framework.py 167.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
]
Y
Yu Yang 已提交
55

Q
qiaolongfei 已提交
56 57 58 59
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
60 61
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
62 63
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
64 65


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
173
def in_dygraph_mode():
L
lujun 已提交
174
    """
Y
Youwei Song 已提交
175 176
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
177 178

    Returns:
Y
Youwei Song 已提交
179
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
180 181 182 183

    Examples:
        .. code-block:: python

184
            import paddle.fluid as fluid
L
lujun 已提交
185
            if fluid.in_dygraph_mode():
Y
Youwei Song 已提交
186 187 188
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
189 190

    """
L
lujun 已提交
191
    return _dygraph_tracer_ is not None
192 193


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
216 217
def _dygraph_tracer():
    return _dygraph_tracer_
218

W
Wu Yi 已提交
219

M
minqiyang 已提交
220
def _current_expected_place():
L
lujun 已提交
221
    return _dygraph_current_expected_place_
M
minqiyang 已提交
222 223


L
Leo Chen 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
241
def _cpu_num():
242
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
243 244 245 246 247 248 249 250
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
251
        os.environ['CPU_NUM'] = str(1)
252
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
253 254 255 256 257 258 259 260 261 262
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
263 264


C
chengduo 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
280
def cuda_places(device_ids=None):
L
lujun 已提交
281
    """
282 283 284 285 286
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
287 288

    If :code:`device_ids` is None, environment variable of
289
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
290 291 292
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
293
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
294 295

    If :code:`device_ids` is not None, it should be the device
296
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
297 298 299
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
300 301
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
302 303

    Returns:
304
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
305 306 307 308

    Examples:
        .. code-block:: python

309
            import paddle.fluid as fluid
L
lujun 已提交
310 311 312
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
313 314 315
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
316
        device_ids = _cuda_ids()
S
sneaxiy 已提交
317 318 319 320 321 322
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
323
    """
324
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
325 326 327
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
328 329
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
330 331
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
332

333 334
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
335 336

    Returns:
337
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
338 339 340 341

    Examples:
        .. code-block:: python

342
            import paddle.fluid as fluid
L
lujun 已提交
343 344 345
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
346 347 348 349 350 351
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
352
    """
353
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
354 355 356

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
357 358 359 360
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
361

362 363
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
364 365

    Returns:
366
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
367 368 369 370

    Examples:
        .. code-block:: python

371
            import paddle.fluid as fluid
L
lujun 已提交
372 373 374 375 376
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
377 378 379
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
380 381
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
382 383


384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
410
@signature_safe_contextmanager
411 412 413 414
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
415 416 417
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
418 419

    Args:
T
Tao Luo 已提交
420
        prefix(str, optional): prefix. Default is none.
421 422 423

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
424

425
          import paddle.fluid as fluid
426
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
427 428 429 430 431 432
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
433
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
434
                f = fluid.layers.pow(d, 2.0)
435
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
455 456
    """
    # TODO(panyx0718): Only [0-9a-z].
457 458 459 460 461 462 463 464 465
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
466 467 468 469 470 471 472 473 474 475 476 477


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
478 479 480
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
481 482 483 484


def grad_var_name(var_name):
    """
485 486
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
487 488 489
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
490

491
def convert_np_dtype_to_dtype_(np_dtype):
492 493
    """
    Convert the data type in numpy to the data type in Paddle
494

495
    Args:
496
        np_dtype(np.dtype): the data type in numpy.
497

498 499
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
500 501

    """
502 503
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
504
        return core.VarDesc.VarType.FP32
505
    elif dtype == np.float64:
506
        return core.VarDesc.VarType.FP64
507
    elif dtype == np.float16:
508
        return core.VarDesc.VarType.FP16
509
    elif dtype == np.int32:
510
        return core.VarDesc.VarType.INT32
511
    elif dtype == np.int16:
512
        return core.VarDesc.VarType.INT16
513
    elif dtype == np.int64:
514
        return core.VarDesc.VarType.INT64
515
    elif dtype == np.bool:
516
        return core.VarDesc.VarType.BOOL
517 518
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
519 520
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
521 522
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
523
    else:
M
minqiyang 已提交
524
        raise ValueError("Not supported numpy dtype %s" % dtype)
525 526 527


def dtype_is_floating(dtype):
528 529 530
    """
    Check the data type is floating or not.
    Args:
531
        dtype(np.dtype|core.VarDesc.VarType): data type.
532 533 534 535 536
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
537
    if not isinstance(dtype, core.VarDesc.VarType):
538 539
        dtype = convert_np_dtype_to_dtype_(dtype)

540 541 542 543
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
544 545


Y
Yang Yang(Tony) 已提交
546
def _debug_string_(proto, throw_on_error=True):
547 548 549 550 551 552 553 554 555 556 557
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
558
    error_fields = list()
Y
Yang Yang(Tony) 已提交
559
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
560 561
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
562 563 564
    return proto.__str__()


565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):

    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():

            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
    # starts
    if not contain_var(slice_start):
        attrs['starts'] = slice_start
    else:
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    # ends
    if not contain_var(slice_end):
        attrs['ends'] = slice_end
    else:
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
    # strides
    if use_strided_slice == True:
        if not contain_var(slice_step):
            attrs['strides'] = slice_step
        else:
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
800
class Variable(object):
801
    """
J
Jiabin Yang 已提交
802
    **Notes**:
803
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
804

805 806
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
807 808 809
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
810
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
811 812
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
813

814
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
815
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
816

817
    Most of a Variable's member variables can be setted to be None. It mean
818
    it is not available or will be specified later.
819

820
    Examples:
821 822
        In Static Graph Mode:

823 824
        .. code-block:: python

825
            import paddle.fluid as fluid
826
            cur_program = fluid.Program()
827 828 829 830
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
831
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
832 833 834 835 836 837 838 839 840

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

841 842
    """

Y
Yu Yang 已提交
843 844
    def __init__(self,
                 block,
Y
Yu Yang 已提交
845
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
846 847 848 849
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
850
                 capacity=None,
Q
QI JUN 已提交
851
                 persistable=None,
F
fengjiayi 已提交
852
                 error_clip=None,
Y
Yu Yang 已提交
853
                 stop_gradient=False,
F
fengjiayi 已提交
854
                 is_data=False,
H
Huihuang Zheng 已提交
855
                 need_check_feed=False,
H
hong 已提交
856
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
857
                 **kwargs):
Y
Yu Yang 已提交
858 859
        self.block = block
        if name is None:
Y
Yu Yang 已提交
860
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
861

Y
Yu Yang 已提交
862
        if dtype is not None:
863
            if not isinstance(dtype, core.VarDesc.VarType):
864
                dtype = convert_np_dtype_to_dtype_(dtype)
865

H
hong 已提交
866 867
        self.belong_to_optimizer = belong_to_optimizer

868 869 870 871 872
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
873

874 875 876
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
877

878 879 880 881 882 883 884
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
885

886
        if shape is not None:
887
            if is_new_var:
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
929

930 931
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
932

933 934 935 936 937 938 939
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
940

941 942 943 944
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
945

946
    @dygraph_only
947 948
    def detach(self):
        """
J
Jiabin Yang 已提交
949 950
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
951

952
        Returns a new Variable, detached from the current graph.
953

954
        Returns:
J
Jiabin Yang 已提交
955
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
956

957

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
974
        pass
975

976
    @dygraph_only
977
    def numpy(self):
978
        """
J
Jiabin Yang 已提交
979 980
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
981

J
Jiabin Yang 已提交
982
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
983 984 985 986 987

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
988
            ndarray: dtype is same as current Variable
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """
1006
        pass
1007

1008 1009 1010
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1011 1012 1013
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
1037
        pass
1038

1039
    @dygraph_only
1040
    def backward(self, backward_strategy=None):
1041
        """
J
Jiabin Yang 已提交
1042 1043
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
1044 1045 1046

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1047 1048
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1049

J
Jiabin Yang 已提交
1050 1051
        Returns:
            NoneType: None
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1064 1065
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1066 1067 1068 1069 1070 1071 1072 1073 1074
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1075
        pass
1076

1077
    @dygraph_only
1078
    def gradient(self):
1079
        """
J
Jiabin Yang 已提交
1080 1081
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
1082 1083 1084

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1085
        Returns:
1086
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
1109
        pass
1110

1111
    @dygraph_only
1112
    def clear_gradient(self):
1113
        """
J
Jiabin Yang 已提交
1114 1115 1116 1117
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1118

J
Jiabin Yang 已提交
1119
        Clear  (set to ``0`` ) the Gradient of Current Variable
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1146
        pass
X
Xin Pan 已提交
1147

1148
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1149 1150
        return self.to_string(True)

F
update  
fengjiayi 已提交
1151
    def to_string(self, throw_on_error, with_details=False):
1152 1153 1154
        """
        Get debug string.

J
Jiabin Yang 已提交
1155 1156 1157 1158 1159
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1160

1161 1162
        Returns:
            str: The debug string.
1163 1164 1165 1166 1167

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1168

1169 1170 1171 1172 1173
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1174
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1175
                print("=============with detail===============")
1176
                print(new_variable.to_string(True, True))
1177
        """
L
lujun 已提交
1178
        if in_dygraph_mode():
1179
            return
1180

F
update  
fengjiayi 已提交
1181 1182
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1183
        protostr = self.desc.serialize_to_string()
1184
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1185 1186 1187 1188
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1189 1190 1191
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1192
        return res_str
1193 1194 1195

    __repr__ = __str__

1196
    @property
1197
    def stop_gradient(self):
J
Jiabin Yang 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
                fc = fluid.FC("fc1", size=5, dtype="float32")
                fc2 = fluid.FC("fc2", size=3, dtype="float32")
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
                out1 = fc(a)
                out2 = fc2(b)
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

                assert (fc._w.gradient() == 0).all()
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1227
        if in_dygraph_mode():
1228
            pass
M
minqiyang 已提交
1229
        else:
1230
            return self._stop_gradient
1231

1232 1233
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1234
        if in_dygraph_mode():
1235
            pass
1236
        else:
1237
            self._stop_gradient = s
1238

1239 1240
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1262
        if in_dygraph_mode():
1263
            pass
1264 1265
        else:
            return self.desc.persistable()
1266

Y
Yu Yang 已提交
1267 1268
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1269
        if in_dygraph_mode():
1270 1271 1272
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1273 1274
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1275

Y
Yu Yang 已提交
1276 1277
    @property
    def name(self):
J
Jiabin Yang 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1294
        if in_dygraph_mode():
1295
            pass
1296 1297
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1298

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1319 1320
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1321
        if in_dygraph_mode():
1322
            pass
1323 1324
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1325

Y
Yu Yang 已提交
1326 1327
    @property
    def shape(self):
J
Jiabin Yang 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1345
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1346
        if in_dygraph_mode():
1347
            pass
1348 1349
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1350 1351

    @property
F
fengjiayi 已提交
1352
    def dtype(self):
J
Jiabin Yang 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1369
        if in_dygraph_mode():
1370
            pass
1371 1372
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1373 1374

    @property
1375
    @dygraph_not_support
Y
Yu Yang 已提交
1376
    def lod_level(self):
J
Jiabin Yang 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1398
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1399 1400
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1401
        return self.desc.lod_level()
Y
Yu Yang 已提交
1402

Y
Yu Yang 已提交
1403 1404
    @property
    def type(self):
J
Jiabin Yang 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1421
        if in_dygraph_mode():
1422
            pass
1423 1424
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1425

W
Wu Yi 已提交
1426
    def _set_error_clip(self, error_clip):
1427 1428 1429 1430 1431 1432 1433 1434 1435
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1436 1437
        self.error_clip = error_clip

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1554
    def _cloneVar(self, copy=False):
1555 1556
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1557 1558
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1559 1560 1561 1562
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1563
        new_var = self._cloneVar()
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1574
        new_var = self._cloneVar()
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1585
                return self._cloneVar(True)
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1604
                return self._cloneVar(True)
1605
            index = int(item)
1606
            if (index > 0 and index >= self.shape[axis]) \
1607 1608 1609 1610 1611 1612 1613
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1614
        return _getitem_impl_(self, item)
1615

Y
Yu Yang 已提交
1616

F
fengjiayi 已提交
1617 1618 1619
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1620

1621 1622
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1623 1624 1625 1626
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1627
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1628 1629 1630 1631 1632
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1633 1634 1635 1636
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1646
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1647 1648 1649 1650 1651 1652
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1653 1654 1655 1656 1657 1658 1659 1660
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1661 1662
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1663 1664
        return self.op_proto_map[type]

1665 1666 1667 1668 1669 1670
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1671 1672 1673 1674
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1675
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1676 1677
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1678 1679
        }

F
fengjiayi 已提交
1680

X
Xin Pan 已提交
1681
class Operator(object):
1682
    """
1683 1684 1685 1686 1687 1688 1689
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1690
        type(str): The type of operator. Default None.
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1711
        Block.append_op or Block._prepend_op instead.
1712 1713 1714 1715

    Examples:
        .. code-block:: python

1716
            import paddle.fluid as fluid
1717
            cur_program = fluid.Program()
1718 1719 1720 1721 1722
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1723
    """
1724
    OP_WITHOUT_KERNEL_SET = {
1725 1726
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1727 1728
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1729
        'c_sync_comm_stream'
1730
    }
1731

Y
Yu Yang 已提交
1732 1733
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1734
                 desc,
Y
Yu Yang 已提交
1735 1736 1737
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1738
                 attrs=None):
L
lujun 已提交
1739
        if in_dygraph_mode():
1740 1741
            if type is None:
                raise ValueError(
1742
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1743
            self._type = type
M
minqiyang 已提交
1744
            self.attrs = attrs if attrs else {}
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1759
                )] = self.block.program._op_role
1760 1761 1762

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1763 1764
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1765 1766 1767 1768 1769 1770 1771 1772

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1773
                    "`type` to initialized an Operator can not be None.")
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1805
                        for index, arg in enumerate(in_args):
1806 1807 1808 1809
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1810
                            elif isinstance(arg, Variable):
1811
                                in_arg_names.append(cpt.to_text(arg.name))
1812
                            else:
1813 1814 1815 1816 1817 1818
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
                                    "but received : " % (in_proto.name, type),
                                    arg)
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1845
                        if not in_dygraph_mode():
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1865
    def _has_kernel(self, op_type):
1866 1867
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1868
    def to_string(self, throw_on_error):
1869
        """
1870 1871
        Get debug string.

1872
        Args:
1873 1874
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1875

1876 1877
        Returns:
            str: The debug string.
1878 1879

        """
1880
        protostr = self.desc.serialize_to_string()
1881
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1882 1883 1884 1885
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1886 1887 1888

    __repr__ = __str__

F
fengjiayi 已提交
1889 1890
    @property
    def type(self):
L
lujun 已提交
1891
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1892
            return self._type
1893 1894
        else:
            return self.desc.type()
F
fengjiayi 已提交
1895 1896

    def input(self, name):
1897
        """
1898
        Get the input arguments according to the input parameter name.
1899

1900 1901
        Args:
            name(str): The input parameter name.
1902

1903 1904 1905
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1906
        """
F
fengjiayi 已提交
1907 1908
        return self.desc.input(name)

W
Wu Yi 已提交
1909
    def _rename_input(self, old_name, new_name):
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1920
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1921

W
Wu Yi 已提交
1922
    def _rename_output(self, old_name, new_name):
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1933
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1934

F
fengjiayi 已提交
1935 1936 1937 1938
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1939 1940 1941 1942 1943 1944 1945 1946
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1947
    def output(self, name):
1948
        """
1949
        Get output arguments by the output parameter name.
1950

1951 1952
        Args:
            name(str): The output parameter name.
1953

1954 1955 1956
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1957
        """
F
fengjiayi 已提交
1958 1959 1960 1961 1962 1963
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1964 1965 1966 1967 1968 1969 1970 1971
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1972
    def has_attr(self, name):
1973
        """
1974 1975
        Whether this Operator has the attribute with name or not.

1976
        Args:
1977
            name(str): the attribute name.
1978

1979 1980
        Returns:
            bool: True if has this attribute.
1981 1982

        """
F
fengjiayi 已提交
1983 1984 1985
        return self.desc.has_attr(name)

    def attr_type(self, name):
1986
        """
1987
        Get the type of attribute by attribute's name.
1988

1989 1990
        Args:
            name(str): the attribute name.
1991

1992 1993
        Returns:
            core.AttrType: the attribute type.
1994
        """
F
fengjiayi 已提交
1995 1996
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1997
    def _set_attr(self, name, val):
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2008 2009
        self._update_desc_attr(name, val)

2010 2011 2012
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2024 2025
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2026 2027
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2028
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2029 2030 2031 2032
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2033
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2034

F
fengjiayi 已提交
2035 2036 2037 2038 2039
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2040
        """
2041 2042
        Get the attribute by name.

2043
        Args:
2044
            name(str): the attribute name.
2045

2046 2047
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2048 2049
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2050
        return self.desc.attr(name)
Y
Yu Yang 已提交
2051

W
Wu Yi 已提交
2052
    def _block_attr_id(self, name):
2053
        """
G
gongweibao 已提交
2054
        Get the block attribute's id by name.
2055

2056 2057
        Args:
            name(str): the attribute name.
2058

2059 2060
        Returns:
            int: the block index.
2061
        """
W
Wu Yi 已提交
2062
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2063

W
Wu Yi 已提交
2064
    def _block_attr(self, name):
G
gongweibao 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2075
        id = self._block_attr_id(name)
G
gongweibao 已提交
2076 2077 2078
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2079
    def _blocks_attr(self, name):
G
gongweibao 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2090
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2091 2092 2093 2094 2095
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2096
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2107
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2108

J
JiayiFeng 已提交
2109
    def all_attrs(self):
F
fengjiayi 已提交
2110
        """
2111 2112 2113
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2114
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2115 2116 2117 2118
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2119 2120
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2121
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2122 2123 2124
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2125
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2126 2127 2128 2129
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2130 2131
        return attr_map

Y
Yu Yang 已提交
2132

Y
Yu Yang 已提交
2133
class Block(object):
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2148
        use `Program._create_block()` to create a block.
2149 2150 2151 2152

    Examples:
        .. code-block:: python

2153 2154 2155
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2156 2157 2158 2159 2160 2161 2162 2163 2164
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2165
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2166
        self.desc = program.desc.block(idx)
2167
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2168
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2169
        self.program = program
2170
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2171

2172
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2173 2174
        return self.to_string(True)

F
fengjiayi 已提交
2175 2176
    def to_string(self, throw_on_error, with_details=False):
        """
2177 2178
        Get debug string.

F
fengjiayi 已提交
2179 2180
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2181
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2182
            with_details(bool): more details about variables and parameters
2183 2184
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2185

2186 2187
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2188 2189 2190 2191
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2192
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2193 2194
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2195
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2196
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2197
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2198
            for op in self.ops:
F
fengjiayi 已提交
2199 2200
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2201 2202 2203
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2204 2205
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2206 2207
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2208 2209 2210

    __repr__ = __str__

Y
Yu Yang 已提交
2211 2212
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2213
        return self.desc.parent
Y
Yu Yang 已提交
2214

Y
Yu Yang 已提交
2215 2216 2217 2218
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2219
    def _set_forward_block_idx(self, idx):
2220 2221 2222 2223 2224 2225 2226 2227 2228
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2229
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2230

Y
Yu Yang 已提交
2231 2232
    @property
    def idx(self):
Y
Yu Yang 已提交
2233
        return self.desc.id
Y
Yu Yang 已提交
2234

Q
Qiao Longfei 已提交
2235
    def var(self, name):
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2249
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2250 2251 2252
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2253 2254
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2255
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2256
        return v
Q
Qiao Longfei 已提交
2257

X
Xin Pan 已提交
2258
    def _find_var_recursive(self, name):
2259 2260 2261 2262 2263 2264 2265
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2266
            Variable: the Variable with the giving name. Or None if not found.
2267
        """
Y
Yu Yang 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2292
        return None
Y
Yu Yang 已提交
2293

X
Xin Pan 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2313

Q
Qiao Longfei 已提交
2314
    def all_parameters(self):
2315
        return list(self.iter_parameters())
2316

2317
    def iter_parameters(self):
M
minqiyang 已提交
2318
        return (item[1] for item in six.iteritems(self.vars)
2319
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2320

Y
Yu Yang 已提交
2321
    def create_var(self, *args, **kwargs):
2322 2323 2324 2325 2326 2327
        if not in_dygraph_mode():
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
        else:
            var = _varbase_creator(*args, **kwargs)
Q
Qiao Longfei 已提交
2328
        return var
Y
Yu Yang 已提交
2329

Q
Qiao Longfei 已提交
2330 2331 2332
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2333
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2334 2335
        """
        Rename variable in vars and ops' inputs and outputs
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2348
        """
M
minqiyang 已提交
2349 2350
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2351

T
typhoonzero 已提交
2352
        if not self.has_var(name):
2353
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2354 2355
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2356
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2357 2358 2359 2360 2361 2362 2363
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2364
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2365 2366 2367 2368
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2369
        orig_var_type = v.type
M
minqiyang 已提交
2370
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2371
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2372
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2373
        if var_type == "Parameter":
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
            if not in_dygraph_mode():
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    gradient_clip_attr=gradient_clip_attr,
                    error_clip=error_clip)
            else:
                var = ParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    gradient_clip_attr=gradient_clip_attr,
                    error_clip=error_clip)
T
typhoonzero 已提交
2399
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2400 2401
            var = Variable(
                self,
T
typhoonzero 已提交
2402
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2403 2404 2405 2406
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2407
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2408 2409 2410
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2411
        self._sync_with_cpp()
2412
        return var
T
typhoonzero 已提交
2413

W
Wu Yi 已提交
2414 2415
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2416
        self.desc._remove_var(cpt.to_bytes(name))
2417 2418
        del self.vars[name]

Y
Yu Yang 已提交
2419 2420
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2421 2422 2423 2424 2425
        param = None
        if not in_dygraph_mode():
            param = Parameter(global_block, *args, **kwargs)
        else:
            param = ParamBase(*args, **kwargs)
2426
        if 'initializer' in kwargs:
2427 2428 2429 2430 2431

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2432 2433 2434 2435 2436
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2452
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2453
        return param
Y
Yu Yang 已提交
2454

Y
Yu Yang 已提交
2455
    def append_op(self, *args, **kwargs):
2456 2457 2458 2459 2460 2461
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2462
        if in_dygraph_mode():
2463 2464 2465
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2466 2467 2468 2469 2470
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2471

J
Jiabin Yang 已提交
2472 2473
            type = kwargs.get("type", None)

2474 2475 2476
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2477
                type=type,
M
minqiyang 已提交
2478 2479
                inputs=None,
                outputs=None,
2480
                attrs=attrs)
2481

M
minqiyang 已提交
2482 2483 2484
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2485
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2486 2487

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2488
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2489 2490
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2491
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2492
        else:
2493 2494 2495 2496 2497 2498 2499 2500 2501
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2502
            self.ops.append(op)
M
minqiyang 已提交
2503

2504 2505
        return op

W
Wu Yi 已提交
2506
    def _insert_op(self, index, *args, **kwargs):
2507 2508 2509 2510 2511 2512 2513 2514 2515
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2516 2517
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2518 2519 2520 2521
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2522
    def _remove_op(self, index):
2523 2524 2525 2526 2527 2528 2529 2530 2531
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2532 2533
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2534 2535
        del self.ops[index]

W
Wu Yi 已提交
2536
    def _slice_ops(self, start, end):
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2547
        return self.ops[start:end]
Y
Yancey1989 已提交
2548

W
Wu Yi 已提交
2549
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2550
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2551 2552
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2553
            op = Operator(
J
Jiabin Yang 已提交
2554
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2555

J
Jiabin Yang 已提交
2556
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2557
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2558 2559
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2560
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2561
        else:
2562 2563 2564 2565 2566 2567 2568 2569
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2570
            self.ops.insert(0, op)
2571

Y
Yu Yang 已提交
2572 2573
        return op

W
Wu Yi 已提交
2574
    def _sync_with_cpp(self):
2575
        """
2576 2577
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2578
        """
Q
Qiao Longfei 已提交
2579 2580 2581 2582 2583
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2584
        # sync variables removed from c++ end
2585
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2586
            if not self.desc.find_var(cpt.to_bytes(var)):
2587 2588
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2589
        # sync operators from cpp
2590 2591 2592 2593
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2610 2611 2612 2613 2614

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2615
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2616 2617 2618 2619 2620 2621 2622

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2636 2637 2638 2639
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2640
    def _copy_param_info_from(self, other):
2641
        """
2642 2643
        Copy the information of parameters from the other block.

2644
        Args:
2645 2646 2647 2648 2649
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2650 2651 2652 2653 2654

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2655 2656
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2657
        for p in other.iter_parameters():
2658 2659 2660
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2661
                raise ValueError("_copy_param_info_from should be invoked with "
2662 2663
                                 "same topology")
            assert isinstance(v, Variable)
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
            new_p = None
            if not in_dygraph_mode():
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    gradient_clip_attr=p.gradient_clip_attr,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
                new_p = ParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    gradient_clip_attr=p.gradient_clip_attr,
                    error_clip=p.error_clip,
                    name=v.name)
2692 2693
            self.vars[new_p.name] = new_p

2694
    def _clone_variable(self, var, force_persistable=True):
2695 2696
        """
        Clone a variable into current block.
2697

2698 2699
        Args:
            var: the variable to be cloned.
2700 2701 2702
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2703 2704

        Returns:
2705
            Variable: the new  variable cloned from 'var' in current block.
2706 2707
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2708 2709 2710 2711 2712
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2713 2714
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2715
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2716 2717 2718 2719 2720 2721
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2722
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2723 2724
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2725 2726 2727 2728 2729 2730 2731
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2732
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2733 2734
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2735
        return ret_var
2736

Y
Yu Yang 已提交
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2833
    def remove_input_by_id(self, node_id):
2834 2835 2836 2837 2838 2839
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2840
        self.node.remove_input(node_id)
2841

2842
    def remove_input(self, node):
2843 2844 2845 2846
        """
        Remove a node from inputs.

        Args:
2847
            node(IrNode): the node being removed.
2848
        """
2849
        self.node.remove_input(node.node)
2850

2851
    def append_input(self, node):
2852 2853 2854 2855
        """
        Append a node in inputs.

        Args:
2856
            node(IrNode): the node being appended.
2857
        """
2858
        self.node.append_input(node.node)
2859 2860 2861 2862 2863 2864 2865 2866

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2867
    def remove_output_by_id(self, node_id):
2868 2869 2870 2871 2872 2873
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2874
        self.node.remove_output(node_id)
2875

2876
    def remove_output(self, node):
2877 2878 2879 2880
        """
        Remove a node from outputs.

        Args:
2881
            node(IrNode): the node being removed.
2882
        """
2883
        self.node.remove_output(node.node)
2884

2885
    def append_output(self, node):
2886 2887 2888 2889
        """
        Append a node in outputs.

        Args:
2890
            node(IrNode): the node being appended.
2891
        """
2892
        self.node.append_output(node.node)
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3110
                all(isinstance(v, Block) for v in val):
3111 3112
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3113
                isinstance(val, core.ProgramDesc):
3114 3115 3116 3117
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3161 3162
class IrGraph(object):
    """
3163
    Python IrGraph. Beneath it is a core.Graph, which is used for
3164
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3165 3166
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3167 3168 3169 3170
    """

    def __init__(self, graph, for_test=False):
        """
3171 3172
        Construct an IrGraph using core.Graph.

3173 3174 3175 3176 3177 3178 3179 3180 3181
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3182 3183 3184 3185
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3186 3187 3188
        Warns:
            The method only clones the graph structure, not its attributes.

3189 3190 3191
        Returns:
            IrGraph: A new and duplicated graph.
        """
3192
        g = self.graph.clone()
3193 3194
        return IrGraph(g, self._for_test)

3195
    def is_test(self):
3196 3197 3198
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3199 3200
        return self._for_test

W
WangZhen 已提交
3201
    def all_nodes(self):
3202 3203 3204
        """
        Return all nodes included in the graph as a set.
        """
3205
        return {IrNode(node) for node in self.graph.nodes()}
3206

3207
    def all_var_nodes(self):
3208 3209 3210
        """
        Return all variable nodes included in the graph as a set.
        """
3211
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3212

3213
    def all_persistable_nodes(self):
3214 3215 3216
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3217 3218 3219 3220 3221
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3222
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3223

3224
    def all_op_nodes(self):
3225 3226 3227
        """
        Return all operator nodes included in the graph as a set.
        """
3228
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3229

3230
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3242
            IrVarNode: the created persistable variable node.
3243
        """
3244 3245 3246 3247 3248
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3249
        return IrVarNode(self.graph.create_var_node(var_desc))
3250 3251

    def create_var_node(self, name, var_type, shape, var_dtype):
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3263
            IrVarNode: the created variable node.
3264 3265
        """

3266 3267 3268 3269
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3270
        return IrVarNode(self.graph.create_var_node(var_desc))
3271 3272

    def create_var_node_from_desc(self, var_desc):
3273 3274 3275 3276 3277 3278 3279 3280
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3281
            IrVarNode: the created variable node.
3282
        """
3283
        return IrVarNode(self.graph.create_var_node(var_desc))
3284 3285

    def create_op_node(self, op_type, attrs, inputs, outputs):
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3296
            IrOpNode: the created operator node.
3297
        """
3298 3299
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3300
        for attr, value in six.iteritems(attrs):
3301
            self._update_desc_attr(op_desc, attr, value)
3302
        for input_name, var_nodes in six.iteritems(inputs):
3303 3304 3305 3306
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3307
        for output_name, var_nodes in six.iteritems(outputs):
3308 3309 3310 3311
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3312
        return IrOpNode(self.graph.create_op_node(op_desc))
3313 3314

    def create_op_node_from_desc(self, op_desc):
3315 3316 3317 3318 3319 3320 3321
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3322
            IrOpNode: the created operator node.
3323
        """
3324
        return IrOpNode(self.graph.create_op_node(op_desc))
3325 3326

    def update_input_link(self, old_input_node, new_input_node, op_node):
3327 3328 3329 3330
        """
        Update the input's link of a operator node.

        Args:
3331 3332 3333
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3334
        """
3335
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3336 3337
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3338 3339 3340 3341
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3342
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3343

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3362
    def link_to(self, node_in, node_out):
3363 3364 3365 3366
        """
        Connect two nodes.

        Args:
3367 3368
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3369
        """
3370
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3371
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3372 3373
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3374 3375

    def safe_remove_nodes(self, remove_nodes):
3376 3377 3378 3379 3380 3381 3382
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3383
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3384 3385 3386 3387
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3388 3389
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3390

Z
Zhen Wang 已提交
3391 3392 3393 3394 3395 3396 3397 3398
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3399
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3400 3401 3402 3403
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3404
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3405 3406 3407
                        ]
                    else:
                        var_nodes[each_var_name].append(
3408 3409
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3410 3411
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3412
    def has_circle(self):
3413 3414 3415 3416 3417 3418
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3419 3420 3421
        return core.has_circle(self.graph)

    def graph_num(self):
3422 3423 3424 3425 3426 3427
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3428 3429 3430
        return core.graph_num(self.graph)

    def topology_sort(self):
3431 3432 3433 3434 3435 3436
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3437
            list(IrNode): nodes in topology order.
3438
        """
3439
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3440
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3441 3442

    def build_adjacency_list(self):
3443 3444 3445 3446
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3447
            dict{IrNode: set(IrNode)}: the adjacency list.
3448
        """
3449 3450 3451 3452 3453
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3454

3455 3456 3457 3458 3459 3460 3461 3462
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3463
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3464 3465 3466 3467 3468
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3469 3470 3471
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3472
                                          + ' -o ' + pdf_save_path, shell=True)
3473 3474 3475 3476 3477
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3478
        remove_ctr_vars = set()
3479
        if remove_ctr_var:
3480
            for node in self.all_var_nodes():
3481 3482 3483
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3484 3485
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3486 3487
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3488 3489 3490 3491 3492 3493
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3494 3495 3496 3497
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3498 3499
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3500 3501 3502 3503 3504 3505 3506
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3507 3508 3509
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3510
        WARN: When the graph includes backward operator nodes, the
3511 3512 3513 3514 3515 3516
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3517
        convert_pass = core.get_pass('graph_to_program_pass')
3518 3519
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3520 3521 3522 3523
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3551
class Program(object):
D
dzhwinter 已提交
3552
    """
3553 3554
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3555
    it will contain nested block.
3556

J
Jiabin Yang 已提交
3557 3558 3559
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3560

J
Jiabin Yang 已提交
3561
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3562
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3563 3564 3565 3566 3567 3568 3569
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3570 3571 3572 3573
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3574 3575

    Returns:
J
Jiabin Yang 已提交
3576
        Program: An empty Program.
D
dzhwinter 已提交
3577 3578

    Examples:
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3592 3593 3594

    """

3595 3596
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3597 3598
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3599
        self._seed = 0
Y
yuyang18 已提交
3600
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3601
        self.__op_role_var = []
T
tangwei12 已提交
3602

3603 3604
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3605
        self._is_distributed = False
3606
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3607
        self._is_chief = False
3608 3609 3610
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3611
        self._endpoints = []
3612 3613 3614
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3615
        self._trainers_endpoints = []
3616
        # the distributed lookup table names
T
tangwei12 已提交
3617
        self._distributed_lookup_table = None
3618 3619 3620

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3621 3622
        self._use_lamb = False

3623 3624 3625
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3626

3627 3628 3629
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3630
        self._program_config = None
3631

H
hutuxian 已提交
3632 3633 3634
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3635 3636 3637
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3638
    @property
3639
    def _op_role(self):
Y
yuyang18 已提交
3640 3641 3642 3643 3644 3645 3646 3647
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3648
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3649 3650 3651 3652
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3653 3654
        return self._current_role

3655 3656
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3657 3658 3659
        self._current_role = role

    @property
3660
    def _op_role_var(self):
Y
yuyang18 已提交
3661
        """
3662
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3663

3664
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3665 3666 3667

        Notes: This is a very low-level API. Users should not use it directly.
        """
3668
        return self.__op_role_var
Y
yuyang18 已提交
3669

3670 3671 3672 3673 3674 3675 3676 3677 3678
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3679
    @signature_safe_contextmanager
W
Wu Yi 已提交
3680
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3681 3682 3683 3684 3685 3686 3687
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3688
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3689 3690 3691

        Examples:

3692
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3693
            >>> p, g = backward(...)
W
Wu Yi 已提交
3694
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3695 3696
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3697
        tmp_role = self._current_role
3698
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3699

Y
yuyang18 已提交
3700 3701
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3702
        self.__op_role_var = [
3703 3704 3705
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3706
        yield
3707
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3708
        self._current_role = tmp_role
Y
Yu Yang 已提交
3709

S
rename  
sneaxiy 已提交
3710
    @signature_safe_contextmanager
X
Xin Pan 已提交
3711
    def _lr_schedule_guard(self, is_with_opt=False):
3712 3713 3714 3715 3716 3717 3718
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3719 3720 3721 3722
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3723 3724 3725

        Examples:

3726
            >>> import paddle.fluid as fluid
3727 3728 3729 3730
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3731 3732

        tmp_role = self._current_role
3733
        tmp_var = self.__op_role_var
3734

3735 3736
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3737 3738
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3739
        # TODO(typhoonzero): how to set target learning rate var
3740
        self.__op_role_var = []
3741
        yield
3742
        self.__op_role_var = tmp_var
3743
        self._current_role = tmp_role
3744

3745
    def __str__(self):
Y
yuyang18 已提交
3746 3747 3748 3749 3750 3751 3752 3753 3754
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3755 3756
        return self.to_string(True)

F
fengjiayi 已提交
3757 3758 3759
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3760

J
Jiabin Yang 已提交
3761 3762 3763
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3764

J
Jiabin Yang 已提交
3765
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3766

H
haowang101779990 已提交
3767
        Returns:
J
Jiabin Yang 已提交
3768
            str: The debug string describe current Program.
Y
yuyang18 已提交
3769 3770

        Raises:
J
Jiabin Yang 已提交
3771
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3772

3773 3774 3775 3776 3777 3778 3779
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
J
Jiabin Yang 已提交
3780 3781 3782
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3792 3793
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3794 3795
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3796

W
Wu Yi 已提交
3797
    def _get_desc(self):
Y
yuyang18 已提交
3798 3799 3800 3801 3802 3803 3804
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3805 3806
        return self.desc

X
version  
Xin Pan 已提交
3807 3808 3809
    def _version(self):
        return self.desc._version()

3810
    @dygraph_not_support
3811
    def clone(self, for_test=False):
Y
yuyang18 已提交
3812
        """
3813
        **Notes**:
J
Jiabin Yang 已提交
3814 3815 3816 3817
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3818
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3819

3820 3821
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3822

3823

J
Jiabin Yang 已提交
3824
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3825 3826 3827
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3828

Y
yuyang18 已提交
3829
        * Set for_test to False when we want to clone the program for training.
3830
        * Set for_test to True when we want to clone the program for testing.
3831 3832
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3833
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3834

J
Jiabin Yang 已提交
3835 3836
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3837

J
Jiabin Yang 已提交
3838 3839 3840 3841
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3842

J
Jiabin Yang 已提交
3843
        Args:
3844

J
Jiabin Yang 已提交
3845
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3846

J
Jiabin Yang 已提交
3847 3848
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3849

Y
yuyang18 已提交
3850 3851 3852

        Examples:

J
Jiabin Yang 已提交
3853
        **Notes: The Program's order maybe different after** :code:`clone` **and
3854
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3855
        example we give you an simple method** :code:`print_prog(program)` **to
3856
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3857
        after** :code:`clone`:
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3895 3896 3897

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3909 3910 3911 3912 3913 3914 3915 3916 3917

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3965 3966
        """
        if for_test:
3967
            if self._appending_grad_times > 0:
3968 3969 3970 3971 3972 3973 3974
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3975 3976 3977
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3978
        else:
3979
            p = Program()
G
gongweibao 已提交
3980 3981
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3982
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3983 3984 3985
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3986 3987

            p._current_role = self._current_role
3988
            p.__op_role_var = self.__op_role_var
3989
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3990

W
Wu Yi 已提交
3991
            p._sync_with_cpp()
3992

W
Wu Yi 已提交
3993
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3994
        p._copy_data_info_from(self)
3995
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3996
        return p
3997

3998
    def _prune(self, targets):
Y
yuyang18 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4012 4013 4014 4015
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
4016

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4051
        """
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4069 4070
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4071 4072
        if not isinstance(targets, list):
            targets = [targets]
4073 4074 4075 4076 4077 4078

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

4079 4080 4081 4082
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4083 4084
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
4085
                    # and we need to find the current op that generate this
4086 4087 4088 4089 4090 4091 4092 4093
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

4094
                    t = t.op
4095 4096 4097 4098
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
4099
                else:
4100 4101
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
4102 4103 4104

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
4105
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
4106 4107 4108
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4109
        res._sync_with_cpp()
4110 4111
        return res

X
Xin Pan 已提交
4112
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4113
        """
F
fengjiayi 已提交
4114 4115 4116 4117 4118
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4119
        3. change the :code:`is_test`
Y
yuyang18 已提交
4120 4121 4122
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4123
        Args:
X
Xin Pan 已提交
4124 4125
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4126

Y
yuyang18 已提交
4127 4128 4129 4130 4131 4132
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4133
        res = Program()
4134
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4135 4136 4137 4138

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4139
        if prune_read_op:
4140 4141 4142 4143 4144 4145 4146 4147 4148
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4149
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4150 4151

        # change all `is_test` attributes to True
M
minqiyang 已提交
4152
        for i in six.moves.range(res.desc.num_blocks()):
4153
            block = res.desc.block(i)
M
minqiyang 已提交
4154
            for j in six.moves.range(block.op_size()):
4155 4156
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4157
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4158 4159 4160
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4161
        res._sync_with_cpp()
4162 4163
        return res

4164 4165
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4166
        """
J
Jiabin Yang 已提交
4167 4168 4169 4170
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4171

4172 4173
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4174

J
Jiabin Yang 已提交
4175
        Args:
Y
yuyang18 已提交
4176

J
Jiabin Yang 已提交
4177
            binary_str_type (str): the binary prootbuf string.
4178

J
Jiabin Yang 已提交
4179 4180
        Returns:
            Program: A deserialized Program.
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4203
        """
4204 4205
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4206
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4207
        p._sync_with_cpp()
4208
        return p
Y
Yu Yang 已提交
4209

4210
    @staticmethod
4211
    def _construct_from_desc(desc):
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4227 4228
    @property
    def random_seed(self):
Y
yuyang18 已提交
4229
        """
J
Jiabin Yang 已提交
4230
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4231 4232
        the random seed from random device.

J
Jiabin Yang 已提交
4233 4234 4235 4236
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4237

4238 4239 4240 4241 4242 4243 4244 4245

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4246 4247 4248
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4249 4250
                print(random_seed)
                prog.random_seed = 1
4251 4252
                z_var = fluid.layers.dropout(x_var, 0.7)

4253
                print(prog.random_seed)
Y
yuyang18 已提交
4254
        """
D
dzhwinter 已提交
4255 4256
        return self._seed

Q
qiaolongfei 已提交
4257 4258
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4259
        """
4260 4261
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4262 4263 4264 4265
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4266

4267 4268 4269 4270 4271 4272 4273 4274 4275

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4276 4277


Y
yuyang18 已提交
4278
        """
Q
qiaolongfei 已提交
4279 4280
        return self.desc.num_blocks()

D
dzhwinter 已提交
4281 4282 4283 4284 4285 4286
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4287
    def __repr__(self):
4288
        return self.__str__()
4289

Y
Yu Yang 已提交
4290
    def global_block(self):
Y
yuyang18 已提交
4291
        """
J
Jiabin Yang 已提交
4292 4293
        **Notes**:
            **This API has no effect in Dygraph mode**
4294 4295 4296

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4297 4298
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4299

4300 4301 4302 4303 4304 4305 4306 4307 4308

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4309

Y
yuyang18 已提交
4310
        """
Y
Yu Yang 已提交
4311 4312
        return self.blocks[0]

Q
Qiao Longfei 已提交
4313
    def block(self, index):
Y
yuyang18 已提交
4314
        """
J
Jiabin Yang 已提交
4315 4316
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4317

4318 4319
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4320 4321
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4322

J
Jiabin Yang 已提交
4323 4324
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4325 4326 4327 4328 4329 4330 4331 4332 4333

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4334
        """
Q
Qiao Longfei 已提交
4335 4336
        return self.blocks[index]

Y
Yu Yang 已提交
4337
    def current_block(self):
Y
yuyang18 已提交
4338
        """
J
Jiabin Yang 已提交
4339 4340
        **Notes**:
            **This API has no effect in Dygraph mode**
4341

J
Jiabin Yang 已提交
4342 4343
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4344

J
Jiabin Yang 已提交
4345 4346
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4347

4348 4349 4350 4351 4352 4353 4354 4355
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4356
        """
Y
Yu Yang 已提交
4357 4358
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4359
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4360 4361 4362 4363 4364
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4365

Y
yuyang18 已提交
4366 4367 4368 4369 4370
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4371
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4372 4373 4374
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4375 4376 4377 4378
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4379
    def _rollback(self):
Y
yuyang18 已提交
4380 4381 4382 4383 4384
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4385 4386
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4387
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4398 4399 4400
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4401
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4402

W
Wu Yi 已提交
4403
    def _copy_param_info_from(self, other):
4404
        """
4405
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4406

Y
yuyang18 已提交
4407 4408 4409
        Notes: This is a very low level API. Users should not invoke it
        directly.

4410 4411 4412 4413 4414 4415 4416
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4417
            raise TypeError("_copy_param_info_from should be invoked with "
4418 4419 4420
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4421
            raise ValueError("_copy_param_info_from should be invoked with two "
4422
                             "program, with represent the same topology")
W
Wu Yi 已提交
4423
        self.global_block()._copy_param_info_from(other.global_block())
4424

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4440
        self._parameters_on_pservers = other._parameters_on_pservers
4441
        self._endpoints = other._endpoints
4442
        self._ps_endpoint = other._ps_endpoint
4443 4444
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4445
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4446 4447
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4448

Y
yuyang18 已提交
4449 4450 4451
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4452 4453 4454 4455 4456 4457 4458
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4459
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4460 4461 4462
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4463
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4464
                             "program, with represent the same topology")
4465
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4466 4467
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4468 4469
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4470

4471
    @dygraph_not_support
4472
    def list_vars(self):
Y
yuyang18 已提交
4473
        """
J
Jiabin Yang 已提交
4474
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4475

J
Jiabin Yang 已提交
4476 4477
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4489
        """
4490
        for each_block in self.blocks:
4491
            for each_var in list(each_block.vars.values()):
4492 4493
                yield each_var

Y
Yu Yang 已提交
4494

4495
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4496
class Parameter(Variable):
4497
    """
4498
    Parameter is derived from Variable. A parameter is a persistable
4499
    Variable, and will be updated by optimizers after each iteration.
4500
    The training of a neural network is essentially the updating of
4501 4502
    its parameters.

4503
    Relative to a general Variable, a Parameter has several its own
4504 4505
    member variables:

4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4518 4519
    """

Y
Yu Yang 已提交
4520
    def __init__(self, block, shape, dtype, **kwargs):
4521 4522 4523 4524 4525
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4526
        if len(shape) == 0:
4527 4528
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4529 4530 4531

        for each in shape:
            if each < 0:
4532 4533 4534
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4535 4536 4537

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4538 4539 4540 4541
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4542 4543
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4544
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4545

W
wanghaoshuang 已提交
4546
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4547

4548 4549
        self.is_distributed = False

F
fengjiayi 已提交
4550 4551 4552
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4553 4554 4555
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4556

F
update  
fengjiayi 已提交
4557 4558 4559 4560 4561 4562 4563 4564
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4565 4566 4567 4568 4569 4570 4571 4572 4573
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4574 4575 4576 4577 4578 4579
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4580
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4581
            for attr_name in additional_attr:
4582 4583
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4584 4585
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4586 4587 4588 4589
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4590

4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

        #self.block = default_main_program().global_block()

        _dygraph_tracer().trace_var(name, self)

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
            return 'name %s, dtype: %s shape: %s %s' % (self.name, self.dtype,
                                                        self.shape, str(tensor))
        else:
            return 'name %s, shape: %s, not inited' % (self.name, self.shape)

    __repr__ = __str__


Y
Yu Yang 已提交
4696
# program is a global instance.
Y
Yu Yang 已提交
4697 4698
_main_program_ = Program()
_startup_program_ = Program()
4699

4700

4701
def default_startup_program():
Y
Yu Yang 已提交
4702
    """
Y
yuyang18 已提交
4703 4704
    Get default/global startup program.

J
Jiabin Yang 已提交
4705 4706 4707
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4708 4709 4710
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4711
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4712

J
Jiabin Yang 已提交
4713
    Returns: current default startup :ref:`api_fluid_Program`
4714

J
Jiabin Yang 已提交
4715
    Returns type: :ref:`api_fluid_Program`
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4731
    """
Y
Yu Yang 已提交
4732
    return _startup_program_
4733

4734

4735
def default_main_program():
Y
Yu Yang 已提交
4736
    """
4737 4738 4739 4740 4741
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4742

4743 4744
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4745
    :code:`default_main_program` when the program is not specified.
4746

4747 4748
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4749
    Returns:
4750
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4751 4752 4753 4754 4755

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4756

4757
            # Sample Network:
4758 4759
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4779
            #print the number of blocks in the program, 1 in this case
4780
            print(fluid.default_main_program().num_blocks)
4781 4782

            #print the description of variable 'image'
4783
            print(fluid.default_main_program().blocks[0].var('image'))
4784

Y
Yu Yang 已提交
4785
    """
Y
Yu Yang 已提交
4786
    return _main_program_
Y
Yu Yang 已提交
4787 4788 4789 4790 4791


def switch_main_program(program):
    """
    Switch the main program to a new program.
4792

Y
Yu Yang 已提交
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4807
    Switch the startup program to a new program
Y
Yu Yang 已提交
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4820
@signature_safe_contextmanager
Y
Yu Yang 已提交
4821 4822
def program_guard(main_program, startup_program=None):
    """
4823 4824
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4825
    variables to the new main programs.
4826

G
guofei 已提交
4827 4828 4829 4830 4831 4832 4833
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4834
    Examples:
4835 4836 4837
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4838

4839 4840 4841
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
4842
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4843
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4844 4845 4846

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4847

Y
Yu Yang 已提交
4848
    Examples:
4849
       .. code-block:: python
Y
yuyang18 已提交
4850

4851 4852 4853 4854 4855
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
4856 4857
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4870 4871


W
Wu Yi 已提交
4872
def _get_var(name, program=None):
X
xuwei06 已提交
4873
    """
Y
yuyang18 已提交
4874
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4875

X
xuwei06 已提交
4876 4877 4878
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4879
        If None, default_global_program() will be used.
X
xuwei06 已提交
4880 4881 4882 4883 4884 4885 4886

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4887
    assert isinstance(program, Program)
X
xuwei06 已提交
4888 4889

    return program.global_block().var(name)
4890 4891


S
rename  
sneaxiy 已提交
4892
@signature_safe_contextmanager
L
lujun 已提交
4893 4894 4895 4896
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
4897
    core._switch_tracer(tracer)
M
minqiyang 已提交
4898

4899
    yield
P
Paddle CI 已提交
4900

4901
    core._switch_tracer(tmp_trace)
L
lujun 已提交
4902
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4903 4904


S
rename  
sneaxiy 已提交
4905
@signature_safe_contextmanager
L
lujun 已提交
4906 4907 4908 4909
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4910

4911
    yield
M
minqiyang 已提交
4912

L
lujun 已提交
4913
    _dygraph_current_expected_place_ = tmp_place
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()