framework.py 218.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
43

44
__all__ = [
45 46 47 48
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
49
    'name_scope',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
S
sneaxiy 已提交
53
    'cuda_pinned_places',
L
lujun 已提交
54
    'in_dygraph_mode',
C
chengduo 已提交
55
    'is_compiled_with_cuda',
56
    'is_compiled_with_rocm',
57
    'is_compiled_with_xpu',
58
    'Variable',
59
    'require_version',
60
    'device_guard',
G
guofei 已提交
61 62
    'set_flags',
    'get_flags',
63
]
Y
Yu Yang 已提交
64

Q
qiaolongfei 已提交
65 66 67 68
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
69 70
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
71
_dygraph_tracer_ = None
72
_global_expected_place_ = None
73
_current_device = None
74
global_prog_seed = 0
75
_current_pipeline_stage = None
76
_global_flags_ = core.globals()
77

78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
186
def in_dygraph_mode():
L
lujun 已提交
187
    """
188

189 190 191 192 193 194 195
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
196 197

    Returns:
198
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
199 200 201 202

    Examples:
        .. code-block:: python

203 204 205 206 207 208 209 210
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
211 212

    """
L
lujun 已提交
213
    return _dygraph_tracer_ is not None
214 215


216 217 218
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
219
        ), "We don't support %s in imperative mode" % func.__name__
220 221 222 223 224 225 226 227
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
228 229 230 231 232 233 234 235 236
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
237
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
238 239 240 241 242
        return func(*args, **kwargs)

    return __impl__


243 244 245 246 247
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


248 249 250 251 252 253
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
254
# same base class.
255 256 257
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
258 259 260 261 262
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
263 264 265 266

    return __impl__


T
tangwei12 已提交
267 268
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


286 287
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
288
static_only = wrap_decorator(_static_only_)
289
fake_interface_only = wrap_decorator(_fake_interface_only_)
290 291


L
lujun 已提交
292 293
def _dygraph_tracer():
    return _dygraph_tracer_
294

W
Wu Yi 已提交
295

296 297 298 299
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
300
def _current_expected_place():
301 302 303
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
304 305 306 307 308 309 310 311 312 313 314
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
331 332


L
Leo Chen 已提交
333 334 335 336
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
337

L
Leo Chen 已提交
338 339 340 341 342 343 344 345 346 347 348 349
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
350
def _cpu_num():
351
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
352 353 354 355 356 357 358 359
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
360
        os.environ['CPU_NUM'] = str(1)
361
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
362 363 364 365 366 367 368 369 370 371
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
372 373


374 375 376 377 378 379 380 381 382
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
398 399 400 401
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

402
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
403 404 405 406

    Examples:
        .. code-block:: python

407 408
            import paddle
            support_gpu = paddle.is_compiled_with_cuda()
C
chengduo 已提交
409 410 411 412
    """
    return core.is_compiled_with_cuda()


413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_gpu = paddle.is_compiled_with_rocm()
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
428
def cuda_places(device_ids=None):
L
lujun 已提交
429
    """
430 431 432 433
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
434
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
435 436

    If :code:`device_ids` is None, environment variable of
437
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
438
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
439
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
440
    If :code:`FLAGS_selected_gpus` is not set, all visible
441
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
442 443

    If :code:`device_ids` is not None, it should be the device
444
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
445
    the returned list would be 
C
Chen Weihang 已提交
446
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
447

448
    Parameters:
449
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
450 451

    Returns:
C
Chen Weihang 已提交
452
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
453 454 455 456

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
457 458
            import paddle
            import paddle.static as static
T
tangwei12 已提交
459

460 461
            # required: gpu
            
C
Chen Weihang 已提交
462 463 464
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
465 466

    """
S
sneaxiy 已提交
467 468 469
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
470
        device_ids = _cuda_ids()
S
sneaxiy 已提交
471 472 473 474 475
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
    This function creates a list of :code:`paddle.XPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_xpus` would be checked first. For example, if
    :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
    be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    If :code:`FLAGS_selected_xpus` is not set, all visible
    xpu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
498 499
            # required: xpu

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
515
def cpu_places(device_count=None):
L
lujun 已提交
516
    """
C
Chen Weihang 已提交
517
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
518

S
add doc  
sneaxiy 已提交
519 520
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
521 522
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
523 524
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
525

526 527
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
528 529

    Returns:
C
Chen Weihang 已提交
530
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
531 532 533 534

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
535 536
            import paddle
            import paddle.static as static
T
tangwei12 已提交
537

C
Chen Weihang 已提交
538 539 540
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
541 542
    """

S
sneaxiy 已提交
543 544 545 546 547 548
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
549
    """
550
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
551 552 553

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
554 555 556 557
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
558

559 560
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
561 562

    Returns:
563
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
564 565 566 567

    Examples:
        .. code-block:: python

568
            import paddle.fluid as fluid
L
lujun 已提交
569 570 571 572 573
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
574 575 576
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
577 578
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
579 580


581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
607
@signature_safe_contextmanager
608 609
def name_scope(prefix=None):
    """
610 611
    :api_attr: Static Graph

612
    Generate hierarchical name prefix for the operators in Static Graph.
613

T
Tao Luo 已提交
614 615 616
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
617
        Don't use it in dygraph, since it will cause memory leak.
618 619

    Args:
T
Tao Luo 已提交
620
        prefix(str, optional): prefix. Default is none.
621 622 623

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
624

625 626 627
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
628
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
629
             b = a + 1
630
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
631
                c = b * 1
632
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
633
                d = c / 1
634 635 636
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
637 638 639
                g = f - 1

          # Op are created in the default main program.  
640
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
656 657
    """
    # TODO(panyx0718): Only [0-9a-z].
658
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
659 660 661
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
662
        assert prefix, "namescope prefix can not be empty."
663 664
        global _name_scope
        _name_scope = _name_scope.child(prefix)
665 666 667 668
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
669 670 671 672 673 674 675 676 677 678 679 680


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
681 682 683
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
684 685 686 687


def grad_var_name(var_name):
    """
688 689
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
690 691 692
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
693

694
def convert_np_dtype_to_dtype_(np_dtype):
695 696
    """
    Convert the data type in numpy to the data type in Paddle
697

698
    Args:
699
        np_dtype(np.dtype): the data type in numpy.
700

701 702
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
703 704

    """
705 706
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
707
        return core.VarDesc.VarType.FP32
708
    elif dtype == np.float64:
709
        return core.VarDesc.VarType.FP64
710
    elif dtype == np.float16:
711
        return core.VarDesc.VarType.FP16
712
    elif dtype == np.int32:
713
        return core.VarDesc.VarType.INT32
714
    elif dtype == np.int16:
715
        return core.VarDesc.VarType.INT16
716
    elif dtype == np.int64:
717
        return core.VarDesc.VarType.INT64
718
    elif dtype == np.bool:
719
        return core.VarDesc.VarType.BOOL
720
    elif dtype == np.uint16:
721 722 723
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
724 725
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
726 727
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
728 729 730 731
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
732
    else:
M
minqiyang 已提交
733
        raise ValueError("Not supported numpy dtype %s" % dtype)
734 735 736


def dtype_is_floating(dtype):
737 738 739
    """
    Check the data type is floating or not.
    Args:
740
        dtype(np.dtype|core.VarDesc.VarType): data type.
741 742 743 744 745
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
746
    if not isinstance(dtype, core.VarDesc.VarType):
747 748
        dtype = convert_np_dtype_to_dtype_(dtype)

749 750 751 752
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
753 754


Y
Yang Yang(Tony) 已提交
755
def _debug_string_(proto, throw_on_error=True):
756 757 758 759 760 761 762 763 764 765 766
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
767
    error_fields = list()
Y
Yang Yang(Tony) 已提交
768
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
769 770
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
771 772 773
    return proto.__str__()


774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
811
class Variable(object):
812
    """
J
Jiabin Yang 已提交
813
    **Notes**:
814
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
815

816 817
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
818 819 820
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
821
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
822 823
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
824

825
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
826
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
827

T
tianshuo78520a 已提交
828
    Most of a Variable's member variables can be set to be None. It mean
829
    it is not available or will be specified later.
830

831
    Examples:
832 833
        In Static Graph Mode:

834 835
        .. code-block:: python

836
            import paddle.fluid as fluid
837
            cur_program = fluid.Program()
838 839 840 841
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
842
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
843 844 845 846 847 848 849 850 851

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

852 853
    """

Y
Yu Yang 已提交
854 855
    def __init__(self,
                 block,
Y
Yu Yang 已提交
856
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
857 858 859 860
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
861
                 capacity=None,
Q
QI JUN 已提交
862
                 persistable=None,
F
fengjiayi 已提交
863
                 error_clip=None,
Y
Yu Yang 已提交
864
                 stop_gradient=False,
F
fengjiayi 已提交
865
                 is_data=False,
H
Huihuang Zheng 已提交
866
                 need_check_feed=False,
H
hong 已提交
867
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
868
                 **kwargs):
Y
Yu Yang 已提交
869 870
        self.block = block
        if name is None:
Y
Yu Yang 已提交
871
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
872

Y
Yu Yang 已提交
873
        if dtype is not None:
874
            if not isinstance(dtype, core.VarDesc.VarType):
875
                dtype = convert_np_dtype_to_dtype_(dtype)
876

H
hong 已提交
877 878
        self.belong_to_optimizer = belong_to_optimizer

879 880 881 882 883
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
884

885 886 887
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
888

889 890 891
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
892 893
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
894 895
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
896

897
        if shape is not None:
898
            if is_new_var:
899 900 901 902 903 904
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
905 906
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
907 908 909 910 911 912 913
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
914 915
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
916 917 918 919 920 921 922 923 924
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
925 926
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
927 928 929 930 931 932 933 934 935
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
936 937
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
938 939
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
940

941 942
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
943

944 945 946 947 948 949 950
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
951

952 953
        self.block.vars[name] = self
        self.op = None
954
        self.stop_gradient = stop_gradient
955
        self.is_data = is_data
Y
Yu Yang 已提交
956

957 958 959
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
960 961
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
962

963
        Returns:
J
Jiabin Yang 已提交
964
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
965 966 967 968

        Examples:
            .. code-block:: python

969
                import paddle
970

971 972 973 974
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
975

976 977
                # create a detached Variable
                y = x.detach()
978
        """
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
994

995
    @fake_interface_only
996
    def numpy(self):
997
        """
J
Jiabin Yang 已提交
998
        **Notes**:
T
tianshuo78520a 已提交
999
            **This API is ONLY available in Dygraph mode**
1000

J
Jiabin Yang 已提交
1001
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1002 1003 1004 1005 1006

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1007
            ndarray: dtype is same as current Variable
1008 1009 1010 1011 1012 1013

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1014
                from paddle.fluid.dygraph import Linear
1015 1016 1017 1018
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1019
                    linear = Linear(32, 64)
1020
                    data = to_variable(data)
1021
                    x = linear(data)
1022 1023 1024
                    print(x.numpy())

        """
1025
        pass
1026

1027
    @fake_interface_only
1028
    def backward(self, retain_graph=False):
1029
        """
J
Jiabin Yang 已提交
1030
        **Notes**:
T
tianshuo78520a 已提交
1031
            **This API is ONLY available in Dygraph mode**
1032

1033
        Run backward of current Graph which starts from current Tensor.
1034

J
Jiabin Yang 已提交
1035
        Args:
1036 1037 1038 1039
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1040

J
Jiabin Yang 已提交
1041 1042
        Returns:
            NoneType: None
1043 1044 1045 1046 1047

        Examples:
            .. code-block:: python

                import numpy as np
1048 1049
                import paddle
                paddle.disable_static()
1050 1051

                x = np.ones([2, 2], np.float32)
1052 1053 1054 1055 1056 1057 1058
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1059 1060
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1061
                loss.backward()
1062 1063

        """
1064
        pass
1065

1066
    @fake_interface_only
1067
    def gradient(self):
1068
        """
J
Jiabin Yang 已提交
1069
        **Notes**:
T
tianshuo78520a 已提交
1070
            **This API is ONLY available in Dygraph mode**
1071 1072 1073

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1074
        Returns:
1075
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1076 1077 1078 1079 1080 1081 1082

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1083
                # example1: return ndarray
1084 1085 1086 1087 1088 1089 1090 1091 1092
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1093
                    loss2.backward()
1094 1095
                    print(loss2.gradient())

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1109
        """
1110
        pass
1111

1112
    @fake_interface_only
1113
    def clear_gradient(self):
1114
        """
J
Jiabin Yang 已提交
1115
        **Notes**:
T
tianshuo78520a 已提交
1116
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1117 1118

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1119

J
Jiabin Yang 已提交
1120
        Clear  (set to ``0`` ) the Gradient of Current Variable
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1139
                    loss2.backward()
1140 1141 1142 1143 1144
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1145
        pass
X
Xin Pan 已提交
1146

1147 1148 1149 1150
    @fake_interface_only
    def register_hook(self, hook):
        pass

1151
    def __str__(self):
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1168 1169
                import paddle
                import paddle.static as static
1170

1171 1172 1173
                paddle.enable_static()

                cur_program = static.Program()
1174 1175 1176 1177 1178 1179
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1180 1181
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1182
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1183 1184
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1185 1186
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1187
        else:
1188 1189
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1190

1191
        if self.is_parameter:
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1203

F
update  
fengjiayi 已提交
1204
    def to_string(self, throw_on_error, with_details=False):
1205 1206 1207
        """
        Get debug string.

J
Jiabin Yang 已提交
1208 1209 1210 1211 1212
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1213

1214 1215
        Returns:
            str: The debug string.
1216 1217 1218 1219 1220

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1221
                import paddle
1222

1223
                paddle.enable_static()
1224 1225 1226 1227 1228
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1229
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1230
                print("=============with detail===============")
1231
                print(new_variable.to_string(True, True))
1232
        """
F
update  
fengjiayi 已提交
1233 1234
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1235
        protostr = self.desc.serialize_to_string()
1236
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1237 1238
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1239
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1240
            for attr_name in additional_attr:
1241 1242 1243
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1244
        return res_str
1245 1246 1247

    __repr__ = __str__

1248
    @property
1249
    def stop_gradient(self):
J
Jiabin Yang 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1265 1266
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1267 1268 1269
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1270 1271
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1272 1273 1274 1275
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1276
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1277 1278
                assert (out1.gradient() == 0).all()
        """
1279
        return self.desc.stop_gradient()
1280

1281 1282
    @stop_gradient.setter
    def stop_gradient(self, s):
1283
        self.desc.set_stop_gradient(s)
1284

1285 1286
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1308
        return self.desc.persistable()
1309

Y
Yu Yang 已提交
1310 1311
    @persistable.setter
    def persistable(self, p):
1312
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1313

1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1339 1340
    @property
    def name(self):
J
Jiabin Yang 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1357
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1358

1359 1360 1361 1362 1363 1364 1365 1366
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
T
tangwei12 已提交
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1379 1380
    @name.setter
    def name(self, new_name):
1381
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1382

Y
Yu Yang 已提交
1383 1384
    @property
    def shape(self):
J
Jiabin Yang 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1402
        # convert to tuple, make it as same as numpy API.
1403
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1404 1405

    @property
F
fengjiayi 已提交
1406
    def dtype(self):
J
Jiabin Yang 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1423
        return self.desc.dtype()
Y
Yu Yang 已提交
1424 1425 1426

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1448 1449 1450
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1451
        return self.desc.lod_level()
Y
Yu Yang 已提交
1452

Y
Yu Yang 已提交
1453 1454
    @property
    def type(self):
J
Jiabin Yang 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1471
        return self.desc.type()
Y
Yu Yang 已提交
1472

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1507
    def _set_error_clip(self, error_clip):
1508 1509 1510 1511 1512 1513 1514 1515 1516
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1517 1518
        self.error_clip = error_clip

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1559
            raise ValueError("slice step can not be zero")
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1635
    def _cloneVar(self, copy=False):
1636 1637
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1638 1639
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1640 1641 1642 1643
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1644
        new_var = self._cloneVar()
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1655
        new_var = self._cloneVar()
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1666
                return self._cloneVar(True)
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1685
                return self._cloneVar(True)
1686
            index = int(item)
1687
            if (index > 0 and index >= self.shape[axis]) \
1688 1689 1690 1691 1692 1693 1694
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1695
        return _getitem_impl_(self, item)
1696

1697
    def __setitem__(self, item, value):
1698
        return _setitem_impl_(self, item, value)
1699

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
1962

F
fengjiayi 已提交
1963 1964 1965
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1966

1967 1968
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1969 1970 1971 1972
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1973
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1974 1975 1976 1977 1978
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1979 1980 1981 1982
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1992
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1993 1994 1995 1996 1997 1998
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1999 2000 2001 2002 2003 2004 2005 2006
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2007 2008
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2009 2010
        return self.op_proto_map[type]

2011 2012
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2013
        custom_op_names = []
2014 2015 2016
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2017 2018 2019
                custom_op_names.append(proto.type)

        return custom_op_names
2020

2021 2022 2023 2024
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2025
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2026
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2027 2028
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2029 2030
        }

F
fengjiayi 已提交
2031

X
Xin Pan 已提交
2032
class Operator(object):
2033
    """
2034 2035 2036 2037 2038 2039 2040
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2041
        type(str): The type of operator. Default None.
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2062
        Block.append_op or Block._prepend_op instead.
2063 2064 2065 2066

    Examples:
        .. code-block:: python

2067
            import paddle.fluid as fluid
2068
            cur_program = fluid.Program()
2069 2070 2071 2072 2073
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2074
    """
2075
    OP_WITHOUT_KERNEL_SET = {
2076 2077
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2078
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2079 2080
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2081
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2082 2083
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2084
    }
2085

Y
Yu Yang 已提交
2086 2087
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2088
                 desc,
Y
Yu Yang 已提交
2089 2090 2091
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2092
                 attrs=None):
L
lujun 已提交
2093
        if in_dygraph_mode():
2094 2095
            if type is None:
                raise ValueError(
2096
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2097
            self._type = type
M
minqiyang 已提交
2098
            self.attrs = attrs if attrs else {}
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2113
                )] = self.block.program._op_role
2114 2115 2116

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2117 2118
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2119 2120 2121 2122 2123

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2124 2125 2126 2127 2128
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2129 2130 2131
                return
            if type is None:
                raise ValueError(
2132
                    "`type` to initialized an Operator can not be None.")
2133 2134
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2135 2136 2137 2138 2139 2140 2141
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2142 2143 2144 2145 2146 2147 2148

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2166 2167 2168 2169 2170
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2171

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2185
                        if not isinstance(in_args, (list, tuple)):
2186 2187 2188 2189 2190 2191
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2192
                        for index, arg in enumerate(in_args):
2193 2194 2195 2196
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2197
                            elif isinstance(arg, (Variable, core.VarBase)):
2198
                                in_arg_names.append(cpt.to_text(arg.name))
2199
                            else:
2200 2201 2202 2203
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2204 2205
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2230 2231 2232 2233
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2234
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2235
                        if not in_dygraph_mode():
2236 2237 2238 2239
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2258
    def _has_kernel(self, op_type):
2259 2260
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2261
    def to_string(self, throw_on_error):
2262
        """
2263 2264
        Get debug string.

2265
        Args:
2266 2267
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2268

2269 2270
        Returns:
            str: The debug string.
2271 2272

        """
2273
        protostr = self.desc.serialize_to_string()
2274
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2275 2276
        return _debug_string_(proto, throw_on_error)

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2309
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2364 2365
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2366 2367 2368 2369 2370
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2371
    def __str__(self):
2372
        return self._to_readable_code()
2373 2374 2375

    __repr__ = __str__

F
fengjiayi 已提交
2376 2377
    @property
    def type(self):
2378
        return self.desc.type()
F
fengjiayi 已提交
2379 2380

    def input(self, name):
2381
        r"""
2382
        Get the input arguments according to the input parameter name.
2383

2384 2385
        Args:
            name(str): The input parameter name.
2386

2387 2388 2389
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2390
        """
F
fengjiayi 已提交
2391 2392
        return self.desc.input(name)

W
Wu Yi 已提交
2393
    def _rename_input(self, old_name, new_name):
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2404
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2405

W
Wu Yi 已提交
2406
    def _rename_output(self, old_name, new_name):
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2417
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2418

F
fengjiayi 已提交
2419 2420 2421 2422
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2423 2424 2425 2426 2427 2428 2429 2430
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2431
    def output(self, name):
2432
        r"""
2433
        Get output arguments by the output parameter name.
2434

2435 2436
        Args:
            name(str): The output parameter name.
2437

2438 2439 2440
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2441
        """
F
fengjiayi 已提交
2442 2443 2444 2445 2446 2447
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2448 2449 2450 2451 2452 2453 2454 2455
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2456
    def has_attr(self, name):
2457
        """
2458 2459
        Whether this Operator has the attribute with name or not.

2460
        Args:
2461
            name(str): the attribute name.
2462

2463 2464
        Returns:
            bool: True if has this attribute.
2465 2466

        """
F
fengjiayi 已提交
2467 2468 2469
        return self.desc.has_attr(name)

    def attr_type(self, name):
2470
        """
2471
        Get the type of attribute by attribute's name.
2472

2473 2474
        Args:
            name(str): the attribute name.
2475

2476 2477
        Returns:
            core.AttrType: the attribute type.
2478
        """
F
fengjiayi 已提交
2479 2480
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2481
    def _set_attr(self, name, val):
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2492 2493
        self._update_desc_attr(name, val)

2494 2495 2496
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2508 2509
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2510 2511
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2512
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2513 2514 2515 2516
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2517
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2518

F
fengjiayi 已提交
2519 2520 2521 2522 2523
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2524
        """
2525 2526
        Get the attribute by name.

2527
        Args:
2528
            name(str): the attribute name.
2529

2530 2531
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2532 2533
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2534
        return self.desc.attr(name)
Y
Yu Yang 已提交
2535

W
Wu Yi 已提交
2536
    def _block_attr_id(self, name):
2537
        """
G
gongweibao 已提交
2538
        Get the block attribute's id by name.
2539

2540 2541
        Args:
            name(str): the attribute name.
2542

2543 2544
        Returns:
            int: the block index.
2545
        """
W
Wu Yi 已提交
2546
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2547

W
Wu Yi 已提交
2548
    def _block_attr(self, name):
G
gongweibao 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2559
        id = self._block_attr_id(name)
G
gongweibao 已提交
2560 2561 2562
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2563
    def _blocks_attr(self, name):
G
gongweibao 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2574
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2575 2576 2577 2578 2579
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2580
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2591
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2592

J
JiayiFeng 已提交
2593
    def all_attrs(self):
F
fengjiayi 已提交
2594
        """
2595 2596 2597
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2598
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2599 2600 2601 2602
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2603 2604
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2605
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2606 2607 2608
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2609
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2610 2611 2612 2613
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2614 2615
        return attr_map

2616 2617 2618
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2619 2620 2621 2622

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2623 2624 2625
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2626 2627 2628 2629 2630 2631 2632 2633

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2634 2635
            return False

2636 2637 2638 2639 2640 2641
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2667

Y
Yu Yang 已提交
2668
class Block(object):
2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2683
        use `Program._create_block()` to create a block.
2684 2685 2686 2687

    Examples:
        .. code-block:: python

2688 2689 2690
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2691 2692 2693 2694 2695 2696 2697 2698 2699
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2700
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2701
        self.desc = program.desc.block(idx)
2702
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2703
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2704
        self.program = program
2705
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2706

2707
    def __str__(self):
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2742
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2754

F
fengjiayi 已提交
2755 2756
    def to_string(self, throw_on_error, with_details=False):
        """
2757 2758
        Get debug string.

F
fengjiayi 已提交
2759 2760
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2761
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2762
            with_details(bool): more details about variables and parameters
2763 2764
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2765

2766 2767
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2768 2769 2770 2771
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2772
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2773 2774
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2775
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2776
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2777
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2778
            for op in self.ops:
F
fengjiayi 已提交
2779 2780
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2781 2782 2783
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2784 2785
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2786 2787
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2788 2789 2790

    __repr__ = __str__

Y
Yu Yang 已提交
2791 2792
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2793
        return self.desc.parent
Y
Yu Yang 已提交
2794

Y
Yu Yang 已提交
2795 2796 2797 2798
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2799
    def _set_forward_block_idx(self, idx):
2800 2801 2802 2803 2804 2805 2806 2807 2808
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2809
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2810

2811 2812 2813 2814 2815 2816 2817 2818
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2819 2820
    @property
    def idx(self):
Y
Yu Yang 已提交
2821
        return self.desc.id
Y
Yu Yang 已提交
2822

Q
Qiao Longfei 已提交
2823
    def var(self, name):
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2837
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2838 2839 2840
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2841 2842
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2843
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2844
        return v
Q
Qiao Longfei 已提交
2845

X
Xin Pan 已提交
2846
    def _find_var_recursive(self, name):
2847 2848 2849 2850 2851 2852 2853
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2854
            Variable: the Variable with the giving name. Or None if not found.
2855
        """
Y
Yu Yang 已提交
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2880
        return None
Y
Yu Yang 已提交
2881

X
Xin Pan 已提交
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2901

Q
Qiao Longfei 已提交
2902
    def all_parameters(self):
2903
        return list(self.iter_parameters())
2904

2905
    def iter_parameters(self):
M
minqiyang 已提交
2906
        return (item[1] for item in six.iteritems(self.vars)
2907
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2908

Y
Yu Yang 已提交
2909
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2910 2911 2912
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2913 2914 2915
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2916
        return var
Y
Yu Yang 已提交
2917

Q
Qiao Longfei 已提交
2918 2919 2920
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2921
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2922 2923
        """
        Rename variable in vars and ops' inputs and outputs
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2936
        """
M
minqiyang 已提交
2937 2938
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2939

T
typhoonzero 已提交
2940
        if not self.has_var(name):
2941
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2942 2943
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2944
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2945 2946 2947 2948 2949 2950
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2951
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2952 2953 2954 2955
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2956
        orig_var_type = v.type
M
minqiyang 已提交
2957
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2958
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2959
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2960
        if var_type == "Parameter":
L
Leo Chen 已提交
2961 2962
            if in_dygraph_mode():
                var = ParamBase(
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2973 2974
                var = Parameter(
                    self,
2975 2976 2977 2978 2979 2980 2981 2982 2983
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2984
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2985 2986
            var = Variable(
                self,
T
typhoonzero 已提交
2987
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2988 2989 2990 2991
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2992
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2993 2994 2995
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2996
        self._sync_with_cpp()
2997
        return var
T
typhoonzero 已提交
2998

2999 3000 3001
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3002
        self.desc._remove_var(cpt.to_bytes(name))
3003 3004
        del self.vars[name]

Y
Yu Yang 已提交
3005 3006
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3007
        param = None
L
Leo Chen 已提交
3008
        if in_dygraph_mode():
3009
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3010 3011
        else:
            param = Parameter(global_block, *args, **kwargs)
3012

3013
        if 'initializer' in kwargs:
3014 3015 3016 3017 3018

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3019
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3020
                        # are treated as initialization ops that cause error.
3021
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3022 3023 3024 3025 3026
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3027
                            continue
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3039
                # TODO already inited, do nothing, should log a warning
3040 3041 3042
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3043
        return param
Y
Yu Yang 已提交
3044

Y
Yu Yang 已提交
3045
    def append_op(self, *args, **kwargs):
3046 3047 3048 3049 3050 3051
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3052
        if in_dygraph_mode():
3053
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
3054
            type = kwargs.get("type", None)
3055 3056 3057
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3058
                type=type,
M
minqiyang 已提交
3059 3060
                inputs=None,
                outputs=None,
3061
                attrs=attrs)
3062

M
minqiyang 已提交
3063 3064 3065
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3066
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3067 3068

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3069
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3070 3071
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3072
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3073
        else:
3074 3075
            from paddle.fluid.dygraph.base import param_guard

3076
            op_desc = self.desc.append_op()
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3090

M
minqiyang 已提交
3091
            self.ops.append(op)
M
minqiyang 已提交
3092

3093 3094
        return op

W
Wu Yi 已提交
3095
    def _insert_op(self, index, *args, **kwargs):
3096 3097 3098 3099 3100 3101 3102 3103 3104
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3105
        self._sync_with_cpp()
F
fangshuixun007 已提交
3106
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3107

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3125 3126 3127 3128 3129 3130 3131 3132 3133
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3134 3135
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3136
        self.desc._remove_op(index, index + 1)
3137 3138
        del self.ops[index]

W
Wu Yi 已提交
3139
    def _slice_ops(self, start, end):
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3150
        return self.ops[start:end]
Y
Yancey1989 已提交
3151

W
Wu Yi 已提交
3152
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3153
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3154 3155
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3156
            op = Operator(
J
Jiabin Yang 已提交
3157
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3158

J
Jiabin Yang 已提交
3159
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3160
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3161 3162
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3163
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3164
        else:
3165 3166 3167 3168 3169 3170 3171 3172
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3173
            self.ops.insert(0, op)
3174

Y
Yu Yang 已提交
3175 3176
        return op

W
Wu Yi 已提交
3177
    def _sync_with_cpp(self):
3178
        """
3179 3180
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3181
        """
Q
Qiao Longfei 已提交
3182 3183 3184
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3202

3203
        # sync variables removed from c++ end
3204
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3205
            if not self.desc.find_var(cpt.to_bytes(var)):
3206 3207
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3208
        # sync operators from cpp
3209 3210 3211 3212
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3229 3230 3231 3232 3233

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3234
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3235 3236 3237 3238 3239 3240 3241

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3255 3256 3257 3258
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3259
    def _copy_param_info_from(self, other):
3260
        """
3261 3262
        Copy the information of parameters from the other block.

3263
        Args:
3264 3265 3266 3267 3268
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3269 3270 3271 3272 3273

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3274 3275
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3276
        for p in other.iter_parameters():
3277 3278 3279
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3280 3281
                # if the Parameter is pruned, v may be None
                continue
3282
            assert isinstance(v, Variable)
3283
            new_p = None
L
Leo Chen 已提交
3284 3285
            if in_dygraph_mode():
                new_p = ParamBase(
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3297 3298
                new_p = Parameter(
                    block=self,
3299 3300 3301
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3302 3303
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3304 3305 3306 3307 3308 3309
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3310 3311
            self.vars[new_p.name] = new_p

3312
    def _clone_variable(self, var, force_persistable=True):
3313 3314
        """
        Clone a variable into current block.
3315

3316 3317
        Args:
            var: the variable to be cloned.
3318 3319 3320
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3321 3322

        Returns:
3323
            Variable: the new  variable cloned from 'var' in current block.
3324 3325
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3326 3327 3328 3329 3330
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3331 3332
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3333
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3334 3335 3336 3337 3338 3339
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3340
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3341 3342
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3343 3344 3345 3346 3347 3348 3349
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3350
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3351 3352
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3353
        return ret_var
3354

Y
Yu Yang 已提交
3355

3356 3357 3358 3359 3360 3361
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3473
    def remove_input_by_id(self, node_id):
3474 3475 3476 3477 3478 3479
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3480
        self.node.remove_input(node_id)
3481

3482
    def remove_input(self, node):
3483 3484 3485 3486
        """
        Remove a node from inputs.

        Args:
3487
            node(IrNode): the node being removed.
3488
        """
3489
        self.node.remove_input(node.node)
3490

3491
    def append_input(self, node):
3492 3493 3494 3495
        """
        Append a node in inputs.

        Args:
3496
            node(IrNode): the node being appended.
3497
        """
3498
        self.node.append_input(node.node)
3499 3500 3501 3502 3503 3504 3505 3506

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3507
    def remove_output_by_id(self, node_id):
3508 3509 3510 3511 3512 3513
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3514
        self.node.remove_output(node_id)
3515

3516
    def remove_output(self, node):
3517 3518 3519 3520
        """
        Remove a node from outputs.

        Args:
3521
            node(IrNode): the node being removed.
3522
        """
3523
        self.node.remove_output(node.node)
3524

3525
    def append_output(self, node):
3526 3527 3528 3529
        """
        Append a node in outputs.

        Args:
3530
            node(IrNode): the node being appended.
3531
        """
3532
        self.node.append_output(node.node)
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3580
            "The node variable description can not be None."
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3591
            "The node variable description can not be None."
3592 3593
        return self.node.var().persistable()

3594 3595 3596 3597 3598 3599 3600 3601
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3602
            "The node variable description can not be None."
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3613
            "The node variable description can not be None."
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3624
            "The node variable description can not be None."
3625 3626
        return self.node.var().shape()

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3674
            "The node operator description can not be None."
3675 3676
        self.node.op()._rename_input(old_input_name, new_input_name)

3677 3678 3679 3680 3681 3682 3683 3684 3685
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3686
            "The node operator description can not be None."
3687 3688
        self.node.op()._rename_output(old_output_name, new_output_name)

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3700
            "The node operator description can not be None."
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3714
            "The node operator description can not be None."
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3725
            "The node operator description can not be None."
3726 3727
        return self.node.op().set_type(new_type)

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3743
            "The node operator description can not be None."
3744 3745 3746 3747
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3748
                all(isinstance(v, Block) for v in val):
3749 3750
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3751
                isinstance(val, core.ProgramDesc):
3752 3753 3754 3755
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3756 3757 3758 3759 3760 3761 3762 3763
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3764
            "The node operator description can not be None."
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3775
            "The node operator description can not be None."
3776 3777
        return self.node.op().output_arg_names()

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3799 3800
class IrGraph(object):
    """
3801
    Python IrGraph. Beneath it is a core.Graph, which is used for
3802
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3803 3804
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3805 3806 3807 3808
    """

    def __init__(self, graph, for_test=False):
        """
3809 3810
        Construct an IrGraph using core.Graph.

3811 3812 3813 3814 3815 3816 3817 3818 3819
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3820 3821 3822 3823
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3824 3825 3826
        Warns:
            The method only clones the graph structure, not its attributes.

3827 3828 3829
        Returns:
            IrGraph: A new and duplicated graph.
        """
3830
        g = self.graph.clone()
3831 3832
        return IrGraph(g, self._for_test)

3833
    def is_test(self):
3834 3835 3836
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3837 3838
        return self._for_test

W
WangZhen 已提交
3839
    def all_nodes(self):
3840 3841 3842
        """
        Return all nodes included in the graph as a set.
        """
3843
        return {IrNode(node) for node in self.graph.nodes()}
3844

3845
    def all_var_nodes(self):
3846 3847 3848
        """
        Return all variable nodes included in the graph as a set.
        """
3849
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3850

3851
    def all_persistable_nodes(self):
3852 3853 3854
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3855 3856 3857 3858 3859
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3860
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3861

3862
    def all_op_nodes(self):
3863 3864 3865
        """
        Return all operator nodes included in the graph as a set.
        """
3866
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3867

3868
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3880
            IrVarNode: the created persistable variable node.
3881
        """
3882 3883 3884 3885 3886
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3887
        return IrVarNode(self.graph.create_var_node(var_desc))
3888 3889

    def create_var_node(self, name, var_type, shape, var_dtype):
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3901
            IrVarNode: the created variable node.
3902 3903
        """

3904 3905 3906 3907
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3908
        return IrVarNode(self.graph.create_var_node(var_desc))
3909

3910 3911 3912 3913 3914 3915
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3916
    def create_var_node_from_desc(self, var_desc):
3917 3918 3919 3920 3921 3922 3923 3924
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3925
            IrVarNode: the created variable node.
3926
        """
3927
        return IrVarNode(self.graph.create_var_node(var_desc))
3928 3929

    def create_op_node(self, op_type, attrs, inputs, outputs):
3930 3931 3932 3933 3934 3935 3936
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3937
            outputs(dict): the outputs of the operator node.
3938 3939

        Returns:
3940
            IrOpNode: the created operator node.
3941
        """
3942 3943
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3944
        for attr, value in six.iteritems(attrs):
3945
            self._update_desc_attr(op_desc, attr, value)
3946
        for input_name, var_nodes in six.iteritems(inputs):
3947 3948 3949 3950
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3951
        for output_name, var_nodes in six.iteritems(outputs):
3952 3953 3954 3955
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3956
        return IrOpNode(self.graph.create_op_node(op_desc))
3957 3958

    def create_op_node_from_desc(self, op_desc):
3959 3960 3961 3962 3963 3964 3965
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3966
            IrOpNode: the created operator node.
3967
        """
3968
        return IrOpNode(self.graph.create_op_node(op_desc))
3969 3970

    def update_input_link(self, old_input_node, new_input_node, op_node):
3971 3972 3973 3974
        """
        Update the input's link of a operator node.

        Args:
3975 3976 3977
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3978
        """
3979
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
3980
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3981
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3982 3983 3984 3985
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3986
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3987

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
3998
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
3999
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4000 4001 4002 4003 4004 4005
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4006
    def link_to(self, node_in, node_out):
4007 4008 4009 4010
        """
        Connect two nodes.

        Args:
4011 4012
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4013
        """
4014
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
4015
            'The two arguments(node_in&node_out) must be in the graph nodes.'
4016 4017
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4018 4019

    def safe_remove_nodes(self, remove_nodes):
4020 4021 4022 4023 4024 4025 4026
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4027
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4028 4029 4030 4031
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4032 4033
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4034

Z
Zhen Wang 已提交
4035 4036 4037 4038 4039 4040 4041 4042
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4043
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4044 4045 4046 4047
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4048
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4049 4050 4051
                        ]
                    else:
                        var_nodes[each_var_name].append(
4052 4053
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4054 4055
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4056
    def has_circle(self):
4057 4058 4059 4060 4061 4062
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4063 4064 4065
        return core.has_circle(self.graph)

    def graph_num(self):
4066 4067 4068 4069 4070 4071
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4072 4073 4074
        return core.graph_num(self.graph)

    def topology_sort(self):
4075 4076 4077
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4078
        Notes: the `graph` can not contain a circle.
4079 4080

        Returns:
Z
Zhen Wang 已提交
4081
            list(IrNode): nodes in topology order.
4082
        """
4083
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4084
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4085 4086

    def build_adjacency_list(self):
4087 4088 4089 4090
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4091
            dict{IrNode: set(IrNode)}: the adjacency list.
4092
        """
4093 4094 4095 4096 4097
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4098

4099 4100 4101 4102 4103 4104 4105 4106
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4107
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4108 4109 4110 4111 4112
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4113 4114
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4115 4116 4117
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4118 4119 4120 4121 4122
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4123
        remove_ctr_vars = set()
4124
        if remove_ctr_var:
4125
            for node in self.all_var_nodes():
4126 4127 4128
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4129 4130
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4131 4132
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4133 4134 4135 4136 4137 4138
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4139 4140 4141 4142
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4143 4144
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4145 4146 4147 4148 4149 4150 4151
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4152 4153 4154
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4155
        WARN: When the graph includes backward operator nodes, the
4156 4157 4158 4159 4160 4161
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4162
        convert_pass = core.get_pass('graph_to_program_pass')
4163 4164
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4165 4166 4167 4168
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4196
class Program(object):
D
dzhwinter 已提交
4197
    """
4198
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4199
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4200
    it will contain nested block.
4201

J
Jiabin Yang 已提交
4202 4203 4204
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4205

J
Jiabin Yang 已提交
4206
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4207
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4208 4209 4210 4211 4212 4213 4214
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4215
    **Notes**:
4216 4217 4218
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4219 4220

    Returns:
J
Jiabin Yang 已提交
4221
        Program: An empty Program.
D
dzhwinter 已提交
4222 4223

    Examples:
4224 4225
        .. code-block:: python

4226 4227 4228 4229
            import paddle
            import paddle.static as static

            paddle.enable_static()
4230

4231 4232 4233 4234 4235
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4236
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4237 4238 4239

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4240 4241 4242

    """

4243 4244
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4245 4246
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4247 4248
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4249
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4250
        self.__op_role_var = []
T
tangwei12 已提交
4251

4252 4253
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4254
        self._is_distributed = False
4255
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4256
        self._is_chief = False
4257 4258 4259
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4260
        self._endpoints = []
4261 4262 4263
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4264
        self._trainers_endpoints = []
4265
        # the distributed lookup table names
T
tangwei12 已提交
4266
        self._distributed_lookup_table = None
4267 4268 4269

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4270 4271
        self._use_lamb = False

4272 4273 4274
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4275

4276 4277 4278
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4279
        self._program_config = None
4280

H
hutuxian 已提交
4281 4282 4283
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4284 4285 4286
        # appending gradients times
        self._appending_grad_times = 0

4287 4288 4289 4290
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4291 4292 4293
        # compiled program, i.e. Graph
        self._graph = None

4294
    def _find_var_class_kwargs(self, new_desc):
4295 4296 4297 4298 4299 4300 4301 4302
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4372
        assert block_num == self.desc.num_blocks()
4373 4374

        # clear old blocks and desc
4375 4376 4377 4378 4379 4380 4381 4382 4383
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4384

4385
        del desc
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4415 4416
                import paddle
                import paddle.static as static
4417

4418 4419 4420
                paddle.enable_static()

                prog = static.default_main_program()
4421 4422 4423 4424 4425
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4426
                prog1 = static.default_main_program()
4427 4428 4429 4430 4431 4432 4433 4434
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4435
    @property
4436
    def _op_role(self):
Y
yuyang18 已提交
4437 4438 4439 4440 4441 4442 4443 4444
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4445
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4446 4447 4448 4449
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4450 4451
        return self._current_role

4452 4453
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4454 4455 4456
        self._current_role = role

    @property
4457
    def _op_role_var(self):
Y
yuyang18 已提交
4458
        """
4459
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4460

4461
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4462 4463 4464

        Notes: This is a very low-level API. Users should not use it directly.
        """
4465
        return self.__op_role_var
Y
yuyang18 已提交
4466

4467
    @signature_safe_contextmanager
4468 4469 4470 4471 4472
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4473 4474 4475 4476
        try:
            yield
        finally:
            self._current_role = tmp_role
4477

S
rename  
sneaxiy 已提交
4478
    @signature_safe_contextmanager
W
Wu Yi 已提交
4479
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4480 4481 4482 4483 4484 4485 4486
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4487
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4488 4489 4490

        Examples:

4491
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4492
            >>> p, g = backward(...)
W
Wu Yi 已提交
4493
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4494 4495
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4496
        tmp_role = self._current_role
4497
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4498

Y
yuyang18 已提交
4499 4500
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4501
        self.__op_role_var = [
4502 4503 4504
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4505 4506 4507 4508 4509
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4510

S
rename  
sneaxiy 已提交
4511
    @signature_safe_contextmanager
X
Xin Pan 已提交
4512
    def _lr_schedule_guard(self, is_with_opt=False):
4513 4514 4515 4516 4517 4518 4519
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4520 4521 4522 4523
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4524 4525 4526

        Examples:

4527
            >>> import paddle.fluid as fluid
4528 4529 4530 4531
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4532 4533

        tmp_role = self._current_role
4534
        tmp_var = self.__op_role_var
4535

4536 4537
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4538 4539
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4540
        # TODO(typhoonzero): how to set target learning rate var
4541
        self.__op_role_var = []
4542 4543 4544 4545 4546
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4547

4548
    def __str__(self):
Y
yuyang18 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4578 4579
            import paddle
            import paddle.static as static
4580

4581 4582 4583
            paddle.enable_static()

            cur_program = static.Program()
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4595
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4596 4597 4598 4599
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4600
            program_str += '\n'
4601
        return program_str
Y
Yang Yang(Tony) 已提交
4602

F
fengjiayi 已提交
4603 4604 4605
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4606

J
Jiabin Yang 已提交
4607 4608 4609
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4610

J
Jiabin Yang 已提交
4611
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4612

H
haowang101779990 已提交
4613
        Returns:
J
Jiabin Yang 已提交
4614
            str: The debug string describe current Program.
Y
yuyang18 已提交
4615 4616

        Raises:
J
Jiabin Yang 已提交
4617
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4618

4619 4620 4621
        Examples:
            .. code-block:: python

4622 4623 4624 4625
                import paddle
                import paddle.static as static

                paddle.enable_static()
4626

4627 4628 4629
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4630
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4631
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4632
                print("program string without detail: {}".format(prog_string))
4633
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4634
        """
4635 4636 4637 4638 4639 4640 4641 4642 4643
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4644 4645 4646 4647 4648 4649
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4650 4651
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4652 4653
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4654

W
Wu Yi 已提交
4655
    def _get_desc(self):
Y
yuyang18 已提交
4656 4657 4658 4659 4660 4661 4662
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4663 4664
        return self.desc

X
version  
Xin Pan 已提交
4665 4666 4667
    def _version(self):
        return self.desc._version()

4668
    def clone(self, for_test=False):
Y
yuyang18 已提交
4669
        """
4670 4671 4672 4673
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4674

4675
        Create a new Program with forward content of original one when ``for_test=True``.
4676
        Create a new Program as same as the original one when ``for_test=False``.
4677

4678
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4679 4680 4681
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4682

4683 4684
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4685 4686
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4687
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4688

J
Jiabin Yang 已提交
4689
        For Example:
4690
          ::
L
Luo Tao 已提交
4691

4692 4693 4694 4695 4696 4697
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4698
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4699
            loss = paddle.mean(pred)
4700
            # Here we use clone before Momentum
4701 4702
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4703
            optimizer.minimize(loss)
4704

J
Jiabin Yang 已提交
4705
        Args:
4706

4707 4708
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4709

J
Jiabin Yang 已提交
4710
        Returns:
4711
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4712

Y
yuyang18 已提交
4713 4714 4715

        Examples:

4716 4717 4718 4719 4720 4721 4722
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


4739
            1. To clone a test program, the sample code is:
4740 4741 4742
                .. code-block:: python

                    import six
4743 4744 4745 4746 4747 4748
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

4761 4762
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
4763 4764 4765

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4766 4767 4768
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
4769
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
4770 4771
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
4772
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4773 4774
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
4775
                            test_program = train_program.clone(for_test=True)
4776
                    print_prog(test_program)
J
Jiabin Yang 已提交
4777 4778 4779 4780

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

4781
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
4782 4783 4784 4785
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4786 4787 4788
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4789 4790 4791
                            sgd.minimize(avg_loss)


4792
            2. The clone method can be avoid if you create program for training and program for testing individually.
4793 4794 4795
                .. code-block:: python

                    import six
4796 4797 4798 4799 4800 4801
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4813

4814
                    def network():
4815
                        img = static.data(name='image', shape=[None, 784])
4816
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
4817 4818
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
4819
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
4820 4821
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
4822 4823
                        return avg_loss

4824 4825 4826 4827 4828
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
4829
                            avg_loss = network()
4830
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
4831
                            sgd.minimize(avg_loss)
4832
                    # the test startup program is not used.
4833 4834
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
4835 4836
                            avg_loss = network()
                    print_prog(test_program_2)
4837

4838
            The two code snippets above will generate and print same programs.
4839
        """
4840

T
tangwei12 已提交
4841
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4842 4843 4844
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4845
        pruned_origin_block_id_map = None
4846
        if for_test:
4847 4848 4849 4850 4851 4852 4853 4854 4855
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4856
        else:
4857
            p = Program()
G
gongweibao 已提交
4858 4859
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4860
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4861 4862 4863
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4864 4865

            p._current_role = self._current_role
4866
            p.__op_role_var = self.__op_role_var
4867
            p._appending_grad_times = self._appending_grad_times
4868 4869
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4870

T
tangwei12 已提交
4871
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
4872
            # its desc.
W
Wu Yi 已提交
4873
            p._sync_with_cpp()
4874

W
Wu Yi 已提交
4875
        p._copy_param_info_from(self)
4876
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4877
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4878
        return p
4879

4880
    def _prune(self, targets):
Y
yuyang18 已提交
4881 4882 4883 4884 4885 4886 4887 4888
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4889
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4890 4891 4892 4893
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4894
        """
4895
        return self._prune_with_input([], targets)
4896 4897

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4898
        """
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4909
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4910 4911 4912 4913 4914 4915
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
4916
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
4917 4918 4919
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4920 4921
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4922 4923
        if not isinstance(targets, list):
            targets = [targets]
4924 4925 4926

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4927 4928 4929
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4930

4931 4932 4933 4934
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4935 4936 4937
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4938
                else:
4939 4940 4941
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4942 4943 4944 4945 4946 4947 4948 4949

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4950 4951 4952 4953 4954 4955 4956 4957 4958
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
4959
                        # Skip optimize op except for optimize op in targets,
4960 4961 4962 4963 4964 4965
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4966 4967 4968 4969 4970 4971 4972 4973
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4974

4975
        res = Program()
4976 4977 4978
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4979 4980 4981
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4982
        res._sync_with_cpp()
4983 4984 4985 4986 4987

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4988 4989
        return res

X
Xin Pan 已提交
4990
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4991
        """
F
fengjiayi 已提交
4992 4993 4994 4995 4996
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4997
        3. change the :code:`is_test`
Y
yuyang18 已提交
4998 4999 5000
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5001
        Args:
X
Xin Pan 已提交
5002 5003
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5004

Y
yuyang18 已提交
5005 5006 5007 5008 5009 5010
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5011
        res = Program()
5012
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5013 5014 5015 5016

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5017
        if prune_read_op:
5018 5019 5020 5021 5022 5023 5024 5025 5026
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5027
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5028 5029

        # change all `is_test` attributes to True
M
minqiyang 已提交
5030
        for i in six.moves.range(res.desc.num_blocks()):
5031
            block = res.desc.block(i)
M
minqiyang 已提交
5032
            for j in six.moves.range(block.op_size()):
5033 5034
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5035
                    op._set_attr('is_test', True)
5036 5037 5038
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5039 5040 5041
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5042
        res._sync_with_cpp()
5043 5044
        return res

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
    def _remove_training_info(self):
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
        return res

5072 5073
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5074
        """
5075 5076 5077
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5078

5079 5080
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5081

J
Jiabin Yang 已提交
5082
        Args:
Y
yuyang18 已提交
5083

J
Jiabin Yang 已提交
5084
            binary_str_type (str): the binary prootbuf string.
5085

J
Jiabin Yang 已提交
5086 5087
        Returns:
            Program: A deserialized Program.
5088 5089 5090 5091

        Examples:
            .. code-block:: python

5092 5093 5094 5095
                import paddle
                import paddle.static as static

                paddle.enable_static()
5096

5097 5098 5099 5100
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5101

5102
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5103

5104
                    z = paddle.matmul(x=x, y=y)
5105

5106 5107
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5108

5109
                    print(static.default_main_program())
5110
                    print(prog_restored)
Y
yuyang18 已提交
5111
        """
5112 5113
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5114
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5115
        p._sync_with_cpp()
5116
        return p
Y
Yu Yang 已提交
5117

5118
    @staticmethod
5119
    def _construct_from_desc(desc):
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5135 5136
    @property
    def random_seed(self):
Y
yuyang18 已提交
5137
        """
J
Jiabin Yang 已提交
5138
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5139 5140
        the random seed from random device.

5141 5142
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5143 5144 5145

        Returns:
            int64: Random seed in current Program
5146

5147 5148 5149 5150

        Examples:
            .. code-block:: python

5151 5152 5153
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5154

5155 5156 5157
                paddle.enable_static()

                prog = static.default_main_program()
5158
                random_seed = prog.random_seed
5159
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5160 5161 5162
                print(random_seed)
                ## 0
                ## the default random seed is 0
5163

5164
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5165
                prog.random_seed = 1
5166
                z_var = F.dropout(x_var, 0.7)
5167

5168
                print(prog.random_seed)
5169 5170
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5171
        """
D
dzhwinter 已提交
5172 5173
        return self._seed

Q
qiaolongfei 已提交
5174 5175
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5176
        """
5177 5178
        The number of :ref:`api_guide_Block_en`  in this Program.

5179 5180
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5181 5182 5183

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5184

5185 5186 5187 5188

        Examples:
            .. code-block:: python

5189 5190 5191 5192
                import paddle
                import paddle.static as static

                paddle.enable_static()
5193

5194
                prog = static.default_main_program()
5195 5196
                num_blocks = prog.num_blocks
                print(num_blocks)
5197

5198 5199
                # print result:
                # 1
Y
yuyang18 已提交
5200
        """
Q
qiaolongfei 已提交
5201 5202
        return self.desc.num_blocks()

D
dzhwinter 已提交
5203 5204 5205
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5206 5207 5208
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5209 5210
        self._seed = seed

Y
Yu Yang 已提交
5211
    def __repr__(self):
5212
        return self.__str__()
5213

Y
Yu Yang 已提交
5214
    def global_block(self):
Y
yuyang18 已提交
5215
        """
5216 5217
        .. note::
            This API has no effect in Dygraph mode.
5218 5219 5220

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5221 5222
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5223

5224 5225 5226 5227

        Examples:
            .. code-block:: python

5228 5229 5230 5231
                import paddle
                import paddle.static as static

                paddle.enable_static()
5232

5233
                prog = static.default_main_program()
5234 5235
                gb_block = prog.global_block()
                print(gb_block)
5236

Y
yuyang18 已提交
5237
        """
Y
Yu Yang 已提交
5238 5239
        return self.blocks[0]

Q
Qiao Longfei 已提交
5240
    def block(self, index):
Y
yuyang18 已提交
5241
        """
5242 5243
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5244

5245 5246
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5247 5248
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5249

J
Jiabin Yang 已提交
5250 5251
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5252 5253 5254 5255

        Examples:
            .. code-block:: python

5256 5257 5258 5259
                import paddle
                import paddle.static as static

                paddle.enable_static()
5260

5261
                prog = static.default_main_program()
5262 5263
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5264
        """
Q
Qiao Longfei 已提交
5265 5266
        return self.blocks[index]

Y
Yu Yang 已提交
5267
    def current_block(self):
Y
yuyang18 已提交
5268
        """
5269 5270
        .. note::
            This API has no effect in Dygraph mode.
5271

J
Jiabin Yang 已提交
5272 5273
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5274

J
Jiabin Yang 已提交
5275 5276
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5277

5278 5279 5280
        Examples:
            .. code-block:: python

5281 5282 5283 5284
                import paddle
                import paddle.static as static

                paddle.enable_static()
5285

5286
                prog = static.default_main_program()
5287 5288
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5289
        """
Y
Yu Yang 已提交
5290 5291
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5292
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5293 5294 5295 5296 5297
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5298

Y
yuyang18 已提交
5299 5300 5301 5302 5303
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5304
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5305 5306 5307
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5308 5309 5310 5311
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5312
    def _rollback(self):
Y
yuyang18 已提交
5313 5314 5315 5316 5317
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5318 5319
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5320
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5331 5332 5333
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5334
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5335

W
Wu Yi 已提交
5336
    def _copy_param_info_from(self, other):
5337
        """
5338
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5339

Y
yuyang18 已提交
5340 5341 5342
        Notes: This is a very low level API. Users should not invoke it
        directly.

5343 5344 5345 5346 5347 5348 5349
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5350 5351 5352
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5353

W
Wu Yi 已提交
5354
        self.global_block()._copy_param_info_from(other.global_block())
5355

5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5367 5368 5369
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5370 5371
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5372
        self._parameters_on_pservers = other._parameters_on_pservers
5373
        self._endpoints = other._endpoints
5374
        self._ps_endpoint = other._ps_endpoint
5375 5376
        self._distributed_lookup_table = other._distributed_lookup_table

5377
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5378 5379
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5380

Y
yuyang18 已提交
5381 5382 5383
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5384 5385
        Args:
            other(Program): Other program
5386 5387 5388 5389
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5390 5391 5392 5393 5394

        Returns:
            None
        """
        if not isinstance(other, Program):
5395 5396 5397
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5398

5399 5400 5401 5402 5403
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5404 5405 5406

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5407 5408
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5409
            for var in list(block.vars.values()):
5410 5411 5412 5413 5414 5415 5416
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5417

5418
    def list_vars(self):
Y
yuyang18 已提交
5419
        """
5420
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5421

J
Jiabin Yang 已提交
5422
        Returns:
5423
            iterable Tensors: The Generator will yield every Tensor in this program.
5424 5425 5426 5427

        Examples:
            .. code-block:: python

5428 5429
                import paddle
                import paddle.static as static
5430

5431 5432 5433 5434 5435
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5436 5437
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5438

5439 5440
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5441
        """
5442
        for each_block in self.blocks:
5443
            for each_var in list(each_block.vars.values()):
5444 5445
                yield each_var

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5456 5457 5458 5459
                import paddle
                import paddle.static as static

                paddle.enable_static()
5460

5461 5462
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5463
                hidden = static.nn.fc(x=data, size=10)
5464 5465
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5466 5467 5468 5469 5470 5471 5472

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5473 5474
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5652

5653
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5654
class Parameter(Variable):
5655
    """
5656
    Parameter is derived from Variable. A parameter is a persistable
5657
    Variable, and will be updated by optimizers after each iteration.
5658
    The training of a neural network is essentially the updating of
5659 5660
    its parameters.

5661
    Relative to a general Variable, a Parameter has several its own
5662 5663
    member variables:

5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5674 5675
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5676 5677
    """

5678 5679 5680 5681 5682 5683
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5684 5685 5686 5687 5688
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5689
        if len(shape) == 0:
5690 5691
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5692 5693 5694

        for each in shape:
            if each < 0:
5695 5696 5697
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5698 5699

        Variable.__init__(
5700 5701 5702 5703 5704 5705 5706
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5707 5708 5709 5710
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5711 5712
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5713
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5714

5715 5716
        self.need_clip = kwargs.get('need_clip', True)

5717 5718
        self.is_distributed = False

5719 5720
        self.is_parameter = True

F
fengjiayi 已提交
5721
    def __str__(self):
5722
        return self._to_readable_code()
F
fengjiayi 已提交
5723

F
update  
fengjiayi 已提交
5724 5725 5726
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5727

F
update  
fengjiayi 已提交
5728 5729 5730 5731 5732 5733 5734 5735
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5736 5737 5738 5739 5740 5741 5742 5743 5744
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5745 5746 5747 5748 5749 5750
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5751
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
5752
            for attr_name in additional_attr:
5753 5754
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5755 5756
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5757 5758 5759 5760
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5761

5762 5763
class ParamBase(core.VarBase):
    """
5764 5765 5766
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5767 5768 5769
    The training of a neural network is essentially the updating of
    its ParamBase.

5770
    Relative to a general Tensor, a ParamBase has several its own
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
5783 5784
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5815 5816
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5817 5818 5819 5820 5821 5822 5823

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

5824 5825
        self.need_clip = kwargs.get('need_clip', True)

5826
        self.is_distributed = False
5827
        # self.block = default_main_program().global_block()
5828

5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5842
    def __str__(self):
5843
        """
5844
        Convert a ParamBase object to a readable string.
5845

5846
        Returns(str): A readable string.
5847 5848 5849 5850

        Examples:
            .. code-block:: python

5851
                import paddle
5852 5853 5854 5855 5856 5857 5858
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
5859
        """
5860 5861
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
5862

5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
5874

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

5893 5894 5895 5896 5897 5898 5899
    def _copy_to(self, device, blocking):
        print("in ParamBase copy_to func")
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

5900 5901 5902
    __repr__ = __str__


Y
Yu Yang 已提交
5903
# program is a global instance.
Y
Yu Yang 已提交
5904 5905
_main_program_ = Program()
_startup_program_ = Program()
5906

5907

5908
def default_startup_program():
Y
Yu Yang 已提交
5909
    """
Y
yuyang18 已提交
5910 5911
    Get default/global startup program.

5912 5913
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
5914

5915 5916
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
5917

5918 5919
    Returns:
        Program: current default startup program.
5920

5921
    Returns type: 
5922 5923 5924 5925

    Examples:
        .. code-block:: python

5926
            import paddle
5927

5928
            paddle.enable_static()
5929 5930 5931 5932
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
5933
    """
Y
Yu Yang 已提交
5934
    return _startup_program_
5935

5936

5937
def default_main_program():
Y
Yu Yang 已提交
5938
    """
5939
    This API can be used to get ``default main program`` which store the 
5940
    descriptions of Ops and tensors.
T
tangwei12 已提交
5941

5942
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
5943
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
5944

5945 5946
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5947
    :code:`default_main_program` when the program is not specified.
5948

5949
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
5950

Y
Yu Yang 已提交
5951
    Returns:
5952
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
5953 5954 5955 5956

    Examples:
        ..  code-block:: python

5957
            import paddle
5958

5959
            paddle.enable_static()
5960
            # Sample Network:
5961 5962 5963
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
5964

5965 5966 5967
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
5968
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
5969
    """
Y
Yu Yang 已提交
5970
    return _main_program_
Y
Yu Yang 已提交
5971 5972 5973 5974 5975


def switch_main_program(program):
    """
    Switch the main program to a new program.
5976

Y
Yu Yang 已提交
5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5991
    Switch the startup program to a new program
Y
Yu Yang 已提交
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6004
@signature_safe_contextmanager
Y
Yu Yang 已提交
6005 6006
def program_guard(main_program, startup_program=None):
    """
6007 6008
    :api_attr: Static Graph

6009 6010 6011
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6012

G
guofei 已提交
6013
    Args:
6014 6015
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6016 6017 6018 6019
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6020
    Examples:
6021
       .. code-block:: python
T
tangwei12 已提交
6022

6023
          import paddle
Y
yuyang18 已提交
6024

6025 6026 6027 6028 6029
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6030
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6031 6032 6033

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6034

Y
Yu Yang 已提交
6035
    Examples:
6036
       .. code-block:: python
Y
yuyang18 已提交
6037

6038
          import paddle
6039

6040 6041 6042 6043 6044
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6045

Y
Yu Yang 已提交
6046
    """
6047
    from .data_feeder import check_type
6048 6049
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6050 6051
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6052
        check_type(startup_program, 'startup_program', Program,
6053
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
6054
        startup_program = switch_startup_program(startup_program)
6055 6056 6057 6058 6059 6060
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6061 6062


W
Wu Yi 已提交
6063
def _get_var(name, program=None):
X
xuwei06 已提交
6064
    """
Y
yuyang18 已提交
6065
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6066

X
xuwei06 已提交
6067 6068 6069
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6070
        If None, default_global_program() will be used.
X
xuwei06 已提交
6071 6072 6073 6074 6075 6076 6077

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6078
    assert isinstance(program, Program)
X
xuwei06 已提交
6079 6080

    return program.global_block().var(name)
6081 6082


S
rename  
sneaxiy 已提交
6083
@signature_safe_contextmanager
L
lujun 已提交
6084 6085
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6086
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6087
    _dygraph_tracer_ = tracer
6088
    core._switch_tracer(tracer)
M
minqiyang 已提交
6089

6090 6091 6092
    try:
        yield
    finally:
6093 6094
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6095 6096


S
rename  
sneaxiy 已提交
6097
@signature_safe_contextmanager
L
lujun 已提交
6098
def _dygraph_place_guard(place):
6099 6100 6101
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
6102

6103 6104
    _set_dygraph_tracer_expected_place(place)

6105 6106 6107
    try:
        yield
    finally:
6108
        _global_expected_place_ = tmp_place
6109
        _set_dygraph_tracer_expected_place(tmp_place)
6110 6111


6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6128 6129
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6130 6131 6132 6133 6134 6135 6136 6137 6138
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6139
            import paddle
6140

Z
Zhang Ting 已提交
6141 6142 6143
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6144
            if support_gpu:
Z
Zhang Ting 已提交
6145
                place = paddle.CUDAPlace(0)
6146 6147

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6148 6149 6150
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6151

Z
Zhang Ting 已提交
6152
            with paddle.static.device_guard("cpu"):
6153
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6154 6155
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6156
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6157
                out = paddle.reshape(data1, shape=shape)
6158

Z
Zhang Ting 已提交
6159 6160
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6161 6162 6163
            result = exe.run(fetch_list=[out])
    """

6164 6165 6166 6167 6168
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6169
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6170
        raise ValueError(
6171
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6172
            "when there is no need to specify device. But received %s" % device)
6173 6174
    if index:
        device = ":".join([device, index])
6175
    pre_device = switch_device(device)
6176 6177 6178 6179
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6198 6199
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6228 6229
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6230 6231 6232 6233 6234 6235 6236
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6237 6238
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6239 6240 6241 6242 6243 6244 6245 6246
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6247 6248 6249 6250 6251 6252 6253


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6254
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6255 6256 6257 6258 6259 6260 6261 6262 6263
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6264

6265 6266 6267
    if (place == "device"):
        return core.Place()

6268
    # GPU
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6284 6285

    # XPU
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6309
    raise ValueError(
6310 6311
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret