framework.py 193.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
Y
Yu Yang 已提交
40

41
__all__ = [
42 43 44 45
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
46
    'name_scope',
S
sneaxiy 已提交
47 48 49
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
50
    'in_dygraph_mode',
C
chengduo 已提交
51
    'is_compiled_with_cuda',
52
    'is_compiled_with_xpu',
53
    'Variable',
54
    'ComplexVariable',
55
    'load_op_library',
56
    'require_version',
57
    'device_guard',
G
guofei 已提交
58 59
    'set_flags',
    'get_flags',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
68
_dygraph_tracer_ = None
69
_global_expected_place_ = None
70
_current_device = None
71 72
global_prog_seed = 0

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
181
def in_dygraph_mode():
L
lujun 已提交
182
    """
183 184 185 186
    :alias_main: paddle.in_dygraph_mode
	:alias: paddle.in_dygraph_mode
	:old_api: paddle.fluid.framework.in_dygraph_mode

Y
Youwei Song 已提交
187
    This function checks whether the program runs in dynamic graph mode or not.
188 189 190
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable`
    and :ref:`api_fluid_dygraph_disable` api .
L
lujun 已提交
191 192

    Returns:
Y
Youwei Song 已提交
193
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
194 195 196 197

    Examples:
        .. code-block:: python

198
            import paddle.fluid as fluid
L
lujun 已提交
199

200 201 202 203
            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.in_dygraph_mode())  # True
            fluid.disable_dygraph()
            print(fluid.in_dygraph_mode())  # False
L
lujun 已提交
204
    """
L
lujun 已提交
205
    return _dygraph_tracer_ is not None
206 207


208 209 210
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
211
        ), "We don't support %s in imperative mode" % func.__name__
212 213 214 215 216 217 218 219
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
220 221 222 223 224 225 226 227 228 229
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We only support '%s()' in static graph mode, please call 'paddle.enable_static()' to enter static graph mode." % func.__name__
230 231 232 233 234
        return func(*args, **kwargs)

    return __impl__


235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
# same base class. 
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
            "'%s' should be called by imperative Varible in imperative mode, please use fluid.dygraph.guard() as context to run it in imperative mode"
            % func.__name__)

    return __impl__


251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict) 
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without 
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


270 271
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
272
static_only = wrap_decorator(_static_only_)
273
fake_interface_only = wrap_decorator(_fake_interface_only_)
274 275


L
lujun 已提交
276 277
def _dygraph_tracer():
    return _dygraph_tracer_
278

W
Wu Yi 已提交
279

M
minqiyang 已提交
280
def _current_expected_place():
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
            _global_expected_place_ = core.CUDAPlace(0)
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
301 302


L
Leo Chen 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
    	
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
320
def _cpu_num():
321
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
322 323 324 325 326 327 328 329
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
330
        os.environ['CPU_NUM'] = str(1)
331
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
332 333 334 335 336 337 338 339 340 341
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
342 343


344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


C
chengduo 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
374
def cuda_places(device_ids=None):
L
lujun 已提交
375
    """
376 377 378 379 380
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
381 382

    If :code:`device_ids` is None, environment variable of
383
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
384 385 386
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
387
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
388 389

    If :code:`device_ids` is not None, it should be the device
390
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
391 392 393
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
394 395
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
396 397

    Returns:
398
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
399 400 401 402

    Examples:
        .. code-block:: python

403
            import paddle.fluid as fluid
L
lujun 已提交
404 405 406
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
407 408 409
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
410
        device_ids = _cuda_ids()
S
sneaxiy 已提交
411 412 413 414 415 416
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
417
    """
418
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
419 420 421
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
422 423
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
424 425
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
426

427 428
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
429 430

    Returns:
431
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
432 433 434 435

    Examples:
        .. code-block:: python

436
            import paddle.fluid as fluid
L
lujun 已提交
437 438 439
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
440 441 442 443 444 445
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
446
    """
447
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
448 449 450

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
451 452 453 454
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
455

456 457
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
458 459

    Returns:
460
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
461 462 463 464

    Examples:
        .. code-block:: python

465
            import paddle.fluid as fluid
L
lujun 已提交
466 467 468 469 470
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
471 472 473
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
474 475
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
476 477


478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
504
@signature_safe_contextmanager
505 506
def name_scope(prefix=None):
    """
507 508
    :api_attr: Static Graph

509
    Generate hierarchical name prefix for the operators in Static Graph.
510

T
Tao Luo 已提交
511 512 513
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
514
        Don't use it in dygraph, since it will cause memory leak.
515 516

    Args:
T
Tao Luo 已提交
517
        prefix(str, optional): prefix. Default is none.
518 519 520

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
521

522 523 524 525
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
             a = paddle.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
526
             b = a + 1
527
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
528
                c = b * 1
529
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
530
                d = c / 1
531 532 533
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
534 535 536
                g = f - 1

          # Op are created in the default main program.  
537
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
553 554
    """
    # TODO(panyx0718): Only [0-9a-z].
555
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
556 557 558
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
559
        assert prefix, "namescope prefix can not be empty."
560 561
        global _name_scope
        _name_scope = _name_scope.child(prefix)
562 563 564 565
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
566 567 568 569 570 571 572 573 574 575 576 577


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
578 579 580
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
581 582 583 584


def grad_var_name(var_name):
    """
585 586
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
587 588 589
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
590

591
def convert_np_dtype_to_dtype_(np_dtype):
592 593
    """
    Convert the data type in numpy to the data type in Paddle
594

595
    Args:
596
        np_dtype(np.dtype): the data type in numpy.
597

598 599
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
600 601

    """
602 603
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
604
        return core.VarDesc.VarType.FP32
605
    elif dtype == np.float64:
606
        return core.VarDesc.VarType.FP64
607
    elif dtype == np.float16:
608
        return core.VarDesc.VarType.FP16
609
    elif dtype == np.int32:
610
        return core.VarDesc.VarType.INT32
611
    elif dtype == np.int16:
612
        return core.VarDesc.VarType.INT16
613
    elif dtype == np.int64:
614
        return core.VarDesc.VarType.INT64
615
    elif dtype == np.bool:
616
        return core.VarDesc.VarType.BOOL
617
    elif dtype == np.uint16:
618 619 620
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
621 622
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
623 624
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
625
    else:
M
minqiyang 已提交
626
        raise ValueError("Not supported numpy dtype %s" % dtype)
627 628 629


def dtype_is_floating(dtype):
630 631 632
    """
    Check the data type is floating or not.
    Args:
633
        dtype(np.dtype|core.VarDesc.VarType): data type.
634 635 636 637 638
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
639
    if not isinstance(dtype, core.VarDesc.VarType):
640 641
        dtype = convert_np_dtype_to_dtype_(dtype)

642 643 644 645
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
646 647


Y
Yang Yang(Tony) 已提交
648
def _debug_string_(proto, throw_on_error=True):
649 650 651 652 653 654 655 656 657 658 659
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
660
    error_fields = list()
Y
Yang Yang(Tony) 已提交
661
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
662 663
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
664 665 666
    return proto.__str__()


667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


def _getitem_impl_(var, item):
    """
    Slice the variable.

    Args:
        item(int/slice/tuple) : the index.

    Returns:
        Sliced variable
    """

    if not isinstance(item, tuple):
        item = [item]

    decrease_axis = []
    slice_axis = []
    slice_start = []
    slice_end = []
    slice_step = []
    use_strided_slice = False
    reverse_axis = []
724
    target_block = default_main_program().current_block()
725 726 727 728 729 730 731 732 733 734 735

    def fill_constant(shape, value, force_cpu=False, out=None):
        var.block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'shape': shape,
                'dtype': out.dtype,
                'value': float(value),
                'force_cpu': force_cpu
736
            })
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        out.stop_gradient = True
        return out

    for dim, slice_item in enumerate(item):
        if isinstance(slice_item, slice):
            start = slice_item.start
            end = slice_item.stop
            step = slice_item.step

            if start is None and end is None and step is None:
                continue

            if step is None:
                step = 1

            if start is None and end is None:
                assert (step == -1)
                reverse_axis.append(dim)
                continue

            if start is None:
                start = 0

            if end is None:
                end = 10000000

            if step != 1:
                use_strided_slice = True

            slice_axis.append(dim)
            slice_start.append(start)
            slice_end.append(end)
            slice_step.append(step)
        else:
            decrease_axis.append(dim)
            slice_axis.append(dim)
            slice_start.append(slice_item)
            slice_step.append(1)
            if isinstance(slice_item, Variable):
776
                temp_1 = var.block.create_var(dtype=slice_item.dtype)
777
                fill_constant([1], 1, force_cpu=True, out=temp_1)
778
                temp_end = target_block.create_var(dtype=slice_item.dtype)
779
                target_block.append_op(
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
                    type='elementwise_add',
                    inputs={'X': slice_item,
                            'Y': temp_1},
                    outputs={'Out': temp_end},
                    attrs={'axis': -1})
                slice_end.append(temp_end)
            else:
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

    def contain_var(one_list):
        for ele in one_list:
            if isinstance(ele, Variable):
                return True
        return False

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = var.block.create_var(dtype='int32')
                fill_constant([1], dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': [var]}
    attrs = {
        'axes': slice_axis,
        'starts': [],
        'ends': [],
        'decrease_axis': decrease_axis
    }
    if (use_strided_slice == True):
        attrs['strides'] = []
    infer_flags = list(1 for i in range(len(slice_axis)))
L
Leo Chen 已提交
819

820
    # starts
L
Leo Chen 已提交
821
    if contain_var(slice_start):
822 823 824 825 826 827 828 829
        inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
        for i, dim in enumerate(slice_start):
            if isinstance(dim, Variable):
                attrs['starts'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['starts'].append(dim)
    else:
L
Leo Chen 已提交
830 831 832 833
        attrs['starts'] = slice_start

    # ends
    if contain_var(slice_end):
834 835 836 837 838 839 840
        inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
        for i, dim in enumerate(slice_end):
            if isinstance(dim, Variable):
                attrs['ends'].append(-1)
                infer_flags[i] = -1
            else:
                attrs['ends'].append(dim)
L
Leo Chen 已提交
841 842 843
    else:
        attrs['ends'] = slice_end

844 845
    # strides
    if use_strided_slice == True:
L
Leo Chen 已提交
846
        if contain_var(slice_step):
847 848 849 850 851 852 853
            inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
            for i, dim in enumerate(slice_step):
                if isinstance(dim, Variable):
                    attrs['strides'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['strides'].append(dim)
L
Leo Chen 已提交
854 855
        else:
            attrs['strides'] = slice_step
856 857 858 859 860 861
    # infer_flags
    attrs['infer_flags'] = infer_flags

    out = var
    if use_strided_slice == False and len(slice_axis) > 0:
        # append slice_op here
862
        slice_out_var = target_block.create_var(
863 864 865
            name=unique_name.generate_with_ignorable_key(var.name + "_slice"),
            dtype=var.dtype)

866
        target_block.append_op(
867 868 869 870 871 872 873
            type="slice",
            inputs=inputs,
            outputs={'Out': [slice_out_var]},
            attrs=attrs)

        out = slice_out_var
    elif use_strided_slice == True and len(slice_axis) > 0:
874
        strided_slice_out_var = target_block.create_var(
875 876 877
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_strided_slice"),
            dtype=var.dtype)
878
        target_block.append_op(
879 880 881 882 883 884 885 886
            type="strided_slice",
            inputs=inputs,
            outputs={'Out': [strided_slice_out_var]},
            attrs=attrs)

        out = strided_slice_out_var

    if len(reverse_axis) > 0:
887
        reverse_out_var = target_block.create_var(
888 889 890
            name=unique_name.generate_with_ignorable_key(var.name +
                                                         "_slice_reverse"),
            dtype=var.dtype)
891
        target_block.append_op(
892 893 894 895 896 897 898 899 900 901 902
            type="reverse",
            inputs={'X': out},
            outputs={'Out': [reverse_out_var]},
            attrs={'axis': reverse_axis})

        out = reverse_out_var

    return out


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
903
class Variable(object):
904
    """
J
Jiabin Yang 已提交
905
    **Notes**:
906
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
907

908 909
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
910 911 912
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
913
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
914 915
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
916

917
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
918
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
919

T
tianshuo78520a 已提交
920
    Most of a Variable's member variables can be set to be None. It mean
921
    it is not available or will be specified later.
922

923
    Examples:
924 925
        In Static Graph Mode:

926 927
        .. code-block:: python

928
            import paddle.fluid as fluid
929
            cur_program = fluid.Program()
930 931 932 933
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
J
Jiabin Yang 已提交
934
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
935 936 937 938 939 940 941 942 943

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

944 945
    """

Y
Yu Yang 已提交
946 947
    def __init__(self,
                 block,
Y
Yu Yang 已提交
948
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
949 950 951 952
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
953
                 capacity=None,
Q
QI JUN 已提交
954
                 persistable=None,
F
fengjiayi 已提交
955
                 error_clip=None,
Y
Yu Yang 已提交
956
                 stop_gradient=False,
F
fengjiayi 已提交
957
                 is_data=False,
H
Huihuang Zheng 已提交
958
                 need_check_feed=False,
H
hong 已提交
959
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
960
                 **kwargs):
Y
Yu Yang 已提交
961 962
        self.block = block
        if name is None:
Y
Yu Yang 已提交
963
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
964

Y
Yu Yang 已提交
965
        if dtype is not None:
966
            if not isinstance(dtype, core.VarDesc.VarType):
967
                dtype = convert_np_dtype_to_dtype_(dtype)
968

H
hong 已提交
969 970
        self.belong_to_optimizer = belong_to_optimizer

971 972 973 974 975
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
976

977 978 979
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
980

981 982 983 984 985 986 987
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
988

989
        if shape is not None:
990
            if is_new_var:
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1032

1033 1034
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1035

1036 1037 1038 1039 1040 1041 1042
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1043

1044 1045 1046 1047
        self.block.vars[name] = self
        self.op = None
        self._stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
1048

1049
    @fake_interface_only
1050 1051
    def detach(self):
        """
J
Jiabin Yang 已提交
1052
        **Notes**:
T
tianshuo78520a 已提交
1053
            **This API is ONLY available in Dygraph mode**
1054

1055
        Returns a new Variable, detached from the current graph.
1056

1057
        Returns:
J
Jiabin Yang 已提交
1058
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1059

1060

1061 1062 1063 1064 1065
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1066
                from paddle.fluid.dygraph import Linear
1067 1068 1069 1070
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1071
                    linear = Linear(32, 64)
1072
                    data = to_variable(data)
1073
                    x = linear(data)
1074 1075 1076
                    y = x.detach()

        """
1077
        pass
1078

1079
    @fake_interface_only
1080
    def numpy(self):
1081
        """
J
Jiabin Yang 已提交
1082
        **Notes**:
T
tianshuo78520a 已提交
1083
            **This API is ONLY available in Dygraph mode**
1084

J
Jiabin Yang 已提交
1085
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1086 1087 1088 1089 1090

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1091
            ndarray: dtype is same as current Variable
1092 1093 1094 1095 1096 1097

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1098
                from paddle.fluid.dygraph import Linear
1099 1100 1101 1102
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1103
                    linear = Linear(32, 64)
1104
                    data = to_variable(data)
1105
                    x = linear(data)
1106 1107 1108
                    print(x.numpy())

        """
1109
        pass
1110

1111
    @fake_interface_only
1112 1113
    def set_value(self, value):
        """
J
Jiabin Yang 已提交
1114
        **Notes**:
T
tianshuo78520a 已提交
1115
            **This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1116

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1127
                from paddle.fluid.dygraph import Linear
1128 1129
                import numpy as np

1130
                data = np.ones([3, 1024], dtype='float32')
1131
                with fluid.dygraph.guard():
1132
                    linear = fluid.dygraph.Linear(1024, 4)
1133
                    t = to_variable(data)
1134
                    linear(t)  # call with default weight
1135
                    custom_weight = np.random.randn(1024, 4).astype("float32")
1136 1137
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
1138 1139

        """
1140
        pass
1141

1142
    @fake_interface_only
1143
    def backward(self, retain_graph=False):
1144
        """
J
Jiabin Yang 已提交
1145
        **Notes**:
T
tianshuo78520a 已提交
1146
            **This API is ONLY available in Dygraph mode**
1147

1148
        Run backward of current Graph which starts from current Tensor.
1149

J
Jiabin Yang 已提交
1150
        Args:
1151 1152 1153 1154
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1155

J
Jiabin Yang 已提交
1156 1157
        Returns:
            NoneType: None
1158 1159 1160 1161 1162

        Examples:
            .. code-block:: python

                import numpy as np
1163 1164
                import paddle
                paddle.disable_static()
1165 1166

                x = np.ones([2, 2], np.float32)
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
                ret = paddle.sums(inputs)
                loss = paddle.reduce_sum(ret)
                loss.backward()
1177 1178

        """
1179
        pass
1180

1181
    @fake_interface_only
1182
    def gradient(self):
1183
        """
J
Jiabin Yang 已提交
1184
        **Notes**:
T
tianshuo78520a 已提交
1185
            **This API is ONLY available in Dygraph mode**
1186 1187 1188

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1189
        Returns:
1190
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1191 1192 1193 1194 1195 1196 1197

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1198
                # example1: return ndarray
1199 1200 1201 1202 1203 1204 1205 1206 1207
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1208
                    loss2.backward()
1209 1210
                    print(loss2.gradient())

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1224
        """
1225
        pass
1226

1227
    @fake_interface_only
1228
    def clear_gradient(self):
1229
        """
J
Jiabin Yang 已提交
1230
        **Notes**:
T
tianshuo78520a 已提交
1231
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1232 1233

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1234

J
Jiabin Yang 已提交
1235
        Clear  (set to ``0`` ) the Gradient of Current Variable
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1254
                    loss2.backward()
1255 1256 1257 1258 1259
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1260
        pass
X
Xin Pan 已提交
1261

1262
    def __str__(self):
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
            var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
                format(i="{", e="}", name=self.name, type=self.type, shape=self.shape, dtype=self.dtype)
        else:
            var_str = "{name} : fluid.{type})".\
                format(i="{", e="}", name=self.name, type=self.type)

        if type(self) == Parameter:
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

        return var_str
Y
Yang Yang(Tony) 已提交
1307

F
update  
fengjiayi 已提交
1308
    def to_string(self, throw_on_error, with_details=False):
1309 1310 1311
        """
        Get debug string.

J
Jiabin Yang 已提交
1312 1313 1314 1315 1316
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1317

1318 1319
        Returns:
            str: The debug string.
1320 1321 1322 1323 1324

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1325

1326 1327 1328 1329 1330
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1331
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1332
                print("=============with detail===============")
1333
                print(new_variable.to_string(True, True))
1334
        """
F
update  
fengjiayi 已提交
1335 1336
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1337
        protostr = self.desc.serialize_to_string()
1338
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1339 1340 1341 1342
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1343 1344 1345
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1346
        return res_str
1347 1348 1349

    __repr__ = __str__

1350
    @property
1351
    def stop_gradient(self):
J
Jiabin Yang 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1367 1368
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1369 1370 1371
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1372 1373
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1374 1375 1376 1377
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1378
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1379 1380
                assert (out1.gradient() == 0).all()
        """
1381
        return self._stop_gradient
1382

1383 1384
    @stop_gradient.setter
    def stop_gradient(self, s):
1385
        self._stop_gradient = s
1386

1387 1388
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1410
        return self.desc.persistable()
1411

Y
Yu Yang 已提交
1412 1413
    @persistable.setter
    def persistable(self, p):
1414
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1415

Y
Yu Yang 已提交
1416 1417
    @property
    def name(self):
J
Jiabin Yang 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1434
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
          gradient Variable from a naming convention but doesn't guarantee
          the gradient exists.**
       
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1456 1457
    @name.setter
    def name(self, new_name):
1458
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1459

Y
Yu Yang 已提交
1460 1461
    @property
    def shape(self):
J
Jiabin Yang 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1479
        # convert to tuple, make it as same as numpy API.
1480
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1481 1482

    @property
F
fengjiayi 已提交
1483
    def dtype(self):
J
Jiabin Yang 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1500
        return self.desc.dtype()
Y
Yu Yang 已提交
1501 1502 1503

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1525 1526 1527
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1528
        return self.desc.lod_level()
Y
Yu Yang 已提交
1529

Y
Yu Yang 已提交
1530 1531
    @property
    def type(self):
J
Jiabin Yang 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1548
        return self.desc.type()
Y
Yu Yang 已提交
1549

W
Wu Yi 已提交
1550
    def _set_error_clip(self, error_clip):
1551 1552 1553 1554 1555 1556 1557 1558 1559
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1560 1561
        self.error_clip = error_clip

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1602
            raise ValueError("slice step can not be zero")
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1678
    def _cloneVar(self, copy=False):
1679 1680
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1681 1682
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1683 1684 1685 1686
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1687
        new_var = self._cloneVar()
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1698
        new_var = self._cloneVar()
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1709
                return self._cloneVar(True)
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1728
                return self._cloneVar(True)
1729
            index = int(item)
1730
            if (index > 0 and index >= self.shape[axis]) \
1731 1732 1733 1734 1735 1736 1737
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1738
        return _getitem_impl_(self, item)
1739

Y
Yu Yang 已提交
1740

F
fengjiayi 已提交
1741 1742 1743
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1744

1745 1746
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1747 1748 1749 1750
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1751
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1752 1753 1754 1755
        ret_values.append(op_proto)
    return ret_values


1756 1757
class ComplexVariable(object):
    """
1758 1759
    The ComplexTensor defined on the complex number domain. It contains two common 
    real number Tensor as its members, :attr:`real` and :attr:`imag` 
1760 1761 1762
    holding the real part and imaginary part of complex numbers respectively.
    
    **Notes**:
1763
        **The constructor of ComplexTensor should not be invoked directly.**
1764

1765
        **Only support dygraph mode at present. Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph ComplexTensor with complex number data.**
1766 1767

    Args:
1768 1769
        real (Tensor): The Tensor holding real-part data.
        imag (Tensor): The Tensor holding imaginery-part data.
1770 1771 1772 1773
    
    Examples:
        .. code-block:: python

1774
            import paddle
1775 1776
            import numpy as np

1777 1778 1779 1780 1781 1782 1783 1784
            paddle.enable_imperative()
            x = paddle.to_tensor([1.0+2.0j, 0.2])
            print(x.name, x.dtype, x.shape)
            # ({'real': 'generated_tensor_0.real', 'imag': 'generated_tensor_0.imag'}, 'complex128', [2L])
            print(x.numpy())
            # [1. +2.j 0.2+0.j]
            print(type(x))
            # <class 'paddle.ComplexTensor'>
1785 1786
    """

1787 1788 1789 1790 1791
    def __new__(cls, *arg, **kwargs):
        cls.__module__ = "paddle"
        cls.__name__ = "ComplexTensor"
        return super(ComplexVariable, cls).__new__(cls)

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
    def __init__(self, real, imag):
        assert real.shape == imag.shape, "The real part and imaginary part " \
            "of a ComplexVariable should have the same shape!"
        assert real.dtype == imag.dtype, "The real part and imaginary part " \
            "of a ComplexVariable should have the same data type!"

        self.real = real
        self.imag = imag
        if self.real.dtype in [
                core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32
        ]:
            self._dtype = "complex64"
        else:
            self._dtype = "complex128"
        self._shape = self.real.shape

    @property
    def dtype(self):
        return self._dtype

    @property
    def shape(self):
        return self._shape

    @property
    def name(self):
        return {"real": self.real.name, "imag": self.imag.name}

    @name.setter
    def name(self, name):
        # rename
        if isinstance(name, str):
            self.real.name = name + ".real"
            self.imag.name = name + ".imag"
        elif (isinstance(name, tuple) or isinstance(name,
                                                    list)) and len(name) == 2:
            self.real.name, self.imag.name = name[0], name[1]
        else:
            raise ValueError(
                "An invalid name assigned to the ComplexVariable, "
                "which must be a string, or a tuple or a list with length 2!")

    def numpy(self):
        return self.real.numpy() + 1j * self.imag.numpy()

    def __str__(self):
1838 1839 1840
        return "ComplexTensor[real]: %s\n%s\nComplexTensor[imag]: %s\n%s" % (
            self.real.name, str(self.real.value().get_tensor()), self.imag.name,
            str(self.imag.value().get_tensor()))
1841 1842 1843 1844

    __repr__ = __str__


F
fengjiayi 已提交
1845
class OpProtoHolder(object):
1846 1847 1848 1849
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1859
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1860 1861 1862 1863 1864 1865
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1866 1867 1868 1869 1870 1871 1872 1873
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1874 1875
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1876 1877
        return self.op_proto_map[type]

1878 1879 1880 1881 1882 1883
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1884 1885 1886 1887
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1888
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1889
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
1890 1891
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
1892 1893
        }

F
fengjiayi 已提交
1894

X
Xin Pan 已提交
1895
class Operator(object):
1896
    """
1897 1898 1899 1900 1901 1902 1903
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1904
        type(str): The type of operator. Default None.
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1925
        Block.append_op or Block._prepend_op instead.
1926 1927 1928 1929

    Examples:
        .. code-block:: python

1930
            import paddle.fluid as fluid
1931
            cur_program = fluid.Program()
1932 1933 1934 1935 1936
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1937
    """
1938
    OP_WITHOUT_KERNEL_SET = {
1939 1940
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1941 1942
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1943
        'c_sync_comm_stream', 'queue_generator', 'dequeue', 'enqueue'
1944
    }
1945

Y
Yu Yang 已提交
1946 1947
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1948
                 desc,
Y
Yu Yang 已提交
1949 1950 1951
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1952
                 attrs=None):
L
lujun 已提交
1953
        if in_dygraph_mode():
1954 1955
            if type is None:
                raise ValueError(
1956
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1957
            self._type = type
M
minqiyang 已提交
1958
            self.attrs = attrs if attrs else {}
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1973
                )] = self.block.program._op_role
1974 1975 1976

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1977 1978
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1979 1980 1981 1982 1983 1984 1985 1986

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1987
                    "`type` to initialized an Operator can not be None.")
1988 1989
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
1990 1991 1992 1993 1994 1995 1996
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
1997 1998 1999 2000 2001 2002 2003

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2035
                        if not isinstance(in_args, (list, tuple)):
2036 2037 2038 2039 2040 2041
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2042
                        for index, arg in enumerate(in_args):
2043 2044 2045 2046
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2047
                            elif isinstance(arg, (Variable, core.VarBase)):
2048
                                in_arg_names.append(cpt.to_text(arg.name))
2049
                            else:
2050 2051 2052 2053
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2054 2055
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2082
                        if not in_dygraph_mode():
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2102
    def _has_kernel(self, op_type):
2103 2104
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2105
    def to_string(self, throw_on_error):
2106
        """
2107 2108
        Get debug string.

2109
        Args:
2110 2111
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2112

2113 2114
        Returns:
            str: The debug string.
2115 2116

        """
2117
        protostr = self.desc.serialize_to_string()
2118
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2119 2120
        return _debug_string_(proto, throw_on_error)

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
                format(outputs = outputs_str, op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2214
    def __str__(self):
2215
        return self._to_readable_code()
2216 2217 2218

    __repr__ = __str__

F
fengjiayi 已提交
2219 2220
    @property
    def type(self):
2221
        return self.desc.type()
F
fengjiayi 已提交
2222 2223

    def input(self, name):
2224
        """
2225
        Get the input arguments according to the input parameter name.
2226

2227 2228
        Args:
            name(str): The input parameter name.
2229

2230 2231 2232
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2233
        """
F
fengjiayi 已提交
2234 2235
        return self.desc.input(name)

W
Wu Yi 已提交
2236
    def _rename_input(self, old_name, new_name):
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2247
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2248

W
Wu Yi 已提交
2249
    def _rename_output(self, old_name, new_name):
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2260
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2261

F
fengjiayi 已提交
2262 2263 2264 2265
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2266 2267 2268 2269 2270 2271 2272 2273
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2274
    def output(self, name):
2275
        """
2276
        Get output arguments by the output parameter name.
2277

2278 2279
        Args:
            name(str): The output parameter name.
2280

2281 2282 2283
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2284
        """
F
fengjiayi 已提交
2285 2286 2287 2288 2289 2290
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2291 2292 2293 2294 2295 2296 2297 2298
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2299
    def has_attr(self, name):
2300
        """
2301 2302
        Whether this Operator has the attribute with name or not.

2303
        Args:
2304
            name(str): the attribute name.
2305

2306 2307
        Returns:
            bool: True if has this attribute.
2308 2309

        """
F
fengjiayi 已提交
2310 2311 2312
        return self.desc.has_attr(name)

    def attr_type(self, name):
2313
        """
2314
        Get the type of attribute by attribute's name.
2315

2316 2317
        Args:
            name(str): the attribute name.
2318

2319 2320
        Returns:
            core.AttrType: the attribute type.
2321
        """
F
fengjiayi 已提交
2322 2323
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2324
    def _set_attr(self, name, val):
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2335 2336
        self._update_desc_attr(name, val)

2337 2338 2339
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2351 2352
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2353 2354
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2355
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2356 2357 2358 2359
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2360
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2361

F
fengjiayi 已提交
2362 2363 2364 2365 2366
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2367
        """
2368 2369
        Get the attribute by name.

2370
        Args:
2371
            name(str): the attribute name.
2372

2373 2374
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2375 2376
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2377
        return self.desc.attr(name)
Y
Yu Yang 已提交
2378

W
Wu Yi 已提交
2379
    def _block_attr_id(self, name):
2380
        """
G
gongweibao 已提交
2381
        Get the block attribute's id by name.
2382

2383 2384
        Args:
            name(str): the attribute name.
2385

2386 2387
        Returns:
            int: the block index.
2388
        """
W
Wu Yi 已提交
2389
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2390

W
Wu Yi 已提交
2391
    def _block_attr(self, name):
G
gongweibao 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2402
        id = self._block_attr_id(name)
G
gongweibao 已提交
2403 2404 2405
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2406
    def _blocks_attr(self, name):
G
gongweibao 已提交
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2417
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2418 2419 2420 2421 2422
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2423
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2434
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2435

J
JiayiFeng 已提交
2436
    def all_attrs(self):
F
fengjiayi 已提交
2437
        """
2438 2439 2440
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2441
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2442 2443 2444 2445
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2446 2447
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2448
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2449 2450 2451
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2452
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2453 2454 2455 2456
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2457 2458
        return attr_map

2459 2460 2461
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2462 2463 2464 2465

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2466 2467 2468
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2469 2470 2471 2472 2473 2474 2475 2476

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2477 2478
            return False

2479 2480 2481 2482 2483 2484
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

Y
Yu Yang 已提交
2485

Y
Yu Yang 已提交
2486
class Block(object):
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2501
        use `Program._create_block()` to create a block.
2502 2503 2504 2505

    Examples:
        .. code-block:: python

2506 2507 2508
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2509 2510 2511 2512 2513 2514 2515 2516 2517
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2518
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2519
        self.desc = program.desc.block(idx)
2520
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2521
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2522
        self.program = program
2523
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2524

2525
    def __str__(self):
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2572

F
fengjiayi 已提交
2573 2574
    def to_string(self, throw_on_error, with_details=False):
        """
2575 2576
        Get debug string.

F
fengjiayi 已提交
2577 2578
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2579
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2580
            with_details(bool): more details about variables and parameters
2581 2582
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2583

2584 2585
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2586 2587 2588 2589
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2590
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2591 2592
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2593
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2594
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2595
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2596
            for op in self.ops:
F
fengjiayi 已提交
2597 2598
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2599 2600 2601
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2602 2603
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2604 2605
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2606 2607 2608

    __repr__ = __str__

Y
Yu Yang 已提交
2609 2610
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2611
        return self.desc.parent
Y
Yu Yang 已提交
2612

Y
Yu Yang 已提交
2613 2614 2615 2616
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2617
    def _set_forward_block_idx(self, idx):
2618 2619 2620 2621 2622 2623 2624 2625 2626
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2627
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2628

2629 2630 2631 2632 2633 2634 2635 2636
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
2637 2638
    @property
    def idx(self):
Y
Yu Yang 已提交
2639
        return self.desc.id
Y
Yu Yang 已提交
2640

Q
Qiao Longfei 已提交
2641
    def var(self, name):
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2655
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2656 2657 2658
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2659 2660
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2661
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2662
        return v
Q
Qiao Longfei 已提交
2663

X
Xin Pan 已提交
2664
    def _find_var_recursive(self, name):
2665 2666 2667 2668 2669 2670 2671
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2672
            Variable: the Variable with the giving name. Or None if not found.
2673
        """
Y
Yu Yang 已提交
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2698
        return None
Y
Yu Yang 已提交
2699

X
Xin Pan 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2719

Q
Qiao Longfei 已提交
2720
    def all_parameters(self):
2721
        return list(self.iter_parameters())
2722

2723
    def iter_parameters(self):
M
minqiyang 已提交
2724
        return (item[1] for item in six.iteritems(self.vars)
2725
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2726

Y
Yu Yang 已提交
2727
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
2728 2729 2730
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
2731 2732 2733
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2734
        return var
Y
Yu Yang 已提交
2735

Q
Qiao Longfei 已提交
2736 2737 2738
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2739
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2740 2741
        """
        Rename variable in vars and ops' inputs and outputs
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2754
        """
M
minqiyang 已提交
2755 2756
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2757

T
typhoonzero 已提交
2758
        if not self.has_var(name):
2759
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2760 2761
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2762
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2763 2764 2765 2766 2767 2768
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2769
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2770 2771 2772 2773
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2774
        orig_var_type = v.type
M
minqiyang 已提交
2775
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2776
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2777
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2778
        if var_type == "Parameter":
L
Leo Chen 已提交
2779 2780
            if in_dygraph_mode():
                var = ParamBase(
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
2791 2792
                var = Parameter(
                    self,
2793 2794 2795 2796 2797 2798 2799 2800 2801
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
2802
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2803 2804
            var = Variable(
                self,
T
typhoonzero 已提交
2805
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2806 2807 2808 2809
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2810
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2811 2812 2813
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2814
        self._sync_with_cpp()
2815
        return var
T
typhoonzero 已提交
2816

W
Wu Yi 已提交
2817 2818
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2819
        self.desc._remove_var(cpt.to_bytes(name))
2820 2821
        del self.vars[name]

Y
Yu Yang 已提交
2822 2823
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
2824
        param = None
L
Leo Chen 已提交
2825
        if in_dygraph_mode():
2826
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
2827 2828
        else:
            param = Parameter(global_block, *args, **kwargs)
2829
        if 'initializer' in kwargs:
2830 2831 2832 2833 2834

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2835 2836 2837 2838 2839
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
2851
                # TODO already inited, do nothing, should log a warning
2852 2853 2854
                pass
            else:
                initializer(param, self)
2855
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2856
        return param
Y
Yu Yang 已提交
2857

Y
Yu Yang 已提交
2858
    def append_op(self, *args, **kwargs):
2859 2860 2861 2862 2863 2864
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2865
        if in_dygraph_mode():
2866
            attrs = kwargs.get("attrs", {})
J
Jiabin Yang 已提交
2867
            type = kwargs.get("type", None)
2868 2869 2870
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2871
                type=type,
M
minqiyang 已提交
2872 2873
                inputs=None,
                outputs=None,
2874
                attrs=attrs)
2875

M
minqiyang 已提交
2876 2877 2878
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2879
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2880 2881

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2882
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2883 2884
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2885
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2886
        else:
2887 2888 2889 2890 2891 2892 2893 2894 2895
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2896
            self.ops.append(op)
M
minqiyang 已提交
2897

2898 2899
        return op

W
Wu Yi 已提交
2900
    def _insert_op(self, index, *args, **kwargs):
2901 2902 2903 2904 2905 2906 2907 2908 2909
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2910 2911
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2912 2913 2914 2915
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2916
    def _remove_op(self, index):
2917 2918 2919 2920 2921 2922 2923 2924 2925
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2926 2927
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2928 2929
        del self.ops[index]

W
Wu Yi 已提交
2930
    def _slice_ops(self, start, end):
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2941
        return self.ops[start:end]
Y
Yancey1989 已提交
2942

W
Wu Yi 已提交
2943
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2944
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2945 2946
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2947
            op = Operator(
J
Jiabin Yang 已提交
2948
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2949

J
Jiabin Yang 已提交
2950
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2951
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2952 2953
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2954
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2955
        else:
2956 2957 2958 2959 2960 2961 2962 2963
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2964
            self.ops.insert(0, op)
2965

Y
Yu Yang 已提交
2966 2967
        return op

W
Wu Yi 已提交
2968
    def _sync_with_cpp(self):
2969
        """
2970 2971
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2972
        """
Q
Qiao Longfei 已提交
2973 2974 2975 2976 2977
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2978
        # sync variables removed from c++ end
2979
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2980
            if not self.desc.find_var(cpt.to_bytes(var)):
2981 2982
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2983
        # sync operators from cpp
2984 2985 2986 2987
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3004 3005 3006 3007 3008

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3009
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3010 3011 3012 3013 3014 3015 3016

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3030 3031 3032 3033
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3034
    def _copy_param_info_from(self, other):
3035
        """
3036 3037
        Copy the information of parameters from the other block.

3038
        Args:
3039 3040 3041 3042 3043
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3044 3045 3046 3047 3048

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3049 3050
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3051
        for p in other.iter_parameters():
3052 3053 3054
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3055 3056
                # if the Parameter is pruned, v may be None
                continue
3057
            assert isinstance(v, Variable)
3058
            new_p = None
L
Leo Chen 已提交
3059 3060
            if in_dygraph_mode():
                new_p = ParamBase(
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3072 3073
                new_p = Parameter(
                    block=self,
3074 3075 3076
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3077 3078
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3079 3080 3081 3082 3083 3084
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3085 3086
            self.vars[new_p.name] = new_p

3087
    def _clone_variable(self, var, force_persistable=True):
3088 3089
        """
        Clone a variable into current block.
3090

3091 3092
        Args:
            var: the variable to be cloned.
3093 3094 3095
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3096 3097

        Returns:
3098
            Variable: the new  variable cloned from 'var' in current block.
3099 3100
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3101 3102 3103 3104 3105
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3106 3107
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3108
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3109 3110 3111 3112 3113 3114
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3115
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3116 3117
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3118 3119 3120 3121 3122 3123 3124
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3125
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3126 3127
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3128
        return ret_var
3129

Y
Yu Yang 已提交
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3226
    def remove_input_by_id(self, node_id):
3227 3228 3229 3230 3231 3232
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3233
        self.node.remove_input(node_id)
3234

3235
    def remove_input(self, node):
3236 3237 3238 3239
        """
        Remove a node from inputs.

        Args:
3240
            node(IrNode): the node being removed.
3241
        """
3242
        self.node.remove_input(node.node)
3243

3244
    def append_input(self, node):
3245 3246 3247 3248
        """
        Append a node in inputs.

        Args:
3249
            node(IrNode): the node being appended.
3250
        """
3251
        self.node.append_input(node.node)
3252 3253 3254 3255 3256 3257 3258 3259

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3260
    def remove_output_by_id(self, node_id):
3261 3262 3263 3264 3265 3266
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3267
        self.node.remove_output(node_id)
3268

3269
    def remove_output(self, node):
3270 3271 3272 3273
        """
        Remove a node from outputs.

        Args:
3274
            node(IrNode): the node being removed.
3275
        """
3276
        self.node.remove_output(node.node)
3277

3278
    def append_output(self, node):
3279 3280 3281 3282
        """
        Append a node in outputs.

        Args:
3283
            node(IrNode): the node being appended.
3284
        """
3285
        self.node.append_output(node.node)
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3333
            "The node variable description can not be None."
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3344
            "The node variable description can not be None."
3345 3346
        return self.node.var().persistable()

3347 3348 3349 3350 3351 3352 3353 3354
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3355
            "The node variable description can not be None."
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3366
            "The node variable description can not be None."
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3377
            "The node variable description can not be None."
3378 3379
        return self.node.var().shape()

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3427
            "The node operator description can not be None."
3428 3429
        self.node.op()._rename_input(old_input_name, new_input_name)

3430 3431 3432 3433 3434 3435 3436 3437 3438
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3439
            "The node operator description can not be None."
3440 3441
        self.node.op()._rename_output(old_output_name, new_output_name)

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3453
            "The node operator description can not be None."
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3467
            "The node operator description can not be None."
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3478
            "The node operator description can not be None."
3479 3480
        return self.node.op().set_type(new_type)

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3496
            "The node operator description can not be None."
3497 3498 3499 3500
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3501
                all(isinstance(v, Block) for v in val):
3502 3503
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3504
                isinstance(val, core.ProgramDesc):
3505 3506 3507 3508
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3509 3510 3511 3512 3513 3514 3515 3516
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3517
            "The node operator description can not be None."
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3528
            "The node operator description can not be None."
3529 3530
        return self.node.op().output_arg_names()

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3552 3553
class IrGraph(object):
    """
3554
    Python IrGraph. Beneath it is a core.Graph, which is used for
3555
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3556 3557
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3558 3559 3560 3561
    """

    def __init__(self, graph, for_test=False):
        """
3562 3563
        Construct an IrGraph using core.Graph.

3564 3565 3566 3567 3568 3569 3570 3571 3572
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3573 3574 3575 3576
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3577 3578 3579
        Warns:
            The method only clones the graph structure, not its attributes.

3580 3581 3582
        Returns:
            IrGraph: A new and duplicated graph.
        """
3583
        g = self.graph.clone()
3584 3585
        return IrGraph(g, self._for_test)

3586
    def is_test(self):
3587 3588 3589
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3590 3591
        return self._for_test

W
WangZhen 已提交
3592
    def all_nodes(self):
3593 3594 3595
        """
        Return all nodes included in the graph as a set.
        """
3596
        return {IrNode(node) for node in self.graph.nodes()}
3597

3598
    def all_var_nodes(self):
3599 3600 3601
        """
        Return all variable nodes included in the graph as a set.
        """
3602
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3603

3604
    def all_persistable_nodes(self):
3605 3606 3607
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3608 3609 3610 3611 3612
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3613
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3614

3615
    def all_op_nodes(self):
3616 3617 3618
        """
        Return all operator nodes included in the graph as a set.
        """
3619
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3620

3621
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3633
            IrVarNode: the created persistable variable node.
3634
        """
3635 3636 3637 3638 3639
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3640
        return IrVarNode(self.graph.create_var_node(var_desc))
3641 3642

    def create_var_node(self, name, var_type, shape, var_dtype):
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3654
            IrVarNode: the created variable node.
3655 3656
        """

3657 3658 3659 3660
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3661
        return IrVarNode(self.graph.create_var_node(var_desc))
3662

3663 3664 3665 3666 3667 3668
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

3669
    def create_var_node_from_desc(self, var_desc):
3670 3671 3672 3673 3674 3675 3676 3677
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3678
            IrVarNode: the created variable node.
3679
        """
3680
        return IrVarNode(self.graph.create_var_node(var_desc))
3681 3682

    def create_op_node(self, op_type, attrs, inputs, outputs):
3683 3684 3685 3686 3687 3688 3689
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
3690
            outputs(dict): the outputs of the operator node.
3691 3692

        Returns:
3693
            IrOpNode: the created operator node.
3694
        """
3695 3696
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3697
        for attr, value in six.iteritems(attrs):
3698
            self._update_desc_attr(op_desc, attr, value)
3699
        for input_name, var_nodes in six.iteritems(inputs):
3700 3701 3702 3703
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3704
        for output_name, var_nodes in six.iteritems(outputs):
3705 3706 3707 3708
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3709
        return IrOpNode(self.graph.create_op_node(op_desc))
3710 3711

    def create_op_node_from_desc(self, op_desc):
3712 3713 3714 3715 3716 3717 3718
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3719
            IrOpNode: the created operator node.
3720
        """
3721
        return IrOpNode(self.graph.create_op_node(op_desc))
3722 3723

    def update_input_link(self, old_input_node, new_input_node, op_node):
3724 3725 3726 3727
        """
        Update the input's link of a operator node.

        Args:
3728 3729 3730
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3731
        """
3732
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3733 3734
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3735 3736 3737 3738
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3739
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3740

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
3751 3752
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
3753 3754 3755 3756 3757 3758
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3759
    def link_to(self, node_in, node_out):
3760 3761 3762 3763
        """
        Connect two nodes.

        Args:
3764 3765
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3766
        """
3767
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3768
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3769 3770
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3771 3772

    def safe_remove_nodes(self, remove_nodes):
3773 3774 3775 3776 3777 3778 3779
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3780
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3781 3782 3783 3784
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3785 3786
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3787

Z
Zhen Wang 已提交
3788 3789 3790 3791 3792 3793 3794 3795
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3796
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3797 3798 3799 3800
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3801
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3802 3803 3804
                        ]
                    else:
                        var_nodes[each_var_name].append(
3805 3806
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3807 3808
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3809
    def has_circle(self):
3810 3811 3812 3813 3814 3815
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3816 3817 3818
        return core.has_circle(self.graph)

    def graph_num(self):
3819 3820 3821 3822 3823 3824
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3825 3826 3827
        return core.graph_num(self.graph)

    def topology_sort(self):
3828 3829 3830
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
3831
        Notes: the `graph` can not contain a circle.
3832 3833

        Returns:
Z
Zhen Wang 已提交
3834
            list(IrNode): nodes in topology order.
3835
        """
3836
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3837
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3838 3839

    def build_adjacency_list(self):
3840 3841 3842 3843
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3844
            dict{IrNode: set(IrNode)}: the adjacency list.
3845
        """
3846 3847 3848 3849 3850
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3851

3852 3853 3854 3855 3856 3857 3858 3859
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3860
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3861 3862 3863 3864 3865
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3866 3867 3868
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3869
                                          + ' -o ' + pdf_save_path, shell=True)
3870 3871 3872 3873 3874
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3875
        remove_ctr_vars = set()
3876
        if remove_ctr_var:
3877
            for node in self.all_var_nodes():
3878 3879 3880
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3881 3882
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3883 3884
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3885 3886 3887 3888 3889 3890
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3891 3892 3893 3894
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3895 3896
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3897 3898 3899 3900 3901 3902 3903
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3904 3905 3906
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3907
        WARN: When the graph includes backward operator nodes, the
3908 3909 3910 3911 3912 3913
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3914
        convert_pass = core.get_pass('graph_to_program_pass')
3915 3916
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3917 3918 3919 3920
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3948
class Program(object):
D
dzhwinter 已提交
3949
    """
3950 3951
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3952
    it will contain nested block.
3953

J
Jiabin Yang 已提交
3954 3955 3956
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3957

J
Jiabin Yang 已提交
3958
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
3959
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3960 3961 3962 3963 3964 3965 3966
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
3967 3968 3969 3970
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3971 3972

    Returns:
J
Jiabin Yang 已提交
3973
        Program: An empty Program.
D
dzhwinter 已提交
3974 3975

    Examples:
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3989 3990 3991

    """

3992 3993
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3994 3995
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
3996 3997
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
3998
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3999
        self.__op_role_var = []
T
tangwei12 已提交
4000

4001 4002
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4003
        self._is_distributed = False
4004
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4005
        self._is_chief = False
4006 4007 4008
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4009
        self._endpoints = []
4010 4011 4012
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4013
        self._trainers_endpoints = []
4014
        # the distributed lookup table names
T
tangwei12 已提交
4015
        self._distributed_lookup_table = None
4016 4017 4018

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4019 4020
        self._use_lamb = False

4021 4022 4023
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4024

4025 4026 4027
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4028
        self._program_config = None
4029

H
hutuxian 已提交
4030 4031 4032
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4033 4034 4035
        # appending gradients times
        self._appending_grad_times = 0

4036 4037 4038 4039
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4040 4041 4042
        # compiled program, i.e. Graph
        self._graph = None

4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
                prog1 = fluid.default_main_program()
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4070
    @property
4071
    def _op_role(self):
Y
yuyang18 已提交
4072 4073 4074 4075 4076 4077 4078 4079
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4080
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4081 4082 4083 4084
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4085 4086
        return self._current_role

4087 4088
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4089 4090 4091
        self._current_role = role

    @property
4092
    def _op_role_var(self):
Y
yuyang18 已提交
4093
        """
4094
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4095

4096
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4097 4098 4099

        Notes: This is a very low-level API. Users should not use it directly.
        """
4100
        return self.__op_role_var
Y
yuyang18 已提交
4101

4102
    @signature_safe_contextmanager
4103 4104 4105 4106 4107
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4108 4109 4110 4111
        try:
            yield
        finally:
            self._current_role = tmp_role
4112

S
rename  
sneaxiy 已提交
4113
    @signature_safe_contextmanager
W
Wu Yi 已提交
4114
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4115 4116 4117 4118 4119 4120 4121
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4122
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4123 4124 4125

        Examples:

4126
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4127
            >>> p, g = backward(...)
W
Wu Yi 已提交
4128
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4129 4130
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4131
        tmp_role = self._current_role
4132
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4133

Y
yuyang18 已提交
4134 4135
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4136
        self.__op_role_var = [
4137 4138 4139
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4140 4141 4142 4143 4144
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4145

S
rename  
sneaxiy 已提交
4146
    @signature_safe_contextmanager
X
Xin Pan 已提交
4147
    def _lr_schedule_guard(self, is_with_opt=False):
4148 4149 4150 4151 4152 4153 4154
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4155 4156 4157 4158
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4159 4160 4161

        Examples:

4162
            >>> import paddle.fluid as fluid
4163 4164 4165 4166
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4167 4168

        tmp_role = self._current_role
4169
        tmp_var = self.__op_role_var
4170

4171 4172
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4173 4174
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4175
        # TODO(typhoonzero): how to set target learning rate var
4176
        self.__op_role_var = []
4177 4178 4179 4180 4181
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4182

4183
    def __str__(self):
Y
yuyang18 已提交
4184 4185 4186 4187 4188 4189 4190 4191 4192
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
        ), "skip_op_callstack parameter's type is error, expect bool, received %s".format(
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4232
            program_str += '\n'
4233
        return program_str
Y
Yang Yang(Tony) 已提交
4234

F
fengjiayi 已提交
4235 4236 4237
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4238

J
Jiabin Yang 已提交
4239 4240 4241
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4242

J
Jiabin Yang 已提交
4243
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4244

H
haowang101779990 已提交
4245
        Returns:
J
Jiabin Yang 已提交
4246
            str: The debug string describe current Program.
Y
yuyang18 已提交
4247 4248

        Raises:
J
Jiabin Yang 已提交
4249
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4250

4251 4252 4253 4254 4255 4256
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
4257 4258
                x = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
                pred = fluid.layers.fc(x, size=3)
4259
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4260
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4261
                print("program string without detail: {}".format(prog_string))
4262
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4263
        """
4264 4265 4266 4267 4268 4269 4270 4271 4272
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4273 4274 4275 4276 4277 4278
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4279 4280
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4281 4282
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4283

W
Wu Yi 已提交
4284
    def _get_desc(self):
Y
yuyang18 已提交
4285 4286 4287 4288 4289 4290 4291
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4292 4293
        return self.desc

X
version  
Xin Pan 已提交
4294 4295 4296
    def _version(self):
        return self.desc._version()

4297
    def clone(self, for_test=False):
Y
yuyang18 已提交
4298
        """
4299
        **Notes**:
J
Jiabin Yang 已提交
4300 4301 4302 4303
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

4304
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
4305

4306
        Create a new Program with forward content of original one when ``for_test=True``.
4307
        Create a new Program as same as the original one when ``for_test=False``.
4308

J
Jiabin Yang 已提交
4309
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4310 4311 4312
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4313

4314 4315
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4316 4317
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4318
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4319

J
Jiabin Yang 已提交
4320
        For Example:
4321
          ::
L
Luo Tao 已提交
4322

4323 4324 4325 4326 4327 4328 4329 4330
            import paddle.fluid as fluid
            img = fluid.layers.data(name='image', shape=[784])
            pred = fluid.layers.fc(input=img, size=10, act='relu')
            loss = fluid.layers.mean(pred)
            # Here we use clone before Momentum
            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize(loss)
4331

J
Jiabin Yang 已提交
4332
        Args:
4333

4334 4335
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4336

J
Jiabin Yang 已提交
4337
        Returns:
4338
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4339

Y
yuyang18 已提交
4340 4341 4342

        Examples:

J
Jiabin Yang 已提交
4343
        **Notes: The Program's order maybe different after** :code:`clone` **and
4344
        this will not affect your training or testing progress. In the following
J
Jiabin Yang 已提交
4345
        example we give you an simple method** :code:`print_prog(program)` **to
4346
        print Program Descs inorder to make sure you have same print result
J
Jiabin Yang 已提交
4347
        after** :code:`clone`:
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
            .. code-block:: python

                import paddle.fluid as fluid
                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
4384 4385 4386

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
4387 4388 4389 4390 4391 4392 4393 4394 4395
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
4396
                            test_program = train_program.clone(for_test=True)
4397
                    print_prog(test_program)
J
Jiabin Yang 已提交
4398 4399 4400 4401 4402 4403 4404 4405 4406

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
4429 4430
                    
                    def network():
4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss

                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
4445 4446 4447
                            avg_loss = network()
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)
4448
                    # the test startup program is not used.
4449
                    with fluid.program_guard(test_program_2, startup_program_2):
4450
                        with fluid.unique_name.guard():
4451 4452
                            avg_loss = network()
                    print_prog(test_program_2)
4453 4454

        The two code snippets above will generate and print same programs.
4455
        """
4456 4457 4458 4459 4460

        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4461
        pruned_origin_block_id_map = None
4462
        if for_test:
4463 4464 4465 4466 4467 4468 4469 4470 4471
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
4472
        else:
4473
            p = Program()
G
gongweibao 已提交
4474 4475
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
4476
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
4477 4478 4479
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
4480 4481

            p._current_role = self._current_role
4482
            p.__op_role_var = self.__op_role_var
4483
            p._appending_grad_times = self._appending_grad_times
4484 4485
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
4486

4487 4488
            #NOTE(zhiqiu): we sync the cloned program, to update its program by
            # its desc.
W
Wu Yi 已提交
4489
            p._sync_with_cpp()
4490

W
Wu Yi 已提交
4491
        p._copy_param_info_from(self)
4492
        p._copy_data_info_from(self, pruned_origin_block_id_map)
4493
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
4494
        return p
4495

4496
    def _prune(self, targets):
Y
yuyang18 已提交
4497 4498 4499 4500 4501 4502 4503 4504
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
4505
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
4506 4507 4508 4509
                need to be pruned

        Returns:
            Program:  A new, pruned program.
4510
        """
4511
        return self._prune_with_input([], targets)
4512 4513

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
4514
        """
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
4525
            targets(list|Variable|Operator): A list of variables, operators, or variable names
4526 4527 4528 4529 4530 4531
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4532 4533 4534 4535
        #NOTE(zhiqiu): we sync the original program first, since its program may diff with
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

4536 4537
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4538 4539
        if not isinstance(targets, list):
            targets = [targets]
4540 4541 4542

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
4543 4544 4545
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
4546

4547 4548 4549 4550
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4551 4552 4553
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
4554
                else:
4555 4556 4557
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
4558 4559 4560 4561 4562 4563 4564 4565

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
                    continue

4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
                        # Skip optimize op except for optimize op in targets, 
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
                            break
4582 4583 4584 4585 4586 4587 4588 4589
                if target_op is None:
                    raise ValueError(
                        "The target variable used for pruning should have an "
                        "associated operator that generates it.")
                else:
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
4590

4591
        res = Program()
4592 4593 4594
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
4595 4596 4597
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4598
        res._sync_with_cpp()
4599 4600 4601 4602 4603

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

4604 4605
        return res

X
Xin Pan 已提交
4606
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4607
        """
F
fengjiayi 已提交
4608 4609 4610 4611 4612
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4613
        3. change the :code:`is_test`
Y
yuyang18 已提交
4614 4615 4616
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4617
        Args:
X
Xin Pan 已提交
4618 4619
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4620

Y
yuyang18 已提交
4621 4622 4623 4624 4625 4626
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4627
        res = Program()
4628
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4629 4630 4631 4632

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4633
        if prune_read_op:
4634 4635 4636 4637 4638 4639 4640 4641 4642
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4643
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4644 4645

        # change all `is_test` attributes to True
M
minqiyang 已提交
4646
        for i in six.moves.range(res.desc.num_blocks()):
4647
            block = res.desc.block(i)
M
minqiyang 已提交
4648
            for j in six.moves.range(block.op_size()):
4649 4650
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4651
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4652 4653 4654
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4655
        res._sync_with_cpp()
4656 4657
        return res

4658 4659
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4660
        """
J
Jiabin Yang 已提交
4661 4662 4663 4664
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4665

4666 4667
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4668

J
Jiabin Yang 已提交
4669
        Args:
Y
yuyang18 已提交
4670

J
Jiabin Yang 已提交
4671
            binary_str_type (str): the binary prootbuf string.
4672

J
Jiabin Yang 已提交
4673 4674
        Returns:
            Program: A deserialized Program.
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4697
        """
4698 4699
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4700
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4701
        p._sync_with_cpp()
4702
        return p
Y
Yu Yang 已提交
4703

4704
    @staticmethod
4705
    def _construct_from_desc(desc):
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4721 4722
    @property
    def random_seed(self):
Y
yuyang18 已提交
4723
        """
J
Jiabin Yang 已提交
4724
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4725 4726
        the random seed from random device.

J
Jiabin Yang 已提交
4727 4728 4729 4730
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4731

4732 4733 4734 4735 4736 4737 4738 4739

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4740
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
4741 4742 4743
                print(random_seed)
                ## 0
                ## the default random seed is 0
4744 4745

                # Here we need to set random seed before we use fluid.layers.dropout
4746
                prog.random_seed = 1
4747 4748
                z_var = fluid.layers.dropout(x_var, 0.7)

4749
                print(prog.random_seed)
4750 4751
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
4752
        """
D
dzhwinter 已提交
4753 4754
        return self._seed

Q
qiaolongfei 已提交
4755 4756
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4757
        """
4758 4759
        The number of :ref:`api_guide_Block_en`  in this Program.

J
Jiabin Yang 已提交
4760 4761 4762 4763
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4764

4765 4766 4767 4768 4769 4770 4771 4772 4773

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4774 4775


Y
yuyang18 已提交
4776
        """
Q
qiaolongfei 已提交
4777 4778
        return self.desc.num_blocks()

D
dzhwinter 已提交
4779 4780 4781
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
4782 4783 4784
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
4785 4786
        self._seed = seed

Y
Yu Yang 已提交
4787
    def __repr__(self):
4788
        return self.__str__()
4789

Y
Yu Yang 已提交
4790
    def global_block(self):
Y
yuyang18 已提交
4791
        """
J
Jiabin Yang 已提交
4792 4793
        **Notes**:
            **This API has no effect in Dygraph mode**
4794 4795 4796

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
4797 4798
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4799

4800 4801 4802 4803 4804 4805 4806 4807 4808

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4809

Y
yuyang18 已提交
4810
        """
Y
Yu Yang 已提交
4811 4812
        return self.blocks[0]

Q
Qiao Longfei 已提交
4813
    def block(self, index):
Y
yuyang18 已提交
4814
        """
J
Jiabin Yang 已提交
4815 4816
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4817

4818 4819
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
4820 4821
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4822

J
Jiabin Yang 已提交
4823 4824
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4825 4826 4827 4828 4829 4830 4831 4832 4833

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4834
        """
Q
Qiao Longfei 已提交
4835 4836
        return self.blocks[index]

Y
Yu Yang 已提交
4837
    def current_block(self):
Y
yuyang18 已提交
4838
        """
J
Jiabin Yang 已提交
4839 4840
        **Notes**:
            **This API has no effect in Dygraph mode**
4841

J
Jiabin Yang 已提交
4842 4843
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4844

J
Jiabin Yang 已提交
4845 4846
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4847

4848 4849 4850 4851 4852 4853 4854 4855
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4856
        """
Y
Yu Yang 已提交
4857 4858
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4859
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4860 4861 4862 4863 4864
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
4865

Y
yuyang18 已提交
4866 4867 4868 4869 4870
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4871
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4872 4873 4874
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4875 4876 4877 4878
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4879
    def _rollback(self):
Y
yuyang18 已提交
4880 4881 4882 4883 4884
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4885 4886
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4887
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4898 4899 4900
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4901
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4902

W
Wu Yi 已提交
4903
    def _copy_param_info_from(self, other):
4904
        """
4905
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4906

Y
yuyang18 已提交
4907 4908 4909
        Notes: This is a very low level API. Users should not invoke it
        directly.

4910 4911 4912 4913 4914 4915 4916
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4917 4918 4919
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4920

W
Wu Yi 已提交
4921
        self.global_block()._copy_param_info_from(other.global_block())
4922

4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
4934 4935 4936
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
4937 4938
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4939
        self._parameters_on_pservers = other._parameters_on_pservers
4940
        self._endpoints = other._endpoints
4941
        self._ps_endpoint = other._ps_endpoint
4942 4943
        self._distributed_lookup_table = other._distributed_lookup_table

4944
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
4945 4946
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4947

Y
yuyang18 已提交
4948 4949 4950
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4951 4952
        Args:
            other(Program): Other program
4953 4954 4955 4956
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
4957 4958 4959 4960 4961

        Returns:
            None
        """
        if not isinstance(other, Program):
4962 4963 4964
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
4965

4966 4967 4968 4969 4970
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
4971 4972 4973

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
4974 4975
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
4976
            for var in list(block.vars.values()):
4977 4978 4979 4980 4981 4982 4983
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
4984

4985
    def list_vars(self):
Y
yuyang18 已提交
4986
        """
J
Jiabin Yang 已提交
4987
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4988

J
Jiabin Yang 已提交
4989 4990
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
5002
        """
5003
        for each_block in self.blocks:
5004
            for each_var in list(each_block.vars.values()):
5005 5006
                yield each_var

5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                program = fluid.default_main_program()
                data = fluid.data(name='x', shape=[None, 13], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
                # name: "fc_0.w_0"
                # type {
                #   type: LOD_TENSOR
                #   lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 13
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # name: "fc_0.b_0"
                # type {
                # type: LOD_TENSOR
                # lod_tensor {
                #     tensor {
                #       data_type: FP32
                #       dims: 10
                #     }
                #   }
                # }
                # persistable: true
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

Y
Yu Yang 已提交
5065

5066
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5067
class Parameter(Variable):
5068
    """
5069
    Parameter is derived from Variable. A parameter is a persistable
5070
    Variable, and will be updated by optimizers after each iteration.
5071
    The training of a neural network is essentially the updating of
5072 5073
    its parameters.

5074
    Relative to a general Variable, a Parameter has several its own
5075 5076
    member variables:

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
5087 5088
    """

5089 5090 5091 5092 5093 5094
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
5095 5096 5097 5098 5099
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
5100
        if len(shape) == 0:
5101 5102
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
5103 5104 5105

        for each in shape:
            if each < 0:
5106 5107 5108
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
5109 5110

        Variable.__init__(
5111 5112 5113 5114 5115 5116 5117
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
5118 5119 5120 5121
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

5122 5123
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
5124
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
5125

5126 5127
        self.is_distributed = False

F
fengjiayi 已提交
5128
    def __str__(self):
5129
        return self._to_readable_code()
F
fengjiayi 已提交
5130

F
update  
fengjiayi 已提交
5131 5132 5133
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
5134

F
update  
fengjiayi 已提交
5135 5136 5137 5138 5139 5140 5141 5142
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

5143 5144 5145 5146 5147 5148 5149 5150 5151
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
5152 5153 5154 5155 5156 5157
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
5158
                               "do_model_average")
F
update  
fengjiayi 已提交
5159
            for attr_name in additional_attr:
5160 5161
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
5162 5163
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
5164 5165 5166 5167
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
5168

5169 5170
class ParamBase(core.VarBase):
    """
5171 5172 5173
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
5174 5175 5176
    The training of a neural network is essentially the updating of
    its ParamBase.

5177
    Relative to a general Tensor, a ParamBase has several its own
5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

5220 5221
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
5222 5223 5224 5225 5226 5227 5228 5229

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.is_distributed = False
5230
        # self.block = default_main_program().global_block()
5231

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

5245
    def __str__(self):
5246
        """
5247
        Convert a ParamBase object to a readable string.
5248

5249
        Returns(str): A readable string.
5250 5251 5252 5253

        Examples:
            .. code-block:: python

5254
                import paddle
5255
                paddle.disable_static()
5256 5257 5258 5259 5260 5261 5262 5263
                conv = paddle.nn.Conv2D(3, 3, 5)
                print(conv.weight)
                # Parameter: conv2d_0.w_0
                #   - place: CUDAPlace(0)
                #   - shape: [3, 3, 5, 5]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [...] 
5264
                paddle.enable_static()
5265
        """
5266 5267
        return "Parameter containing:\n  {}\n  - stop_gradient: {}".format(
            super(ParamBase, self).__str__(), self.stop_gradient)
5268 5269 5270 5271

    __repr__ = __str__


Y
Yu Yang 已提交
5272
# program is a global instance.
Y
Yu Yang 已提交
5273 5274
_main_program_ = Program()
_startup_program_ = Program()
5275

5276

5277
def default_startup_program():
Y
Yu Yang 已提交
5278
    """
Y
yuyang18 已提交
5279 5280
    Get default/global startup program.

J
Jiabin Yang 已提交
5281 5282 5283
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
5284 5285 5286
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
J
Jiabin Yang 已提交
5287
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
5288

J
Jiabin Yang 已提交
5289
    Returns: current default startup :ref:`api_fluid_Program`
5290

J
Jiabin Yang 已提交
5291
    Returns type: :ref:`api_fluid_Program`
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
5307
    """
Y
Yu Yang 已提交
5308
    return _startup_program_
5309

5310

5311
def default_main_program():
Y
Yu Yang 已提交
5312
    """
5313 5314 5315 5316 5317
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
5318

5319 5320
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
5321
    :code:`default_main_program` when the program is not specified.
5322

5323 5324
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
5325
    Returns:
5326
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
5327 5328 5329 5330 5331

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
5332

5333
            # Sample Network:
5334 5335
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
5355
            #print the number of blocks in the program, 1 in this case
5356
            print(fluid.default_main_program().num_blocks)
5357 5358

            #print the description of variable 'image'
5359
            print(fluid.default_main_program().blocks[0].var('image'))
5360

Y
Yu Yang 已提交
5361
    """
Y
Yu Yang 已提交
5362
    return _main_program_
Y
Yu Yang 已提交
5363 5364 5365 5366 5367


def switch_main_program(program):
    """
    Switch the main program to a new program.
5368

Y
Yu Yang 已提交
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
5383
    Switch the startup program to a new program
Y
Yu Yang 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
5396
@signature_safe_contextmanager
Y
Yu Yang 已提交
5397 5398
def program_guard(main_program, startup_program=None):
    """
5399 5400
    :api_attr: Static Graph

5401 5402 5403
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
5404

G
guofei 已提交
5405
    Args:
5406 5407
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
5408 5409 5410 5411
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
5412
    Examples:
5413 5414
       .. code-block:: python
       
5415
          import paddle
Y
yuyang18 已提交
5416

5417 5418 5419 5420 5421 5422
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
              hidden = paddle.static.nn.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
5423 5424 5425

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
5426

Y
Yu Yang 已提交
5427
    Examples:
5428
       .. code-block:: python
Y
yuyang18 已提交
5429

5430
          import paddle
5431

5432 5433 5434 5435 5436
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
G
guofei 已提交
5437
    
Y
Yu Yang 已提交
5438
    """
5439
    from .data_feeder import check_type
5440 5441
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
5442 5443
    main_program = switch_main_program(main_program)
    if startup_program is not None:
5444
        check_type(startup_program, 'startup_program', Program,
5445
                   'paddle.static.program_guard')
Y
Yu Yang 已提交
5446
        startup_program = switch_startup_program(startup_program)
5447 5448 5449 5450 5451 5452
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
5453 5454


W
Wu Yi 已提交
5455
def _get_var(name, program=None):
X
xuwei06 已提交
5456
    """
Y
yuyang18 已提交
5457
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
5458

X
xuwei06 已提交
5459 5460 5461
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
5462
        If None, default_global_program() will be used.
X
xuwei06 已提交
5463 5464 5465 5466 5467 5468 5469

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
5470
    assert isinstance(program, Program)
X
xuwei06 已提交
5471 5472

    return program.global_block().var(name)
5473 5474


S
rename  
sneaxiy 已提交
5475
@signature_safe_contextmanager
L
lujun 已提交
5476 5477 5478 5479
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
5480
    core._switch_tracer(tracer)
M
minqiyang 已提交
5481

5482 5483 5484 5485 5486
    try:
        yield
    finally:
        core._switch_tracer(tmp_trace)
        _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
5487 5488


S
rename  
sneaxiy 已提交
5489
@signature_safe_contextmanager
L
lujun 已提交
5490
def _dygraph_place_guard(place):
5491 5492 5493
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
M
minqiyang 已提交
5494

5495 5496 5497
    try:
        yield
    finally:
5498
        _global_expected_place_ = tmp_place
5499 5500 5501 5502


def load_op_library(lib_filename):
    """
5503 5504
    :api_attr: Static Graph
    
5505 5506 5507
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
T
tianshuo78520a 已提交
5508
    Please note, the type of custom operators can't have the same type
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574


def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
        device(str|None): Specify the device to use in the context. It should be 'cpu' or 'gpu',
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            support_gpu = fluid.is_compiled_with_cuda()
            place = fluid.CPUPlace()
            if support_gpu:
                place = fluid.CUDAPlace(0)

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
            data1 = fluid.layers.fill_constant(shape=[1, 3, 8, 8], value=0.5, dtype='float32')
            data2 = fluid.layers.fill_constant(shape=[1, 3, 5, 5], value=0.5, dtype='float32')
            shape = fluid.layers.shape(data2)

            with fluid.device_guard("cpu"):
                # Ops created here will be placed on CPUPlace
                shape = fluid.layers.slice(shape, axes=[0], starts=[0], ends=[4])
            with fluid.device_guard('gpu'):
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
                out = fluid.layers.crop_tensor(data1, shape=shape)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            result = exe.run(fetch_list=[out])
    """

5575 5576 5577 5578 5579
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
5580 5581 5582 5583
    if device not in ['cpu', 'gpu', '', None]:
        raise ValueError(
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
            "when there is no need to specify device. But received %s" % device)
5584 5585
    if index:
        device = ":".join([device, index])
5586
    pre_device = switch_device(device)
5587 5588 5589 5590
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                fluid.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
        if core.globals().is_public(key):
            core.globals()[key] = value
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
            res = fluid.get_flags(flags)
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
            if (core.globals().is_public(key)):
                value = core.globals()[key]
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
        if (core.globals().is_public(flags)):
            value = core.globals()[flags]
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value