framework.py 174.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
    'device_guard',
55
]
Y
Yu Yang 已提交
56

Q
qiaolongfei 已提交
57 58 59 60
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
61 62
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
63 64
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
65
_current_device = None
66 67


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
175
def in_dygraph_mode():
L
lujun 已提交
176
    """
Y
Youwei Song 已提交
177
    This function checks whether the program runs in dynamic graph mode or not.
178 179 180
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
181 182

    Returns:
Y
Youwei Song 已提交
183
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
184 185 186 187

    Examples:
        .. code-block:: python

188
            import paddle.fluid as fluid
L
lujun 已提交
189

190 191 192 193
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
194
    """
L
lujun 已提交
195
    return _dygraph_tracer_ is not None
196 197


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
220 221
def _dygraph_tracer():
    return _dygraph_tracer_
222

W
Wu Yi 已提交
223

M
minqiyang 已提交
224
def _current_expected_place():
L
lujun 已提交
225
    return _dygraph_current_expected_place_
M
minqiyang 已提交
226 227


L
Leo Chen 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
245
def _cpu_num():
246
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
247 248 249 250 251 252 253 254
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
255
        os.environ['CPU_NUM'] = str(1)
256
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
257 258 259 260 261 262 263 264 265 266
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
267 268


C
chengduo 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
284
def cuda_places(device_ids=None):
L
lujun 已提交
285
    """
286 287 288 289 290
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
291 292

    If :code:`device_ids` is None, environment variable of
293
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
294 295 296
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
297
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
298 299

    If :code:`device_ids` is not None, it should be the device
300
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
301 302 303
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
304 305
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
306 307

    Returns:
308
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
309 310 311 312

    Examples:
        .. code-block:: python

313
            import paddle.fluid as fluid
L
lujun 已提交
314 315 316
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
317 318 319
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
320
        device_ids = _cuda_ids()
S
sneaxiy 已提交
321 322 323 324 325 326
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
327
    """
328
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
329 330 331
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
332 333
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
334 335
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
336

337 338
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
339 340

    Returns:
341
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
342 343 344 345

    Examples:
        .. code-block:: python

346
            import paddle.fluid as fluid
L
lujun 已提交
347 348 349
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
350 351 352 353 354 355
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
356
    """
357
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
358 359 360

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
361 362 363 364
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
365

366 367
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
368 369

    Returns:
370
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
371 372 373 374

    Examples:
        .. code-block:: python

375
            import paddle.fluid as fluid
L
lujun 已提交
376 377 378 379 380
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
381 382 383
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
384 385
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
386 387


388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
414
@signature_safe_contextmanager
415 416 417 418
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
419 420 421
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
422 423

    Args:
T
Tao Luo 已提交
424
        prefix(str, optional): prefix. Default is none.
425 426 427

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
428

429
          import paddle.fluid as fluid
430
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
431 432 433 434 435 436
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
437
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
438
                f = fluid.layers.pow(d, 2.0)
439
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
459 460
    """
    # TODO(panyx0718): Only [0-9a-z].
461
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
462 463 464
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
465
        assert prefix, "namescope prefix can not be empty."
466 467 468 469
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
470 471 472 473 474 475 476 477 478 479 480 481


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
482 483 484
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
485 486 487 488


def grad_var_name(var_name):
    """
489 490
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
491 492 493
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
494

495
def convert_np_dtype_to_dtype_(np_dtype):
496 497
    """
    Convert the data type in numpy to the data type in Paddle
498

499
    Args:
500
        np_dtype(np.dtype): the data type in numpy.
501

502 503
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
504 505

    """
506 507
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
508
        return core.VarDesc.VarType.FP32
509
    elif dtype == np.float64:
510
        return core.VarDesc.VarType.FP64
511
    elif dtype == np.float16:
512
        return core.VarDesc.VarType.FP16
513
    elif dtype == np.int32:
514
        return core.VarDesc.VarType.INT32
515
    elif dtype == np.int16:
516
        return core.VarDesc.VarType.INT16
517
    elif dtype == np.int64:
518
        return core.VarDesc.VarType.INT64
519
    elif dtype == np.bool:
520
        return core.VarDesc.VarType.BOOL
521 522
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
523 524
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
525 526
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
527
    else:
M
minqiyang 已提交
528
        raise ValueError("Not supported numpy dtype %s" % dtype)
529 530 531


def dtype_is_floating(dtype):
532 533 534
    """
    Check the data type is floating or not.
    Args:
535
        dtype(np.dtype|core.VarDesc.VarType): data type.
536 537 538 539 540
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
541
    if not isinstance(dtype, core.VarDesc.VarType):
542 543
        dtype = convert_np_dtype_to_dtype_(dtype)

544 545 546 547
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
548 549


Y
Yang Yang(Tony) 已提交
550
def _debug_string_(proto, throw_on_error=True):
551 552 553 554 555 556 557 558 559 560 561
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
562
    error_fields = list()
Y
Yang Yang(Tony) 已提交
563
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
564 565
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
566 567 568
    return proto.__str__()


569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():

            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
722

723
    # starts
L
Leo Chen 已提交
724
    if contain_var(slice_start):
725 726 727 728 729 730 731 732
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
733 734 735 736
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
737 738 739 740 741 742 743
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
744 745 746
    else:
        attrs['ends'] = slice_end

747 748
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
749
        if contain_var(slice_step):
750 751 752 753 754 755 756
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
757 758
        else:
            attrs['strides'] = slice_step
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
806
class Variable(object):
807
    """
J
Jiabin Yang 已提交
808
    **Notes**:
809
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
810

811 812
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
813 814 815
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
816
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
817 818
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
819

820
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
821
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
822

T
tianshuo78520a 已提交
823
    Most of a Variable's member variables can be set to be None. It mean
824
    it is not available or will be specified later.
825

826
    Examples:
827 828
        In Static Graph Mode:

829 830
        .. code-block:: python

831
            import paddle.fluid as fluid
832
            cur_program = fluid.Program()
833 834 835 836
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
837
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
838 839 840 841 842 843 844 845 846

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

847 848
    """

Y
Yu Yang 已提交
849 850
    def __init__(self,
                 block,
Y
Yu Yang 已提交
851
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
852 853 854 855
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
856
                 capacity=None,
Q
QI JUN 已提交
857
                 persistable=None,
F
fengjiayi 已提交
858
                 error_clip=None,
Y
Yu Yang 已提交
859
                 stop_gradient=False,
F
fengjiayi 已提交
860
                 is_data=False,
H
Huihuang Zheng 已提交
861
                 need_check_feed=False,
H
hong 已提交
862
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
863
                 **kwargs):
Y
Yu Yang 已提交
864 865
        self.block = block
        if name is None:
Y
Yu Yang 已提交
866
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
867

Y
Yu Yang 已提交
868
        if dtype is not None:
869
            if not isinstance(dtype, core.VarDesc.VarType):
870
                dtype = convert_np_dtype_to_dtype_(dtype)
871

H
hong 已提交
872 873
        self.belong_to_optimizer = belong_to_optimizer

874 875 876 877 878
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
879

880 881 882
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
883

884 885 886 887 888 889 890
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
891

892
        if shape is not None:
893
            if is_new_var:
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
935

936 937
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
938

939 940 941 942 943 944 945
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
946

947 948 949 950
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
951

952
    @dygraph_only
953 954
    def detach(self):
        """
J
Jiabin Yang 已提交
955
        **Notes**:
T
tianshuo78520a 已提交
956
            **This API is ONLY available in Dygraph mode**
957

958
        Returns a new Variable, detached from the current graph.
959

960
        Returns:
J
Jiabin Yang 已提交
961
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
962

963

964 965 966 967 968
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
969
                from paddle.fluid.dygraph import Linear
970 971 972 973
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
974
                    linear = Linear(32, 64)
975
                    data = to_variable(data)
976
                    x = linear(data)
977 978 979
                    y = x.detach()

        """
980
        pass
981

982
    @dygraph_only
983
    def numpy(self):
984
        """
J
Jiabin Yang 已提交
985
        **Notes**:
T
tianshuo78520a 已提交
986
            **This API is ONLY available in Dygraph mode**
987

J
Jiabin Yang 已提交
988
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
989 990 991 992 993

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
994
            ndarray: dtype is same as current Variable
995 996 997 998 999 1000

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1001
                from paddle.fluid.dygraph import Linear
1002 1003 1004 1005
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1006
                    linear = Linear(32, 64)
1007
                    data = to_variable(data)
1008
                    x = linear(data)
1009 1010 1011
                    print(x.numpy())

        """
1012
        pass
1013

1014 1015 1016
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1017
        **Notes**:
T
tianshuo78520a 已提交
1018
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1030
                from paddle.fluid.dygraph import Linear
1031 1032
                import numpy as np

1033
                data = np.ones([3, 1024], dtype='float32')
1034
                with fluid.dygraph.guard():
1035
                    linear = fluid.dygraph.Linear(1024, 4)
1036
                    t = to_variable(data)
1037
                    linear(t)  # call with default weight
1038
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1039 1040
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1041 1042

        """
1043
        pass
1044

1045
    @dygraph_only
1046
    def backward(self, backward_strategy=None):
1047
        """
J
Jiabin Yang 已提交
1048
        **Notes**:
T
tianshuo78520a 已提交
1049
            **This API is ONLY available in Dygraph mode**
1050 1051 1052

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1053 1054
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1055

J
Jiabin Yang 已提交
1056 1057
        Returns:
            NoneType: None
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1070 1071
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1072 1073 1074 1075 1076 1077 1078 1079 1080
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1081
        pass
1082

1083
    @dygraph_only
1084
    def gradient(self):
1085
        """
J
Jiabin Yang 已提交
1086
        **Notes**:
T
tianshuo78520a 已提交
1087
            **This API is ONLY available in Dygraph mode**
1088 1089 1090

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1091
        Returns:
1092
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1093 1094 1095 1096 1097 1098 1099

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1100
                # example1: return ndarray
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1128
        """
1129
        pass
1130

1131
    @dygraph_only
1132
    def clear_gradient(self):
1133
        """
J
Jiabin Yang 已提交
1134
        **Notes**:
T
tianshuo78520a 已提交
1135
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1136 1137

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1138

J
Jiabin Yang 已提交
1139
        Clear  (set to ``0`` ) the Gradient of Current Variable
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1166
        pass
X
Xin Pan 已提交
1167

1168
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1169 1170
        return self.to_string(True)

F
update  
fengjiayi 已提交
1171
    def to_string(self, throw_on_error, with_details=False):
1172 1173 1174
        """
        Get debug string.

J
Jiabin Yang 已提交
1175 1176 1177 1178 1179
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1180

1181 1182
        Returns:
            str: The debug string.
1183 1184 1185 1186 1187

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1188

1189 1190 1191 1192 1193
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1194
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1195
                print("=============with detail===============")
1196
                print(new_variable.to_string(True, True))
1197
        """
L
lujun 已提交
1198
        if in_dygraph_mode():
1199
            return
1200

F
update  
fengjiayi 已提交
1201 1202
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1203
        protostr = self.desc.serialize_to_string()
1204
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1205 1206 1207 1208
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1209 1210 1211
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1212
        return res_str
1213 1214 1215

    __repr__ = __str__

1216
    @property
1217
    def stop_gradient(self):
J
Jiabin Yang 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1233 1234
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1235 1236 1237
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1238 1239
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1240 1241 1242 1243
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1244
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1245 1246
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1247
        if in_dygraph_mode():
1248
            pass
M
minqiyang 已提交
1249
        else:
1250
            return self._stop_gradient
1251

1252 1253
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1254
        if in_dygraph_mode():
1255
            pass
1256
        else:
1257
            self._stop_gradient = s
1258

1259 1260
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1282
        if in_dygraph_mode():
1283
            pass
1284 1285
        else:
            return self.desc.persistable()
1286

Y
Yu Yang 已提交
1287 1288
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1289
        if in_dygraph_mode():
1290 1291 1292
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1293 1294
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1295

Y
Yu Yang 已提交
1296 1297
    @property
    def name(self):
J
Jiabin Yang 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1314
        if in_dygraph_mode():
1315
            pass
1316 1317
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1339 1340
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1341
        if in_dygraph_mode():
1342
            pass
1343 1344
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1345

Y
Yu Yang 已提交
1346 1347
    @property
    def shape(self):
J
Jiabin Yang 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1365
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1366
        if in_dygraph_mode():
1367
            pass
1368 1369
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1370 1371

    @property
F
fengjiayi 已提交
1372
    def dtype(self):
J
Jiabin Yang 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1389
        if in_dygraph_mode():
1390
            pass
1391 1392
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1393 1394

    @property
1395
    @dygraph_not_support
Y
Yu Yang 已提交
1396
    def lod_level(self):
J
Jiabin Yang 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1418
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1419 1420
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1421 1422 1423 1424

        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1425
        return self.desc.lod_level()
Y
Yu Yang 已提交
1426

Y
Yu Yang 已提交
1427 1428
    @property
    def type(self):
J
Jiabin Yang 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1445
        if in_dygraph_mode():
1446
            pass
1447 1448
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1449

W
Wu Yi 已提交
1450
    def _set_error_clip(self, error_clip):
1451 1452 1453 1454 1455 1456 1457 1458 1459
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1460 1461
        self.error_clip = error_clip

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1502
            raise ValueError("slice step can not be zero")
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1578
    def _cloneVar(self, copy=False):
1579 1580
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1581 1582
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1583 1584 1585 1586
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1587
        new_var = self._cloneVar()
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1598
        new_var = self._cloneVar()
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1609
                return self._cloneVar(True)
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1628
                return self._cloneVar(True)
1629
            index = int(item)
1630
            if (index > 0 and index >= self.shape[axis]) \
1631 1632 1633 1634 1635 1636 1637
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1638
        return _getitem_impl_(self, item)
1639

Y
Yu Yang 已提交
1640

F
fengjiayi 已提交
1641 1642 1643
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1644

1645 1646
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1647 1648 1649 1650
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1651
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1652 1653 1654 1655 1656
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1657 1658 1659 1660
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1670
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1671 1672 1673 1674 1675 1676
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1677 1678 1679 1680 1681 1682 1683 1684
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1685 1686
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1687 1688
        return self.op_proto_map[type]

1689 1690 1691 1692 1693 1694
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1695 1696 1697 1698
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1699
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1700
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1701 1702
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1703 1704
        }

F
fengjiayi 已提交
1705

X
Xin Pan 已提交
1706
class Operator(object):
1707
    """
1708 1709 1710 1711 1712 1713 1714
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1715
        type(str): The type of operator. Default None.
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1736
        Block.append_op or Block._prepend_op instead.
1737 1738 1739 1740

    Examples:
        .. code-block:: python

1741
            import paddle.fluid as fluid
1742
            cur_program = fluid.Program()
1743 1744 1745 1746 1747
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1748
    """
1749
    OP_WITHOUT_KERNEL_SET = {
1750 1751
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1752 1753
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1754
        'c_sync_comm_stream'
1755
    }
1756

Y
Yu Yang 已提交
1757 1758
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1759
                 desc,
Y
Yu Yang 已提交
1760 1761 1762
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1763
                 attrs=None):
L
lujun 已提交
1764
        if in_dygraph_mode():
1765 1766
            if type is None:
                raise ValueError(
1767
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1768
            self._type = type
M
minqiyang 已提交
1769
            self.attrs = attrs if attrs else {}
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1784
                )] = self.block.program._op_role
1785 1786 1787

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1788 1789
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1790 1791 1792 1793 1794 1795 1796 1797

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1798
                    "`type` to initialized an Operator can not be None.")
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1848
                        for index, arg in enumerate(in_args):
1849 1850 1851 1852
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1853
                            elif isinstance(arg, Variable):
1854
                                in_arg_names.append(cpt.to_text(arg.name))
1855
                            else:
1856 1857 1858 1859
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1860 1861
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1888
                        if not in_dygraph_mode():
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1908
    def _has_kernel(self, op_type):
1909 1910
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1911
    def to_string(self, throw_on_error):
1912
        """
1913 1914
        Get debug string.

1915
        Args:
1916 1917
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1918

1919 1920
        Returns:
            str: The debug string.
1921 1922

        """
1923
        protostr = self.desc.serialize_to_string()
1924
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1925 1926 1927 1928
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1929 1930 1931

    __repr__ = __str__

F
fengjiayi 已提交
1932 1933
    @property
    def type(self):
L
lujun 已提交
1934
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1935
            return self._type
1936 1937
        else:
            return self.desc.type()
F
fengjiayi 已提交
1938 1939

    def input(self, name):
1940
        """
1941
        Get the input arguments according to the input parameter name.
1942

1943 1944
        Args:
            name(str): The input parameter name.
1945

1946 1947 1948
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1949
        """
F
fengjiayi 已提交
1950 1951
        return self.desc.input(name)

W
Wu Yi 已提交
1952
    def _rename_input(self, old_name, new_name):
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1963
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1964

W
Wu Yi 已提交
1965
    def _rename_output(self, old_name, new_name):
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1976
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1977

F
fengjiayi 已提交
1978 1979 1980 1981
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1982 1983 1984 1985 1986 1987 1988 1989
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1990
    def output(self, name):
1991
        """
1992
        Get output arguments by the output parameter name.
1993

1994 1995
        Args:
            name(str): The output parameter name.
1996

1997 1998 1999
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2000
        """
F
fengjiayi 已提交
2001 2002 2003 2004 2005 2006
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2007 2008 2009 2010 2011 2012 2013 2014
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2015
    def has_attr(self, name):
2016
        """
2017 2018
        Whether this Operator has the attribute with name or not.

2019
        Args:
2020
            name(str): the attribute name.
2021

2022 2023
        Returns:
            bool: True if has this attribute.
2024 2025

        """
F
fengjiayi 已提交
2026 2027 2028
        return self.desc.has_attr(name)

    def attr_type(self, name):
2029
        """
2030
        Get the type of attribute by attribute's name.
2031

2032 2033
        Args:
            name(str): the attribute name.
2034

2035 2036
        Returns:
            core.AttrType: the attribute type.
2037
        """
F
fengjiayi 已提交
2038 2039
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2040
    def _set_attr(self, name, val):
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2051 2052
        self._update_desc_attr(name, val)

2053 2054 2055
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2067 2068
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2069 2070
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2071
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2072 2073 2074 2075
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2076
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2077

F
fengjiayi 已提交
2078 2079 2080 2081 2082
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2083
        """
2084 2085
        Get the attribute by name.

2086
        Args:
2087
            name(str): the attribute name.
2088

2089 2090
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2091 2092
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2093
        return self.desc.attr(name)
Y
Yu Yang 已提交
2094

W
Wu Yi 已提交
2095
    def _block_attr_id(self, name):
2096
        """
G
gongweibao 已提交
2097
        Get the block attribute's id by name.
2098

2099 2100
        Args:
            name(str): the attribute name.
2101

2102 2103
        Returns:
            int: the block index.
2104
        """
W
Wu Yi 已提交
2105
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2106

W
Wu Yi 已提交
2107
    def _block_attr(self, name):
G
gongweibao 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2118
        id = self._block_attr_id(name)
G
gongweibao 已提交
2119 2120 2121
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2122
    def _blocks_attr(self, name):
G
gongweibao 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2133
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2134 2135 2136 2137 2138
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2139
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2150
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2151

J
JiayiFeng 已提交
2152
    def all_attrs(self):
F
fengjiayi 已提交
2153
        """
2154 2155 2156
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2157
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2158 2159 2160 2161
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2162 2163
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2164
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2165 2166 2167
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2168
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2169 2170 2171 2172
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2173 2174
        return attr_map

2175 2176 2177 2178 2179 2180 2181 2182 2183
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
        else:
            return False

Y
Yu Yang 已提交
2184

Y
Yu Yang 已提交
2185
class Block(object):
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2200
        use `Program._create_block()` to create a block.
2201 2202 2203 2204

    Examples:
        .. code-block:: python

2205 2206 2207
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2208 2209 2210 2211 2212 2213 2214 2215 2216
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2217
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2218
        self.desc = program.desc.block(idx)
2219
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2220
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2221
        self.program = program
2222
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2223

2224
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2225 2226
        return self.to_string(True)

F
fengjiayi 已提交
2227 2228
    def to_string(self, throw_on_error, with_details=False):
        """
2229 2230
        Get debug string.

F
fengjiayi 已提交
2231 2232
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2233
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2234
            with_details(bool): more details about variables and parameters
2235 2236
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2237

2238 2239
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2240 2241 2242 2243
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2244
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2245 2246
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2247
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2248
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2249
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2250
            for op in self.ops:
F
fengjiayi 已提交
2251 2252
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2253 2254 2255
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2256 2257
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2258 2259
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2260 2261 2262

    __repr__ = __str__

Y
Yu Yang 已提交
2263 2264
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2265
        return self.desc.parent
Y
Yu Yang 已提交
2266

Y
Yu Yang 已提交
2267 2268 2269 2270
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2271
    def _set_forward_block_idx(self, idx):
2272 2273 2274 2275 2276 2277 2278 2279 2280
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2281
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2282

2283 2284 2285 2286 2287 2288 2289 2290
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2291 2292
    @property
    def idx(self):
Y
Yu Yang 已提交
2293
        return self.desc.id
Y
Yu Yang 已提交
2294

Q
Qiao Longfei 已提交
2295
    def var(self, name):
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2309
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2310 2311 2312
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2313 2314
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2315
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2316
        return v
Q
Qiao Longfei 已提交
2317

X
Xin Pan 已提交
2318
    def _find_var_recursive(self, name):
2319 2320 2321 2322 2323 2324 2325
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2326
            Variable: the Variable with the giving name. Or None if not found.
2327
        """
Y
Yu Yang 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2352
        return None
Y
Yu Yang 已提交
2353

X
Xin Pan 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2373

Q
Qiao Longfei 已提交
2374
    def all_parameters(self):
2375
        return list(self.iter_parameters())
2376

2377
    def iter_parameters(self):
M
minqiyang 已提交
2378
        return (item[1] for item in six.iteritems(self.vars)
2379
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2380

Y
Yu Yang 已提交
2381
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2382 2383 2384
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2385 2386 2387
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2388
        return var
Y
Yu Yang 已提交
2389

Q
Qiao Longfei 已提交
2390 2391 2392
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2393
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2394 2395
        """
        Rename variable in vars and ops' inputs and outputs
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2408
        """
M
minqiyang 已提交
2409 2410
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2411

T
typhoonzero 已提交
2412
        if not self.has_var(name):
2413
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2414 2415
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2416
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2417 2418 2419 2420 2421 2422
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2423
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2424 2425 2426 2427
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2428
        orig_var_type = v.type
M
minqiyang 已提交
2429
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2430
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2431
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2432
        if var_type == "Parameter":
L
Leo Chen 已提交
2433 2434
            if in_dygraph_mode():
                var = ParamBase(
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2445 2446
                var = Parameter(
                    self,
2447 2448 2449 2450 2451 2452 2453 2454 2455
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2456
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2457 2458
            var = Variable(
                self,
T
typhoonzero 已提交
2459
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2460 2461 2462 2463
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2464
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2465 2466 2467
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2468
        self._sync_with_cpp()
2469
        return var
T
typhoonzero 已提交
2470

W
Wu Yi 已提交
2471 2472
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2473
        self.desc._remove_var(cpt.to_bytes(name))
2474 2475
        del self.vars[name]

Y
Yu Yang 已提交
2476 2477
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2478
        param = None
L
Leo Chen 已提交
2479
        if in_dygraph_mode():
2480
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2481 2482
        else:
            param = Parameter(global_block, *args, **kwargs)
2483
        if 'initializer' in kwargs:
2484 2485 2486 2487 2488

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2489 2490 2491 2492 2493
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2505
                # TODO already inited, do nothing, should log a warning
2506 2507 2508
                pass
            else:
                initializer(param, self)
2509
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2510
        return param
Y
Yu Yang 已提交
2511

Y
Yu Yang 已提交
2512
    def append_op(self, *args, **kwargs):
2513 2514 2515 2516 2517 2518
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2519
        if in_dygraph_mode():
2520 2521 2522
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2523 2524 2525 2526 2527
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2528

J
Jiabin Yang 已提交
2529 2530
            type = kwargs.get("type", None)

2531 2532 2533
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2534
                type=type,
M
minqiyang 已提交
2535 2536
                inputs=None,
                outputs=None,
2537
                attrs=attrs)
2538

M
minqiyang 已提交
2539 2540 2541
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2542
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2543 2544

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2545
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2546 2547
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2548
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2549
        else:
2550 2551 2552 2553 2554 2555 2556 2557 2558
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2559
            self.ops.append(op)
M
minqiyang 已提交
2560

2561 2562
        return op

W
Wu Yi 已提交
2563
    def _insert_op(self, index, *args, **kwargs):
2564 2565 2566 2567 2568 2569 2570 2571 2572
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2573 2574
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2575 2576 2577 2578
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2579
    def _remove_op(self, index):
2580 2581 2582 2583 2584 2585 2586 2587 2588
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2589 2590
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2591 2592
        del self.ops[index]

W
Wu Yi 已提交
2593
    def _slice_ops(self, start, end):
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2604
        return self.ops[start:end]
Y
Yancey1989 已提交
2605

W
Wu Yi 已提交
2606
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2607
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2608 2609
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2610
            op = Operator(
J
Jiabin Yang 已提交
2611
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2612

J
Jiabin Yang 已提交
2613
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2614
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2615 2616
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2617
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2618
        else:
2619 2620 2621 2622 2623 2624 2625 2626
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2627
            self.ops.insert(0, op)
2628

Y
Yu Yang 已提交
2629 2630
        return op

W
Wu Yi 已提交
2631
    def _sync_with_cpp(self):
2632
        """
2633 2634
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2635
        """
Q
Qiao Longfei 已提交
2636 2637 2638 2639 2640
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2641
        # sync variables removed from c++ end
2642
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2643
            if not self.desc.find_var(cpt.to_bytes(var)):
2644 2645
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2646
        # sync operators from cpp
2647 2648 2649 2650
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2667 2668 2669 2670 2671

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2672
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2673 2674 2675 2676 2677 2678 2679

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2693 2694 2695 2696
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2697
    def _copy_param_info_from(self, other):
2698
        """
2699 2700
        Copy the information of parameters from the other block.

2701
        Args:
2702 2703 2704 2705 2706
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2707 2708 2709 2710 2711

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2712 2713
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2714
        for p in other.iter_parameters():
2715 2716 2717
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
2718 2719
                # if the Parameter is pruned, v may be None
                continue
2720
            assert isinstance(v, Variable)
2721
            new_p = None
L
Leo Chen 已提交
2722 2723
            if in_dygraph_mode():
                new_p = ParamBase(
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
2735 2736
                new_p = Parameter(
                    block=self,
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
2747 2748
            self.vars[new_p.name] = new_p

2749
    def _clone_variable(self, var, force_persistable=True):
2750 2751
        """
        Clone a variable into current block.
2752

2753 2754
        Args:
            var: the variable to be cloned.
2755 2756 2757
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2758 2759

        Returns:
2760
            Variable: the new  variable cloned from 'var' in current block.
2761 2762
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2763 2764 2765 2766 2767
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2768 2769
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2770
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2771 2772 2773 2774 2775 2776
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2777
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2778 2779
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2780 2781 2782 2783 2784 2785 2786
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2787
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2788 2789
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2790
        return ret_var
2791

Y
Yu Yang 已提交
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2888
    def remove_input_by_id(self, node_id):
2889 2890 2891 2892 2893 2894
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2895
        self.node.remove_input(node_id)
2896

2897
    def remove_input(self, node):
2898 2899 2900 2901
        """
        Remove a node from inputs.

        Args:
2902
            node(IrNode): the node being removed.
2903
        """
2904
        self.node.remove_input(node.node)
2905

2906
    def append_input(self, node):
2907 2908 2909 2910
        """
        Append a node in inputs.

        Args:
2911
            node(IrNode): the node being appended.
2912
        """
2913
        self.node.append_input(node.node)
2914 2915 2916 2917 2918 2919 2920 2921

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2922
    def remove_output_by_id(self, node_id):
2923 2924 2925 2926 2927 2928
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2929
        self.node.remove_output(node_id)
2930

2931
    def remove_output(self, node):
2932 2933 2934 2935
        """
        Remove a node from outputs.

        Args:
2936
            node(IrNode): the node being removed.
2937
        """
2938
        self.node.remove_output(node.node)
2939

2940
    def append_output(self, node):
2941 2942 2943 2944
        """
        Append a node in outputs.

        Args:
2945
            node(IrNode): the node being appended.
2946
        """
2947
        self.node.append_output(node.node)
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
2995
            "The node variable description can not be None."
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3006
            "The node variable description can not be None."
3007 3008
        return self.node.var().persistable()

3009 3010 3011 3012 3013 3014 3015 3016
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3017
            "The node variable description can not be None."
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3028
            "The node variable description can not be None."
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3039
            "The node variable description can not be None."
3040 3041
        return self.node.var().shape()

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3089
            "The node operator description can not be None."
3090 3091
        self.node.op()._rename_input(old_input_name, new_input_name)

3092 3093 3094 3095 3096 3097 3098 3099 3100
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3101
            "The node operator description can not be None."
3102 3103 3104 3105
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3117
            "The node operator description can not be None."
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3131
            "The node operator description can not be None."
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3142
            "The node operator description can not be None."
3143 3144
        return self.node.op().set_type(new_type)

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3160
            "The node operator description can not be None."
3161 3162 3163 3164
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3165
                all(isinstance(v, Block) for v in val):
3166 3167
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3168
                isinstance(val, core.ProgramDesc):
3169 3170 3171 3172
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3173 3174 3175 3176 3177 3178 3179 3180
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3181
            "The node operator description can not be None."
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3192
            "The node operator description can not be None."
3193 3194
        return self.node.op().output_arg_names()

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3216 3217
class IrGraph(object):
    """
3218
    Python IrGraph. Beneath it is a core.Graph, which is used for
3219
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3220 3221
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3222 3223 3224 3225
    """

    def __init__(self, graph, for_test=False):
        """
3226 3227
        Construct an IrGraph using core.Graph.

3228 3229 3230 3231 3232 3233 3234 3235 3236
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3237 3238 3239 3240
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3241 3242 3243
        Warns:
            The method only clones the graph structure, not its attributes.

3244 3245 3246
        Returns:
            IrGraph: A new and duplicated graph.
        """
3247
        g = self.graph.clone()
3248 3249
        return IrGraph(g, self._for_test)

3250
    def is_test(self):
3251 3252 3253
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3254 3255
        return self._for_test

W
WangZhen 已提交
3256
    def all_nodes(self):
3257 3258 3259
        """
        Return all nodes included in the graph as a set.
        """
3260
        return {IrNode(node) for node in self.graph.nodes()}
3261

3262
    def all_var_nodes(self):
3263 3264 3265
        """
        Return all variable nodes included in the graph as a set.
        """
3266
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3267

3268
    def all_persistable_nodes(self):
3269 3270 3271
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3272 3273 3274 3275 3276
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3277
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3278

3279
    def all_op_nodes(self):
3280 3281 3282
        """
        Return all operator nodes included in the graph as a set.
        """
3283
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3284

3285
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3297
            IrVarNode: the created persistable variable node.
3298
        """
3299 3300 3301 3302 3303
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3304
        return IrVarNode(self.graph.create_var_node(var_desc))
3305 3306

    def create_var_node(self, name, var_type, shape, var_dtype):
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3318
            IrVarNode: the created variable node.
3319 3320
        """

3321 3322 3323 3324
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3325
        return IrVarNode(self.graph.create_var_node(var_desc))
3326 3327

    def create_var_node_from_desc(self, var_desc):
3328 3329 3330 3331 3332 3333 3334 3335
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3336
            IrVarNode: the created variable node.
3337
        """
3338
        return IrVarNode(self.graph.create_var_node(var_desc))
3339 3340

    def create_op_node(self, op_type, attrs, inputs, outputs):
3341 3342 3343 3344 3345 3346 3347
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3348
            outputs(dict): the outputs of the operator node.
3349 3350

        Returns:
3351
            IrOpNode: the created operator node.
3352
        """
3353 3354
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3355
        for attr, value in six.iteritems(attrs):
3356
            self._update_desc_attr(op_desc, attr, value)
3357
        for input_name, var_nodes in six.iteritems(inputs):
3358 3359 3360 3361
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3362
        for output_name, var_nodes in six.iteritems(outputs):
3363 3364 3365 3366
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3367
        return IrOpNode(self.graph.create_op_node(op_desc))
3368 3369

    def create_op_node_from_desc(self, op_desc):
3370 3371 3372 3373 3374 3375 3376
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3377
            IrOpNode: the created operator node.
3378
        """
3379
        return IrOpNode(self.graph.create_op_node(op_desc))
3380 3381

    def update_input_link(self, old_input_node, new_input_node, op_node):
3382 3383 3384 3385
        """
        Update the input's link of a operator node.

        Args:
3386 3387 3388
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3389
        """
3390
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3391 3392
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3393 3394 3395 3396
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3397
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3398

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3409 3410
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3411 3412 3413 3414 3415 3416
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3417
    def link_to(self, node_in, node_out):
3418 3419 3420 3421
        """
        Connect two nodes.

        Args:
3422 3423
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3424
        """
3425
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3426
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3427 3428
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3429 3430

    def safe_remove_nodes(self, remove_nodes):
3431 3432 3433 3434 3435 3436 3437
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3438
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3439 3440 3441 3442
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3443 3444
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3445

Z
Zhen Wang 已提交
3446 3447 3448 3449 3450 3451 3452 3453
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3454
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3455 3456 3457 3458
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3459
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3460 3461 3462
                        ]
                    else:
                        var_nodes[each_var_name].append(
3463 3464
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3465 3466
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3467
    def has_circle(self):
3468 3469 3470 3471 3472 3473
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3474 3475 3476
        return core.has_circle(self.graph)

    def graph_num(self):
3477 3478 3479 3480 3481 3482
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3483 3484 3485
        return core.graph_num(self.graph)

    def topology_sort(self):
3486 3487 3488
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3489
        Notes: the `graph` can not contain a circle.
3490 3491

        Returns:
Z
Zhen Wang 已提交
3492
            list(IrNode): nodes in topology order.
3493
        """
3494
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3495
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3496 3497

    def build_adjacency_list(self):
3498 3499 3500 3501
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3502
            dict{IrNode: set(IrNode)}: the adjacency list.
3503
        """
3504 3505 3506 3507 3508
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3509

3510 3511 3512 3513 3514 3515 3516 3517
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3518
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3519 3520 3521 3522 3523
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3524 3525 3526
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3527
                                          + ' -o ' + pdf_save_path, shell=True)
3528 3529 3530 3531 3532
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3533
        remove_ctr_vars = set()
3534
        if remove_ctr_var:
3535
            for node in self.all_var_nodes():
3536 3537 3538
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3539 3540
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3541 3542
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3543 3544 3545 3546 3547 3548
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3549 3550 3551 3552
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3553 3554
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3555 3556 3557 3558 3559 3560 3561
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3562 3563 3564
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3565
        WARN: When the graph includes backward operator nodes, the
3566 3567 3568 3569 3570 3571
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3572
        convert_pass = core.get_pass('graph_to_program_pass')
3573 3574
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3575 3576 3577 3578
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3606
class Program(object):
D
dzhwinter 已提交
3607
    """
3608 3609
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3610
    it will contain nested block.
3611

J
Jiabin Yang 已提交
3612 3613 3614
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3615

J
Jiabin Yang 已提交
3616
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3617
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3618 3619 3620 3621 3622 3623 3624
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3625 3626 3627 3628
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3629 3630

    Returns:
J
Jiabin Yang 已提交
3631
        Program: An empty Program.
D
dzhwinter 已提交
3632 3633

    Examples:
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3647 3648 3649

    """

3650 3651
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3652 3653
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3654
        self._seed = 0
Y
yuyang18 已提交
3655
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3656
        self.__op_role_var = []
T
tangwei12 已提交
3657

3658 3659
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3660
        self._is_distributed = False
3661
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3662
        self._is_chief = False
3663 3664 3665
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3666
        self._endpoints = []
3667 3668 3669
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3670
        self._trainers_endpoints = []
3671
        # the distributed lookup table names
T
tangwei12 已提交
3672
        self._distributed_lookup_table = None
3673 3674 3675

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3676 3677
        self._use_lamb = False

3678 3679 3680
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3681

3682 3683 3684
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3685
        self._program_config = None
3686

H
hutuxian 已提交
3687 3688 3689
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3690 3691 3692
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3693
    @property
3694
    def _op_role(self):
Y
yuyang18 已提交
3695 3696 3697 3698 3699 3700 3701 3702
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3703
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3704 3705 3706 3707
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3708 3709
        return self._current_role

3710 3711
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3712 3713 3714
        self._current_role = role

    @property
3715
    def _op_role_var(self):
Y
yuyang18 已提交
3716
        """
3717
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3718

3719
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3720 3721 3722

        Notes: This is a very low-level API. Users should not use it directly.
        """
3723
        return self.__op_role_var
Y
yuyang18 已提交
3724

3725 3726 3727 3728 3729 3730 3731 3732 3733
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3734
    @signature_safe_contextmanager
W
Wu Yi 已提交
3735
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3736 3737 3738 3739 3740 3741 3742
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3743
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3744 3745 3746

        Examples:

3747
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3748
            >>> p, g = backward(...)
W
Wu Yi 已提交
3749
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3750 3751
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3752
        tmp_role = self._current_role
3753
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3754

Y
yuyang18 已提交
3755 3756
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3757
        self.__op_role_var = [
3758 3759 3760
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3761
        yield
3762
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3763
        self._current_role = tmp_role
Y
Yu Yang 已提交
3764

S
rename  
sneaxiy 已提交
3765
    @signature_safe_contextmanager
X
Xin Pan 已提交
3766
    def _lr_schedule_guard(self, is_with_opt=False):
3767 3768 3769 3770 3771 3772 3773
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3774 3775 3776 3777
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3778 3779 3780

        Examples:

3781
            >>> import paddle.fluid as fluid
3782 3783 3784 3785
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3786 3787

        tmp_role = self._current_role
3788
        tmp_var = self.__op_role_var
3789

3790 3791
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3792 3793
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3794
        # TODO(typhoonzero): how to set target learning rate var
3795
        self.__op_role_var = []
3796
        yield
3797
        self.__op_role_var = tmp_var
3798
        self._current_role = tmp_role
3799

3800
    def __str__(self):
Y
yuyang18 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3810 3811
        return self.to_string(True)

F
fengjiayi 已提交
3812 3813 3814
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3815

J
Jiabin Yang 已提交
3816 3817 3818
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3819

J
Jiabin Yang 已提交
3820
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3821

H
haowang101779990 已提交
3822
        Returns:
J
Jiabin Yang 已提交
3823
            str: The debug string describe current Program.
Y
yuyang18 已提交
3824 3825

        Raises:
J
Jiabin Yang 已提交
3826
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3827

3828 3829 3830 3831 3832 3833 3834
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
T
tianshuo78520a 已提交
3835
                print("program string without detail: {}".format(prog_string))
J
Jiabin Yang 已提交
3836
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
T
tianshuo78520a 已提交
3837
                print("program string with detail: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3838 3839 3840 3841 3842 3843 3844 3845 3846
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3847 3848
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3849 3850
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3851

W
Wu Yi 已提交
3852
    def _get_desc(self):
Y
yuyang18 已提交
3853 3854 3855 3856 3857 3858 3859
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3860 3861
        return self.desc

X
version  
Xin Pan 已提交
3862 3863 3864
    def _version(self):
        return self.desc._version()

3865
    @dygraph_not_support
3866
    def clone(self, for_test=False):
Y
yuyang18 已提交
3867
        """
3868
        **Notes**:
J
Jiabin Yang 已提交
3869 3870 3871 3872
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3873
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3874

3875 3876
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3877

3878

J
Jiabin Yang 已提交
3879
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3880 3881 3882
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3883

Y
yuyang18 已提交
3884
        * Set for_test to False when we want to clone the program for training.
3885
        * Set for_test to True when we want to clone the program for testing.
3886 3887
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3888
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3889

J
Jiabin Yang 已提交
3890 3891
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3892

J
Jiabin Yang 已提交
3893 3894 3895 3896
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3897

J
Jiabin Yang 已提交
3898
        Args:
3899

J
Jiabin Yang 已提交
3900
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3901

J
Jiabin Yang 已提交
3902 3903
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3904

Y
yuyang18 已提交
3905 3906 3907

        Examples:

J
Jiabin Yang 已提交
3908
        **Notes: The Program's order maybe different after** :code:`clone` **and
3909
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3910
        example we give you an simple method** :code:`print_prog(program)` **to
3911
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3912
        after** :code:`clone`:
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3950 3951 3952

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
4020
        """
4021 4022 4023 4024 4025

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4026
        pruned_origin_block_id_map = None
4027
        if for_test:
4028 4029 4030 4031 4032 4033 4034 4035 4036
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4037
        else:
4038
            p = Program()
G
gongweibao 已提交
4039 4040
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4041
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4042 4043 4044
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4045 4046

            p._current_role = self._current_role
4047
            p.__op_role_var = self.__op_role_var
4048
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4049

4050 4051
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4052
            p._sync_with_cpp()
4053

W
Wu Yi 已提交
4054
        p._copy_param_info_from(self)
4055
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4056
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4057
        return p
4058

4059
    def _prune(self, targets):
Y
yuyang18 已提交
4060 4061 4062 4063 4064 4065 4066 4067
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4068
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4069 4070 4071 4072
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4073
        """
4074
        return self._prune_with_input([], targets)
4075 4076

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4077
        """
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4088
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4089 4090 4091 4092 4093 4094
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4095 4096 4097 4098
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4099 4100
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4101 4102
        if not isinstance(targets, list):
            targets = [targets]
4103 4104 4105 4106 4107 4108

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

4109 4110 4111 4112
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4113 4114 4115
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4116
                else:
4117 4118
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
                t = target_op
                if t is None:
                    raise ValueError("The target variable must have an "
                                     "associated operator that generates it.")
4139
            targets_idx.append([t.block.idx, t.idx])
4140

4141
        res = Program()
4142 4143 4144
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4145 4146 4147
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4148
        res._sync_with_cpp()
4149 4150 4151 4152 4153

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4154 4155
        return res

X
Xin Pan 已提交
4156
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4157
        """
F
fengjiayi 已提交
4158 4159 4160 4161 4162
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4163
        3. change the :code:`is_test`
Y
yuyang18 已提交
4164 4165 4166
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4167
        Args:
X
Xin Pan 已提交
4168 4169
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4170

Y
yuyang18 已提交
4171 4172 4173 4174 4175 4176
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4177
        res = Program()
4178
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4179 4180 4181 4182

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4183
        if prune_read_op:
4184 4185 4186 4187 4188 4189 4190 4191 4192
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4193
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4194 4195

        # change all `is_test` attributes to True
M
minqiyang 已提交
4196
        for i in six.moves.range(res.desc.num_blocks()):
4197
            block = res.desc.block(i)
M
minqiyang 已提交
4198
            for j in six.moves.range(block.op_size()):
4199 4200
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4201
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4202 4203 4204
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4205
        res._sync_with_cpp()
4206 4207
        return res

4208 4209
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4210
        """
J
Jiabin Yang 已提交
4211 4212 4213 4214
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4215

4216 4217
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4218

J
Jiabin Yang 已提交
4219
        Args:
Y
yuyang18 已提交
4220

J
Jiabin Yang 已提交
4221
            binary_str_type (str): the binary prootbuf string.
4222

J
Jiabin Yang 已提交
4223 4224
        Returns:
            Program: A deserialized Program.
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4247
        """
4248 4249
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4250
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4251
        p._sync_with_cpp()
4252
        return p
Y
Yu Yang 已提交
4253

4254
    @staticmethod
4255
    def _construct_from_desc(desc):
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4271 4272
    @property
    def random_seed(self):
Y
yuyang18 已提交
4273
        """
J
Jiabin Yang 已提交
4274
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4275 4276
        the random seed from random device.

J
Jiabin Yang 已提交
4277 4278 4279 4280
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4281

4282 4283 4284 4285 4286 4287 4288 4289

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4290 4291 4292
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4293 4294
                print(random_seed)
                prog.random_seed = 1
4295 4296
                z_var = fluid.layers.dropout(x_var, 0.7)

4297
                print(prog.random_seed)
Y
yuyang18 已提交
4298
        """
D
dzhwinter 已提交
4299 4300
        return self._seed

Q
qiaolongfei 已提交
4301 4302
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4303
        """
4304 4305
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4306 4307 4308 4309
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4320 4321


Y
yuyang18 已提交
4322
        """
Q
qiaolongfei 已提交
4323 4324
        return self.desc.num_blocks()

D
dzhwinter 已提交
4325 4326 4327 4328 4329 4330
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4331
    def __repr__(self):
4332
        return self.__str__()
4333

Y
Yu Yang 已提交
4334
    def global_block(self):
Y
yuyang18 已提交
4335
        """
J
Jiabin Yang 已提交
4336 4337
        **Notes**:
            **This API has no effect in Dygraph mode**
4338 4339 4340

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4341 4342
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4343

4344 4345 4346 4347 4348 4349 4350 4351 4352

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4353

Y
yuyang18 已提交
4354
        """
Y
Yu Yang 已提交
4355 4356
        return self.blocks[0]

Q
Qiao Longfei 已提交
4357
    def block(self, index):
Y
yuyang18 已提交
4358
        """
J
Jiabin Yang 已提交
4359 4360
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4361

4362 4363
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4364 4365
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4366

J
Jiabin Yang 已提交
4367 4368
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4369 4370 4371 4372 4373 4374 4375 4376 4377

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4378
        """
Q
Qiao Longfei 已提交
4379 4380
        return self.blocks[index]

Y
Yu Yang 已提交
4381
    def current_block(self):
Y
yuyang18 已提交
4382
        """
J
Jiabin Yang 已提交
4383 4384
        **Notes**:
            **This API has no effect in Dygraph mode**
4385

J
Jiabin Yang 已提交
4386 4387
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4388

J
Jiabin Yang 已提交
4389 4390
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4391

4392 4393 4394 4395 4396 4397 4398 4399
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4400
        """
Y
Yu Yang 已提交
4401 4402
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4403
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4404 4405 4406 4407 4408
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4409

Y
yuyang18 已提交
4410 4411 4412 4413 4414
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4415
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4416 4417 4418
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4419 4420 4421 4422
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4423
    def _rollback(self):
Y
yuyang18 已提交
4424 4425 4426 4427 4428
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4429 4430
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4431
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4442 4443 4444
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4445
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4446

W
Wu Yi 已提交
4447
    def _copy_param_info_from(self, other):
4448
        """
4449
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4450

Y
yuyang18 已提交
4451 4452 4453
        Notes: This is a very low level API. Users should not invoke it
        directly.

4454 4455 4456 4457 4458 4459 4460
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4461
            raise TypeError("_copy_param_info_from should be invoked with "
4462 4463
                            "Program")

W
Wu Yi 已提交
4464
        self.global_block()._copy_param_info_from(other.global_block())
4465

4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4481
        self._parameters_on_pservers = other._parameters_on_pservers
4482
        self._endpoints = other._endpoints
4483
        self._ps_endpoint = other._ps_endpoint
4484 4485
        self._distributed_lookup_table = other._distributed_lookup_table

4486
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4487 4488
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4489

Y
yuyang18 已提交
4490 4491 4492
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4493 4494
        Args:
            other(Program): Other program
4495 4496 4497 4498
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4499 4500 4501 4502 4503

        Returns:
            None
        """
        if not isinstance(other, Program):
4504
            raise TypeError("_copy_data_info_from should be invoked with "
F
fengjiayi 已提交
4505 4506
                            "Program")

4507 4508 4509 4510 4511
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4512 4513 4514

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4515 4516
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4517
            for var in list(block.vars.values()):
4518 4519 4520 4521 4522 4523 4524
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4525

4526
    @dygraph_not_support
4527
    def list_vars(self):
Y
yuyang18 已提交
4528
        """
J
Jiabin Yang 已提交
4529
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4530

J
Jiabin Yang 已提交
4531 4532
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4544
        """
4545
        for each_block in self.blocks:
4546
            for each_var in list(each_block.vars.values()):
4547 4548
                yield each_var

4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
    @dygraph_not_support
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4608

4609
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4610
class Parameter(Variable):
4611
    """
4612
    Parameter is derived from Variable. A parameter is a persistable
4613
    Variable, and will be updated by optimizers after each iteration.
4614
    The training of a neural network is essentially the updating of
4615 4616
    its parameters.

4617
    Relative to a general Variable, a Parameter has several its own
4618 4619
    member variables:

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4630 4631
    """

4632 4633 4634 4635 4636 4637
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4638 4639 4640 4641 4642
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4643
        if len(shape) == 0:
4644 4645
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4646 4647 4648

        for each in shape:
            if each < 0:
4649 4650 4651
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4652 4653

        Variable.__init__(
4654 4655 4656 4657 4658 4659 4660
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
4661 4662 4663 4664
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4665 4666
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
4667
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4668

4669 4670
        self.is_distributed = False

F
fengjiayi 已提交
4671 4672 4673
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4674 4675 4676
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4677

F
update  
fengjiayi 已提交
4678 4679 4680 4681 4682 4683 4684 4685
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4686 4687 4688 4689 4690 4691 4692 4693 4694
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4695 4696 4697 4698 4699 4700
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
4701
                               "do_model_average")
F
update  
fengjiayi 已提交
4702
            for attr_name in additional_attr:
4703 4704
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4705 4706
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4707 4708 4709 4710
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4711

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

4772
        # self.block = default_main_program().global_block()
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
            return 'name %s, dtype: %s shape: %s %s' % (self.name, self.dtype,
                                                        self.shape, str(tensor))
        else:
            return 'name %s, shape: %s, not inited' % (self.name, self.shape)

    __repr__ = __str__


Y
Yu Yang 已提交
4811
# program is a global instance.
Y
Yu Yang 已提交
4812 4813
_main_program_ = Program()
_startup_program_ = Program()
4814

4815

4816
def default_startup_program():
Y
Yu Yang 已提交
4817
    """
Y
yuyang18 已提交
4818 4819
    Get default/global startup program.

J
Jiabin Yang 已提交
4820 4821 4822
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4823 4824 4825
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4826
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4827

J
Jiabin Yang 已提交
4828
    Returns: current default startup :ref:`api_fluid_Program`
4829

J
Jiabin Yang 已提交
4830
    Returns type: :ref:`api_fluid_Program`
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4846
    """
Y
Yu Yang 已提交
4847
    return _startup_program_
4848

4849

4850
def default_main_program():
Y
Yu Yang 已提交
4851
    """
4852 4853 4854 4855 4856
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4857

4858 4859
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4860
    :code:`default_main_program` when the program is not specified.
4861

4862 4863
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4864
    Returns:
4865
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4866 4867 4868 4869 4870

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4871

4872
            # Sample Network:
4873 4874
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4894
            #print the number of blocks in the program, 1 in this case
4895
            print(fluid.default_main_program().num_blocks)
4896 4897

            #print the description of variable 'image'
4898
            print(fluid.default_main_program().blocks[0].var('image'))
4899

Y
Yu Yang 已提交
4900
    """
Y
Yu Yang 已提交
4901
    return _main_program_
Y
Yu Yang 已提交
4902 4903 4904 4905 4906


def switch_main_program(program):
    """
    Switch the main program to a new program.
4907

Y
Yu Yang 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4922
    Switch the startup program to a new program
Y
Yu Yang 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4935
@signature_safe_contextmanager
Y
Yu Yang 已提交
4936 4937
def program_guard(main_program, startup_program=None):
    """
4938 4939
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4940
    variables to the new main programs.
4941

G
guofei 已提交
4942 4943 4944 4945 4946 4947 4948
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4949
    Examples:
4950 4951 4952
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4953

4954 4955 4956
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
4957
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4958
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4959 4960 4961

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4962

Y
Yu Yang 已提交
4963
    Examples:
4964
       .. code-block:: python
Y
yuyang18 已提交
4965

4966 4967 4968 4969 4970
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
4971 4972
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4985 4986


W
Wu Yi 已提交
4987
def _get_var(name, program=None):
X
xuwei06 已提交
4988
    """
Y
yuyang18 已提交
4989
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4990

X
xuwei06 已提交
4991 4992 4993
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4994
        If None, default_global_program() will be used.
X
xuwei06 已提交
4995 4996 4997 4998 4999 5000 5001

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5002
    assert isinstance(program, Program)
X
xuwei06 已提交
5003 5004

    return program.global_block().var(name)
5005 5006


S
rename  
sneaxiy 已提交
5007
@signature_safe_contextmanager
L
lujun 已提交
5008 5009 5010 5011
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5012
    core._switch_tracer(tracer)
M
minqiyang 已提交
5013

5014
    yield
P
Paddle CI 已提交
5015

5016
    core._switch_tracer(tmp_trace)
L
lujun 已提交
5017
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5018 5019


S
rename  
sneaxiy 已提交
5020
@signature_safe_contextmanager
L
lujun 已提交
5021 5022 5023 5024
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5025

5026
    yield
M
minqiyang 已提交
5027

L
lujun 已提交
5028
    _dygraph_current_expected_place_ = tmp_place
5029 5030 5031 5032 5033 5034 5035


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5036
    Please note, the type of custom operators can't have the same type
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
    pre_device = switch_device(device)
    yield
    switch_device(pre_device)