framework.py 75.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
P
peizhilin 已提交
19
import os
F
fengjiayi 已提交
20
import re
21
import six
22
import sys
P
peizhilin 已提交
23
import traceback
24

Y
Yu Yang 已提交
25
import numpy as np
Q
qiaolongfei 已提交
26

M
minqiyang 已提交
27
from .. import compat as cpt
28
from .proto import framework_pb2
29 30
try:
    from . import core
31
except ImportError as e:
P
peizhilin 已提交
32 33 34 35 36 37 38 39 40 41 42 43
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
44
except Exception as e:
45
    raise e
46
from . import unique_name
Y
Yu Yang 已提交
47

48
__all__ = [
49 50 51 52
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
53
    'name_scope',
54
]
Y
Yu Yang 已提交
55

Q
qiaolongfei 已提交
56 57 58 59
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
60 61
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

62 63 64 65 66 67 68 69 70 71
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
112

113 114 115 116
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
117 118
          with name_scope("attention"):
             ...
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
138 139 140
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
141 142 143 144


def grad_var_name(var_name):
    """
145 146
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
147 148 149
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
150

151
def convert_np_dtype_to_dtype_(np_dtype):
152 153
    """
    Convert the data type in numpy to the data type in Paddle
154

155
    Args:
156
        np_dtype(np.dtype): the data type in numpy.
157

158 159
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
160 161

    """
162 163
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
164
        return core.VarDesc.VarType.FP32
165
    elif dtype == np.float64:
166
        return core.VarDesc.VarType.FP64
167
    elif dtype == np.float16:
168
        return core.VarDesc.VarType.FP16
169
    elif dtype == np.int32:
170
        return core.VarDesc.VarType.INT32
171
    elif dtype == np.int16:
172
        return core.VarDesc.VarType.INT16
173
    elif dtype == np.int64:
174
        return core.VarDesc.VarType.INT64
175
    elif dtype == np.bool:
176
        return core.VarDesc.VarType.BOOL
177 178
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
179 180
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
181 182
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
183
    else:
M
minqiyang 已提交
184
        raise ValueError("Not supported numpy dtype %s" % dtype)
185 186 187


def dtype_is_floating(dtype):
188 189 190
    """
    Check the data type is floating or not.
    Args:
191
        dtype(np.dtype|core.VarDesc.VarType): data type.
192 193 194 195 196
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
197
    if not isinstance(dtype, core.VarDesc.VarType):
198 199
        dtype = convert_np_dtype_to_dtype_(dtype)

200 201 202 203
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
204 205


Y
Yang Yang(Tony) 已提交
206
def _debug_string_(proto, throw_on_error=True):
207 208 209 210 211 212 213 214 215 216 217
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
218
    error_fields = list()
Y
Yang Yang(Tony) 已提交
219
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
220 221
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
222 223 224
    return proto.__str__()


X
Xin Pan 已提交
225
class Variable(object):
226
    """
227 228 229
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
230
    two variables in different blocks could have the same name.
231

232 233
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
234

235
    Most of a Variable's member variables can be setted to be None. It mean
236
    it is not available or will be specified later.
237 238

    Args:
239
        block(Block): The block that the variable belongs to.
240 241
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
242 243
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
244
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
245
            Some kinds of variable do not contain shape, just set it to None.
246 247 248
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
249
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
250
            series data.
251
            Default: None
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
274 275
    """

Y
Yu Yang 已提交
276 277
    def __init__(self,
                 block,
Y
Yu Yang 已提交
278
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
279 280 281 282
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
283
                 capacity=None,
Q
QI JUN 已提交
284
                 persistable=None,
F
fengjiayi 已提交
285
                 error_clip=None,
Y
Yu Yang 已提交
286
                 stop_gradient=False,
F
fengjiayi 已提交
287
                 is_data=False,
Y
Yu Yang 已提交
288
                 **kwargs):
Y
Yu Yang 已提交
289
        self.block = block
F
fengjiayi 已提交
290
        self.error_clip = error_clip
Y
Yu Yang 已提交
291 292

        if name is None:
Y
Yu Yang 已提交
293
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
294
        is_new_var = False
M
minqiyang 已提交
295
        name = cpt.to_text(name)
M
minqiyang 已提交
296
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
297 298

        if self.desc is None:
M
minqiyang 已提交
299
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
300
            is_new_var = True
Y
Yu Yang 已提交
301

Y
Yu Yang 已提交
302 303 304 305 306 307 308 309
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
310
        if shape is not None:
Y
Yu Yang 已提交
311
            if is_new_var:
312
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
313 314 315 316 317 318 319 320
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
321
        if dtype is not None:
322
            if not isinstance(dtype, core.VarDesc.VarType):
323
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
324
            if is_new_var:
F
fengjiayi 已提交
325
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
326
            else:
F
fengjiayi 已提交
327
                old_dtype = self.dtype
Q
QI JUN 已提交
328
                if dtype != old_dtype:
Y
Yu Yang 已提交
329 330 331 332 333
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
334 335

        if lod_level is not None:
Y
Yu Yang 已提交
336
            if is_new_var:
337
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
338 339 340 341 342 343 344
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
345 346 347 348 349 350 351 352 353 354 355
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

356 357 358 359 360 361 362 363
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
364
        self.block.vars[name] = self
Y
Yu Yang 已提交
365
        self.op = None
Y
Yu Yang 已提交
366
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
367
        self.is_data = is_data
X
Xin Pan 已提交
368 369 370
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
Y
Yu Yang 已提交
371

372 373 374 375 376 377 378
    def _numpy(self):
        scope = _imperative_tracer().get_scope(self.block.desc)
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

    def _backward(self):
        scope = _imperative_tracer().get_scope(self.block.desc)
X
Xin Pan 已提交
379
        self._ivar._run_backward(scope)
380 381

    def _gradient(self):
X
Xin Pan 已提交
382
        return np.array(self._ivar._grad())
383

384
    def __str__(self):
Y
Yang Yang(Tony) 已提交
385 386
        return self.to_string(True)

F
update  
fengjiayi 已提交
387
    def to_string(self, throw_on_error, with_details=False):
388 389 390 391
        """
        Get debug string.

        Args:
392 393
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
394
            with_details(bool): more details about variables and parameters
395 396
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
397

398 399
        Returns:
            str: The debug string.
400
        """
F
update  
fengjiayi 已提交
401 402
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
403
        protostr = self.desc.serialize_to_string()
404
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
405 406 407 408
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
409 410
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
411
        return res_str
412 413 414

    __repr__ = __str__

W
Wu Yi 已提交
415
    def _set_desc(self, input):
416 417 418 419 420 421 422 423 424
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
425 426
        self.desc = input

427 428 429 430
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
431 432 433 434
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
435 436
    @property
    def name(self):
M
minqiyang 已提交
437
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
438

T
typhoonzero 已提交
439 440 441 442
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
443 444 445
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
446
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
447 448

    @property
F
fengjiayi 已提交
449 450
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
451 452 453

    @property
    def lod_level(self):
454
        return self.desc.lod_level()
Y
Yu Yang 已提交
455

Y
Yu Yang 已提交
456 457 458 459
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
460
    def _set_error_clip(self, error_clip):
461 462 463 464 465 466 467 468 469
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
470 471
        self.error_clip = error_clip

Y
Yu Yang 已提交
472

F
fengjiayi 已提交
473 474 475
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
476

477 478
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
479 480 481 482
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
483
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
484 485 486 487 488
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
489 490 491 492
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
493 494 495 496 497 498 499 500 501
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
502
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
503 504 505 506 507 508
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
509 510 511 512 513 514 515 516
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
517 518
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
519 520
        return self.op_proto_map[type]

521 522 523 524
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
525
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
526
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
527 528
        }

F
fengjiayi 已提交
529

X
Xin Pan 已提交
530
class Operator(object):
531
    """
532 533 534 535 536 537 538
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
539
        type(str): The type of operator. Default None.
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
560
        Block.append_op or Block._prepend_op instead.
561 562 563 564 565 566 567 568 569 570

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
571
    """
572 573 574
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
575 576
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
577
    }
578

Y
Yu Yang 已提交
579 580
    def __init__(self,
                 block,
Y
Yu Yang 已提交
581
                 desc,
Y
Yu Yang 已提交
582 583 584 585 586
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
587
        self.desc = desc
G
gongweibao 已提交
588 589 590 591 592
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
593 594 595 596
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
597 598
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
599 600 601

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
602 603
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
604

G
gongweibao 已提交
605 606
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
607

P
peizhilin 已提交
608 609 610 611
        callstack_var_name = op_maker.kOpCreationCallstackAttrName()
        op_attrs[callstack_var_name] = list(
            reversed(traceback.format_stack()))[1:]

F
fengjiayi 已提交
612 613 614 615 616
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
617
        self.desc.set_type(type)
F
fengjiayi 已提交
618
        proto = OpProtoHolder.instance().get_op_proto(type)
619

620 621 622
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
623 624
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
625
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
626 627
                    return True
            return False
Q
QI JUN 已提交
628

Y
Yang Yang(Tony) 已提交
629 630 631 632 633 634 635
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
636 637 638 639
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
640 641
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
642 643 644
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
645
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
646
                            in_arg_names.append(arg)
647 648
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
649
                        else:
M
minqiyang 已提交
650
                            in_arg_names.append(cpt.to_text(arg.name))
651
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
652 653
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
654

Y
Yu Yang 已提交
655
        if outputs is not None:
656 657 658 659 660 661 662
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
663 664
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
665 666 667
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
668

F
fengjiayi 已提交
669
            for out_proto in proto.outputs:
670 671 672 673
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
674 675
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
676 677 678
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
679
                    out_arg_names.append(cpt.to_text(arg.name))
680 681
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
682

G
gongweibao 已提交
683 684
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
685
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
686
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
687
                attr_name = attr.name
G
gongweibao 已提交
688
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
689
                    continue
G
gongweibao 已提交
690
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
691 692
                self._update_desc_attr(attr_name, attr_val)

693
        self.desc.check_attrs()
W
Wu Yi 已提交
694
        if self._has_kernel(type):
Q
QI JUN 已提交
695
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
696
            self.desc.infer_shape(self.block.desc)
X
Xin Pan 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
            self.inputs = []
            if inputs is not None:
                for inp in inputs.values():
                    if isinstance(inp, Variable):
                        self.inputs.append(inp)
                    elif isinstance(inp, list) or isinstance(inp, tuple):
                        self.inputs.extend(inp[:])
            self.outputs = []
            if outputs is not None:
                for out in outputs.values():
                    if isinstance(out, Variable):
                        self.outputs.append(out)
                    elif isinstance(out, list) or isinstance(out, tuple):
                        self.outputs.extend(out[:])
F
fengjiayi 已提交
714

W
Wu Yi 已提交
715
    def _has_kernel(self, op_type):
716 717
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
718
    def to_string(self, throw_on_error):
719
        """
720 721
        Get debug string.

722
        Args:
723 724
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
725

726 727
        Returns:
            str: The debug string.
728 729

        """
730
        protostr = self.desc.serialize_to_string()
731
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
732 733 734 735
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
736 737 738

    __repr__ = __str__

F
fengjiayi 已提交
739 740 741 742 743
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
744
        """
745
        Get the input arguments according to the input parameter name.
746

747 748
        Args:
            name(str): The input parameter name.
749

750 751 752
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
753
        """
F
fengjiayi 已提交
754 755
        return self.desc.input(name)

W
Wu Yi 已提交
756
    def _rename_input(self, old_name, new_name):
757 758 759 760 761 762 763 764 765 766
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
767
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
768

W
Wu Yi 已提交
769
    def _rename_output(self, old_name, new_name):
770 771 772 773 774 775 776 777 778 779
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
780
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
781

F
fengjiayi 已提交
782 783 784 785
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
786 787 788 789 790 791 792 793
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
794
    def output(self, name):
795
        """
796
        Get output arguments by the output parameter name.
797

798 799
        Args:
            name(str): The output parameter name.
800

801 802 803
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
804
        """
F
fengjiayi 已提交
805 806 807 808 809 810
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

811 812 813 814 815 816 817 818
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
819
    def has_attr(self, name):
820
        """
821 822
        Whether this Operator has the attribute with name or not.

823
        Args:
824
            name(str): the attribute name.
825

826 827
        Returns:
            bool: True if has this attribute.
828 829

        """
F
fengjiayi 已提交
830 831 832
        return self.desc.has_attr(name)

    def attr_type(self, name):
833
        """
834
        Get the type of attribute by attribute's name.
835

836 837
        Args:
            name(str): the attribute name.
838

839 840
        Returns:
            core.AttrType: the attribute type.
841
        """
F
fengjiayi 已提交
842 843
        return self.desc.attr_type(name)

W
Wu Yi 已提交
844
    def _set_attr(self, name, val):
845 846 847 848 849 850 851 852 853 854
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
868 869
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
870 871
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
872
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
873 874 875 876
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
877
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
878

F
fengjiayi 已提交
879 880 881 882 883
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
884
        """
885 886
        Get the attribute by name.

887
        Args:
888
            name(str): the attribute name.
889

890 891
        Returns:
            bool|int|str|float|list: The attribute value. The return value
892 893
            can be any valid attribute type.
        """
F
fengjiayi 已提交
894
        return self.desc.attr(name)
Y
Yu Yang 已提交
895

W
Wu Yi 已提交
896
    def _block_attr_id(self, name):
897
        """
G
gongweibao 已提交
898
        Get the block attribute's id by name.
899

900 901
        Args:
            name(str): the attribute name.
902

903 904
        Returns:
            int: the block index.
905
        """
W
Wu Yi 已提交
906
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
907

W
Wu Yi 已提交
908
    def _block_attr(self, name):
G
gongweibao 已提交
909 910 911 912 913 914 915 916 917 918
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
919
        id = self._block_attr_id(name)
G
gongweibao 已提交
920 921 922
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
923
    def _blocks_attr(self, name):
G
gongweibao 已提交
924 925 926 927 928 929 930 931 932 933
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
934
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
935 936 937 938 939
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
940
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
941 942 943 944 945 946 947 948 949 950
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
951
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
952

J
JiayiFeng 已提交
953
    def all_attrs(self):
F
fengjiayi 已提交
954
        """
955 956 957
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
958
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
959 960 961 962
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
963 964
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
965
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
966 967 968
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
969
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
970 971 972 973
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
974 975
        return attr_map

Y
Yu Yang 已提交
976

Y
Yu Yang 已提交
977
class Block(object):
978 979 980 981 982 983 984 985 986 987 988 989 990 991
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
992
        use `Program._create_block()` to create a block.
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1007
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1008
        self.desc = program.desc.block(idx)
1009
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1010
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1011
        self.program = program
1012
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1013

1014
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1015 1016
        return self.to_string(True)

F
fengjiayi 已提交
1017 1018
    def to_string(self, throw_on_error, with_details=False):
        """
1019 1020
        Get debug string.

F
fengjiayi 已提交
1021 1022
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1023
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1024
            with_details(bool): more details about variables and parameters
1025 1026
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1027

1028 1029
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1030 1031 1032 1033
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1034
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1035 1036
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1037
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1038
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1039
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1040
            for op in self.ops:
F
fengjiayi 已提交
1041 1042
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1043 1044 1045
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1046 1047
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1048 1049
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1050 1051 1052

    __repr__ = __str__

Y
Yu Yang 已提交
1053 1054
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1055
        return self.desc.parent
Y
Yu Yang 已提交
1056

Y
Yu Yang 已提交
1057 1058 1059 1060
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1061
    def _set_forward_block_idx(self, idx):
1062 1063 1064 1065 1066 1067 1068 1069 1070
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1071
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1072

Y
Yu Yang 已提交
1073 1074
    @property
    def idx(self):
Y
Yu Yang 已提交
1075
        return self.desc.id
Y
Yu Yang 已提交
1076

Q
Qiao Longfei 已提交
1077
    def var(self, name):
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1091
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1092 1093 1094
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1095 1096
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1097
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1098
        return v
Q
Qiao Longfei 已提交
1099

X
Xin Pan 已提交
1100
    def _find_var_recursive(self, name):
1101 1102 1103 1104 1105 1106 1107
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1108
            Variable: the Variable with the giving name. Or None if not found.
1109
        """
Y
Yu Yang 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1134
        return None
Y
Yu Yang 已提交
1135

X
Xin Pan 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1155

Q
Qiao Longfei 已提交
1156
    def all_parameters(self):
1157
        return list(self.iter_parameters())
1158

1159
    def iter_parameters(self):
M
minqiyang 已提交
1160
        return (item[1] for item in six.iteritems(self.vars)
1161
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1162

Y
Yu Yang 已提交
1163
    def create_var(self, *args, **kwargs):
1164
        var = Variable(block=self, *args, **kwargs)
1165 1166
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1167
        return var
Y
Yu Yang 已提交
1168

Q
Qiao Longfei 已提交
1169 1170 1171
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1172
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1173 1174
        """
        Rename variable in vars and ops' inputs and outputs
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1187
        """
M
minqiyang 已提交
1188 1189
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1190

T
typhoonzero 已提交
1191
        if not self.has_var(name):
1192
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1193 1194
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1195
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1196 1197 1198 1199 1200 1201 1202
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1203
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1204 1205 1206 1207
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1208
        orig_var_type = v.type
M
minqiyang 已提交
1209
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1210
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1211
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1212
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1213 1214 1215 1216
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1217
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1218 1219 1220 1221 1222 1223 1224
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1225
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1226 1227
            var = Variable(
                self,
T
typhoonzero 已提交
1228
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1229 1230 1231 1232
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1233
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1234 1235 1236
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1237
        self._sync_with_cpp()
1238
        return var
T
typhoonzero 已提交
1239

W
Wu Yi 已提交
1240 1241
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1242
        self.desc._remove_var(cpt.to_bytes(name))
1243 1244
        del self.vars[name]

Y
Yu Yang 已提交
1245 1246
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1247
        param = Parameter(global_block, *args, **kwargs)
1248
        if 'initializer' in kwargs:
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1269
        return param
Y
Yu Yang 已提交
1270

Y
Yu Yang 已提交
1271
    def append_op(self, *args, **kwargs):
1272 1273 1274 1275 1276 1277
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1278
        op_desc = self.desc.append_op()
1279
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
1280
        if _in_imperative_mode():
X
Xin Pan 已提交
1281 1282
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
                                       [v._ivar for v in op.outputs], self.desc)
Y
Yu Yang 已提交
1283 1284 1285
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1286
    def _insert_op(self, index, *args, **kwargs):
1287 1288 1289 1290 1291 1292 1293 1294 1295
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1296 1297
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1298 1299 1300 1301
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1302
    def _remove_op(self, index):
1303 1304 1305 1306 1307 1308 1309 1310 1311
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1312 1313
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1314 1315
        del self.ops[index]

W
Wu Yi 已提交
1316
    def _slice_ops(self, start, end):
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1327
        return self.ops[start:end]
Y
Yancey1989 已提交
1328

W
Wu Yi 已提交
1329 1330
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1331
        op = Operator(self, op_desc, *args, **kwargs)
X
Xin Pan 已提交
1332 1333 1334
        if _in_imperative_mode():
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
                                       [v._ivar for v in op.outputs], self.desc)
Q
qiaolongfei 已提交
1335
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1336 1337
        return op

W
Wu Yi 已提交
1338
    def _sync_with_cpp(self):
1339
        """
1340 1341
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1342
        """
Q
Qiao Longfei 已提交
1343 1344 1345 1346 1347
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1348
        # sync variables removed from c++ end
1349
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1350
            if not self.desc.find_var(cpt.to_bytes(var)):
1351 1352
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1353
        # sync operators from cpp
1354 1355 1356 1357
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1374 1375 1376 1377 1378

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1379
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1380 1381 1382 1383 1384 1385 1386

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1400 1401 1402 1403
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1404
    def _copy_param_info_from(self, other):
1405
        """
1406 1407
        Copy the information of parameters from the other block.

1408
        Args:
1409 1410 1411 1412 1413
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1414 1415 1416 1417 1418

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1419 1420
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1421
        for p in other.iter_parameters():
1422 1423 1424
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1425
                raise ValueError("_copy_param_info_from should be invoked with "
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1438
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1439
                error_clip=p.error_clip,
1440 1441 1442
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1443
    def _clone_variable(self, var):
1444 1445
        """
        Clone a variable into current block.
1446

1447 1448 1449 1450
        Args:
            var: the variable to be cloned.

        Returns:
1451
            Variable: the new  variable cloned from 'var' in current block.
1452 1453
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1454 1455 1456 1457 1458
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1459 1460
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1461
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1462 1463 1464 1465 1466 1467
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1468 1469
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1470 1471 1472 1473 1474 1475 1476
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1477 1478
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1479
        return ret_var
1480

Y
Yu Yang 已提交
1481 1482

class Program(object):
D
dzhwinter 已提交
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1494
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1495 1496

    Returns:
Y
yuyang18 已提交
1497
        A empty program.
D
dzhwinter 已提交
1498 1499

    Examples:
Y
yuyang18 已提交
1500 1501 1502 1503 1504 1505
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1506 1507 1508

    """

1509 1510
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1511 1512
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1513
        self._seed = 0
Y
yuyang18 已提交
1514
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1515
        self._op_role_var = []
T
tangwei12 已提交
1516 1517 1518 1519

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1520
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1521
        self._endpoints = []
1522
        self._trainers_endpoints = []
T
tangwei12 已提交
1523
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1524 1525 1526

    @property
    def op_role(self):
Y
yuyang18 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1540 1541 1542 1543 1544 1545 1546 1547
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1548 1549 1550 1551 1552 1553 1554
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1555 1556 1557 1558
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1559
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1560 1561

    @contextlib.contextmanager
W
Wu Yi 已提交
1562
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1563 1564 1565 1566 1567 1568 1569
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1570
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1571 1572 1573 1574

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1575
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1576 1577
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1578 1579 1580
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1581 1582
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1583 1584 1585 1586
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1587
        yield
X
Xin Pan 已提交
1588 1589
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1590

1591
    @contextlib.contextmanager
X
Xin Pan 已提交
1592
    def _lr_schedule_guard(self, is_with_opt=False):
1593 1594 1595 1596 1597 1598 1599
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1600 1601 1602 1603
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1604 1605 1606 1607 1608 1609 1610

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1611 1612 1613 1614

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1615 1616
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1617 1618
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1619 1620 1621
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1622 1623
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1624

1625
    def __str__(self):
Y
yuyang18 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1635 1636
        return self.to_string(True)

F
fengjiayi 已提交
1637 1638 1639
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1640

F
fengjiayi 已提交
1641
        Args:
Y
yuyang18 已提交
1642 1643
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1644

Y
yuyang18 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1665 1666
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1667 1668
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1669

W
Wu Yi 已提交
1670
    def _get_desc(self):
Y
yuyang18 已提交
1671 1672 1673 1674 1675 1676 1677
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1678 1679
        return self.desc

X
version  
Xin Pan 已提交
1680 1681 1682
    def _version(self):
        return self.desc._version()

1683
    def clone(self, for_test=False):
Y
yuyang18 已提交
1684 1685 1686
        """
        Create a new, duplicated program.

1687

Y
yuyang18 已提交
1688 1689 1690 1691
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1692

Y
yuyang18 已提交
1693 1694 1695 1696
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1697 1698 1699 1700 1701
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1702 1703

        Args:
Y
yuyang18 已提交
1704 1705
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1706

D
dzhwinter 已提交
1707
        Returns:
Y
yuyang18 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1761 1762
        """
        if for_test:
X
Xin Pan 已提交
1763
            p = self._inference_optimize(prune_read_op=False)
1764
        else:
1765
            p = Program()
G
gongweibao 已提交
1766 1767
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1768
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1769 1770 1771
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1772 1773 1774 1775

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1776
            p._sync_with_cpp()
1777

W
Wu Yi 已提交
1778
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1779
        p._copy_data_info_from(self)
1780
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1781
        return p
1782

W
Wu Yi 已提交
1783
    def _prune(self, targets):
Y
yuyang18 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1799 1800 1801 1802 1803 1804
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1805 1806
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1807
                    # and we need to find the current op that generate this
1808 1809 1810 1811 1812 1813 1814 1815
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1816
                    t = t.op
1817 1818 1819 1820
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1821
                else:
1822 1823
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1824 1825 1826 1827

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1828 1829 1830
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1831
        res._sync_with_cpp()
1832 1833
        return res

X
Xin Pan 已提交
1834
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1835
        """
F
fengjiayi 已提交
1836 1837 1838 1839 1840
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1841
        3. change the :code:`is_test`
Y
yuyang18 已提交
1842 1843 1844
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1845
        Args:
X
Xin Pan 已提交
1846 1847
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1848

Y
yuyang18 已提交
1849 1850 1851 1852 1853 1854
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1855
        res = Program()
1856
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1857 1858 1859 1860

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1861
        if prune_read_op:
1862 1863 1864 1865 1866 1867 1868 1869 1870
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1871
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1872 1873

        # change all `is_test` attributes to True
M
minqiyang 已提交
1874
        for i in six.moves.range(res.desc.num_blocks()):
1875
            block = res.desc.block(i)
M
minqiyang 已提交
1876
            for j in six.moves.range(block.op_size()):
1877 1878
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1879
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1880 1881 1882
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1883
        res._sync_with_cpp()
1884 1885
        return res

1886 1887
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1888 1889 1890 1891 1892 1893 1894
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1895
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1896 1897 1898 1899

        Returns:
            Program: A deserialized program desc.
        """
1900 1901
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1902
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1903
        p._sync_with_cpp()
1904
        return p
Y
Yu Yang 已提交
1905

D
dzhwinter 已提交
1906 1907
    @property
    def random_seed(self):
Y
yuyang18 已提交
1908 1909 1910 1911 1912 1913
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1914 1915
        return self._seed

Q
qiaolongfei 已提交
1916 1917
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1918 1919 1920
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1921 1922
        return self.desc.num_blocks()

D
dzhwinter 已提交
1923 1924 1925 1926 1927 1928
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1929
    def __repr__(self):
1930
        return self.__str__()
1931

Y
Yu Yang 已提交
1932
    def global_block(self):
Y
yuyang18 已提交
1933 1934 1935
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1936 1937
        return self.blocks[0]

Q
Qiao Longfei 已提交
1938
    def block(self, index):
Y
yuyang18 已提交
1939 1940 1941 1942 1943 1944 1945 1946
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1947 1948
        return self.blocks[index]

Y
Yu Yang 已提交
1949
    def current_block(self):
Y
yuyang18 已提交
1950 1951 1952 1953
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1954 1955
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1956
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1967
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1968 1969 1970
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1971 1972 1973 1974
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1975
    def _rollback(self):
Y
yuyang18 已提交
1976 1977 1978 1979 1980
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1981 1982
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1983
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1994 1995 1996
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1997
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1998

W
Wu Yi 已提交
1999
    def _copy_param_info_from(self, other):
2000
        """
2001
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2002

Y
yuyang18 已提交
2003 2004 2005
        Notes: This is a very low level API. Users should not invoke it
        directly.

2006 2007 2008 2009 2010 2011 2012
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2013
            raise TypeError("_copy_param_info_from should be invoked with "
2014 2015 2016
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2017
            raise ValueError("_copy_param_info_from should be invoked with two "
2018
                             "program, with represent the same topology")
W
Wu Yi 已提交
2019
        self.global_block()._copy_param_info_from(other.global_block())
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2040
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2041 2042
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2043

Y
yuyang18 已提交
2044 2045 2046
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2047 2048 2049 2050 2051 2052 2053
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2054
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2055 2056 2057
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2058
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2059
                             "program, with represent the same topology")
2060
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2061 2062 2063
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2064
    def list_vars(self):
Y
yuyang18 已提交
2065 2066 2067 2068 2069 2070
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2071
        for each_block in self.blocks:
2072
            for each_var in list(each_block.vars.values()):
2073 2074
                yield each_var

Y
Yu Yang 已提交
2075

Y
Yu Yang 已提交
2076
class Parameter(Variable):
2077
    """
2078
    Parameter is derived from Variable. A parameter is a persistable
2079
    Variable, and will be updated by optimizers after each iteration.
2080
    The training of a neural network is essentially the updating of
2081 2082
    its parameters.

2083
    Relative to a general Variable, a Parameter has several its own
2084 2085
    member variables:

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2098 2099
    """

Y
Yu Yang 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2110 2111 2112

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2113 2114 2115 2116
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2117 2118
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2119
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2120

W
wanghaoshuang 已提交
2121
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2122

F
fengjiayi 已提交
2123 2124 2125
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2126 2127 2128
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2129

F
update  
fengjiayi 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2144
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2145
            for attr_name in additional_attr:
2146 2147
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2148 2149
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2150 2151 2152 2153
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2154

Y
Yu Yang 已提交
2155
# program is a global instance.
Y
Yu Yang 已提交
2156 2157
_main_program_ = Program()
_startup_program_ = Program()
2158

2159

2160
def default_startup_program():
Y
Yu Yang 已提交
2161
    """
Y
yuyang18 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2171

Y
Yu Yang 已提交
2172 2173 2174
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2175
    return _startup_program_
2176

2177

2178
def default_main_program():
Y
Yu Yang 已提交
2179
    """
Y
yuyang18 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2189

Y
Yu Yang 已提交
2190 2191 2192
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2193
    return _main_program_
Y
Yu Yang 已提交
2194 2195 2196 2197 2198


def switch_main_program(program):
    """
    Switch the main program to a new program.
2199

Y
Yu Yang 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2214
    Switch the startup program to a new program
Y
Yu Yang 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2230 2231 2232
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2233

Y
Yu Yang 已提交
2234
    Examples:
Y
yuyang18 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2245

Y
Yu Yang 已提交
2246
    Examples:
Y
yuyang18 已提交
2247 2248 2249 2250 2251 2252

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2253

Y
Yu Yang 已提交
2254
    Args:
Y
yuyang18 已提交
2255
        main_program(Program): New main program inside `with` statement.
2256
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2270 2271


W
Wu Yi 已提交
2272
def _get_var(name, program=None):
X
xuwei06 已提交
2273
    """
Y
yuyang18 已提交
2274
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2275

X
xuwei06 已提交
2276 2277 2278
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2279
        If None, default_global_program() will be used.
X
xuwei06 已提交
2280 2281 2282 2283 2284 2285 2286

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2287
    assert isinstance(program, Program)
X
xuwei06 已提交
2288 2289

    return program.global_block().var(name)
2290 2291 2292 2293 2294 2295 2296 2297 2298


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace