framework.py 194.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
S
sneaxiy 已提交
47 48 49
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
50
    'in_dygraph_mode',
C
chengduo 已提交
51
    'is_compiled_with_cuda',
52
    'is_compiled_with_xpu',
53
    'Variable',
54
    'ComplexVariable',
55
    'load_op_library',
56
    'require_version',
57
    'device_guard',
G
guofei 已提交
58 59
    'set_flags',
    'get_flags',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
68
_dygraph_tracer_ = None
69
_global_expected_place_ = None
70
_current_device = None
71 72
global_prog_seed = 0

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
181
def in_dygraph_mode():
L
lujun 已提交
182
    """
183

184 185 186 187 188 189 190
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
191 192

    Returns:
193
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198 199 200 201 202 203 204 205
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
206 207

    """
L
lujun 已提交
208
    return _dygraph_tracer_ is not None
209 210


211 212 213
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
214
        ), "We don't support %s in imperative mode" % func.__name__
215 216 217 218 219 220 221 222
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
223 224 225 226 227 228 229 230 231 232
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We only support '%s()' in static graph mode, please call 'paddle.enable_static()' to enter static graph mode." % func.__name__
233 234 235 236 237
        return func(*args, **kwargs)

    return __impl__


238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


273 274
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
275
static_only = wrap_decorator(_static_only_)
276
fake_interface_only = wrap_decorator(_fake_interface_only_)
277 278


L
lujun 已提交
279 280
def _dygraph_tracer():
    return _dygraph_tracer_
281

W
Wu Yi 已提交
282

M
minqiyang 已提交
283
def _current_expected_place():
284 285 286
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
287 288 289 290 291 292 293 294 295 296 297
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
314 315


L
Leo Chen 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
333
def _cpu_num():
334
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
335 336 337 338 339 340 341 342
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
343
        os.environ['CPU_NUM'] = str(1)
344
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
345 346 347 348 349 350 351 352 353 354
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
355 356


357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
372 373 374 375
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

376
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
377 378 379 380

    Examples:
        .. code-block:: python

381 382
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
383 384 385 386
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
387
def cuda_places(device_ids=None):
L
lujun 已提交
388
    """
389 390 391 392
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
393
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
394 395

    If :code:`device_ids` is None, environment variable of
396
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
397
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
398
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
399
    If :code:`FLAGS_selected_gpus` is not set, all visible
400
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
401 402

    If :code:`device_ids` is not None, it should be the device
403
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
404
    the returned list would be 
C
Chen Weihang 已提交
405
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
406
    
407 408
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
409 410

    Returns:
C
Chen Weihang 已提交
411
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
412 413 414 415

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
416 417 418 419 420 421
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
422 423

    """
S
sneaxiy 已提交
424 425 426
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
427
        device_ids = _cuda_ids()
S
sneaxiy 已提交
428 429 430 431 432 433
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
434
    """
C
Chen Weihang 已提交
435
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
436 437 438
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
439 440
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
441 442
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
443

444 445
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
446 447

    Returns:
C
Chen Weihang 已提交
448
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
449 450 451 452

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
453 454 455 456 457 458
            import paddle
            import paddle.static as static
            
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
459 460
    """

S
sneaxiy 已提交
461 462 463 464 465 466
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
467
    """
468
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
469 470 471

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
472 473 474 475
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
476

477 478
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
479 480

    Returns:
481
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
482 483 484 485

    Examples:
        .. code-block:: python

486
            import paddle.fluid as fluid
L
lujun 已提交
487 488 489 490 491
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
492 493 494
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
495 496
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
497 498


499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
525
@signature_safe_contextmanager
526 527
def name_scope(prefix=None):
    """
528 529
    :api_attr: Static Graph

530
    Generate hierarchical name prefix for the operators in Static Graph.
531

T
Tao Luo 已提交
532 533 534
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
535
        Don't use it in dygraph, since it will cause memory leak.
536 537

    Args:
T
Tao Luo 已提交
538
        prefix(str, optional): prefix. Default is none.
539 540 541

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
542

543 544 545
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
546
             a = paddle.fluid.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
547
             b = a + 1
548
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
549
                c = b * 1
550
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
551
                d = c / 1
552 553 554
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
555 556 557
                g = f - 1

          # Op are created in the default main program.  
558
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
574 575
    """
    # TODO(panyx0718): Only [0-9a-z].
576
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
577 578 579
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
580
        assert prefix, "namescope prefix can not be empty."
581 582
        global _name_scope
        _name_scope = _name_scope.child(prefix)
583 584 585 586
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
587 588 589 590 591 592 593 594 595 596 597 598


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
599 600 601
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
602 603 604 605


def grad_var_name(var_name):
    """
606 607
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
608 609 610
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
611

612
def convert_np_dtype_to_dtype_(np_dtype):
613 614
    """
    Convert the data type in numpy to the data type in Paddle
615

616
    Args:
617
        np_dtype(np.dtype): the data type in numpy.
618

619 620
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
621 622

    """
623 624
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
625
        return core.VarDesc.VarType.FP32
626
    elif dtype == np.float64:
627
        return core.VarDesc.VarType.FP64
628
    elif dtype == np.float16:
629
        return core.VarDesc.VarType.FP16
630
    elif dtype == np.int32:
631
        return core.VarDesc.VarType.INT32
632
    elif dtype == np.int16:
633
        return core.VarDesc.VarType.INT16
634
    elif dtype == np.int64:
635
        return core.VarDesc.VarType.INT64
636
    elif dtype == np.bool:
637
        return core.VarDesc.VarType.BOOL
638
    elif dtype == np.uint16:
639 640 641
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
642 643
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
644 645
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
646
    else:
M
minqiyang 已提交
647
        raise ValueError("Not supported numpy dtype %s" % dtype)
648 649 650


def dtype_is_floating(dtype):
651 652 653
    """
    Check the data type is floating or not.
    Args:
654
        dtype(np.dtype|core.VarDesc.VarType): data type.
655 656 657 658 659
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
660
    if not isinstance(dtype, core.VarDesc.VarType):
661 662
        dtype = convert_np_dtype_to_dtype_(dtype)

663 664 665 666
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
667 668


Y
Yang Yang(Tony) 已提交
669
def _debug_string_(proto, throw_on_error=True):
670 671 672 673 674 675 676 677 678 679 680
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
681
    error_fields = list()
Y
Yang Yang(Tony) 已提交
682
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
683 684
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
685 686 687
    return proto.__str__()


688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
745
    target_block = default_main_program().current_block()
746 747 748 749 750 751 752 753 754 755 756

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
757
            })
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
797
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
798
                fill_constant([1], 1, force_cpu=True, out=temp_1)
799
                temp_end = target_block.create_var(dtype=slice_item.dtype)
800
                target_block.append_op(
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
840

841
    # starts
L
Leo Chen 已提交
842
    if contain_var(slice_start):
843 844 845 846 847 848 849 850
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
851 852 853 854
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
855 856 857 858 859 860 861
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
862 863 864
    else:
        attrs['ends'] = slice_end

865 866
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
867
        if contain_var(slice_step):
868 869 870 871 872 873 874
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
875 876
        else:
            attrs['strides'] = slice_step
877 878 879 880 881 882
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
883
        slice_out_var = target_block.create_var(
884 885 886
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

887
        target_block.append_op(
888 889 890 891 892 893 894
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
895
        strided_slice_out_var = target_block.create_var(
896 897 898
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
899
        target_block.append_op(
900 901 902 903 904 905 906 907
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
908
        reverse_out_var = target_block.create_var(
909 910 911
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
912
        target_block.append_op(
913 914 915 916 917 918 919 920 921 922 923
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
924
class Variable(object):
925
    """
J
Jiabin Yang 已提交
926
    **Notes**:
927
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
928

929 930
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
931 932 933
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
934
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
935 936
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
937

938
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
939
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
940

T
tianshuo78520a 已提交
941
    Most of a Variable's member variables can be set to be None. It mean
942
    it is not available or will be specified later.
943

944
    Examples:
945 946
        In Static Graph Mode:

947 948
        .. code-block:: python

949
            import paddle.fluid as fluid
950
            cur_program = fluid.Program()
951 952 953 954
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
955
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
956 957 958 959 960 961 962 963 964

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

965 966
    """

Y
Yu Yang 已提交
967 968
    def __init__(self,
                 block,
Y
Yu Yang 已提交
969
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
970 971 972 973
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
974
                 capacity=None,
Q
QI JUN 已提交
975
                 persistable=None,
F
fengjiayi 已提交
976
                 error_clip=None,
Y
Yu Yang 已提交
977
                 stop_gradient=False,
F
fengjiayi 已提交
978
                 is_data=False,
H
Huihuang Zheng 已提交
979
                 need_check_feed=False,
H
hong 已提交
980
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
981
                 **kwargs):
Y
Yu Yang 已提交
982 983
        self.block = block
        if name is None:
Y
Yu Yang 已提交
984
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
985

Y
Yu Yang 已提交
986
        if dtype is not None:
987
            if not isinstance(dtype, core.VarDesc.VarType):
988
                dtype = convert_np_dtype_to_dtype_(dtype)
989

H
hong 已提交
990 991
        self.belong_to_optimizer = belong_to_optimizer

992 993 994 995 996
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
997

998 999 1000
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1001

1002 1003 1004 1005 1006 1007 1008
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1009

1010
        if shape is not None:
1011
            if is_new_var:
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1053

1054 1055
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1056

1057 1058 1059 1060 1061 1062 1063
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1064

1065 1066 1067 1068
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1069

1070
    @fake_interface_only
1071 1072
    def detach(self):
        """
J
Jiabin Yang 已提交
1073
        **Notes**:
T
tianshuo78520a 已提交
1074
            **This API is ONLY available in Dygraph mode**
1075

1076
        Returns a new Variable, detached from the current graph.
1077

1078
        Returns:
J
Jiabin Yang 已提交
1079
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1080

1081

1082 1083 1084 1085 1086
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1087
                from paddle.fluid.dygraph import Linear
1088 1089 1090 1091
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1092
                    linear = Linear(32, 64)
1093
                    data = to_variable(data)
1094
                    x = linear(data)
1095 1096 1097
                    y = x.detach()

        """
1098
        pass
1099

1100
    @fake_interface_only
1101
    def numpy(self):
1102
        """
J
Jiabin Yang 已提交
1103
        **Notes**:
T
tianshuo78520a 已提交
1104
            **This API is ONLY available in Dygraph mode**
1105

J
Jiabin Yang 已提交
1106
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1107 1108 1109 1110 1111

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1112
            ndarray: dtype is same as current Variable
1113 1114 1115 1116 1117 1118

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1119
                from paddle.fluid.dygraph import Linear
1120 1121 1122 1123
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1124
                    linear = Linear(32, 64)
1125
                    data = to_variable(data)
1126
                    x = linear(data)
1127 1128 1129
                    print(x.numpy())

        """
1130
        pass
1131

1132
    @fake_interface_only
1133 1134
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1135
        **Notes**:
T
tianshuo78520a 已提交
1136
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1137

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1148
                from paddle.fluid.dygraph import Linear
1149 1150
                import numpy as np

1151
                data = np.ones([3, 1024], dtype='float32')
1152
                with fluid.dygraph.guard():
1153
                    linear = fluid.dygraph.Linear(1024, 4)
1154
                    t = to_variable(data)
1155
                    linear(t)  # call with default weight
1156
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1157 1158
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1159 1160

        """
1161
        pass
1162

1163
    @fake_interface_only
1164
    def backward(self, retain_graph=False):
1165
        """
J
Jiabin Yang 已提交
1166
        **Notes**:
T
tianshuo78520a 已提交
1167
            **This API is ONLY available in Dygraph mode**
1168

1169
        Run backward of current Graph which starts from current Tensor.
1170

J
Jiabin Yang 已提交
1171
        Args:
1172 1173 1174 1175
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1176

J
Jiabin Yang 已提交
1177 1178
        Returns:
            NoneType: None
1179 1180 1181 1182 1183

        Examples:
            .. code-block:: python

                import numpy as np
1184 1185
                import paddle
                paddle.disable_static()
1186 1187

                x = np.ones([2, 2], np.float32)
1188 1189 1190 1191 1192 1193 1194 1195
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
                ret = paddle.sums(inputs)
1196
                loss = paddle.fluid.layers.reduce_sum(ret)
1197
                loss.backward()
1198 1199

        """
1200
        pass
1201

1202
    @fake_interface_only
1203
    def gradient(self):
1204
        """
J
Jiabin Yang 已提交
1205
        **Notes**:
T
tianshuo78520a 已提交
1206
            **This API is ONLY available in Dygraph mode**
1207 1208 1209

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1210
        Returns:
1211
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1212 1213 1214 1215 1216 1217 1218

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1219
                # example1: return ndarray
1220 1221 1222 1223 1224 1225 1226 1227 1228
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1229
                    loss2.backward()
1230 1231
                    print(loss2.gradient())

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1245
        """
1246
        pass
1247

1248
    @fake_interface_only
1249
    def clear_gradient(self):
1250
        """
J
Jiabin Yang 已提交
1251
        **Notes**:
T
tianshuo78520a 已提交
1252
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1253 1254

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1255

J
Jiabin Yang 已提交
1256
        Clear  (set to ``0`` ) the Gradient of Current Variable
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1275
                    loss2.backward()
1276 1277 1278 1279 1280
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1281
        pass
X
Xin Pan 已提交
1282

1283
    def __str__(self):
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1328

F
update  
fengjiayi 已提交
1329
    def to_string(self, throw_on_error, with_details=False):
1330 1331 1332
        """
        Get debug string.

J
Jiabin Yang 已提交
1333 1334 1335 1336 1337
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1338

1339 1340
        Returns:
            str: The debug string.
1341 1342 1343 1344 1345

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1346
                import paddle
1347

1348
                paddle.enable_static()
1349 1350 1351 1352 1353
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1354
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1355
                print("=============with detail===============")
1356
                print(new_variable.to_string(True, True))
1357
        """
F
update  
fengjiayi 已提交
1358 1359
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1360
        protostr = self.desc.serialize_to_string()
1361
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1362 1363 1364 1365
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1366 1367 1368
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1369
        return res_str
1370 1371 1372

    __repr__ = __str__

1373
    @property
1374
    def stop_gradient(self):
J
Jiabin Yang 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1390 1391
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1392 1393 1394
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1395 1396
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1397 1398 1399 1400
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1401
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1402 1403
                assert (out1.gradient() == 0).all()
        """
1404
        return self._stop_gradient
1405

1406 1407
    @stop_gradient.setter
    def stop_gradient(self, s):
1408
        self._stop_gradient = s
1409

1410 1411
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1433
        return self.desc.persistable()
1434

Y
Yu Yang 已提交
1435 1436
    @persistable.setter
    def persistable(self, p):
1437
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1438

Y
Yu Yang 已提交
1439 1440
    @property
    def name(self):
J
Jiabin Yang 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1457
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1479 1480
    @name.setter
    def name(self, new_name):
1481
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1482

Y
Yu Yang 已提交
1483 1484
    @property
    def shape(self):
J
Jiabin Yang 已提交
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1502
        # convert to tuple, make it as same as numpy API.
1503
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1504 1505

    @property
F
fengjiayi 已提交
1506
    def dtype(self):
J
Jiabin Yang 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1523
        return self.desc.dtype()
Y
Yu Yang 已提交
1524 1525 1526

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1548 1549 1550
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1551
        return self.desc.lod_level()
Y
Yu Yang 已提交
1552

Y
Yu Yang 已提交
1553 1554
    @property
    def type(self):
J
Jiabin Yang 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1571
        return self.desc.type()
Y
Yu Yang 已提交
1572

W
Wu Yi 已提交
1573
    def _set_error_clip(self, error_clip):
1574 1575 1576 1577 1578 1579 1580 1581 1582
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1583 1584
        self.error_clip = error_clip

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1625
            raise ValueError("slice step can not be zero")
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1701
    def _cloneVar(self, copy=False):
1702 1703
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1704 1705
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1706 1707 1708 1709
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1710
        new_var = self._cloneVar()
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1721
        new_var = self._cloneVar()
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1732
                return self._cloneVar(True)
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1751
                return self._cloneVar(True)
1752
            index = int(item)
1753
            if (index > 0 and index >= self.shape[axis]) \
1754 1755 1756 1757 1758 1759 1760
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1761
        return _getitem_impl_(self, item)
1762

Y
Yu Yang 已提交
1763

F
fengjiayi 已提交
1764 1765 1766
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1767

1768 1769
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1770 1771 1772 1773
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1774
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1775 1776 1777 1778
        ret_values.append(op_proto)
    return ret_values


1779 1780
class ComplexVariable(object):
    """
1781 1782
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1783 1784 1785
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1786
        **The constructor of ComplexTensor should not be invoked directly.**
1787

1788
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1789 1790

    Args:
1791 1792
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1793 1794 1795 1796
    
    Examples:
        .. code-block:: python

1797
            import paddle
1798 1799
            import numpy as np

1800 1801 1802 1803 1804 1805 1806 1807
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1808 1809
    """

1810 1811 1812 1813 1814
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1861 1862 1863
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1864 1865 1866 1867

    __repr__ = __str__


F
fengjiayi 已提交
1868
class OpProtoHolder(object):
1869 1870 1871 1872
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1882
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1883 1884 1885 1886 1887 1888
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1889 1890 1891 1892 1893 1894 1895 1896
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1897 1898
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1899 1900
        return self.op_proto_map[type]

1901 1902 1903 1904 1905 1906
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1907 1908 1909 1910
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1911
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1912
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1913 1914
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1915 1916
        }

F
fengjiayi 已提交
1917

X
Xin Pan 已提交
1918
class Operator(object):
1919
    """
1920 1921 1922 1923 1924 1925 1926
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1927
        type(str): The type of operator. Default None.
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1948
        Block.append_op or Block._prepend_op instead.
1949 1950 1951 1952

    Examples:
        .. code-block:: python

1953
            import paddle.fluid as fluid
1954
            cur_program = fluid.Program()
1955 1956 1957 1958 1959
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1960
    """
1961
    OP_WITHOUT_KERNEL_SET = {
1962 1963
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1964 1965
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1966
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1967
    }
1968

Y
Yu Yang 已提交
1969 1970
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1971
                 desc,
Y
Yu Yang 已提交
1972 1973 1974
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1975
                 attrs=None):
L
lujun 已提交
1976
        if in_dygraph_mode():
1977 1978
            if type is None:
                raise ValueError(
1979
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1980
            self._type = type
M
minqiyang 已提交
1981
            self.attrs = attrs if attrs else {}
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1996
                )] = self.block.program._op_role
1997 1998 1999

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2000 2001
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2002 2003 2004 2005 2006 2007 2008 2009

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
2010
                    "`type` to initialized an Operator can not be None.")
2011 2012
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2013 2014 2015 2016 2017 2018 2019
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2020 2021 2022 2023 2024 2025 2026

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2058
                        if not isinstance(in_args, (list, tuple)):
2059 2060 2061 2062 2063 2064
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2065
                        for index, arg in enumerate(in_args):
2066 2067 2068 2069
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2070
                            elif isinstance(arg, (Variable, core.VarBase)):
2071
                                in_arg_names.append(cpt.to_text(arg.name))
2072
                            else:
2073 2074 2075 2076
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2077 2078
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2105
                        if not in_dygraph_mode():
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2125
    def _has_kernel(self, op_type):
2126 2127
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2128
    def to_string(self, throw_on_error):
2129
        """
2130 2131
        Get debug string.

2132
        Args:
2133 2134
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2135

2136 2137
        Returns:
            str: The debug string.
2138 2139

        """
2140
        protostr = self.desc.serialize_to_string()
2141
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2142 2143
        return _debug_string_(proto, throw_on_error)

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2237
    def __str__(self):
2238
        return self._to_readable_code()
2239 2240 2241

    __repr__ = __str__

F
fengjiayi 已提交
2242 2243
    @property
    def type(self):
2244
        return self.desc.type()
F
fengjiayi 已提交
2245 2246

    def input(self, name):
2247
        """
2248
        Get the input arguments according to the input parameter name.
2249

2250 2251
        Args:
            name(str): The input parameter name.
2252

2253 2254 2255
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2256
        """
F
fengjiayi 已提交
2257 2258
        return self.desc.input(name)

W
Wu Yi 已提交
2259
    def _rename_input(self, old_name, new_name):
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2270
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2271

W
Wu Yi 已提交
2272
    def _rename_output(self, old_name, new_name):
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2283
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2284

F
fengjiayi 已提交
2285 2286 2287 2288
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2289 2290 2291 2292 2293 2294 2295 2296
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2297
    def output(self, name):
2298
        """
2299
        Get output arguments by the output parameter name.
2300

2301 2302
        Args:
            name(str): The output parameter name.
2303

2304 2305 2306
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2307
        """
F
fengjiayi 已提交
2308 2309 2310 2311 2312 2313
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2314 2315 2316 2317 2318 2319 2320 2321
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2322
    def has_attr(self, name):
2323
        """
2324 2325
        Whether this Operator has the attribute with name or not.

2326
        Args:
2327
            name(str): the attribute name.
2328

2329 2330
        Returns:
            bool: True if has this attribute.
2331 2332

        """
F
fengjiayi 已提交
2333 2334 2335
        return self.desc.has_attr(name)

    def attr_type(self, name):
2336
        """
2337
        Get the type of attribute by attribute's name.
2338

2339 2340
        Args:
            name(str): the attribute name.
2341

2342 2343
        Returns:
            core.AttrType: the attribute type.
2344
        """
F
fengjiayi 已提交
2345 2346
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2347
    def _set_attr(self, name, val):
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2358 2359
        self._update_desc_attr(name, val)

2360 2361 2362
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2374 2375
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2376 2377
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2378
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2379 2380 2381 2382
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2383
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2384

F
fengjiayi 已提交
2385 2386 2387 2388 2389
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2390
        """
2391 2392
        Get the attribute by name.

2393
        Args:
2394
            name(str): the attribute name.
2395

2396 2397
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2398 2399
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2400
        return self.desc.attr(name)
Y
Yu Yang 已提交
2401

W
Wu Yi 已提交
2402
    def _block_attr_id(self, name):
2403
        """
G
gongweibao 已提交
2404
        Get the block attribute's id by name.
2405

2406 2407
        Args:
            name(str): the attribute name.
2408

2409 2410
        Returns:
            int: the block index.
2411
        """
W
Wu Yi 已提交
2412
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2413

W
Wu Yi 已提交
2414
    def _block_attr(self, name):
G
gongweibao 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2425
        id = self._block_attr_id(name)
G
gongweibao 已提交
2426 2427 2428
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2429
    def _blocks_attr(self, name):
G
gongweibao 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2440
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2441 2442 2443 2444 2445
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2446
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2457
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2458

J
JiayiFeng 已提交
2459
    def all_attrs(self):
F
fengjiayi 已提交
2460
        """
2461 2462 2463
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2464
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2465 2466 2467 2468
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2469 2470
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2471
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2472 2473 2474
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2475
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2476 2477 2478 2479
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2480 2481
        return attr_map

2482 2483 2484
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2485 2486 2487 2488

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2489 2490 2491
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2492 2493 2494 2495 2496 2497 2498 2499

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2500 2501
            return False

2502 2503 2504 2505 2506 2507
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2508

Y
Yu Yang 已提交
2509
class Block(object):
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2524
        use `Program._create_block()` to create a block.
2525 2526 2527 2528

    Examples:
        .. code-block:: python

2529 2530 2531
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2532 2533 2534 2535 2536 2537 2538 2539 2540
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2541
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2542
        self.desc = program.desc.block(idx)
2543
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2544
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2545
        self.program = program
2546
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2547

2548
    def __str__(self):
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2595

F
fengjiayi 已提交
2596 2597
    def to_string(self, throw_on_error, with_details=False):
        """
2598 2599
        Get debug string.

F
fengjiayi 已提交
2600 2601
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2602
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2603
            with_details(bool): more details about variables and parameters
2604 2605
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2606

2607 2608
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2609 2610 2611 2612
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2613
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2614 2615
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2616
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2617
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2618
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2619
            for op in self.ops:
F
fengjiayi 已提交
2620 2621
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2622 2623 2624
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2625 2626
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2627 2628
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2629 2630 2631

    __repr__ = __str__

Y
Yu Yang 已提交
2632 2633
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2634
        return self.desc.parent
Y
Yu Yang 已提交
2635

Y
Yu Yang 已提交
2636 2637 2638 2639
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2640
    def _set_forward_block_idx(self, idx):
2641 2642 2643 2644 2645 2646 2647 2648 2649
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2650
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2651

2652 2653 2654 2655 2656 2657 2658 2659
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2660 2661
    @property
    def idx(self):
Y
Yu Yang 已提交
2662
        return self.desc.id
Y
Yu Yang 已提交
2663

Q
Qiao Longfei 已提交
2664
    def var(self, name):
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2678
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2679 2680 2681
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2682 2683
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2684
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2685
        return v
Q
Qiao Longfei 已提交
2686

X
Xin Pan 已提交
2687
    def _find_var_recursive(self, name):
2688 2689 2690 2691 2692 2693 2694
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2695
            Variable: the Variable with the giving name. Or None if not found.
2696
        """
Y
Yu Yang 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2721
        return None
Y
Yu Yang 已提交
2722

X
Xin Pan 已提交
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2742

Q
Qiao Longfei 已提交
2743
    def all_parameters(self):
2744
        return list(self.iter_parameters())
2745

2746
    def iter_parameters(self):
M
minqiyang 已提交
2747
        return (item[1] for item in six.iteritems(self.vars)
2748
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2749

Y
Yu Yang 已提交
2750
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2751 2752 2753
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2754 2755 2756
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2757
        return var
Y
Yu Yang 已提交
2758

Q
Qiao Longfei 已提交
2759 2760 2761
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2762
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2763 2764
        """
        Rename variable in vars and ops' inputs and outputs
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2777
        """
M
minqiyang 已提交
2778 2779
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2780

T
typhoonzero 已提交
2781
        if not self.has_var(name):
2782
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2783 2784
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2785
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2786 2787 2788 2789 2790 2791
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2792
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2793 2794 2795 2796
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2797
        orig_var_type = v.type
M
minqiyang 已提交
2798
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2799
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2800
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2801
        if var_type == "Parameter":
L
Leo Chen 已提交
2802 2803
            if in_dygraph_mode():
                var = ParamBase(
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2814 2815
                var = Parameter(
                    self,
2816 2817 2818 2819 2820 2821 2822 2823 2824
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2825
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2826 2827
            var = Variable(
                self,
T
typhoonzero 已提交
2828
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2829 2830 2831 2832
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2833
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2834 2835 2836
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2837
        self._sync_with_cpp()
2838
        return var
T
typhoonzero 已提交
2839

W
Wu Yi 已提交
2840 2841
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2842
        self.desc._remove_var(cpt.to_bytes(name))
2843 2844
        del self.vars[name]

Y
Yu Yang 已提交
2845 2846
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2847
        param = None
L
Leo Chen 已提交
2848
        if in_dygraph_mode():
2849
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2850 2851
        else:
            param = Parameter(global_block, *args, **kwargs)
2852
        if 'initializer' in kwargs:
2853 2854 2855 2856 2857

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2858 2859 2860 2861 2862
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2874
                # TODO already inited, do nothing, should log a warning
2875 2876 2877
                pass
            else:
                initializer(param, self)
2878
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2879
        return param
Y
Yu Yang 已提交
2880

Y
Yu Yang 已提交
2881
    def append_op(self, *args, **kwargs):
2882 2883 2884 2885 2886 2887
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2888
        if in_dygraph_mode():
2889
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2890
            type = kwargs.get("type", None)
2891 2892 2893
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2894
                type=type,
M
minqiyang 已提交
2895 2896
                inputs=None,
                outputs=None,
2897
                attrs=attrs)
2898

M
minqiyang 已提交
2899 2900 2901
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2902
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2903 2904

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2905
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2906 2907
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2908
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2909
        else:
2910 2911 2912 2913 2914 2915 2916 2917 2918
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2919
            self.ops.append(op)
M
minqiyang 已提交
2920

2921 2922
        return op

W
Wu Yi 已提交
2923
    def _insert_op(self, index, *args, **kwargs):
2924 2925 2926 2927 2928 2929 2930 2931 2932
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2933 2934
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2935 2936 2937 2938
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2939
    def _remove_op(self, index):
2940 2941 2942 2943 2944 2945 2946 2947 2948
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2949 2950
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2951 2952
        del self.ops[index]

W
Wu Yi 已提交
2953
    def _slice_ops(self, start, end):
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2964
        return self.ops[start:end]
Y
Yancey1989 已提交
2965

W
Wu Yi 已提交
2966
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2967
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2968 2969
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2970
            op = Operator(
J
Jiabin Yang 已提交
2971
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2972

J
Jiabin Yang 已提交
2973
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2974
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2975 2976
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2977
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2978
        else:
2979 2980 2981 2982 2983 2984 2985 2986
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2987
            self.ops.insert(0, op)
2988

Y
Yu Yang 已提交
2989 2990
        return op

W
Wu Yi 已提交
2991
    def _sync_with_cpp(self):
2992
        """
2993 2994
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2995
        """
Q
Qiao Longfei 已提交
2996 2997 2998 2999 3000
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

3001
        # sync variables removed from c++ end
3002
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3003
            if not self.desc.find_var(cpt.to_bytes(var)):
3004 3005
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3006
        # sync operators from cpp
3007 3008 3009 3010
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3027 3028 3029 3030 3031

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3032
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3033 3034 3035 3036 3037 3038 3039

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3053 3054 3055 3056
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3057
    def _copy_param_info_from(self, other):
3058
        """
3059 3060
        Copy the information of parameters from the other block.

3061
        Args:
3062 3063 3064 3065 3066
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3067 3068 3069 3070 3071

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3072 3073
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3074
        for p in other.iter_parameters():
3075 3076 3077
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3078 3079
                # if the Parameter is pruned, v may be None
                continue
3080
            assert isinstance(v, Variable)
3081
            new_p = None
L
Leo Chen 已提交
3082 3083
            if in_dygraph_mode():
                new_p = ParamBase(
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3095 3096
                new_p = Parameter(
                    block=self,
3097 3098 3099
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3100 3101
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3102 3103 3104 3105 3106 3107
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3108 3109
            self.vars[new_p.name] = new_p

3110
    def _clone_variable(self, var, force_persistable=True):
3111 3112
        """
        Clone a variable into current block.
3113

3114 3115
        Args:
            var: the variable to be cloned.
3116 3117 3118
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3119 3120

        Returns:
3121
            Variable: the new  variable cloned from 'var' in current block.
3122 3123
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3124 3125 3126 3127 3128
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3129 3130
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3131
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3132 3133 3134 3135 3136 3137
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3138
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3139 3140
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3141 3142 3143 3144 3145 3146 3147
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3148
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3149 3150
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3151
        return ret_var
3152

Y
Yu Yang 已提交
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3249
    def remove_input_by_id(self, node_id):
3250 3251 3252 3253 3254 3255
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3256
        self.node.remove_input(node_id)
3257

3258
    def remove_input(self, node):
3259 3260 3261 3262
        """
        Remove a node from inputs.

        Args:
3263
            node(IrNode): the node being removed.
3264
        """
3265
        self.node.remove_input(node.node)
3266

3267
    def append_input(self, node):
3268 3269 3270 3271
        """
        Append a node in inputs.

        Args:
3272
            node(IrNode): the node being appended.
3273
        """
3274
        self.node.append_input(node.node)
3275 3276 3277 3278 3279 3280 3281 3282

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3283
    def remove_output_by_id(self, node_id):
3284 3285 3286 3287 3288 3289
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3290
        self.node.remove_output(node_id)
3291

3292
    def remove_output(self, node):
3293 3294 3295 3296
        """
        Remove a node from outputs.

        Args:
3297
            node(IrNode): the node being removed.
3298
        """
3299
        self.node.remove_output(node.node)
3300

3301
    def append_output(self, node):
3302 3303 3304 3305
        """
        Append a node in outputs.

        Args:
3306
            node(IrNode): the node being appended.
3307
        """
3308
        self.node.append_output(node.node)
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3356
            "The node variable description can not be None."
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3367
            "The node variable description can not be None."
3368 3369
        return self.node.var().persistable()

3370 3371 3372 3373 3374 3375 3376 3377
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3378
            "The node variable description can not be None."
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3389
            "The node variable description can not be None."
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3400
            "The node variable description can not be None."
3401 3402
        return self.node.var().shape()

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3450
            "The node operator description can not be None."
3451 3452
        self.node.op()._rename_input(old_input_name, new_input_name)

3453 3454 3455 3456 3457 3458 3459 3460 3461
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3462
            "The node operator description can not be None."
3463 3464
        self.node.op()._rename_output(old_output_name, new_output_name)

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3476
            "The node operator description can not be None."
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3490
            "The node operator description can not be None."
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3501
            "The node operator description can not be None."
3502 3503
        return self.node.op().set_type(new_type)

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3519
            "The node operator description can not be None."
3520 3521 3522 3523
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3524
                all(isinstance(v, Block) for v in val):
3525 3526
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3527
                isinstance(val, core.ProgramDesc):
3528 3529 3530 3531
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3532 3533 3534 3535 3536 3537 3538 3539
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3540
            "The node operator description can not be None."
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3551
            "The node operator description can not be None."
3552 3553
        return self.node.op().output_arg_names()

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3575 3576
class IrGraph(object):
    """
3577
    Python IrGraph. Beneath it is a core.Graph, which is used for
3578
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3579 3580
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3581 3582 3583 3584
    """

    def __init__(self, graph, for_test=False):
        """
3585 3586
        Construct an IrGraph using core.Graph.

3587 3588 3589 3590 3591 3592 3593 3594 3595
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3596 3597 3598 3599
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3600 3601 3602
        Warns:
            The method only clones the graph structure, not its attributes.

3603 3604 3605
        Returns:
            IrGraph: A new and duplicated graph.
        """
3606
        g = self.graph.clone()
3607 3608
        return IrGraph(g, self._for_test)

3609
    def is_test(self):
3610 3611 3612
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3613 3614
        return self._for_test

W
WangZhen 已提交
3615
    def all_nodes(self):
3616 3617 3618
        """
        Return all nodes included in the graph as a set.
        """
3619
        return {IrNode(node) for node in self.graph.nodes()}
3620

3621
    def all_var_nodes(self):
3622 3623 3624
        """
        Return all variable nodes included in the graph as a set.
        """
3625
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3626

3627
    def all_persistable_nodes(self):
3628 3629 3630
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3631 3632 3633 3634 3635
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3636
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3637

3638
    def all_op_nodes(self):
3639 3640 3641
        """
        Return all operator nodes included in the graph as a set.
        """
3642
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3643

3644
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3656
            IrVarNode: the created persistable variable node.
3657
        """
3658 3659 3660 3661 3662
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3663
        return IrVarNode(self.graph.create_var_node(var_desc))
3664 3665

    def create_var_node(self, name, var_type, shape, var_dtype):
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3677
            IrVarNode: the created variable node.
3678 3679
        """

3680 3681 3682 3683
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3684
        return IrVarNode(self.graph.create_var_node(var_desc))
3685

3686 3687 3688 3689 3690 3691
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3692
    def create_var_node_from_desc(self, var_desc):
3693 3694 3695 3696 3697 3698 3699 3700
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3701
            IrVarNode: the created variable node.
3702
        """
3703
        return IrVarNode(self.graph.create_var_node(var_desc))
3704 3705

    def create_op_node(self, op_type, attrs, inputs, outputs):
3706 3707 3708 3709 3710 3711 3712
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3713
            outputs(dict): the outputs of the operator node.
3714 3715

        Returns:
3716
            IrOpNode: the created operator node.
3717
        """
3718 3719
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3720
        for attr, value in six.iteritems(attrs):
3721
            self._update_desc_attr(op_desc, attr, value)
3722
        for input_name, var_nodes in six.iteritems(inputs):
3723 3724 3725 3726
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3727
        for output_name, var_nodes in six.iteritems(outputs):
3728 3729 3730 3731
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3732
        return IrOpNode(self.graph.create_op_node(op_desc))
3733 3734

    def create_op_node_from_desc(self, op_desc):
3735 3736 3737 3738 3739 3740 3741
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3742
            IrOpNode: the created operator node.
3743
        """
3744
        return IrOpNode(self.graph.create_op_node(op_desc))
3745 3746

    def update_input_link(self, old_input_node, new_input_node, op_node):
3747 3748 3749 3750
        """
        Update the input's link of a operator node.

        Args:
3751 3752 3753
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3754
        """
3755
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3756 3757
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3758 3759 3760 3761
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3762
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3763

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3774 3775
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3776 3777 3778 3779 3780 3781
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3782
    def link_to(self, node_in, node_out):
3783 3784 3785 3786
        """
        Connect two nodes.

        Args:
3787 3788
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3789
        """
3790
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3791
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3792 3793
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3794 3795

    def safe_remove_nodes(self, remove_nodes):
3796 3797 3798 3799 3800 3801 3802
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3803
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3804 3805 3806 3807
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3808 3809
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3810

Z
Zhen Wang 已提交
3811 3812 3813 3814 3815 3816 3817 3818
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3819
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3820 3821 3822 3823
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3824
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3825 3826 3827
                        ]
                    else:
                        var_nodes[each_var_name].append(
3828 3829
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3830 3831
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3832
    def has_circle(self):
3833 3834 3835 3836 3837 3838
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3839 3840 3841
        return core.has_circle(self.graph)

    def graph_num(self):
3842 3843 3844 3845 3846 3847
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3848 3849 3850
        return core.graph_num(self.graph)

    def topology_sort(self):
3851 3852 3853
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3854
        Notes: the `graph` can not contain a circle.
3855 3856

        Returns:
Z
Zhen Wang 已提交
3857
            list(IrNode): nodes in topology order.
3858
        """
3859
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3860
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3861 3862

    def build_adjacency_list(self):
3863 3864 3865 3866
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3867
            dict{IrNode: set(IrNode)}: the adjacency list.
3868
        """
3869 3870 3871 3872 3873
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3874

3875 3876 3877 3878 3879 3880 3881 3882
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3883
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3884 3885 3886 3887 3888
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3889 3890 3891
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3892
                                          + ' -o ' + pdf_save_path, shell=True)
3893 3894 3895 3896 3897
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3898
        remove_ctr_vars = set()
3899
        if remove_ctr_var:
3900
            for node in self.all_var_nodes():
3901 3902 3903
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3904 3905
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3906 3907
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3908 3909 3910 3911 3912 3913
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3914 3915 3916 3917
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3918 3919
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3920 3921 3922 3923 3924 3925 3926
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3927 3928 3929
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3930
        WARN: When the graph includes backward operator nodes, the
3931 3932 3933 3934 3935 3936
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3937
        convert_pass = core.get_pass('graph_to_program_pass')
3938 3939
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3940 3941 3942 3943
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3971
class Program(object):
D
dzhwinter 已提交
3972
    """
3973
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
3974
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3975
    it will contain nested block.
3976

J
Jiabin Yang 已提交
3977 3978 3979
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3980

J
Jiabin Yang 已提交
3981
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3982
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3983 3984 3985 3986 3987 3988 3989
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3990
    **Notes**:
3991 3992 3993
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3994 3995

    Returns:
J
Jiabin Yang 已提交
3996
        Program: An empty Program.
D
dzhwinter 已提交
3997 3998

    Examples:
3999 4000
        .. code-block:: python

4001 4002 4003 4004
            import paddle
            import paddle.static as static

            paddle.enable_static()
4005

4006 4007 4008 4009 4010
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4011
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4012 4013 4014

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4015 4016 4017

    """

4018 4019
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4020 4021
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4022 4023
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4024
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4025
        self.__op_role_var = []
T
tangwei12 已提交
4026

4027 4028
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4029
        self._is_distributed = False
4030
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4031
        self._is_chief = False
4032 4033 4034
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4035
        self._endpoints = []
4036 4037 4038
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4039
        self._trainers_endpoints = []
4040
        # the distributed lookup table names
T
tangwei12 已提交
4041
        self._distributed_lookup_table = None
4042 4043 4044

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4045 4046
        self._use_lamb = False

4047 4048 4049
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4050

4051 4052 4053
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4054
        self._program_config = None
4055

H
hutuxian 已提交
4056 4057 4058
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4059 4060 4061
        # appending gradients times
        self._appending_grad_times = 0

4062 4063 4064 4065
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4066 4067 4068
        # compiled program, i.e. Graph
        self._graph = None

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4079 4080
                import paddle
                import paddle.static as static
4081

4082 4083 4084
                paddle.enable_static()

                prog = static.default_main_program()
4085 4086 4087 4088 4089
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4090
                prog1 = static.default_main_program()
4091 4092 4093 4094 4095 4096 4097 4098
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4099
    @property
4100
    def _op_role(self):
Y
yuyang18 已提交
4101 4102 4103 4104 4105 4106 4107 4108
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4109
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4110 4111 4112 4113
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4114 4115
        return self._current_role

4116 4117
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4118 4119 4120
        self._current_role = role

    @property
4121
    def _op_role_var(self):
Y
yuyang18 已提交
4122
        """
4123
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4124

4125
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4126 4127 4128

        Notes: This is a very low-level API. Users should not use it directly.
        """
4129
        return self.__op_role_var
Y
yuyang18 已提交
4130

4131
    @signature_safe_contextmanager
4132 4133 4134 4135 4136
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4137 4138 4139 4140
        try:
            yield
        finally:
            self._current_role = tmp_role
4141

S
rename  
sneaxiy 已提交
4142
    @signature_safe_contextmanager
W
Wu Yi 已提交
4143
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4144 4145 4146 4147 4148 4149 4150
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4151
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4152 4153 4154

        Examples:

4155
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4156
            >>> p, g = backward(...)
W
Wu Yi 已提交
4157
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4158 4159
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4160
        tmp_role = self._current_role
4161
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4162

Y
yuyang18 已提交
4163 4164
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4165
        self.__op_role_var = [
4166 4167 4168
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4169 4170 4171 4172 4173
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4174

S
rename  
sneaxiy 已提交
4175
    @signature_safe_contextmanager
X
Xin Pan 已提交
4176
    def _lr_schedule_guard(self, is_with_opt=False):
4177 4178 4179 4180 4181 4182 4183
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4184 4185 4186 4187
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4188 4189 4190

        Examples:

4191
            >>> import paddle.fluid as fluid
4192 4193 4194 4195
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4196 4197

        tmp_role = self._current_role
4198
        tmp_var = self.__op_role_var
4199

4200 4201
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4202 4203
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4204
        # TODO(typhoonzero): how to set target learning rate var
4205
        self.__op_role_var = []
4206 4207 4208 4209 4210
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4211

4212
    def __str__(self):
Y
yuyang18 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4261
            program_str += '\n'
4262
        return program_str
Y
Yang Yang(Tony) 已提交
4263

F
fengjiayi 已提交
4264 4265 4266
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4267

J
Jiabin Yang 已提交
4268 4269 4270
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4271

J
Jiabin Yang 已提交
4272
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4273

H
haowang101779990 已提交
4274
        Returns:
J
Jiabin Yang 已提交
4275
            str: The debug string describe current Program.
Y
yuyang18 已提交
4276 4277

        Raises:
J
Jiabin Yang 已提交
4278
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4279

4280 4281 4282
        Examples:
            .. code-block:: python

4283 4284 4285 4286
                import paddle
                import paddle.static as static

                paddle.enable_static()
4287

4288 4289 4290
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4291
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4292
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4293
                print("program string without detail: {}".format(prog_string))
4294
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4295
        """
4296 4297 4298 4299 4300 4301 4302 4303 4304
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4305 4306 4307 4308 4309 4310
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4311 4312
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4313 4314
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4315

W
Wu Yi 已提交
4316
    def _get_desc(self):
Y
yuyang18 已提交
4317 4318 4319 4320 4321 4322 4323
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4324 4325
        return self.desc

X
version  
Xin Pan 已提交
4326 4327 4328
    def _version(self):
        return self.desc._version()

4329
    def clone(self, for_test=False):
Y
yuyang18 已提交
4330
        """
4331 4332 4333 4334
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4335

4336
        Create a new Program with forward content of original one when ``for_test=True``.
4337
        Create a new Program as same as the original one when ``for_test=False``.
4338

4339
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4340 4341 4342
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4343

4344 4345
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4346 4347
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4348
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4349

J
Jiabin Yang 已提交
4350
        For Example:
4351
          ::
L
Luo Tao 已提交
4352

4353 4354 4355 4356 4357 4358
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4359
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4360
            loss = paddle.mean(pred)
4361
            # Here we use clone before Momentum
4362 4363
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4364
            optimizer.minimize(loss)
4365

J
Jiabin Yang 已提交
4366
        Args:
4367

4368 4369
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4370

J
Jiabin Yang 已提交
4371
        Returns:
4372
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4373

Y
yuyang18 已提交
4374 4375 4376

        Examples:

4377 4378 4379 4380 4381 4382 4383
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4400
            1. To clone a test program, the sample code is:
4401 4402 4403
                .. code-block:: python

                    import six
4404 4405 4406 4407 4408 4409
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4422 4423
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4424 4425 4426

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4427 4428 4429
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4430
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4431 4432
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4433
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4434 4435
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4436
                            test_program = train_program.clone(for_test=True)
4437
                    print_prog(test_program)
J
Jiabin Yang 已提交
4438 4439 4440 4441 4442 4443 4444 4445 4446

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4447 4448 4449
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4450 4451 4452
                            sgd.minimize(avg_loss)


4453
            2. The clone method can be avoid if you create program for training and program for testing individually.
4454 4455 4456
                .. code-block:: python

                    import six
4457 4458 4459 4460 4461 4462
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4474

4475
                    def network():
4476
                        img = static.data(name='image', shape=[None, 784])
4477
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4478 4479
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4480
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4481 4482
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4483 4484
                        return avg_loss

4485 4486 4487 4488 4489
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4490
                            avg_loss = network()
4491
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4492
                            sgd.minimize(avg_loss)
4493
                    # the test startup program is not used.
4494 4495
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4496 4497
                            avg_loss = network()
                    print_prog(test_program_2)
4498

4499
            The two code snippets above will generate and print same programs.
4500
        """
4501 4502 4503 4504 4505

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4506
        pruned_origin_block_id_map = None
4507
        if for_test:
4508 4509 4510 4511 4512 4513 4514 4515 4516
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4517
        else:
4518
            p = Program()
G
gongweibao 已提交
4519 4520
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4521
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4522 4523 4524
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4525 4526

            p._current_role = self._current_role
4527
            p.__op_role_var = self.__op_role_var
4528
            p._appending_grad_times = self._appending_grad_times
4529 4530
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4531

4532 4533
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4534
            p._sync_with_cpp()
4535

W
Wu Yi 已提交
4536
        p._copy_param_info_from(self)
4537
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4538
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4539
        return p
4540

4541
    def _prune(self, targets):
Y
yuyang18 已提交
4542 4543 4544 4545 4546 4547 4548 4549
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4550
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4551 4552 4553 4554
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4555
        """
4556
        return self._prune_with_input([], targets)
4557 4558

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4559
        """
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4570
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4571 4572 4573 4574 4575 4576
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4577 4578 4579 4580
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4581 4582
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4583 4584
        if not isinstance(targets, list):
            targets = [targets]
4585 4586 4587

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4588 4589 4590
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4591

4592 4593 4594 4595
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4596 4597 4598
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4599
                else:
4600 4601 4602
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4603 4604 4605 4606 4607 4608 4609 4610

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4627 4628 4629 4630 4631 4632 4633 4634
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4635

4636
        res = Program()
4637 4638 4639
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4640 4641 4642
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4643
        res._sync_with_cpp()
4644 4645 4646 4647 4648

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4649 4650
        return res

X
Xin Pan 已提交
4651
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4652
        """
F
fengjiayi 已提交
4653 4654 4655 4656 4657
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4658
        3. change the :code:`is_test`
Y
yuyang18 已提交
4659 4660 4661
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4662
        Args:
X
Xin Pan 已提交
4663 4664
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4665

Y
yuyang18 已提交
4666 4667 4668 4669 4670 4671
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4672
        res = Program()
4673
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4674 4675 4676 4677

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4678
        if prune_read_op:
4679 4680 4681 4682 4683 4684 4685 4686 4687
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4688
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4689 4690

        # change all `is_test` attributes to True
M
minqiyang 已提交
4691
        for i in six.moves.range(res.desc.num_blocks()):
4692
            block = res.desc.block(i)
M
minqiyang 已提交
4693
            for j in six.moves.range(block.op_size()):
4694 4695
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4696
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4697 4698 4699
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4700
        res._sync_with_cpp()
4701 4702
        return res

4703 4704
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4705
        """
4706 4707 4708
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4709

4710 4711
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4712

J
Jiabin Yang 已提交
4713
        Args:
Y
yuyang18 已提交
4714

J
Jiabin Yang 已提交
4715
            binary_str_type (str): the binary prootbuf string.
4716

J
Jiabin Yang 已提交
4717 4718
        Returns:
            Program: A deserialized Program.
4719 4720 4721 4722

        Examples:
            .. code-block:: python

4723 4724 4725 4726
                import paddle
                import paddle.static as static

                paddle.enable_static()
4727

4728 4729 4730 4731
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
4732

4733
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
4734

4735
                    z = paddle.matmul(x=x, y=y)
4736

4737 4738
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
4739

4740
                    print(static.default_main_program())
4741
                    print(prog_restored)
Y
yuyang18 已提交
4742
        """
4743 4744
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4745
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4746
        p._sync_with_cpp()
4747
        return p
Y
Yu Yang 已提交
4748

4749
    @staticmethod
4750
    def _construct_from_desc(desc):
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4766 4767
    @property
    def random_seed(self):
Y
yuyang18 已提交
4768
        """
J
Jiabin Yang 已提交
4769
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4770 4771
        the random seed from random device.

4772 4773
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
4774 4775 4776

        Returns:
            int64: Random seed in current Program
4777

4778 4779 4780 4781

        Examples:
            .. code-block:: python

4782 4783 4784
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
4785

4786 4787 4788
                paddle.enable_static()

                prog = static.default_main_program()
4789
                random_seed = prog.random_seed
4790
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
4791 4792 4793
                print(random_seed)
                ## 0
                ## the default random seed is 0
4794 4795

                # Here we need to set random seed before we use fluid.layers.dropout
4796
                prog.random_seed = 1
4797
                z_var = F.dropout(x_var, 0.7)
4798

4799
                print(prog.random_seed)
4800 4801
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4802
        """
D
dzhwinter 已提交
4803 4804
        return self._seed

Q
qiaolongfei 已提交
4805 4806
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4807
        """
4808 4809
        The number of :ref:`api_guide_Block_en`  in this Program.

4810 4811
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
4812 4813 4814

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4815

4816 4817 4818 4819

        Examples:
            .. code-block:: python

4820 4821 4822 4823
                import paddle
                import paddle.static as static

                paddle.enable_static()
4824

4825
                prog = static.default_main_program()
4826 4827
                num_blocks = prog.num_blocks
                print(num_blocks)
4828

4829 4830
                # print result:
                # 1
Y
yuyang18 已提交
4831
        """
Q
qiaolongfei 已提交
4832 4833
        return self.desc.num_blocks()

D
dzhwinter 已提交
4834 4835 4836
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4837 4838 4839
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4840 4841
        self._seed = seed

Y
Yu Yang 已提交
4842
    def __repr__(self):
4843
        return self.__str__()
4844

Y
Yu Yang 已提交
4845
    def global_block(self):
Y
yuyang18 已提交
4846
        """
4847 4848
        .. note::
            This API has no effect in Dygraph mode.
4849 4850 4851

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4852 4853
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4854

4855 4856 4857 4858

        Examples:
            .. code-block:: python

4859 4860 4861 4862
                import paddle
                import paddle.static as static

                paddle.enable_static()
4863

4864
                prog = static.default_main_program()
4865 4866
                gb_block = prog.global_block()
                print(gb_block)
4867

Y
yuyang18 已提交
4868
        """
Y
Yu Yang 已提交
4869 4870
        return self.blocks[0]

Q
Qiao Longfei 已提交
4871
    def block(self, index):
Y
yuyang18 已提交
4872
        """
4873 4874
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
4875

4876 4877
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4878 4879
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4880

J
Jiabin Yang 已提交
4881 4882
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4883 4884 4885 4886

        Examples:
            .. code-block:: python

4887 4888 4889 4890
                import paddle
                import paddle.static as static

                paddle.enable_static()
4891

4892
                prog = static.default_main_program()
4893 4894
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4895
        """
Q
Qiao Longfei 已提交
4896 4897
        return self.blocks[index]

Y
Yu Yang 已提交
4898
    def current_block(self):
Y
yuyang18 已提交
4899
        """
4900 4901
        .. note::
            This API has no effect in Dygraph mode.
4902

J
Jiabin Yang 已提交
4903 4904
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4905

J
Jiabin Yang 已提交
4906 4907
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4908

4909 4910 4911
        Examples:
            .. code-block:: python

4912 4913 4914 4915
                import paddle
                import paddle.static as static

                paddle.enable_static()
4916

4917
                prog = static.default_main_program()
4918 4919
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4920
        """
Y
Yu Yang 已提交
4921 4922
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4923
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4924 4925 4926 4927 4928
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4929

Y
yuyang18 已提交
4930 4931 4932 4933 4934
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4935
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4936 4937 4938
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4939 4940 4941 4942
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4943
    def _rollback(self):
Y
yuyang18 已提交
4944 4945 4946 4947 4948
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4949 4950
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4951
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4962 4963 4964
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4965
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4966

W
Wu Yi 已提交
4967
    def _copy_param_info_from(self, other):
4968
        """
4969
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4970

Y
yuyang18 已提交
4971 4972 4973
        Notes: This is a very low level API. Users should not invoke it
        directly.

4974 4975 4976 4977 4978 4979 4980
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4981 4982 4983
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4984

W
Wu Yi 已提交
4985
        self.global_block()._copy_param_info_from(other.global_block())
4986

4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4998 4999 5000
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5001 5002
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5003
        self._parameters_on_pservers = other._parameters_on_pservers
5004
        self._endpoints = other._endpoints
5005
        self._ps_endpoint = other._ps_endpoint
5006 5007
        self._distributed_lookup_table = other._distributed_lookup_table

5008
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5009 5010
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5011

Y
yuyang18 已提交
5012 5013 5014
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5015 5016
        Args:
            other(Program): Other program
5017 5018 5019 5020
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5021 5022 5023 5024 5025

        Returns:
            None
        """
        if not isinstance(other, Program):
5026 5027 5028
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5029

5030 5031 5032 5033 5034
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5035 5036 5037

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5038 5039
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5040
            for var in list(block.vars.values()):
5041 5042 5043 5044 5045 5046 5047
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5048

5049
    def list_vars(self):
Y
yuyang18 已提交
5050
        """
5051
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5052

J
Jiabin Yang 已提交
5053
        Returns:
5054
            iterable Tensors: The Generator will yield every Tensor in this program.
5055 5056 5057 5058

        Examples:
            .. code-block:: python

5059 5060
                import paddle
                import paddle.static as static
5061

5062 5063 5064 5065 5066
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5067 5068
                for var in prog.list_vars():
                    print(var)
5069 5070 5071
                
                # var img : fluid.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5072
        """
5073
        for each_block in self.blocks:
5074
            for each_var in list(each_block.vars.values()):
5075 5076
                yield each_var

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5087 5088 5089 5090
                import paddle
                import paddle.static as static

                paddle.enable_static()
5091

5092 5093
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5094
                hidden = static.nn.fc(x=data, size=10)
5095 5096
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5097 5098 5099 5100 5101 5102 5103

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5104 5105
                # persist trainable param fc_0.w_0 : fluid.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : fluid.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5116

5117
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5118
class Parameter(Variable):
5119
    """
5120
    Parameter is derived from Variable. A parameter is a persistable
5121
    Variable, and will be updated by optimizers after each iteration.
5122
    The training of a neural network is essentially the updating of
5123 5124
    its parameters.

5125
    Relative to a general Variable, a Parameter has several its own
5126 5127
    member variables:

5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5138 5139
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5140 5141
    """

5142 5143 5144 5145 5146 5147
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5148 5149 5150 5151 5152
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5153
        if len(shape) == 0:
5154 5155
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5156 5157 5158

        for each in shape:
            if each < 0:
5159 5160 5161
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5162 5163

        Variable.__init__(
5164 5165 5166 5167 5168 5169 5170
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5171 5172 5173 5174
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5175 5176
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5177
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5178

5179 5180
        self.need_clip = kwargs.get('need_clip', True)

5181 5182
        self.is_distributed = False

F
fengjiayi 已提交
5183
    def __str__(self):
5184
        return self._to_readable_code()
F
fengjiayi 已提交
5185

F
update  
fengjiayi 已提交
5186 5187 5188
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5189

F
update  
fengjiayi 已提交
5190 5191 5192 5193 5194 5195 5196 5197
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5198 5199 5200 5201 5202 5203 5204 5205 5206
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5207 5208 5209 5210 5211 5212
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5213
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5214
            for attr_name in additional_attr:
5215 5216
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5217 5218
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5219 5220 5221 5222
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5223

5224 5225
class ParamBase(core.VarBase):
    """
5226 5227 5228
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5229 5230 5231
    The training of a neural network is essentially the updating of
    its ParamBase.

5232
    Relative to a general Tensor, a ParamBase has several its own
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5245 5246
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5277 5278
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5279 5280 5281 5282 5283 5284 5285

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5286 5287
        self.need_clip = kwargs.get('need_clip', True)

5288
        self.is_distributed = False
5289
        # self.block = default_main_program().global_block()
5290

5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5304
    def __str__(self):
5305
        """
5306
        Convert a ParamBase object to a readable string.
5307

5308
        Returns(str): A readable string.
5309 5310 5311 5312

        Examples:
            .. code-block:: python

5313
                import paddle
5314
                paddle.disable_static()
5315 5316 5317 5318 5319 5320 5321 5322
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5323
                paddle.enable_static()
5324
        """
5325 5326
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5327 5328 5329 5330

    __repr__ = __str__


Y
Yu Yang 已提交
5331
# program is a global instance.
Y
Yu Yang 已提交
5332 5333
_main_program_ = Program()
_startup_program_ = Program()
5334

5335

5336
def default_startup_program():
Y
Yu Yang 已提交
5337
    """
Y
yuyang18 已提交
5338 5339
    Get default/global startup program.

5340 5341 5342 5343 5344
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
  
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5345

5346 5347
    Returns:
        Program: current default startup program.
5348

5349
    Returns type: 
5350 5351 5352 5353

    Examples:
        .. code-block:: python

5354
            import paddle
5355

5356 5357 5358 5359
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program=main_program, startup_program=startup_program):
5360 5361
                x = paddle.fluid.data(name="x", shape=[-1, 784], dtype='float32')
                y = paddle.fluid.data(name="y", shape=[-1, 1], dtype='int32')
5362
                z = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
5363

5364 5365
                print("main program is: {}".format(paddle.static.default_main_program()))
                print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5366
    """
Y
Yu Yang 已提交
5367
    return _startup_program_
5368

5369

5370
def default_main_program():
Y
Yu Yang 已提交
5371
    """
5372
    This API can be used to get ``default main program`` which store the 
5373
    descriptions of Ops and tensors.
5374
    
5375
    For example ``z = paddle.fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
5376
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5377

5378 5379
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5380
    :code:`default_main_program` when the program is not specified.
5381

5382
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
5383
    
Y
Yu Yang 已提交
5384
    Returns:
5385
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5386 5387 5388 5389

    Examples:
        ..  code-block:: python

5390 5391 5392
            import paddle
            
            paddle.enable_static()
5393
            # Sample Network:
5394 5395
            data = paddle.fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = paddle.fluid.data(name='label', shape=[None, 1], dtype='int64')
5396
            
5397 5398
            conv1 = paddle.static.nn.conv2d(data, 4, 5, 1, act=None)
            bn1 = paddle.static.nn.batch_norm(conv1, act='relu')
5399
            pool1 = paddle.fluid.layers.pool2d(bn1, 2, 'max', 2)
5400 5401
            conv2 = paddle.static.nn.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = paddle.static.nn.batch_norm(conv2, act='relu')
5402
            pool2 = paddle.fluid.layers.pool2d(bn2, 2, 'max', 2)
5403
            
5404 5405
            fc1 = paddle.static.nn.fc(x=pool2, size=50, activation='relu')
            fc2 = paddle.static.nn.fc(x=fc1, size=102, activation='softmax')
5406
            
5407 5408 5409
            loss = paddle.nn.functional.loss.cross_entropy(input=fc2, label=label)
            loss = paddle.mean(loss)
            opt = paddle.optimizer.Momentum(
5410 5411
                learning_rate=0.1,
                momentum=0.9,
5412
                weight_decay=paddle.regularizer.L2Decay(1e-4))
5413 5414
            opt.minimize(loss)
            
5415
            #print the number of blocks in the program, 1 in this case
5416
            print(paddle.static.default_main_program().num_blocks) #[1]
5417 5418

            #print the description of variable 'image'
5419
            print(paddle.static.default_main_program())
5420

Y
Yu Yang 已提交
5421
    """
Y
Yu Yang 已提交
5422
    return _main_program_
Y
Yu Yang 已提交
5423 5424 5425 5426 5427


def switch_main_program(program):
    """
    Switch the main program to a new program.
5428

Y
Yu Yang 已提交
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5443
    Switch the startup program to a new program
Y
Yu Yang 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5456
@signature_safe_contextmanager
Y
Yu Yang 已提交
5457 5458
def program_guard(main_program, startup_program=None):
    """
5459 5460
    :api_attr: Static Graph

5461 5462 5463
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5464

G
guofei 已提交
5465
    Args:
5466 5467
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5468 5469 5470 5471
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5472
    Examples:
5473 5474
       .. code-block:: python
       
5475
          import paddle
Y
yuyang18 已提交
5476

5477 5478 5479 5480 5481
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
5482
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
5483 5484 5485

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5486

Y
Yu Yang 已提交
5487
    Examples:
5488
       .. code-block:: python
Y
yuyang18 已提交
5489

5490
          import paddle
5491

5492 5493 5494 5495 5496
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
G
guofei 已提交
5497
    
Y
Yu Yang 已提交
5498
    """
5499
    from .data_feeder import check_type
5500 5501
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5502 5503
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5504
        check_type(startup_program, 'startup_program', Program,
5505
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5506
        startup_program = switch_startup_program(startup_program)
5507 5508 5509 5510 5511 5512
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5513 5514


W
Wu Yi 已提交
5515
def _get_var(name, program=None):
X
xuwei06 已提交
5516
    """
Y
yuyang18 已提交
5517
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5518

X
xuwei06 已提交
5519 5520 5521
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5522
        If None, default_global_program() will be used.
X
xuwei06 已提交
5523 5524 5525 5526 5527 5528 5529

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5530
    assert isinstance(program, Program)
X
xuwei06 已提交
5531 5532

    return program.global_block().var(name)
5533 5534


S
rename  
sneaxiy 已提交
5535
@signature_safe_contextmanager
L
lujun 已提交
5536 5537 5538 5539
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5540
    core._switch_tracer(tracer)
M
minqiyang 已提交
5541

5542 5543 5544 5545 5546
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5547 5548


S
rename  
sneaxiy 已提交
5549
@signature_safe_contextmanager
L
lujun 已提交
5550
def _dygraph_place_guard(place):
5551 5552 5553
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5554

5555 5556 5557
    try:
        yield
    finally:
5558
        _global_expected_place_ = tmp_place
5559 5560 5561 5562


def load_op_library(lib_filename):
    """
5563 5564
    :api_attr: Static Graph
    
5565 5566 5567
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5568
    Please note, the type of custom operators can't have the same type
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5635 5636 5637 5638 5639
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5640 5641 5642 5643
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5644 5645
    if index:
        device = ":".join([device, index])
5646
    pre_device = switch_device(device)
5647 5648 5649 5650
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value