framework.py 171.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
]
Y
Yu Yang 已提交
55

Q
qiaolongfei 已提交
56 57 58 59
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
60 61
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
62 63
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
64 65


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
173
def in_dygraph_mode():
L
lujun 已提交
174
    """
Y
Youwei Song 已提交
175 176
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
177 178

    Returns:
Y
Youwei Song 已提交
179
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
180 181 182 183

    Examples:
        .. code-block:: python

184
            import paddle.fluid as fluid
L
lujun 已提交
185
            if fluid.in_dygraph_mode():
Y
Youwei Song 已提交
186 187 188
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
189 190

    """
L
lujun 已提交
191
    return _dygraph_tracer_ is not None
192 193


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
216 217
def _dygraph_tracer():
    return _dygraph_tracer_
218

W
Wu Yi 已提交
219

M
minqiyang 已提交
220
def _current_expected_place():
L
lujun 已提交
221
    return _dygraph_current_expected_place_
M
minqiyang 已提交
222 223


L
Leo Chen 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
241
def _cpu_num():
242
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
243 244 245 246 247 248 249 250
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
251
        os.environ['CPU_NUM'] = str(1)
252
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
253 254 255 256 257 258 259 260 261 262
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
263 264


C
chengduo 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
280
def cuda_places(device_ids=None):
L
lujun 已提交
281
    """
282 283 284 285 286
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
287 288

    If :code:`device_ids` is None, environment variable of
289
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
290 291 292
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
293
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
294 295

    If :code:`device_ids` is not None, it should be the device
296
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
297 298 299
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
300 301
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
302 303

    Returns:
304
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
305 306 307 308

    Examples:
        .. code-block:: python

309
            import paddle.fluid as fluid
L
lujun 已提交
310 311 312
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
313 314 315
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
316
        device_ids = _cuda_ids()
S
sneaxiy 已提交
317 318 319 320 321 322
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
323
    """
324
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
325 326 327
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
328 329
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
330 331
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
332

333 334
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
335 336

    Returns:
337
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
338 339 340 341

    Examples:
        .. code-block:: python

342
            import paddle.fluid as fluid
L
lujun 已提交
343 344 345
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
346 347 348 349 350 351
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
352
    """
353
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
354 355 356

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
357 358 359 360
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
361

362 363
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
364 365

    Returns:
366
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
367 368 369 370

    Examples:
        .. code-block:: python

371
            import paddle.fluid as fluid
L
lujun 已提交
372 373 374 375 376
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
377 378 379
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
380 381
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
382 383


384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
410
@signature_safe_contextmanager
411 412 413 414
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

T
Tao Luo 已提交
415 416 417
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
418 419

    Args:
T
Tao Luo 已提交
420
        prefix(str, optional): prefix. Default is none.
421 422 423

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
424

425
          import paddle.fluid as fluid
426
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
427 428 429 430 431 432
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
433
          with fluid.name_scope("s1"):
T
Tao Luo 已提交
434
                f = fluid.layers.pow(d, 2.0)
435
          with fluid.name_scope("s4"):
T
Tao Luo 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
455 456
    """
    # TODO(panyx0718): Only [0-9a-z].
457 458 459 460 461 462 463 464 465
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
466 467 468 469 470 471 472 473 474 475 476 477


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
478 479 480
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
481 482 483 484


def grad_var_name(var_name):
    """
485 486
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
487 488 489
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
490

491
def convert_np_dtype_to_dtype_(np_dtype):
492 493
    """
    Convert the data type in numpy to the data type in Paddle
494

495
    Args:
496
        np_dtype(np.dtype): the data type in numpy.
497

498 499
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
500 501

    """
502 503
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
504
        return core.VarDesc.VarType.FP32
505
    elif dtype == np.float64:
506
        return core.VarDesc.VarType.FP64
507
    elif dtype == np.float16:
508
        return core.VarDesc.VarType.FP16
509
    elif dtype == np.int32:
510
        return core.VarDesc.VarType.INT32
511
    elif dtype == np.int16:
512
        return core.VarDesc.VarType.INT16
513
    elif dtype == np.int64:
514
        return core.VarDesc.VarType.INT64
515
    elif dtype == np.bool:
516
        return core.VarDesc.VarType.BOOL
517 518
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
519 520
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
521 522
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
523
    else:
M
minqiyang 已提交
524
        raise ValueError("Not supported numpy dtype %s" % dtype)
525 526 527


def dtype_is_floating(dtype):
528 529 530
    """
    Check the data type is floating or not.
    Args:
531
        dtype(np.dtype|core.VarDesc.VarType): data type.
532 533 534 535 536
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
537
    if not isinstance(dtype, core.VarDesc.VarType):
538 539
        dtype = convert_np_dtype_to_dtype_(dtype)

540 541 542 543
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
544 545


Y
Yang Yang(Tony) 已提交
546
def _debug_string_(proto, throw_on_error=True):
547 548 549 550 551 552 553 554 555 556 557
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
558
    error_fields = list()
Y
Yang Yang(Tony) 已提交
559
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
560 561
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
562 563 564
    return proto.__str__()


565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():

            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
            },
            stop_gradient=True)
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
                temp_1 = var.block.create_var(dtype='int32')
                fill_constant([1], 1, force_cpu=True, out=temp_1)
                temp_end = var.block.create_var(dtype='int32')
                var.block.append_op(
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
    # starts
    if not contain_var(slice_start):
        attrs['starts'] = slice_start
    else:
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    # ends
    if not contain_var(slice_end):
        attrs['ends'] = slice_end
    else:
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
    # strides
    if use_strided_slice == True:
        if not contain_var(slice_step):
            attrs['strides'] = slice_step
        else:
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
        slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

        var.block.append_op(
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
        strided_slice_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
        var.block.append_op(
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
        reverse_out_var = var.block.create_var(
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
        var.block.append_op(
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
799
class Variable(object):
800
    """
J
Jiabin Yang 已提交
801
    **Notes**:
802
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
803

804 805
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
806 807 808
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
809
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
810 811
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
812

813
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
814
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
815

816
    Most of a Variable's member variables can be setted to be None. It mean
817
    it is not available or will be specified later.
818

819
    Examples:
820 821
        In Static Graph Mode:

822 823
        .. code-block:: python

824
            import paddle.fluid as fluid
825
            cur_program = fluid.Program()
826 827 828 829
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
830
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
831 832 833 834 835 836 837 838 839

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

840 841
    """

Y
Yu Yang 已提交
842 843
    def __init__(self,
                 block,
Y
Yu Yang 已提交
844
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
845 846 847 848
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
849
                 capacity=None,
Q
QI JUN 已提交
850
                 persistable=None,
F
fengjiayi 已提交
851
                 error_clip=None,
Y
Yu Yang 已提交
852
                 stop_gradient=False,
F
fengjiayi 已提交
853
                 is_data=False,
H
Huihuang Zheng 已提交
854
                 need_check_feed=False,
H
hong 已提交
855
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
856
                 **kwargs):
Y
Yu Yang 已提交
857 858
        self.block = block
        if name is None:
Y
Yu Yang 已提交
859
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
860

Y
Yu Yang 已提交
861
        if dtype is not None:
862
            if not isinstance(dtype, core.VarDesc.VarType):
863
                dtype = convert_np_dtype_to_dtype_(dtype)
864

H
hong 已提交
865 866
        self.belong_to_optimizer = belong_to_optimizer

867 868 869 870 871
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
872

873 874 875
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
876

877 878 879 880 881 882 883
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
884

885
        if shape is not None:
886
            if is_new_var:
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
928

929 930
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
931

932 933 934 935 936 937 938
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
939

940 941 942 943
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
944

945
    @dygraph_only
946 947
    def detach(self):
        """
J
Jiabin Yang 已提交
948 949
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
950

951
        Returns a new Variable, detached from the current graph.
952

953
        Returns:
J
Jiabin Yang 已提交
954
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
955

956

957 958 959 960 961
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
962
                from paddle.fluid.dygraph import Linear
963 964 965 966
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
967
                    linear = Linear(32, 64)
968
                    data = to_variable(data)
969
                    x = linear(data)
970 971 972
                    y = x.detach()

        """
973
        pass
974

975
    @dygraph_only
976
    def numpy(self):
977
        """
J
Jiabin Yang 已提交
978 979
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
980

J
Jiabin Yang 已提交
981
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
982 983 984 985 986

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
987
            ndarray: dtype is same as current Variable
988 989 990 991 992 993

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
994
                from paddle.fluid.dygraph import Linear
995 996 997 998
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
999
                    linear = Linear(32, 64)
1000
                    data = to_variable(data)
1001
                    x = linear(data)
1002 1003 1004
                    print(x.numpy())

        """
1005
        pass
1006

1007 1008 1009
    @dygraph_only
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1010 1011 1012
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1023
                from paddle.fluid.dygraph import Linear
1024 1025
                import numpy as np

1026
                data = np.ones([3, 1024], dtype='float32')
1027
                with fluid.dygraph.guard():
1028
                    linear = fluid.dygraph.Linear(1024, 4)
1029
                    t = to_variable(data)
1030
                    linear(t)  # call with default weight
1031
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1032 1033
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1034 1035

        """
1036
        pass
1037

1038
    @dygraph_only
1039
    def backward(self, backward_strategy=None):
1040
        """
J
Jiabin Yang 已提交
1041 1042
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
1043 1044 1045

        Run backward of current Graph which starts from current Variable

J
Jiabin Yang 已提交
1046 1047
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
1048

J
Jiabin Yang 已提交
1049 1050
        Returns:
            NoneType: None
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
J
Jiabin Yang 已提交
1063 1064
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
1065 1066 1067 1068 1069 1070 1071 1072 1073
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
1074
        pass
1075

1076
    @dygraph_only
1077
    def gradient(self):
1078
        """
J
Jiabin Yang 已提交
1079 1080
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
1081 1082 1083

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1084
        Returns:
1085
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1086 1087 1088 1089 1090 1091 1092

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1093
                # example1: return ndarray
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1121
        """
1122
        pass
1123

1124
    @dygraph_only
1125
    def clear_gradient(self):
1126
        """
J
Jiabin Yang 已提交
1127 1128 1129 1130
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1131

J
Jiabin Yang 已提交
1132
        Clear  (set to ``0`` ) the Gradient of Current Variable
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1159
        pass
X
Xin Pan 已提交
1160

1161
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1162 1163
        return self.to_string(True)

F
update  
fengjiayi 已提交
1164
    def to_string(self, throw_on_error, with_details=False):
1165 1166 1167
        """
        Get debug string.

J
Jiabin Yang 已提交
1168 1169 1170 1171 1172
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1173

1174 1175
        Returns:
            str: The debug string.
1176 1177 1178 1179 1180

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1181

1182 1183 1184 1185 1186
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1187
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1188
                print("=============with detail===============")
1189
                print(new_variable.to_string(True, True))
1190
        """
L
lujun 已提交
1191
        if in_dygraph_mode():
1192
            return
1193

F
update  
fengjiayi 已提交
1194 1195
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1196
        protostr = self.desc.serialize_to_string()
1197
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1198 1199 1200 1201
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1202 1203 1204
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1205
        return res_str
1206 1207 1208

    __repr__ = __str__

1209
    @property
1210
    def stop_gradient(self):
J
Jiabin Yang 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1226 1227
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1228 1229 1230
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1231 1232
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1233 1234 1235 1236
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1237
                assert (linear.weight.gradient() == 0).all()
J
Jiabin Yang 已提交
1238 1239
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1240
        if in_dygraph_mode():
1241
            pass
M
minqiyang 已提交
1242
        else:
1243
            return self._stop_gradient
1244

1245 1246
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1247
        if in_dygraph_mode():
1248
            pass
1249
        else:
1250
            self._stop_gradient = s
1251

1252 1253
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1275
        if in_dygraph_mode():
1276
            pass
1277 1278
        else:
            return self.desc.persistable()
1279

Y
Yu Yang 已提交
1280 1281
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1282
        if in_dygraph_mode():
1283 1284 1285
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1286 1287
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1288

Y
Yu Yang 已提交
1289 1290
    @property
    def name(self):
J
Jiabin Yang 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1307
        if in_dygraph_mode():
1308
            pass
1309 1310
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1332 1333
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1334
        if in_dygraph_mode():
1335
            pass
1336 1337
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1338

Y
Yu Yang 已提交
1339 1340
    @property
    def shape(self):
J
Jiabin Yang 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1358
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1359
        if in_dygraph_mode():
1360
            pass
1361 1362
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1363 1364

    @property
F
fengjiayi 已提交
1365
    def dtype(self):
J
Jiabin Yang 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1382
        if in_dygraph_mode():
1383
            pass
1384 1385
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1386 1387

    @property
1388
    @dygraph_not_support
Y
Yu Yang 已提交
1389
    def lod_level(self):
J
Jiabin Yang 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1411
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1412 1413
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1414 1415 1416 1417

        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1418
        return self.desc.lod_level()
Y
Yu Yang 已提交
1419

Y
Yu Yang 已提交
1420 1421
    @property
    def type(self):
J
Jiabin Yang 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1438
        if in_dygraph_mode():
1439
            pass
1440 1441
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1442

W
Wu Yi 已提交
1443
    def _set_error_clip(self, error_clip):
1444 1445 1446 1447 1448 1449 1450 1451 1452
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1453 1454
        self.error_clip = error_clip

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1571
    def _cloneVar(self, copy=False):
1572 1573
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1574 1575
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1576 1577 1578 1579
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1580
        new_var = self._cloneVar()
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1591
        new_var = self._cloneVar()
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1602
                return self._cloneVar(True)
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1621
                return self._cloneVar(True)
1622
            index = int(item)
1623
            if (index > 0 and index >= self.shape[axis]) \
1624 1625 1626 1627 1628 1629 1630
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1631
        return _getitem_impl_(self, item)
1632

Y
Yu Yang 已提交
1633

F
fengjiayi 已提交
1634 1635 1636
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1637

1638 1639
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1640 1641 1642 1643
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1644
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1645 1646 1647 1648 1649
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1650 1651 1652 1653
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1663
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1664 1665 1666 1667 1668 1669
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1670 1671 1672 1673 1674 1675 1676 1677
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1678 1679
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1680 1681
        return self.op_proto_map[type]

1682 1683 1684 1685 1686 1687
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1688 1689 1690 1691
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1692
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1693 1694
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1695 1696
        }

F
fengjiayi 已提交
1697

X
Xin Pan 已提交
1698
class Operator(object):
1699
    """
1700 1701 1702 1703 1704 1705 1706
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1707
        type(str): The type of operator. Default None.
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1728
        Block.append_op or Block._prepend_op instead.
1729 1730 1731 1732

    Examples:
        .. code-block:: python

1733
            import paddle.fluid as fluid
1734
            cur_program = fluid.Program()
1735 1736 1737 1738 1739
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1740
    """
1741
    OP_WITHOUT_KERNEL_SET = {
1742 1743
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1744 1745
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1746
        'c_sync_comm_stream'
1747
    }
1748

Y
Yu Yang 已提交
1749 1750
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1751
                 desc,
Y
Yu Yang 已提交
1752 1753 1754
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1755
                 attrs=None):
L
lujun 已提交
1756
        if in_dygraph_mode():
1757 1758
            if type is None:
                raise ValueError(
1759
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1760
            self._type = type
M
minqiyang 已提交
1761
            self.attrs = attrs if attrs else {}
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1776
                )] = self.block.program._op_role
1777 1778 1779

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1780 1781
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1782 1783 1784 1785 1786 1787 1788 1789

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1790
                    "`type` to initialized an Operator can not be None.")
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1822
                        for index, arg in enumerate(in_args):
1823 1824 1825 1826
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1827
                            elif isinstance(arg, Variable):
1828
                                in_arg_names.append(cpt.to_text(arg.name))
1829
                            else:
1830 1831 1832 1833
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
1834 1835
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1862
                        if not in_dygraph_mode():
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1882
    def _has_kernel(self, op_type):
1883 1884
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1885
    def to_string(self, throw_on_error):
1886
        """
1887 1888
        Get debug string.

1889
        Args:
1890 1891
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1892

1893 1894
        Returns:
            str: The debug string.
1895 1896

        """
1897
        protostr = self.desc.serialize_to_string()
1898
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1899 1900 1901 1902
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1903 1904 1905

    __repr__ = __str__

F
fengjiayi 已提交
1906 1907
    @property
    def type(self):
L
lujun 已提交
1908
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1909
            return self._type
1910 1911
        else:
            return self.desc.type()
F
fengjiayi 已提交
1912 1913

    def input(self, name):
1914
        """
1915
        Get the input arguments according to the input parameter name.
1916

1917 1918
        Args:
            name(str): The input parameter name.
1919

1920 1921 1922
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1923
        """
F
fengjiayi 已提交
1924 1925
        return self.desc.input(name)

W
Wu Yi 已提交
1926
    def _rename_input(self, old_name, new_name):
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1937
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1938

W
Wu Yi 已提交
1939
    def _rename_output(self, old_name, new_name):
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1950
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1951

F
fengjiayi 已提交
1952 1953 1954 1955
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1956 1957 1958 1959 1960 1961 1962 1963
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1964
    def output(self, name):
1965
        """
1966
        Get output arguments by the output parameter name.
1967

1968 1969
        Args:
            name(str): The output parameter name.
1970

1971 1972 1973
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1974
        """
F
fengjiayi 已提交
1975 1976 1977 1978 1979 1980
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1981 1982 1983 1984 1985 1986 1987 1988
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1989
    def has_attr(self, name):
1990
        """
1991 1992
        Whether this Operator has the attribute with name or not.

1993
        Args:
1994
            name(str): the attribute name.
1995

1996 1997
        Returns:
            bool: True if has this attribute.
1998 1999

        """
F
fengjiayi 已提交
2000 2001 2002
        return self.desc.has_attr(name)

    def attr_type(self, name):
2003
        """
2004
        Get the type of attribute by attribute's name.
2005

2006 2007
        Args:
            name(str): the attribute name.
2008

2009 2010
        Returns:
            core.AttrType: the attribute type.
2011
        """
F
fengjiayi 已提交
2012 2013
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2014
    def _set_attr(self, name, val):
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2025 2026
        self._update_desc_attr(name, val)

2027 2028 2029
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2041 2042
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2043 2044
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2045
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2046 2047 2048 2049
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2050
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2051

F
fengjiayi 已提交
2052 2053 2054 2055 2056
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2057
        """
2058 2059
        Get the attribute by name.

2060
        Args:
2061
            name(str): the attribute name.
2062

2063 2064
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2065 2066
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2067
        return self.desc.attr(name)
Y
Yu Yang 已提交
2068

W
Wu Yi 已提交
2069
    def _block_attr_id(self, name):
2070
        """
G
gongweibao 已提交
2071
        Get the block attribute's id by name.
2072

2073 2074
        Args:
            name(str): the attribute name.
2075

2076 2077
        Returns:
            int: the block index.
2078
        """
W
Wu Yi 已提交
2079
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2080

W
Wu Yi 已提交
2081
    def _block_attr(self, name):
G
gongweibao 已提交
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2092
        id = self._block_attr_id(name)
G
gongweibao 已提交
2093 2094 2095
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2096
    def _blocks_attr(self, name):
G
gongweibao 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2107
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2108 2109 2110 2111 2112
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2113
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2124
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2125

J
JiayiFeng 已提交
2126
    def all_attrs(self):
F
fengjiayi 已提交
2127
        """
2128 2129 2130
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2131
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2132 2133 2134 2135
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2136 2137
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2138
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2139 2140 2141
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2142
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2143 2144 2145 2146
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2147 2148
        return attr_map

Y
Yu Yang 已提交
2149

Y
Yu Yang 已提交
2150
class Block(object):
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2165
        use `Program._create_block()` to create a block.
2166 2167 2168 2169

    Examples:
        .. code-block:: python

2170 2171 2172
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2173 2174 2175 2176 2177 2178 2179 2180 2181
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2182
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2183
        self.desc = program.desc.block(idx)
2184
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2185
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2186
        self.program = program
2187
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2188

2189
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2190 2191
        return self.to_string(True)

F
fengjiayi 已提交
2192 2193
    def to_string(self, throw_on_error, with_details=False):
        """
2194 2195
        Get debug string.

F
fengjiayi 已提交
2196 2197
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2198
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2199
            with_details(bool): more details about variables and parameters
2200 2201
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2202

2203 2204
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2205 2206 2207 2208
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2209
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2210 2211
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2212
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2213
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2214
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2215
            for op in self.ops:
F
fengjiayi 已提交
2216 2217
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2218 2219 2220
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2221 2222
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2223 2224
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2225 2226 2227

    __repr__ = __str__

Y
Yu Yang 已提交
2228 2229
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2230
        return self.desc.parent
Y
Yu Yang 已提交
2231

Y
Yu Yang 已提交
2232 2233 2234 2235
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2236
    def _set_forward_block_idx(self, idx):
2237 2238 2239 2240 2241 2242 2243 2244 2245
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2246
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2247

2248 2249 2250 2251 2252 2253 2254 2255
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2256 2257
    @property
    def idx(self):
Y
Yu Yang 已提交
2258
        return self.desc.id
Y
Yu Yang 已提交
2259

Q
Qiao Longfei 已提交
2260
    def var(self, name):
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2274
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2275 2276 2277
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2278 2279
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2280
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2281
        return v
Q
Qiao Longfei 已提交
2282

X
Xin Pan 已提交
2283
    def _find_var_recursive(self, name):
2284 2285 2286 2287 2288 2289 2290
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2291
            Variable: the Variable with the giving name. Or None if not found.
2292
        """
Y
Yu Yang 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2317
        return None
Y
Yu Yang 已提交
2318

X
Xin Pan 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2338

Q
Qiao Longfei 已提交
2339
    def all_parameters(self):
2340
        return list(self.iter_parameters())
2341

2342
    def iter_parameters(self):
M
minqiyang 已提交
2343
        return (item[1] for item in six.iteritems(self.vars)
2344
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2345

Y
Yu Yang 已提交
2346
    def create_var(self, *args, **kwargs):
2347 2348 2349 2350 2351 2352
        if not in_dygraph_mode():
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
        else:
            var = _varbase_creator(*args, **kwargs)
Q
Qiao Longfei 已提交
2353
        return var
Y
Yu Yang 已提交
2354

Q
Qiao Longfei 已提交
2355 2356 2357
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2358
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2359 2360
        """
        Rename variable in vars and ops' inputs and outputs
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2373
        """
M
minqiyang 已提交
2374 2375
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2376

T
typhoonzero 已提交
2377
        if not self.has_var(name):
2378
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2379 2380
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2381
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2382 2383 2384 2385 2386 2387 2388
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2389
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2390 2391 2392 2393
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2394
        orig_var_type = v.type
M
minqiyang 已提交
2395
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2396
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2397
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2398
        if var_type == "Parameter":
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
            if not in_dygraph_mode():
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    gradient_clip_attr=gradient_clip_attr,
                    error_clip=error_clip)
            else:
                var = ParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    gradient_clip_attr=gradient_clip_attr,
                    error_clip=error_clip)
T
typhoonzero 已提交
2424
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2425 2426
            var = Variable(
                self,
T
typhoonzero 已提交
2427
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2428 2429 2430 2431
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2432
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2433 2434 2435
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2436
        self._sync_with_cpp()
2437
        return var
T
typhoonzero 已提交
2438

W
Wu Yi 已提交
2439 2440
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2441
        self.desc._remove_var(cpt.to_bytes(name))
2442 2443
        del self.vars[name]

Y
Yu Yang 已提交
2444 2445
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2446 2447 2448 2449 2450
        param = None
        if not in_dygraph_mode():
            param = Parameter(global_block, *args, **kwargs)
        else:
            param = ParamBase(*args, **kwargs)
2451
        if 'initializer' in kwargs:
2452 2453 2454 2455 2456

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2457 2458 2459 2460 2461
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2473
                # TODO already inited, do nothing, should log a warning
2474 2475 2476
                pass
            else:
                initializer(param, self)
2477
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2478
        return param
Y
Yu Yang 已提交
2479

Y
Yu Yang 已提交
2480
    def append_op(self, *args, **kwargs):
2481 2482 2483 2484 2485 2486
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2487
        if in_dygraph_mode():
2488 2489 2490
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2491 2492 2493 2494 2495
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2496

J
Jiabin Yang 已提交
2497 2498
            type = kwargs.get("type", None)

2499 2500 2501
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2502
                type=type,
M
minqiyang 已提交
2503 2504
                inputs=None,
                outputs=None,
2505
                attrs=attrs)
2506

M
minqiyang 已提交
2507 2508 2509
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2510
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2511 2512

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2513
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2514 2515
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2516
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2517
        else:
2518 2519 2520 2521 2522 2523 2524 2525 2526
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2527
            self.ops.append(op)
M
minqiyang 已提交
2528

2529 2530
        return op

W
Wu Yi 已提交
2531
    def _insert_op(self, index, *args, **kwargs):
2532 2533 2534 2535 2536 2537 2538 2539 2540
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2541 2542
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2543 2544 2545 2546
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2547
    def _remove_op(self, index):
2548 2549 2550 2551 2552 2553 2554 2555 2556
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2557 2558
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2559 2560
        del self.ops[index]

W
Wu Yi 已提交
2561
    def _slice_ops(self, start, end):
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2572
        return self.ops[start:end]
Y
Yancey1989 已提交
2573

W
Wu Yi 已提交
2574
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2575
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2576 2577
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2578
            op = Operator(
J
Jiabin Yang 已提交
2579
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2580

J
Jiabin Yang 已提交
2581
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2582
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2583 2584
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2585
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2586
        else:
2587 2588 2589 2590 2591 2592 2593 2594
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2595
            self.ops.insert(0, op)
2596

Y
Yu Yang 已提交
2597 2598
        return op

W
Wu Yi 已提交
2599
    def _sync_with_cpp(self):
2600
        """
2601 2602
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2603
        """
Q
Qiao Longfei 已提交
2604 2605 2606 2607 2608
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2609
        # sync variables removed from c++ end
2610
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2611
            if not self.desc.find_var(cpt.to_bytes(var)):
2612 2613
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2614
        # sync operators from cpp
2615 2616 2617 2618
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2635 2636 2637 2638 2639

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2640
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2641 2642 2643 2644 2645 2646 2647

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2661 2662 2663 2664
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2665
    def _copy_param_info_from(self, other):
2666
        """
2667 2668
        Copy the information of parameters from the other block.

2669
        Args:
2670 2671 2672 2673 2674
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2675 2676 2677 2678 2679

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2680 2681
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2682
        for p in other.iter_parameters():
2683 2684 2685
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2686
                raise ValueError("_copy_param_info_from should be invoked with "
2687 2688
                                 "same topology")
            assert isinstance(v, Variable)
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
            new_p = None
            if not in_dygraph_mode():
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    gradient_clip_attr=p.gradient_clip_attr,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
                new_p = ParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    gradient_clip_attr=p.gradient_clip_attr,
                    error_clip=p.error_clip,
                    name=v.name)
2717 2718
            self.vars[new_p.name] = new_p

2719
    def _clone_variable(self, var, force_persistable=True):
2720 2721
        """
        Clone a variable into current block.
2722

2723 2724
        Args:
            var: the variable to be cloned.
2725 2726 2727
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2728 2729

        Returns:
2730
            Variable: the new  variable cloned from 'var' in current block.
2731 2732
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2733 2734 2735 2736 2737
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2738 2739
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2740
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2741 2742 2743 2744 2745 2746
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2747
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2748 2749
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2750 2751 2752 2753 2754 2755 2756
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2757
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2758 2759
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2760
        return ret_var
2761

Y
Yu Yang 已提交
2762

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2858
    def remove_input_by_id(self, node_id):
2859 2860 2861 2862 2863 2864
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2865
        self.node.remove_input(node_id)
2866

2867
    def remove_input(self, node):
2868 2869 2870 2871
        """
        Remove a node from inputs.

        Args:
2872
            node(IrNode): the node being removed.
2873
        """
2874
        self.node.remove_input(node.node)
2875

2876
    def append_input(self, node):
2877 2878 2879 2880
        """
        Append a node in inputs.

        Args:
2881
            node(IrNode): the node being appended.
2882
        """
2883
        self.node.append_input(node.node)
2884 2885 2886 2887 2888 2889 2890 2891

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2892
    def remove_output_by_id(self, node_id):
2893 2894 2895 2896 2897 2898
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2899
        self.node.remove_output(node_id)
2900

2901
    def remove_output(self, node):
2902 2903 2904 2905
        """
        Remove a node from outputs.

        Args:
2906
            node(IrNode): the node being removed.
2907
        """
2908
        self.node.remove_output(node.node)
2909

2910
    def append_output(self, node):
2911 2912 2913 2914
        """
        Append a node in outputs.

        Args:
2915
            node(IrNode): the node being appended.
2916
        """
2917
        self.node.append_output(node.node)
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3135
                all(isinstance(v, Block) for v in val):
3136 3137
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3138
                isinstance(val, core.ProgramDesc):
3139 3140 3141 3142
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3186 3187
class IrGraph(object):
    """
3188
    Python IrGraph. Beneath it is a core.Graph, which is used for
3189
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3190 3191
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3192 3193 3194 3195
    """

    def __init__(self, graph, for_test=False):
        """
3196 3197
        Construct an IrGraph using core.Graph.

3198 3199 3200 3201 3202 3203 3204 3205 3206
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3207 3208 3209 3210
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3211 3212 3213
        Warns:
            The method only clones the graph structure, not its attributes.

3214 3215 3216
        Returns:
            IrGraph: A new and duplicated graph.
        """
3217
        g = self.graph.clone()
3218 3219
        return IrGraph(g, self._for_test)

3220
    def is_test(self):
3221 3222 3223
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3224 3225
        return self._for_test

W
WangZhen 已提交
3226
    def all_nodes(self):
3227 3228 3229
        """
        Return all nodes included in the graph as a set.
        """
3230
        return {IrNode(node) for node in self.graph.nodes()}
3231

3232
    def all_var_nodes(self):
3233 3234 3235
        """
        Return all variable nodes included in the graph as a set.
        """
3236
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3237

3238
    def all_persistable_nodes(self):
3239 3240 3241
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3242 3243 3244 3245 3246
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3247
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3248

3249
    def all_op_nodes(self):
3250 3251 3252
        """
        Return all operator nodes included in the graph as a set.
        """
3253
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3254

3255
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3267
            IrVarNode: the created persistable variable node.
3268
        """
3269 3270 3271 3272 3273
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3274
        return IrVarNode(self.graph.create_var_node(var_desc))
3275 3276

    def create_var_node(self, name, var_type, shape, var_dtype):
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3288
            IrVarNode: the created variable node.
3289 3290
        """

3291 3292 3293 3294
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3295
        return IrVarNode(self.graph.create_var_node(var_desc))
3296 3297

    def create_var_node_from_desc(self, var_desc):
3298 3299 3300 3301 3302 3303 3304 3305
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3306
            IrVarNode: the created variable node.
3307
        """
3308
        return IrVarNode(self.graph.create_var_node(var_desc))
3309 3310

    def create_op_node(self, op_type, attrs, inputs, outputs):
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3321
            IrOpNode: the created operator node.
3322
        """
3323 3324
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3325
        for attr, value in six.iteritems(attrs):
3326
            self._update_desc_attr(op_desc, attr, value)
3327
        for input_name, var_nodes in six.iteritems(inputs):
3328 3329 3330 3331
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3332
        for output_name, var_nodes in six.iteritems(outputs):
3333 3334 3335 3336
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3337
        return IrOpNode(self.graph.create_op_node(op_desc))
3338 3339

    def create_op_node_from_desc(self, op_desc):
3340 3341 3342 3343 3344 3345 3346
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3347
            IrOpNode: the created operator node.
3348
        """
3349
        return IrOpNode(self.graph.create_op_node(op_desc))
3350 3351

    def update_input_link(self, old_input_node, new_input_node, op_node):
3352 3353 3354 3355
        """
        Update the input's link of a operator node.

        Args:
3356 3357 3358
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3359
        """
3360
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3361 3362
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3363 3364 3365 3366
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3367
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3368

3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3379 3380
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3381 3382 3383 3384 3385 3386
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3387
    def link_to(self, node_in, node_out):
3388 3389 3390 3391
        """
        Connect two nodes.

        Args:
3392 3393
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3394
        """
3395
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3396
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3397 3398
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3399 3400

    def safe_remove_nodes(self, remove_nodes):
3401 3402 3403 3404 3405 3406 3407
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3408
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3409 3410 3411 3412
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3413 3414
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3415

Z
Zhen Wang 已提交
3416 3417 3418 3419 3420 3421 3422 3423
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3424
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3425 3426 3427 3428
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3429
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3430 3431 3432
                        ]
                    else:
                        var_nodes[each_var_name].append(
3433 3434
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3435 3436
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3437
    def has_circle(self):
3438 3439 3440 3441 3442 3443
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3444 3445 3446
        return core.has_circle(self.graph)

    def graph_num(self):
3447 3448 3449 3450 3451 3452
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3453 3454 3455
        return core.graph_num(self.graph)

    def topology_sort(self):
3456 3457 3458 3459 3460 3461
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3462
            list(IrNode): nodes in topology order.
3463
        """
3464
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3465
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3466 3467

    def build_adjacency_list(self):
3468 3469 3470 3471
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3472
            dict{IrNode: set(IrNode)}: the adjacency list.
3473
        """
3474 3475 3476 3477 3478
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3479

3480 3481 3482 3483 3484 3485 3486 3487
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3488
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3489 3490 3491 3492 3493
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3494 3495 3496
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3497
                                          + ' -o ' + pdf_save_path, shell=True)
3498 3499 3500 3501 3502
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3503
        remove_ctr_vars = set()
3504
        if remove_ctr_var:
3505
            for node in self.all_var_nodes():
3506 3507 3508
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3509 3510
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3511 3512
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3513 3514 3515 3516 3517 3518
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3519 3520 3521 3522
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3523 3524
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3525 3526 3527 3528 3529 3530 3531
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3532 3533 3534
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3535
        WARN: When the graph includes backward operator nodes, the
3536 3537 3538 3539 3540 3541
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3542
        convert_pass = core.get_pass('graph_to_program_pass')
3543 3544
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3545 3546 3547 3548
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3576
class Program(object):
D
dzhwinter 已提交
3577
    """
3578 3579
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3580
    it will contain nested block.
3581

J
Jiabin Yang 已提交
3582 3583 3584
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3585

J
Jiabin Yang 已提交
3586
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3587
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3588 3589 3590 3591 3592 3593 3594
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3595 3596 3597 3598
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3599 3600

    Returns:
J
Jiabin Yang 已提交
3601
        Program: An empty Program.
D
dzhwinter 已提交
3602 3603

    Examples:
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3617 3618 3619

    """

3620 3621
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3622 3623
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3624
        self._seed = 0
Y
yuyang18 已提交
3625
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3626
        self.__op_role_var = []
T
tangwei12 已提交
3627

3628 3629
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3630
        self._is_distributed = False
3631
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3632
        self._is_chief = False
3633 3634 3635
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3636
        self._endpoints = []
3637 3638 3639
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3640
        self._trainers_endpoints = []
3641
        # the distributed lookup table names
T
tangwei12 已提交
3642
        self._distributed_lookup_table = None
3643 3644 3645

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3646 3647
        self._use_lamb = False

3648 3649 3650
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3651

3652 3653 3654
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3655
        self._program_config = None
3656

H
hutuxian 已提交
3657 3658 3659
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3660 3661 3662
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3663
    @property
3664
    def _op_role(self):
Y
yuyang18 已提交
3665 3666 3667 3668 3669 3670 3671 3672
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3673
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3674 3675 3676 3677
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3678 3679
        return self._current_role

3680 3681
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3682 3683 3684
        self._current_role = role

    @property
3685
    def _op_role_var(self):
Y
yuyang18 已提交
3686
        """
3687
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3688

3689
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3690 3691 3692

        Notes: This is a very low-level API. Users should not use it directly.
        """
3693
        return self.__op_role_var
Y
yuyang18 已提交
3694

3695 3696 3697 3698 3699 3700 3701 3702 3703
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3704
    @signature_safe_contextmanager
W
Wu Yi 已提交
3705
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3706 3707 3708 3709 3710 3711 3712
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3713
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3714 3715 3716

        Examples:

3717
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3718
            >>> p, g = backward(...)
W
Wu Yi 已提交
3719
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3720 3721
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3722
        tmp_role = self._current_role
3723
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3724

Y
yuyang18 已提交
3725 3726
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3727
        self.__op_role_var = [
3728 3729 3730
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3731
        yield
3732
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3733
        self._current_role = tmp_role
Y
Yu Yang 已提交
3734

S
rename  
sneaxiy 已提交
3735
    @signature_safe_contextmanager
X
Xin Pan 已提交
3736
    def _lr_schedule_guard(self, is_with_opt=False):
3737 3738 3739 3740 3741 3742 3743
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3744 3745 3746 3747
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3748 3749 3750

        Examples:

3751
            >>> import paddle.fluid as fluid
3752 3753 3754 3755
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3756 3757

        tmp_role = self._current_role
3758
        tmp_var = self.__op_role_var
3759

3760 3761
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3762 3763
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3764
        # TODO(typhoonzero): how to set target learning rate var
3765
        self.__op_role_var = []
3766
        yield
3767
        self.__op_role_var = tmp_var
3768
        self._current_role = tmp_role
3769

3770
    def __str__(self):
Y
yuyang18 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3780 3781
        return self.to_string(True)

F
fengjiayi 已提交
3782 3783 3784
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3785

J
Jiabin Yang 已提交
3786 3787 3788
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3789

J
Jiabin Yang 已提交
3790
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3791

H
haowang101779990 已提交
3792
        Returns:
J
Jiabin Yang 已提交
3793
            str: The debug string describe current Program.
Y
yuyang18 已提交
3794 3795

        Raises:
J
Jiabin Yang 已提交
3796
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3797

3798 3799 3800 3801 3802 3803 3804
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
J
Jiabin Yang 已提交
3805 3806 3807
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3808 3809 3810 3811 3812 3813 3814 3815 3816
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3817 3818
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3819 3820
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3821

W
Wu Yi 已提交
3822
    def _get_desc(self):
Y
yuyang18 已提交
3823 3824 3825 3826 3827 3828 3829
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3830 3831
        return self.desc

X
version  
Xin Pan 已提交
3832 3833 3834
    def _version(self):
        return self.desc._version()

3835
    @dygraph_not_support
3836
    def clone(self, for_test=False):
Y
yuyang18 已提交
3837
        """
3838
        **Notes**:
J
Jiabin Yang 已提交
3839 3840 3841 3842
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3843
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3844

3845 3846
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3847

3848

J
Jiabin Yang 已提交
3849
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3850 3851 3852
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3853

Y
yuyang18 已提交
3854
        * Set for_test to False when we want to clone the program for training.
3855
        * Set for_test to True when we want to clone the program for testing.
3856 3857
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
3858
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3859

J
Jiabin Yang 已提交
3860 3861
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3862

J
Jiabin Yang 已提交
3863 3864 3865 3866
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3867

J
Jiabin Yang 已提交
3868
        Args:
3869

J
Jiabin Yang 已提交
3870
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3871

J
Jiabin Yang 已提交
3872 3873
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3874

Y
yuyang18 已提交
3875 3876 3877

        Examples:

J
Jiabin Yang 已提交
3878
        **Notes: The Program's order maybe different after** :code:`clone` **and
3879
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
3880
        example we give you an simple method** :code:`print_prog(program)` **to
3881
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
3882
        after** :code:`clone`:
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3920 3921 3922

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3934 3935 3936 3937 3938 3939 3940 3941 3942

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3990 3991
        """
        if for_test:
3992
            if self._appending_grad_times > 0:
3993 3994 3995 3996 3997 3998 3999
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
4000 4001 4002
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
4003
        else:
4004
            p = Program()
G
gongweibao 已提交
4005 4006
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4007
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4008 4009 4010
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4011 4012

            p._current_role = self._current_role
4013
            p.__op_role_var = self.__op_role_var
4014
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
4015

W
Wu Yi 已提交
4016
            p._sync_with_cpp()
4017

W
Wu Yi 已提交
4018
        p._copy_param_info_from(self)
W
Wu Yi 已提交
4019
        p._copy_data_info_from(self)
4020
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4021
        return p
4022

4023
    def _prune(self, targets):
Y
yuyang18 已提交
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4037 4038 4039 4040
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
4041

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4076
        """
4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4094 4095
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4096 4097
        if not isinstance(targets, list):
            targets = [targets]
4098 4099 4100 4101 4102 4103

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

4104 4105 4106 4107
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4108 4109
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
4110
                    # and we need to find the current op that generate this
4111 4112 4113 4114 4115 4116 4117 4118
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

4119
                    t = t.op
4120 4121 4122 4123
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
4124
                else:
4125 4126
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
4127 4128 4129

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
4130
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
4131 4132 4133
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4134
        res._sync_with_cpp()
4135 4136
        return res

X
Xin Pan 已提交
4137
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4138
        """
F
fengjiayi 已提交
4139 4140 4141 4142 4143
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4144
        3. change the :code:`is_test`
Y
yuyang18 已提交
4145 4146 4147
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4148
        Args:
X
Xin Pan 已提交
4149 4150
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4151

Y
yuyang18 已提交
4152 4153 4154 4155 4156 4157
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4158
        res = Program()
4159
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4160 4161 4162 4163

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4164
        if prune_read_op:
4165 4166 4167 4168 4169 4170 4171 4172 4173
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4174
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4175 4176

        # change all `is_test` attributes to True
M
minqiyang 已提交
4177
        for i in six.moves.range(res.desc.num_blocks()):
4178
            block = res.desc.block(i)
M
minqiyang 已提交
4179
            for j in six.moves.range(block.op_size()):
4180 4181
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4182
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4183 4184 4185
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4186
        res._sync_with_cpp()
4187 4188
        return res

4189 4190
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4191
        """
J
Jiabin Yang 已提交
4192 4193 4194 4195
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4196

4197 4198
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4199

J
Jiabin Yang 已提交
4200
        Args:
Y
yuyang18 已提交
4201

J
Jiabin Yang 已提交
4202
            binary_str_type (str): the binary prootbuf string.
4203

J
Jiabin Yang 已提交
4204 4205
        Returns:
            Program: A deserialized Program.
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4228
        """
4229 4230
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4231
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4232
        p._sync_with_cpp()
4233
        return p
Y
Yu Yang 已提交
4234

4235
    @staticmethod
4236
    def _construct_from_desc(desc):
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4252 4253
    @property
    def random_seed(self):
Y
yuyang18 已提交
4254
        """
J
Jiabin Yang 已提交
4255
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4256 4257
        the random seed from random device.

J
Jiabin Yang 已提交
4258 4259 4260 4261
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4262

4263 4264 4265 4266 4267 4268 4269 4270

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4271 4272 4273
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4274 4275
                print(random_seed)
                prog.random_seed = 1
4276 4277
                z_var = fluid.layers.dropout(x_var, 0.7)

4278
                print(prog.random_seed)
Y
yuyang18 已提交
4279
        """
D
dzhwinter 已提交
4280 4281
        return self._seed

Q
qiaolongfei 已提交
4282 4283
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4284
        """
4285 4286
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4287 4288 4289 4290
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4291

4292 4293 4294 4295 4296 4297 4298 4299 4300

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4301 4302


Y
yuyang18 已提交
4303
        """
Q
qiaolongfei 已提交
4304 4305
        return self.desc.num_blocks()

D
dzhwinter 已提交
4306 4307 4308 4309 4310 4311
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4312
    def __repr__(self):
4313
        return self.__str__()
4314

Y
Yu Yang 已提交
4315
    def global_block(self):
Y
yuyang18 已提交
4316
        """
J
Jiabin Yang 已提交
4317 4318
        **Notes**:
            **This API has no effect in Dygraph mode**
4319 4320 4321

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4322 4323
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4324

4325 4326 4327 4328 4329 4330 4331 4332 4333

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4334

Y
yuyang18 已提交
4335
        """
Y
Yu Yang 已提交
4336 4337
        return self.blocks[0]

Q
Qiao Longfei 已提交
4338
    def block(self, index):
Y
yuyang18 已提交
4339
        """
J
Jiabin Yang 已提交
4340 4341
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4342

4343 4344
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4345 4346
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4347

J
Jiabin Yang 已提交
4348 4349
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4350 4351 4352 4353 4354 4355 4356 4357 4358

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4359
        """
Q
Qiao Longfei 已提交
4360 4361
        return self.blocks[index]

Y
Yu Yang 已提交
4362
    def current_block(self):
Y
yuyang18 已提交
4363
        """
J
Jiabin Yang 已提交
4364 4365
        **Notes**:
            **This API has no effect in Dygraph mode**
4366

J
Jiabin Yang 已提交
4367 4368
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4369

J
Jiabin Yang 已提交
4370 4371
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4372

4373 4374 4375 4376 4377 4378 4379 4380
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4381
        """
Y
Yu Yang 已提交
4382 4383
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4384
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4385 4386 4387 4388 4389
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4390

Y
yuyang18 已提交
4391 4392 4393 4394 4395
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4396
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4397 4398 4399
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4400 4401 4402 4403
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4404
    def _rollback(self):
Y
yuyang18 已提交
4405 4406 4407 4408 4409
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4410 4411
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4412
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4423 4424 4425
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4426
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4427

W
Wu Yi 已提交
4428
    def _copy_param_info_from(self, other):
4429
        """
4430
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4431

Y
yuyang18 已提交
4432 4433 4434
        Notes: This is a very low level API. Users should not invoke it
        directly.

4435 4436 4437 4438 4439 4440 4441
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4442
            raise TypeError("_copy_param_info_from should be invoked with "
4443 4444 4445
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4446
            raise ValueError("_copy_param_info_from should be invoked with two "
4447
                             "program, with represent the same topology")
W
Wu Yi 已提交
4448
        self.global_block()._copy_param_info_from(other.global_block())
4449

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4465
        self._parameters_on_pservers = other._parameters_on_pservers
4466
        self._endpoints = other._endpoints
4467
        self._ps_endpoint = other._ps_endpoint
4468 4469
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4470
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4471 4472
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4473

Y
yuyang18 已提交
4474 4475 4476
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4477 4478 4479 4480 4481 4482 4483
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4484
            raise TypeError("_copy_data_info_from should be invoked with "
F
fengjiayi 已提交
4485 4486 4487
                            "Program")

        if len(self.blocks) != len(other.blocks):
4488
            raise ValueError("_copy_data_info_from should be invoked with two "
F
fengjiayi 已提交
4489
                             "program, with represent the same topology")
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
        for i, block in enumerate(other.blocks):
            for var in list(block.vars.values()):
                if not self.blocks[i].has_var(var.name):
                    continue
                if var.is_data:
                    self.blocks[i].var(var.name).is_data = True
                if var.desc.need_check_feed():
                    self.blocks[i].var(var.name).desc.set_need_check_feed(True)
                if var.stop_gradient:
                    self.blocks[i].var(var.name).stop_gradient = True
F
fengjiayi 已提交
4503

4504
    @dygraph_not_support
4505
    def list_vars(self):
Y
yuyang18 已提交
4506
        """
J
Jiabin Yang 已提交
4507
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4508

J
Jiabin Yang 已提交
4509 4510
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4522
        """
4523
        for each_block in self.blocks:
4524
            for each_var in list(each_block.vars.values()):
4525 4526
                yield each_var

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
    @dygraph_not_support
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
4586

4587
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
4588
class Parameter(Variable):
4589
    """
4590
    Parameter is derived from Variable. A parameter is a persistable
4591
    Variable, and will be updated by optimizers after each iteration.
4592
    The training of a neural network is essentially the updating of
4593 4594
    its parameters.

4595
    Relative to a general Variable, a Parameter has several its own
4596 4597
    member variables:

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4610 4611
    """

4612 4613 4614 4615 4616 4617
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
4618 4619 4620 4621 4622
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4623
        if len(shape) == 0:
4624 4625
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4626 4627 4628

        for each in shape:
            if each < 0:
4629 4630 4631
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4632 4633

        Variable.__init__(
4634 4635 4636 4637 4638 4639 4640
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
4641 4642 4643 4644
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4645 4646
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4647
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4648

W
wanghaoshuang 已提交
4649
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4650

4651 4652
        self.is_distributed = False

F
fengjiayi 已提交
4653 4654 4655
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4656 4657 4658
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4659

F
update  
fengjiayi 已提交
4660 4661 4662 4663 4664 4665 4666 4667
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4668 4669 4670 4671 4672 4673 4674 4675 4676
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4677 4678 4679 4680 4681 4682
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4683
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4684
            for attr_name in additional_attr:
4685 4686
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4687 4688
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4689 4690 4691 4692
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4693

4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757
class ParamBase(core.VarBase):
    """
    ParamBase is derived from VarBase( Which is the Variable in Dygraph Mode ). A ParamBase is a persistable
    VarBase, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of
    its ParamBase.

    Relative to a general Variable, a ParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False

4758
        # self.block = default_main_program().global_block()
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796

    def __str__(self):
        return self.to_string(True)

    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.

        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        tensor = self.value().get_tensor()
        if tensor._is_initialized():
            return 'name %s, dtype: %s shape: %s %s' % (self.name, self.dtype,
                                                        self.shape, str(tensor))
        else:
            return 'name %s, shape: %s, not inited' % (self.name, self.shape)

    __repr__ = __str__


Y
Yu Yang 已提交
4797
# program is a global instance.
Y
Yu Yang 已提交
4798 4799
_main_program_ = Program()
_startup_program_ = Program()
4800

4801

4802
def default_startup_program():
Y
Yu Yang 已提交
4803
    """
Y
yuyang18 已提交
4804 4805
    Get default/global startup program.

J
Jiabin Yang 已提交
4806 4807 4808
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4809 4810 4811
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
4812
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4813

J
Jiabin Yang 已提交
4814
    Returns: current default startup :ref:`api_fluid_Program`
4815

J
Jiabin Yang 已提交
4816
    Returns type: :ref:`api_fluid_Program`
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4832
    """
Y
Yu Yang 已提交
4833
    return _startup_program_
4834

4835

4836
def default_main_program():
Y
Yu Yang 已提交
4837
    """
4838 4839 4840 4841 4842
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4843

4844 4845
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4846
    :code:`default_main_program` when the program is not specified.
4847

4848 4849
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4850
    Returns:
4851
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4852 4853 4854 4855 4856

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4857

4858
            # Sample Network:
4859 4860
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4880
            #print the number of blocks in the program, 1 in this case
4881
            print(fluid.default_main_program().num_blocks)
4882 4883

            #print the description of variable 'image'
4884
            print(fluid.default_main_program().blocks[0].var('image'))
4885

Y
Yu Yang 已提交
4886
    """
Y
Yu Yang 已提交
4887
    return _main_program_
Y
Yu Yang 已提交
4888 4889 4890 4891 4892


def switch_main_program(program):
    """
    Switch the main program to a new program.
4893

Y
Yu Yang 已提交
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4908
    Switch the startup program to a new program
Y
Yu Yang 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4921
@signature_safe_contextmanager
Y
Yu Yang 已提交
4922 4923
def program_guard(main_program, startup_program=None):
    """
4924 4925
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4926
    variables to the new main programs.
4927

G
guofei 已提交
4928 4929 4930 4931 4932 4933 4934
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4935
    Examples:
4936 4937 4938
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4939

4940 4941 4942
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
G
guofei 已提交
4943
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4944
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4945 4946 4947

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4948

Y
Yu Yang 已提交
4949
    Examples:
4950
       .. code-block:: python
Y
yuyang18 已提交
4951

4952 4953 4954 4955 4956
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
G
guofei 已提交
4957 4958
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4971 4972


W
Wu Yi 已提交
4973
def _get_var(name, program=None):
X
xuwei06 已提交
4974
    """
Y
yuyang18 已提交
4975
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4976

X
xuwei06 已提交
4977 4978 4979
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4980
        If None, default_global_program() will be used.
X
xuwei06 已提交
4981 4982 4983 4984 4985 4986 4987

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4988
    assert isinstance(program, Program)
X
xuwei06 已提交
4989 4990

    return program.global_block().var(name)
4991 4992


S
rename  
sneaxiy 已提交
4993
@signature_safe_contextmanager
L
lujun 已提交
4994 4995 4996 4997
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
4998
    core._switch_tracer(tracer)
M
minqiyang 已提交
4999

5000
    yield
P
Paddle CI 已提交
5001

5002
    core._switch_tracer(tmp_trace)
L
lujun 已提交
5003
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5004 5005


S
rename  
sneaxiy 已提交
5006
@signature_safe_contextmanager
L
lujun 已提交
5007 5008 5009 5010
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
5011

5012
    yield
M
minqiyang 已提交
5013

L
lujun 已提交
5014
    _dygraph_current_expected_place_ = tmp_place
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()