block:: python

2497
            import paddle.fluid as fluid
2498
            cur_program = fluid.Program()
2499 2500 2501 2502 2503
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2504
    """
2505
    OP_WITHOUT_KERNEL_SET = {
2506 2507
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2508
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2509 2510
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2511
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2512
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
2513
        'copy_cross_scope', 'c_gen_cncl_id'
2514
    }
2515

Y
Yu Yang 已提交
2516 2517
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2518
                 desc,
Y
Yu Yang 已提交
2519 2520 2521
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2522
                 attrs=None):
J
Jiabin Yang 已提交
2523
        if _non_static_mode():
2524 2525
            if type is None:
                raise ValueError(
2526
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2527
            self._type = type
M
minqiyang 已提交
2528
            self.attrs = attrs if attrs else {}
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2543
                )] = self.block.program._op_role
2544 2545 2546

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2547 2548
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2549 2550 2551 2552 2553

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2554 2555 2556 2557 2558
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2559 2560 2561
                return
            if type is None:
                raise ValueError(
2562
                    "`type` to initialized an Operator can not be None.")
2563 2564
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2565 2566 2567 2568 2569 2570 2571
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2572 2573 2574 2575 2576 2577 2578

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
2590
                    if (type == 'less_than' and op_attrs['force_cpu'] != None
2591 2592 2593 2594 2595
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2596 2597 2598 2599 2600
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2615
                        if not isinstance(in_args, (list, tuple)):
2616 2617 2618 2619 2620 2621
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2622
                        for index, arg in enumerate(in_args):
2623 2624 2625 2626
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2627
                            elif isinstance(arg, (Variable, core.VarBase)):
2628
                                in_arg_names.append(cpt.to_text(arg.name))
2629
                            else:
2630 2631 2632 2633
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2634 2635
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2660 2661 2662 2663
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2664
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2665
                        if not _non_static_mode():
2666 2667 2668 2669
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

J
jianghaicheng 已提交
2683 2684 2685 2686 2687 2688 2689 2690 2691
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
                if global_ipu_index is not None:
                    self._update_desc_attr(ipu_index_attr_name,
                                           global_ipu_index)
                if global_ipu_stage is not None:
                    self._update_desc_attr(ipu_stage_attr_name,
                                           global_ipu_stage)

2692 2693 2694 2695 2696
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2697
    def _has_kernel(self, op_type):
2698 2699
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2700
    def to_string(self, throw_on_error):
2701
        """
2702 2703
        Get debug string.

2704
        Args:
2705 2706
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2707

2708 2709
        Returns:
            str: The debug string.
2710 2711

        """
2712
        protostr = self.desc.serialize_to_string()
2713
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2714 2715
        return _debug_string_(proto, throw_on_error)

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2748
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2801
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2802
        dist_context = get_default_distributed_context()
2803 2804
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2805
            attrs_str += ", {name} = {value}".format(
2806
                name="dist_attr", value=dist_op)
2807

2808 2809
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2810 2811
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2812 2813 2814 2815 2816
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2817
    def __str__(self):
2818
        return self._to_readable_code()
2819 2820 2821

    __repr__ = __str__

F
fengjiayi 已提交
2822 2823
    @property
    def type(self):
2824
        return self.desc.type()
F
fengjiayi 已提交
2825 2826

    def input(self, name):
2827
        r"""
2828
        Get the input arguments according to the input parameter name.
2829

2830 2831
        Args:
            name(str): The input parameter name.
2832

2833 2834 2835
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2836
        """
F
fengjiayi 已提交
2837 2838
        return self.desc.input(name)

W
Wu Yi 已提交
2839
    def _rename_input(self, old_name, new_name):
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2850
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2851

W
Wu Yi 已提交
2852
    def _rename_output(self, old_name, new_name):
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2863
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2864

F
fengjiayi 已提交
2865 2866 2867 2868
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2869 2870 2871 2872 2873 2874 2875 2876
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2877
    def output(self, name):
2878
        r"""
2879
        Get output arguments by the output parameter name.
2880

2881 2882
        Args:
            name(str): The output parameter name.
2883

2884 2885 2886
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2887
        """
F
fengjiayi 已提交
2888 2889 2890 2891 2892 2893
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2894 2895 2896 2897 2898 2899 2900 2901
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2902
    def has_attr(self, name):
2903
        """
2904 2905
        Whether this Operator has the attribute with name or not.

2906
        Args:
2907
            name(str): the attribute name.
2908

2909 2910
        Returns:
            bool: True if has this attribute.
2911 2912

        """
F
fengjiayi 已提交
2913 2914 2915
        return self.desc.has_attr(name)

    def attr_type(self, name):
2916
        """
2917
        Get the type of attribute by attribute's name.
2918

2919 2920
        Args:
            name(str): the attribute name.
2921

2922 2923
        Returns:
            core.AttrType: the attribute type.
2924
        """
F
fengjiayi 已提交
2925 2926
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2927
    def _set_attr(self, name, val):
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2938 2939
        self._update_desc_attr(name, val)

2940 2941 2942
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2954 2955
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2956 2957
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2958
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2959 2960 2961 2962
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2963
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2964

F
fengjiayi 已提交
2965 2966 2967 2968 2969
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2970
        """
2971 2972
        Get the attribute by name.

2973
        Args:
2974
            name(str): the attribute name.
2975

2976 2977
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2978 2979
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2980
        return self.desc.attr(name)
Y
Yu Yang 已提交
2981

W
Wu Yi 已提交
2982
    def _block_attr_id(self, name):
2983
        """
G
gongweibao 已提交
2984
        Get the block attribute's id by name.
2985

2986 2987
        Args:
            name(str): the attribute name.
2988

2989 2990
        Returns:
            int: the block index.
2991
        """
W
Wu Yi 已提交
2992
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2993

W
Wu Yi 已提交
2994
    def _block_attr(self, name):
G
gongweibao 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3005
        id = self._block_attr_id(name)
G
gongweibao 已提交
3006 3007 3008
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3009
    def _blocks_attr(self, name):
G
gongweibao 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3020
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
3021 3022 3023 3024 3025
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3026
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3037
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3038

J
JiayiFeng 已提交
3039
    def all_attrs(self):
F
fengjiayi 已提交
3040
        """
3041 3042 3043
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3044
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3045 3046 3047 3048
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
3049 3050
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3051
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
3052 3053 3054
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3055
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
3056 3057 3058 3059
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
3060 3061
        return attr_map

3062 3063 3064
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3065 3066 3067 3068

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3069 3070 3071
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3072 3073 3074 3075 3076 3077 3078 3079

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3080 3081
            return False

3082 3083 3084 3085 3086 3087
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
3113

Y
Yu Yang 已提交
3114
class Block(object):
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3129
        use `Program._create_block()` to create a block.
3130 3131 3132 3133

    Examples:
        .. code-block:: python

3134 3135 3136
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3137 3138 3139 3140 3141 3142 3143 3144 3145
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3146
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3147
        self.desc = program.desc.block(idx)
3148
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3149
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3150
        self.program = program
3151
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3152

3153
    def __str__(self):
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3188
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3200

F
fengjiayi 已提交
3201 3202
    def to_string(self, throw_on_error, with_details=False):
        """
3203 3204
        Get debug string.

F
fengjiayi 已提交
3205 3206
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3207
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3208
            with_details(bool): more details about variables and parameters
3209 3210
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3211

3212 3213
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3214 3215 3216 3217
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3218
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3219 3220
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3221
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3222
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3223
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3224
            for op in self.ops:
F
fengjiayi 已提交
3225 3226
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3227 3228 3229
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3230 3231
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3232 3233
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3234 3235 3236

    __repr__ = __str__

Y
Yu Yang 已提交
3237 3238
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3239
        return self.desc.parent
Y
Yu Yang 已提交
3240

Y
Yu Yang 已提交
3241 3242 3243 3244
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3245
    def _set_forward_block_idx(self, idx):
3246 3247 3248 3249 3250 3251 3252 3253 3254
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3255
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3256

3257 3258 3259 3260 3261 3262 3263 3264
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3265 3266
    @property
    def idx(self):
Y
Yu Yang 已提交
3267
        return self.desc.id
Y
Yu Yang 已提交
3268

Q
Qiao Longfei 已提交
3269
    def var(self, name):
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3283
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3284 3285 3286
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3287 3288
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3289
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3290
        return v
Q
Qiao Longfei 已提交
3291

X
Xin Pan 已提交
3292
    def _find_var_recursive(self, name):
3293 3294 3295 3296 3297 3298 3299
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3300
            Variable: the Variable with the giving name. Or None if not found.
3301
        """
Y
Yu Yang 已提交
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3326
        return None
Y
Yu Yang 已提交
3327

X
Xin Pan 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3347

Q
Qiao Longfei 已提交
3348
    def all_parameters(self):
3349
        return list(self.iter_parameters())
3350

3351
    def iter_parameters(self):
M
minqiyang 已提交
3352
        return (item[1] for item in six.iteritems(self.vars)
3353
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3354

Y
Yu Yang 已提交
3355
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3356
        if _non_static_mode():
L
Leo Chen 已提交
3357 3358
            var = _varbase_creator(*args, **kwargs)
        else:
3359 3360 3361
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3362
        return var
Y
Yu Yang 已提交
3363

Q
Qiao Longfei 已提交
3364 3365 3366
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3367
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3368 3369
        """
        Rename variable in vars and ops' inputs and outputs
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3382
        """
M
minqiyang 已提交
3383 3384
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3385

T
typhoonzero 已提交
3386
        if not self.has_var(name):
3387
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3388 3389
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3390
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3391 3392 3393 3394 3395 3396
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3397
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3398 3399 3400 3401
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3402
        orig_var_type = v.type
M
minqiyang 已提交
3403
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3404
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3405
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3406
        if var_type == "Parameter":
L
Leo Chen 已提交
3407
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3408
                var = EagerParamBase(
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
J
Jiabin Yang 已提交
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
                if _in_legacy_dygraph():
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
                else:
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip)
T
typhoonzero 已提交
3442
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3443 3444
            var = Variable(
                self,
T
typhoonzero 已提交
3445
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3446 3447 3448 3449
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3450
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3451 3452 3453
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3454
        self._sync_with_cpp()
3455
        return var
T
typhoonzero 已提交
3456

3457 3458 3459
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3460
        self.desc._remove_var(cpt.to_bytes(name))
3461 3462
        del self.vars[name]

Y
Yu Yang 已提交
3463 3464
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3465
        param = None
L
Leo Chen 已提交
3466
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3467
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3468
        else:
J
Jiabin Yang 已提交
3469 3470 3471 3472
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3473

3474
        if 'initializer' in kwargs:
3475 3476 3477 3478 3479

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3480
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3481
                        # are treated as initialization ops that cause error.
3482
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3483 3484 3485 3486 3487
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3488
                            continue
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3500
                # TODO already inited, do nothing, should log a warning
3501 3502 3503
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3504
        return param
Y
Yu Yang 已提交
3505

Y
Yu Yang 已提交
3506
    def append_op(self, *args, **kwargs):
3507 3508 3509 3510 3511 3512
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3513
        if _non_static_mode():
3514
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3515
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3516
            type = kwargs.get("type", None)
3517 3518 3519
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3520
                type=type,
M
minqiyang 已提交
3521 3522
                inputs=None,
                outputs=None,
3523
                attrs=attrs)
3524

M
minqiyang 已提交
3525 3526 3527
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3528
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3529 3530

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3531
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3532 3533
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3534 3535
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3536
        else:
3537 3538
            from paddle.fluid.dygraph.base import param_guard

3539
            op_desc = self.desc.append_op()
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3553

M
minqiyang 已提交
3554
            self.ops.append(op)
M
minqiyang 已提交
3555

3556 3557
        return op

W
Wu Yi 已提交
3558
    def _insert_op(self, index, *args, **kwargs):
3559 3560 3561 3562 3563 3564 3565 3566 3567
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3568
        self._sync_with_cpp()
F
fangshuixun007 已提交
3569
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3570

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3588 3589 3590 3591 3592 3593 3594 3595 3596
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3597 3598
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3599
        self.desc._remove_op(index, index + 1)
3600 3601
        del self.ops[index]

W
Wu Yi 已提交
3602
    def _slice_ops(self, start, end):
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3613
        return self.ops[start:end]
Y
Yancey1989 已提交
3614

W
Wu Yi 已提交
3615
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
3616
        if _non_static_mode():
J
Jiabin Yang 已提交
3617 3618
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3619
            op = Operator(
J
Jiabin Yang 已提交
3620
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3621

J
Jiabin Yang 已提交
3622
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3623
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3624 3625
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3626
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3627
        else:
3628 3629 3630 3631 3632 3633 3634 3635
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3636
            self.ops.insert(0, op)
3637

Y
Yu Yang 已提交
3638 3639
        return op

W
Wu Yi 已提交
3640
    def _sync_with_cpp(self):
3641
        """
3642 3643
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3644
        """
Q
Qiao Longfei 已提交
3645 3646 3647
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3665

3666
        # sync variables removed from c++ end
3667
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3668
            if not self.desc.find_var(cpt.to_bytes(var)):
3669 3670
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3671
        # sync operators from cpp
3672 3673 3674 3675
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3692 3693 3694 3695 3696

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3697
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3698 3699 3700 3701 3702 3703 3704

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3718 3719 3720 3721
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3722
    def _copy_param_info_from(self, other):
3723
        """
3724 3725
        Copy the information of parameters from the other block.

3726
        Args:
3727 3728 3729 3730 3731
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3732 3733 3734 3735 3736

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3737 3738
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3739
        for p in other.iter_parameters():
3740 3741 3742
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3743 3744
                # if the Parameter is pruned, v may be None
                continue
3745
            assert isinstance(v, Variable)
3746
            new_p = None
L
Leo Chen 已提交
3747
            if in_dygraph_mode():
J
Jiabin Yang 已提交
3748
                new_p = EagerParamBase(
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
J
Jiabin Yang 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
                if _in_legacy_dygraph():
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
                        if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name)
3786 3787
            self.vars[new_p.name] = new_p

3788
    def _clone_variable(self, var, force_persistable=True):
3789 3790
        """
        Clone a variable into current block.
3791

3792 3793
        Args:
            var: the variable to be cloned.
3794 3795 3796
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3797 3798

        Returns:
3799
            Variable: the new  variable cloned from 'var' in current block.
3800 3801
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3802 3803 3804 3805 3806
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3807 3808
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3809
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3810 3811 3812 3813 3814 3815
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3816
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3817 3818
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3819 3820 3821 3822 3823 3824 3825
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3826
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3827 3828
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3829
        return ret_var
3830

Y
Yu Yang 已提交
3831

3832 3833 3834 3835 3836 3837
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3949
    def remove_input_by_id(self, node_id):
3950 3951 3952 3953 3954 3955
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3956
        self.node.remove_input(node_id)
3957

3958
    def remove_input(self, node):
3959 3960 3961 3962
        """
        Remove a node from inputs.

        Args:
3963
            node(IrNode): the node being removed.
3964
        """
3965
        self.node.remove_input(node.node)
3966

3967
    def append_input(self, node):
3968 3969 3970 3971
        """
        Append a node in inputs.

        Args:
3972
            node(IrNode): the node being appended.
3973
        """
3974
        self.node.append_input(node.node)
3975 3976 3977 3978 3979 3980 3981 3982

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3983
    def remove_output_by_id(self, node_id):
3984 3985 3986 3987 3988 3989
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3990
        self.node.remove_output(node_id)
3991

3992
    def remove_output(self, node):
3993 3994 3995 3996
        """
        Remove a node from outputs.

        Args:
3997
            node(IrNode): the node being removed.
3998
        """
3999
        self.node.remove_output(node.node)
4000

4001
    def append_output(self, node):
4002 4003 4004 4005
        """
        Append a node in outputs.

        Args:
4006
            node(IrNode): the node being appended.
4007
        """
4008
        self.node.append_output(node.node)
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4056
            "The node variable description can not be None."
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4067
            "The node variable description can not be None."
4068 4069
        return self.node.var().persistable()

4070 4071 4072 4073 4074 4075 4076 4077
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4078
            "The node variable description can not be None."
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4089
            "The node variable description can not be None."
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
4100
            "The node variable description can not be None."
4101 4102
        return self.node.var().shape()

4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4150
            "The node operator description can not be None."
4151 4152
        self.node.op()._rename_input(old_input_name, new_input_name)

4153 4154 4155 4156 4157 4158 4159 4160 4161
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4162
            "The node operator description can not be None."
4163 4164
        self.node.op()._rename_output(old_output_name, new_output_name)

4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4176
            "The node operator description can not be None."
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4190
            "The node operator description can not be None."
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4201
            "The node operator description can not be None."
4202 4203
        return self.node.op().set_type(new_type)

4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4219
            "The node operator description can not be None."
4220 4221 4222 4223
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
4224
                all(isinstance(v, Block) for v in val):
4225 4226
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
4227
                isinstance(val, core.ProgramDesc):
4228 4229 4230 4231
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4232 4233 4234 4235 4236 4237 4238 4239
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4240
            "The node operator description can not be None."
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4251
            "The node operator description can not be None."
4252 4253
        return self.node.op().output_arg_names()

4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4275 4276
class IrGraph(object):
    """
4277
    Python IrGraph. Beneath it is a core.Graph, which is used for
4278
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4279 4280
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4281 4282 4283 4284
    """

    def __init__(self, graph, for_test=False):
        """
4285 4286
        Construct an IrGraph using core.Graph.

4287 4288 4289 4290 4291 4292 4293 4294 4295
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4296 4297 4298 4299
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4300 4301 4302
        Warns:
            The method only clones the graph structure, not its attributes.

4303 4304 4305
        Returns:
            IrGraph: A new and duplicated graph.
        """
4306
        g = self.graph.clone()
4307 4308
        return IrGraph(g, self._for_test)

4309
    def is_test(self):
4310 4311 4312
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4313 4314
        return self._for_test

W
WangZhen 已提交
4315
    def all_nodes(self):
4316 4317 4318
        """
        Return all nodes included in the graph as a set.
        """
4319
        return {IrNode(node) for node in self.graph.nodes()}
4320

4321
    def all_var_nodes(self):
4322 4323 4324
        """
        Return all variable nodes included in the graph as a set.
        """
4325
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4326

4327
    def all_persistable_nodes(self):
4328 4329 4330
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4331 4332 4333 4334 4335
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4336
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4337

4338
    def all_op_nodes(self):
4339 4340 4341
        """
        Return all operator nodes included in the graph as a set.
        """
4342
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4343

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4361
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4373
            IrVarNode: the created persistable variable node.
4374
        """
4375 4376 4377 4378 4379
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4380
        return IrVarNode(self.graph.create_var_node(var_desc))
4381 4382

    def create_var_node(self, name, var_type, shape, var_dtype):
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4394
            IrVarNode: the created variable node.
4395 4396
        """

4397 4398 4399 4400
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4401
        return IrVarNode(self.graph.create_var_node(var_desc))
4402

4403 4404 4405 4406 4407 4408
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4409
    def create_var_node_from_desc(self, var_desc):
4410 4411 4412 4413 4414 4415 4416 4417
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4418
            IrVarNode: the created variable node.
4419
        """
4420
        return IrVarNode(self.graph.create_var_node(var_desc))
4421 4422

    def create_op_node(self, op_type, attrs, inputs, outputs):
4423 4424 4425 4426 4427 4428 4429
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4430
            outputs(dict): the outputs of the operator node.
4431 4432

        Returns:
4433
            IrOpNode: the created operator node.
4434
        """
4435 4436
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4437
        for attr, value in six.iteritems(attrs):
4438
            self._update_desc_attr(op_desc, attr, value)
4439
        for input_name, var_nodes in six.iteritems(inputs):
4440 4441 4442 4443
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4444
        for output_name, var_nodes in six.iteritems(outputs):
4445 4446 4447 4448
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4449
        return IrOpNode(self.graph.create_op_node(op_desc))
4450 4451

    def create_op_node_from_desc(self, op_desc):
4452 4453 4454 4455 4456 4457 4458
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4459
            IrOpNode: the created operator node.
4460
        """
4461
        return IrOpNode(self.graph.create_op_node(op_desc))
4462 4463

    def update_input_link(self, old_input_node, new_input_node, op_node):
4464 4465 4466 4467
        """
        Update the input's link of a operator node.

        Args:
4468 4469 4470
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4471
        """
4472
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4473
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4474
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4475 4476 4477 4478
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4479
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4480

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4491
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4492
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4493 4494 4495 4496 4497 4498
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4499
    def link_to(self, node_in, node_out):
4500 4501 4502 4503
        """
        Connect two nodes.

        Args:
4504 4505
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4506
        """
4507 4508 4509 4510
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4511 4512
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4513 4514

    def safe_remove_nodes(self, remove_nodes):
4515 4516 4517 4518 4519 4520 4521
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4522
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4523 4524 4525 4526
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4527 4528
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4529

Z
Zhen Wang 已提交
4530 4531 4532 4533 4534 4535 4536 4537
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4538
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4539 4540 4541 4542
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4543
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4544 4545 4546
                        ]
                    else:
                        var_nodes[each_var_name].append(
4547 4548
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4549 4550
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4551
    def has_circle(self):
4552 4553 4554 4555 4556 4557
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4558 4559 4560
        return core.has_circle(self.graph)

    def graph_num(self):
4561 4562 4563 4564 4565 4566
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4567 4568 4569
        return core.graph_num(self.graph)

    def topology_sort(self):
4570 4571 4572
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4573
        Notes: the `graph` can not contain a circle.
4574 4575

        Returns:
Z
Zhen Wang 已提交
4576
            list(IrNode): nodes in topology order.
4577
        """
4578
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4579
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4580 4581

    def build_adjacency_list(self):
4582 4583 4584 4585
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4586
            dict{IrNode: set(IrNode)}: the adjacency list.
4587
        """
4588 4589 4590 4591 4592
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4593

4594 4595 4596 4597 4598 4599 4600 4601
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4602
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4603 4604 4605 4606 4607
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4608 4609
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4610 4611 4612
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4613 4614 4615 4616 4617
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4618
        remove_ctr_vars = set()
4619
        if remove_ctr_var:
4620
            for node in self.all_var_nodes():
4621 4622 4623
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4624 4625
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4626 4627
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4628 4629 4630 4631 4632 4633
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4634 4635 4636 4637
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4638 4639
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4640 4641 4642 4643 4644 4645 4646
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4647 4648 4649
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4650
        WARN: When the graph includes backward operator nodes, the
4651 4652 4653 4654 4655 4656
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4657
        convert_pass = core.get_pass('graph_to_program_pass')
4658 4659
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4660 4661 4662 4663
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4664 4665 4666 4667 4668 4669 4670 4671
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4672 4673
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4674 4675
        return target_node

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4692
class Program(object):
D
dzhwinter 已提交
4693
    """
4694
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4695
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4696
    it will contain nested block.
4697

J
Jiabin Yang 已提交
4698 4699 4700
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4701

J
Jiabin Yang 已提交
4702
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4703
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4704 4705 4706 4707 4708 4709 4710
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4711
    **Notes**:
4712 4713 4714
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4715 4716

    Returns:
J
Jiabin Yang 已提交
4717
        Program: An empty Program.
D
dzhwinter 已提交
4718 4719

    Examples:
4720 4721
        .. code-block:: python

4722 4723 4724 4725
            import paddle
            import paddle.static as static

            paddle.enable_static()
4726

4727 4728 4729 4730 4731
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4732
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4733 4734 4735

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4736 4737 4738

    """

4739 4740
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4741 4742
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4743 4744
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4745
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4746
        self.__op_role_var = []
T
tangwei12 已提交
4747

4748 4749
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4750
        self._is_distributed = False
4751
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4752
        self._is_chief = False
4753 4754 4755
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4756
        self._endpoints = []
4757 4758 4759
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4760
        self._trainers_endpoints = []
4761
        # the distributed lookup table names
T
tangwei12 已提交
4762
        self._distributed_lookup_table = None
4763 4764 4765

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4766 4767
        self._use_lamb = False

4768 4769 4770
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4771

4772 4773 4774
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4775
        self._program_config = None
4776

H
hutuxian 已提交
4777 4778 4779
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4780 4781 4782
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4783 4784 4785
        # appending gradients times
        self._appending_grad_times = 0

4786 4787 4788 4789
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4790 4791
        # compiled program, i.e. Graph
        self._graph = None
4792 4793
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4794

4795
    def _find_var_class_kwargs(self, new_desc):
4796 4797 4798 4799 4800 4801 4802 4803
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4873
        assert block_num == self.desc.num_blocks()
4874 4875

        # clear old blocks and desc
4876 4877 4878 4879 4880 4881 4882 4883 4884
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4885

4886
        del desc
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4916 4917
                import paddle
                import paddle.static as static
4918

4919 4920 4921
                paddle.enable_static()

                prog = static.default_main_program()
4922 4923 4924 4925 4926
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4927
                prog1 = static.default_main_program()
4928 4929 4930 4931 4932 4933 4934 4935
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4936
    @property
4937
    def _op_role(self):
Y
yuyang18 已提交
4938 4939 4940 4941 4942 4943 4944 4945
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4946
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4947 4948 4949 4950
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4951 4952
        return self._current_role

4953 4954
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4955 4956 4957
        self._current_role = role

    @property
4958
    def _op_role_var(self):
Y
yuyang18 已提交
4959
        """
4960
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4961

4962
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4963 4964 4965

        Notes: This is a very low-level API. Users should not use it directly.
        """
4966
        return self.__op_role_var
Y
yuyang18 已提交
4967

4968
    @signature_safe_contextmanager
4969 4970 4971 4972 4973
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4974 4975 4976 4977
        try:
            yield
        finally:
            self._current_role = tmp_role
4978

S
rename  
sneaxiy 已提交
4979
    @signature_safe_contextmanager
W
Wu Yi 已提交
4980
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4981 4982 4983 4984 4985 4986 4987
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4988
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4989 4990 4991

        Examples:

4992
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4993
            >>> p, g = backward(...)
W
Wu Yi 已提交
4994
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4995 4996
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4997
        tmp_role = self._current_role
4998
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4999

Y
yuyang18 已提交
5000 5001
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5002
        self.__op_role_var = [
5003 5004 5005
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5006 5007 5008 5009 5010
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5011

S
rename  
sneaxiy 已提交
5012
    @signature_safe_contextmanager
X
Xin Pan 已提交
5013
    def _lr_schedule_guard(self, is_with_opt=False):
5014 5015 5016 5017 5018 5019 5020
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5021 5022 5023 5024
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5025 5026 5027

        Examples:

5028
            >>> import paddle.fluid as fluid
5029 5030 5031 5032
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5033 5034

        tmp_role = self._current_role
5035
        tmp_var = self.__op_role_var
5036

5037 5038
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5039 5040
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5041
        # TODO(typhoonzero): how to set target learning rate var
5042
        self.__op_role_var = []
5043 5044 5045 5046 5047
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5048

5049
    def __str__(self):
Y
yuyang18 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5079 5080
            import paddle
            import paddle.static as static
5081

5082 5083 5084
            paddle.enable_static()

            cur_program = static.Program()
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5096
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5097 5098 5099 5100
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5101
            program_str += '\n'
5102
        return program_str
Y
Yang Yang(Tony) 已提交
5103

F
fengjiayi 已提交
5104 5105 5106
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5107

J
Jiabin Yang 已提交
5108 5109 5110
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5111

J
Jiabin Yang 已提交
5112
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5113

H
haowang101779990 已提交
5114
        Returns:
J
Jiabin Yang 已提交
5115
            str: The debug string describe current Program.
Y
yuyang18 已提交
5116 5117

        Raises:
J
Jiabin Yang 已提交
5118
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5119

5120 5121 5122
        Examples:
            .. code-block:: python

5123 5124 5125 5126
                import paddle
                import paddle.static as static

                paddle.enable_static()
5127

5128 5129 5130
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5131
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5132
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5133
                print("program string without detail: {}".format(prog_string))
5134
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5135
        """
5136 5137 5138 5139 5140 5141 5142 5143 5144
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
5145 5146 5147 5148 5149 5150
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5151 5152
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
5153 5154
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5155

W
Wu Yi 已提交
5156
    def _get_desc(self):
Y
yuyang18 已提交
5157 5158 5159 5160 5161 5162 5163
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5164 5165
        return self.desc

X
version  
Xin Pan 已提交
5166 5167 5168
    def _version(self):
        return self.desc._version()

5169
    def clone(self, for_test=False):
Y
yuyang18 已提交
5170
        """
5171 5172 5173 5174
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5175

5176
        Create a new Program with forward content of original one when ``for_test=True``.
5177
        Create a new Program as same as the original one when ``for_test=False``.
5178

5179
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5180 5181 5182
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5183

5184 5185
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5186 5187
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5188
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5189

J
Jiabin Yang 已提交
5190
        For Example:
5191
          ::
L
Luo Tao 已提交
5192

5193 5194 5195 5196 5197 5198
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5199
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5200
            loss = paddle.mean(pred)
5201
            # Here we use clone before Momentum
5202 5203
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5204
            optimizer.minimize(loss)
5205

J
Jiabin Yang 已提交
5206
        Args:
5207

5208 5209
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5210

J
Jiabin Yang 已提交
5211
        Returns:
5212
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5213

Y
yuyang18 已提交
5214 5215 5216

        Examples:

5217 5218 5219 5220 5221 5222 5223
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5240
            1. To clone a test program, the sample code is:
5241 5242 5243
                .. code-block:: python

                    import six
5244 5245 5246 5247 5248 5249
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5262 5263
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5264 5265 5266

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5267 5268 5269
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5270
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5271 5272
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5273
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5274 5275
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5276
                            test_program = train_program.clone(for_test=True)
5277
                    print_prog(test_program)
J
Jiabin Yang 已提交
5278 5279 5280 5281

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5282
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5283 5284 5285 5286
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5287 5288 5289
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5290 5291 5292
                            sgd.minimize(avg_loss)


5293
            2. The clone method can be avoid if you create program for training and program for testing individually.
5294 5295 5296
                .. code-block:: python

                    import six
5297 5298 5299 5300 5301 5302
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5314

5315
                    def network():
5316
                        img = static.data(name='image', shape=[None, 784])
5317
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5318 5319
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5320
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5321 5322
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5323 5324
                        return avg_loss

5325 5326 5327 5328 5329
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5330
                            avg_loss = network()
5331
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5332
                            sgd.minimize(avg_loss)
5333
                    # the test startup program is not used.
5334 5335
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5336 5337
                            avg_loss = network()
                    print_prog(test_program_2)
5338

5339
            The two code snippets above will generate and print same programs.
5340
        """
5341

T
tangwei12 已提交
5342
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5343 5344 5345
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5346
        pruned_origin_block_id_map = None
5347
        if for_test:
5348 5349 5350 5351 5352 5353 5354 5355 5356
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5357
        else:
5358
            p = Program()
G
gongweibao 已提交
5359 5360
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5361
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5362 5363 5364
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5365 5366

            p._current_role = self._current_role
5367
            p.__op_role_var = self.__op_role_var
5368
            p._appending_grad_times = self._appending_grad_times
5369 5370
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5371

T
tangwei12 已提交
5372
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5373
            # its desc.
W
Wu Yi 已提交
5374
            p._sync_with_cpp()
5375

W
Wu Yi 已提交
5376
        p._copy_param_info_from(self)
5377
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5378
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5379
        return p
5380

5381
    def _prune(self, targets):
Y
yuyang18 已提交
5382 5383 5384 5385 5386 5387 5388 5389
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5390
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5391 5392 5393 5394
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5395
        """
5396
        return self._prune_with_input([], targets)
5397 5398

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5399
        """
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5410
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5411 5412 5413 5414 5415 5416
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5417
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5418 5419 5420
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5421 5422
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5423 5424
        if not isinstance(targets, list):
            targets = [targets]
5425 5426 5427

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5428 5429 5430
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5431

5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5448 5449 5450 5451
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5452 5453 5454
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5455
                else:
5456 5457 5458
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5459 5460 5461 5462 5463 5464

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5465 5466 5467
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5468

5469 5470 5471 5472 5473 5474 5475 5476 5477
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5478
                        # Skip optimize op except for optimize op in targets,
5479 5480 5481 5482 5483
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5484

5485
                if target_op is not None:
5486 5487 5488
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5489

5490
        res = Program()
5491 5492 5493
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5494 5495 5496
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5497
        res._sync_with_cpp()
5498 5499 5500 5501 5502

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5503 5504
        return res

X
Xin Pan 已提交
5505
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5506
        """
F
fengjiayi 已提交
5507 5508 5509 5510 5511
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5512
        3. change the :code:`is_test`
Y
yuyang18 已提交
5513 5514 5515
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5516
        Args:
X
Xin Pan 已提交
5517 5518
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5519

Y
yuyang18 已提交
5520 5521 5522 5523 5524 5525
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5526
        res = Program()
5527
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5528 5529 5530 5531

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5532
        if prune_read_op:
5533 5534 5535 5536 5537 5538 5539 5540 5541
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5542
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5543 5544

        # change all `is_test` attributes to True
M
minqiyang 已提交
5545
        for i in six.moves.range(res.desc.num_blocks()):
5546
            block = res.desc.block(i)
M
minqiyang 已提交
5547
            for j in six.moves.range(block.op_size()):
5548 5549
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5550
                    op._set_attr('is_test', True)
5551 5552 5553
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5554 5555 5556
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5557
        res._sync_with_cpp()
5558 5559
        return res

5560
    def _remove_training_info(self, clip_extra=True):
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5650 5651
        return res

5652 5653
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5654
        """
5655 5656 5657
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5658

5659 5660
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5661

J
Jiabin Yang 已提交
5662
        Args:
Y
yuyang18 已提交
5663

J
Jiabin Yang 已提交
5664
            binary_str_type (str): the binary prootbuf string.
5665

J
Jiabin Yang 已提交
5666 5667
        Returns:
            Program: A deserialized Program.
5668 5669 5670 5671

        Examples:
            .. code-block:: python

5672 5673 5674 5675
                import paddle
                import paddle.static as static

                paddle.enable_static()
5676

5677 5678 5679 5680
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5681

5682
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5683

5684
                    z = paddle.matmul(x=x, y=y)
5685

5686 5687
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5688

5689
                    print(static.default_main_program())
5690
                    print(prog_restored)
Y
yuyang18 已提交
5691
        """
5692 5693
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5694
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5695
        p._sync_with_cpp()
5696
        return p
Y
Yu Yang 已提交
5697

5698
    @staticmethod
5699
    def _construct_from_desc(desc):
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5715 5716
    @property
    def random_seed(self):
Y
yuyang18 已提交
5717
        """
J
Jiabin Yang 已提交
5718
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5719 5720
        the random seed from random device.

5721 5722
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5723 5724 5725

        Returns:
            int64: Random seed in current Program
5726

5727 5728 5729 5730

        Examples:
            .. code-block:: python

5731 5732 5733
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5734

5735 5736 5737
                paddle.enable_static()

                prog = static.default_main_program()
5738
                random_seed = prog.random_seed
5739
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5740 5741 5742
                print(random_seed)
                ## 0
                ## the default random seed is 0
5743

5744
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5745
                prog.random_seed = 1
5746
                z_var = F.dropout(x_var, 0.7)
5747

5748
                print(prog.random_seed)
5749 5750
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5751
        """
D
dzhwinter 已提交
5752 5753
        return self._seed

Q
qiaolongfei 已提交
5754 5755
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5756
        """
5757 5758
        The number of :ref:`api_guide_Block_en`  in this Program.

5759 5760
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5761 5762 5763

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5764

5765 5766 5767 5768

        Examples:
            .. code-block:: python

5769 5770 5771 5772
                import paddle
                import paddle.static as static

                paddle.enable_static()
5773

5774
                prog = static.default_main_program()
5775 5776
                num_blocks = prog.num_blocks
                print(num_blocks)
5777

5778 5779
                # print result:
                # 1
Y
yuyang18 已提交
5780
        """
Q
qiaolongfei 已提交
5781 5782
        return self.desc.num_blocks()

D
dzhwinter 已提交
5783 5784 5785
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5786 5787 5788
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5789 5790
        self._seed = seed

Y
Yu Yang 已提交
5791
    def __repr__(self):
5792
        return self.__str__()
5793

Y
Yu Yang 已提交
5794
    def global_block(self):
Y
yuyang18 已提交
5795
        """
5796 5797
        .. note::
            This API has no effect in Dygraph mode.
5798 5799 5800

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5801 5802
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5803

5804 5805 5806 5807

        Examples:
            .. code-block:: python

5808 5809 5810 5811
                import paddle
                import paddle.static as static

                paddle.enable_static()
5812

5813
                prog = static.default_main_program()
5814 5815
                gb_block = prog.global_block()
                print(gb_block)
5816

Y
yuyang18 已提交
5817
        """
Y
Yu Yang 已提交
5818 5819
        return self.blocks[0]

Q
Qiao Longfei 已提交
5820
    def block(self, index):
Y
yuyang18 已提交
5821
        """
5822 5823
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5824

5825 5826
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5827 5828
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5829

J
Jiabin Yang 已提交
5830 5831
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5832 5833 5834 5835

        Examples:
            .. code-block:: python

5836 5837 5838 5839
                import paddle
                import paddle.static as static

                paddle.enable_static()
5840

5841
                prog = static.default_main_program()
5842 5843
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5844
        """
Q
Qiao Longfei 已提交
5845 5846
        return self.blocks[index]

Y
Yu Yang 已提交
5847
    def current_block(self):
Y
yuyang18 已提交
5848
        """
5849 5850
        .. note::
            This API has no effect in Dygraph mode.
5851

J
Jiabin Yang 已提交
5852 5853
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5854

J
Jiabin Yang 已提交
5855 5856
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5857

5858 5859 5860
        Examples:
            .. code-block:: python

5861 5862 5863 5864
                import paddle
                import paddle.static as static

                paddle.enable_static()
5865

5866
                prog = static.default_main_program()
5867 5868
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5869
        """
Y
Yu Yang 已提交
5870 5871
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5872
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5873 5874 5875 5876 5877
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5878

Y
yuyang18 已提交
5879 5880 5881 5882 5883
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5884
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5885 5886 5887
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5888 5889 5890 5891
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5892
    def _rollback(self):
Y
yuyang18 已提交
5893 5894 5895 5896 5897
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5898 5899
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5900
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5911 5912 5913
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5914
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5915

W
Wu Yi 已提交
5916
    def _copy_param_info_from(self, other):
5917
        """
5918
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5919

Y
yuyang18 已提交
5920 5921 5922
        Notes: This is a very low level API. Users should not invoke it
        directly.

5923 5924 5925 5926 5927 5928 5929
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5930 5931 5932
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5933

W
Wu Yi 已提交
5934
        self.global_block()._copy_param_info_from(other.global_block())
5935

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5947 5948 5949
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5950 5951
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5952
        self._parameters_on_pservers = other._parameters_on_pservers
5953
        self._endpoints = other._endpoints
5954
        self._ps_endpoint = other._ps_endpoint
5955 5956
        self._distributed_lookup_table = other._distributed_lookup_table

5957
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5958 5959
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5960

Y
yuyang18 已提交
5961 5962 5963
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5964 5965
        Args:
            other(Program): Other program
5966 5967 5968 5969
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5970 5971 5972 5973 5974

        Returns:
            None
        """
        if not isinstance(other, Program):
5975 5976 5977
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5978

5979 5980 5981 5982 5983
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5984 5985 5986

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5987 5988
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5989
            for var in list(block.vars.values()):
5990 5991 5992 5993 5994 5995 5996
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5997

5998
    def list_vars(self):
Y
yuyang18 已提交
5999
        """
6000
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6001

J
Jiabin Yang 已提交
6002
        Returns:
6003
            iterable Tensors: The Generator will yield every Tensor in this program.
6004 6005 6006 6007

        Examples:
            .. code-block:: python

6008 6009
                import paddle
                import paddle.static as static
6010

6011 6012 6013 6014 6015
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6016 6017
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6018

6019 6020
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
6021
        """
6022
        for each_block in self.blocks:
6023
            for each_var in list(each_block.vars.values()):
6024 6025
                yield each_var

6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6036 6037 6038 6039
                import paddle
                import paddle.static as static

                paddle.enable_static()
6040

6041 6042
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6043
                hidden = static.nn.fc(x=data, size=10)
6044 6045
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6046 6047 6048 6049 6050 6051 6052

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6053 6054
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
6232

6233
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
6234
class Parameter(Variable):
6235
    """
6236
    Parameter is derived from Variable. A parameter is a persistable
6237
    Variable, and will be updated by optimizers after each iteration.
6238
    The training of a neural network is essentially the updating of
6239 6240
    its parameters.

6241
    Relative to a general Variable, a Parameter has several its own
6242 6243
    member variables:

6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6254 6255
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6256 6257
    """

6258 6259 6260 6261 6262 6263
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6264 6265 6266 6267 6268
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6269
        if len(shape) == 0:
6270 6271
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6272 6273 6274

        for each in shape:
            if each < 0:
6275 6276 6277
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6278 6279

        Variable.__init__(
6280 6281 6282 6283 6284 6285 6286
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6287 6288 6289 6290
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6291 6292
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6293
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6294

6295 6296
        self.need_clip = kwargs.get('need_clip', True)

6297 6298
        self.is_distributed = False

6299 6300
        self.is_parameter = True

F
fengjiayi 已提交
6301
    def __str__(self):
6302
        return self._to_readable_code()
F
fengjiayi 已提交
6303

F
update  
fengjiayi 已提交
6304 6305 6306
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6307

F
update  
fengjiayi 已提交
6308 6309 6310 6311 6312 6313 6314 6315
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6316 6317 6318 6319 6320 6321 6322 6323 6324
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6325 6326 6327 6328 6329 6330
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6331
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6332
            for attr_name in additional_attr:
6333 6334
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6335 6336
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6337 6338 6339 6340
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6341

6342 6343
class ParamBase(core.VarBase):
    """
6344 6345 6346
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6347 6348 6349
    The training of a neural network is essentially the updating of
    its ParamBase.

6350
    Relative to a general Tensor, a ParamBase has several its own
6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6363 6364
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6395 6396
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6397 6398 6399 6400 6401 6402 6403

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6404 6405
        self.need_clip = kwargs.get('need_clip', True)

6406
        self.is_distributed = kwargs.get('is_distributed', False)
6407
        # self.block = default_main_program().global_block()
6408

6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6422
    def __str__(self):
6423
        """
6424
        Convert a ParamBase object to a readable string.
6425

6426
        Returns(str): A readable string.
6427 6428 6429 6430

        Examples:
            .. code-block:: python

6431
                import paddle
6432 6433 6434 6435 6436 6437 6438
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6439
        """
6440 6441
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6442

6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6454

6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6473 6474 6475 6476
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
6477 6478 6479 6480 6481 6482
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
6483
    _core_eager_eagertensor = core.eager.Tensor
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode). 
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

        super(EagerParamBase, self).__init__(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape)
            if shape else [], name, core.VarDesc.VarType.LOD_TENSOR, True)
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
        # self.block = default_main_program().global_block()

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
            tensor=super(EagerParamBase, self).__str__())

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
6624 6625
        return new_param

6626 6627 6628
    __repr__ = __str__


Y
Yu Yang 已提交
6629
# program is a global instance.
Y
Yu Yang 已提交
6630 6631
_main_program_ = Program()
_startup_program_ = Program()
6632
_startup_program_._is_start_up_program_ = True
6633

6634

6635
def default_startup_program():
Y
Yu Yang 已提交
6636
    """
Y
yuyang18 已提交
6637 6638
    Get default/global startup program.

6639 6640
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6641

6642 6643
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6644

6645 6646
    Returns:
        Program: current default startup program.
6647

6648
    Returns type: 
6649 6650 6651 6652

    Examples:
        .. code-block:: python

6653
            import paddle
6654

6655
            paddle.enable_static()
6656 6657 6658 6659
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6660
    """
Y
Yu Yang 已提交
6661
    return _startup_program_
6662

6663

6664
def default_main_program():
Y
Yu Yang 已提交
6665
    """
6666
    This API can be used to get ``default main program`` which store the 
6667
    descriptions of Ops and tensors.
T
tangwei12 已提交
6668

6669
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6670
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6671

6672 6673
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6674
    :code:`default_main_program` when the program is not specified.
6675

6676
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6677

Y
Yu Yang 已提交
6678
    Returns:
6679
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6680 6681 6682 6683

    Examples:
        ..  code-block:: python

6684
            import paddle
6685

6686
            paddle.enable_static()
6687
            # Sample Network:
6688 6689 6690
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6691

6692 6693 6694
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6695
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6696
    """
Y
Yu Yang 已提交
6697
    return _main_program_
Y
Yu Yang 已提交
6698 6699 6700 6701 6702


def switch_main_program(program):
    """
    Switch the main program to a new program.
6703

Y
Yu Yang 已提交
6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6718
    Switch the startup program to a new program
Y
Yu Yang 已提交
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6731
@signature_safe_contextmanager
Y
Yu Yang 已提交
6732 6733
def program_guard(main_program, startup_program=None):
    """
6734 6735
    :api_attr: Static Graph

6736 6737 6738
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6739

G
guofei 已提交
6740
    Args:
6741 6742
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6743 6744 6745 6746
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6747
    Examples:
6748
       .. code-block:: python
T
tangwei12 已提交
6749

6750
          import paddle
Y
yuyang18 已提交
6751

6752 6753 6754 6755 6756
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6757
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6758 6759 6760

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6761

Y
Yu Yang 已提交
6762
    Examples:
6763
       .. code-block:: python
Y
yuyang18 已提交
6764

6765
          import paddle
6766

6767 6768 6769 6770 6771
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6772

Y
Yu Yang 已提交
6773
    """
6774
    from .data_feeder import check_type
6775 6776
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6777 6778
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6779
        check_type(startup_program, 'startup_program', Program,
6780
                   'paddle.static.program_guard')
6781 6782
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6783
        startup_program = switch_startup_program(startup_program)
6784 6785 6786 6787 6788 6789
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6790 6791


W
Wu Yi 已提交
6792
def _get_var(name, program=None):
X
xuwei06 已提交
6793
    """
Y
yuyang18 已提交
6794
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6795

X
xuwei06 已提交
6796 6797 6798
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6799
        If None, default_global_program() will be used.
X
xuwei06 已提交
6800 6801 6802 6803 6804 6805 6806

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6807
    assert isinstance(program, Program)
X
xuwei06 已提交
6808 6809

    return program.global_block().var(name)
6810 6811


S
rename  
sneaxiy 已提交
6812
@signature_safe_contextmanager
L
lujun 已提交
6813 6814
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6815
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6816
    _dygraph_tracer_ = tracer
6817
    core._switch_tracer(tracer)
M
minqiyang 已提交
6818

6819 6820 6821
    try:
        yield
    finally:
6822 6823
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6824 6825


S
rename  
sneaxiy 已提交
6826
@signature_safe_contextmanager
L
lujun 已提交
6827
def _dygraph_place_guard(place):
6828 6829 6830
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
6831 6832
    _set_dygraph_tracer_expected_place(place)

6833 6834 6835
    try:
        yield
    finally:
6836
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6837
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6838 6839


6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6856 6857
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6858 6859 6860 6861 6862 6863 6864 6865 6866
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6867
            import paddle
6868

Z
Zhang Ting 已提交
6869 6870 6871
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6872
            if support_gpu:
Z
Zhang Ting 已提交
6873
                place = paddle.CUDAPlace(0)
6874 6875

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6876 6877 6878
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6879

Z
Zhang Ting 已提交
6880
            with paddle.static.device_guard("cpu"):
6881
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6882 6883
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6884
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6885
                out = paddle.reshape(data1, shape=shape)
6886

Z
Zhang Ting 已提交
6887 6888
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6889 6890 6891
            result = exe.run(fetch_list=[out])
    """

6892 6893 6894 6895 6896
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6897
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6898
        raise ValueError(
6899
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6900
            "when there is no need to specify device. But received %s" % device)
6901 6902
    if index:
        device = ":".join([device, index])
6903
    pre_device = switch_device(device)
6904 6905 6906 6907
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6908 6909 6910 6911 6912


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6913
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6914 6915 6916 6917 6918 6919 6920

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6921 6922
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6923 6924 6925 6926
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6927 6928
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6929 6930 6931 6932 6933 6934 6935 6936
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6937
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6948
            import paddle
G
guofei 已提交
6949 6950

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6951
            res = paddle.get_flags(flags)
G
guofei 已提交
6952 6953 6954 6955 6956 6957
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6958 6959
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6960 6961 6962 6963 6964 6965 6966
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6967 6968
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6969 6970 6971 6972 6973 6974 6975 6976
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6977 6978 6979 6980 6981 6982 6983


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6984
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace,
6985
                          core.IPUPlace, core.MLUPlace, core.CustomPlace)):
6986 6987 6988 6989 6990 6991 6992 6993 6994
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6995

6996 6997 6998
    if (place == "device"):
        return core.Place()

6999
    # GPU
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7015 7016

    # XPU
7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with IPU".format(avaliable_ipu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with MLU".format(avaliable_mlu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7064
    raise ValueError(
J
jianghaicheng 已提交
7065
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".
7066
        format(place))
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret