framework.py 75.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
P
peizhilin 已提交
19
import os
F
fengjiayi 已提交
20
import re
21
import six
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
P
peizhilin 已提交
30 31 32 33 34 35 36 37 38 39 40 41
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
42
except Exception as e:
43
    raise e
44
from . import unique_name
Y
Yu Yang 已提交
45

46
__all__ = [
47 48 49 50
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
51
    'name_scope',
52
]
Y
Yu Yang 已提交
53

Q
qiaolongfei 已提交
54 55 56 57
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
58 59
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

60 61 62 63 64 65 66 67 68 69
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
110

111 112 113 114
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
115 116
          with name_scope("attention"):
             ...
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
136 137 138
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
139 140 141 142


def grad_var_name(var_name):
    """
143 144
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
145 146 147
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
148

149
def convert_np_dtype_to_dtype_(np_dtype):
150 151
    """
    Convert the data type in numpy to the data type in Paddle
152

153
    Args:
154
        np_dtype(np.dtype): the data type in numpy.
155

156 157
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
158 159

    """
160 161
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
162
        return core.VarDesc.VarType.FP32
163
    elif dtype == np.float64:
164
        return core.VarDesc.VarType.FP64
165
    elif dtype == np.float16:
166
        return core.VarDesc.VarType.FP16
167
    elif dtype == np.int32:
168
        return core.VarDesc.VarType.INT32
169
    elif dtype == np.int16:
170
        return core.VarDesc.VarType.INT16
171
    elif dtype == np.int64:
172
        return core.VarDesc.VarType.INT64
173
    elif dtype == np.bool:
174
        return core.VarDesc.VarType.BOOL
175 176
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
177 178
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
179 180
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
181
    else:
M
minqiyang 已提交
182
        raise ValueError("Not supported numpy dtype %s" % dtype)
183 184 185


def dtype_is_floating(dtype):
186 187 188
    """
    Check the data type is floating or not.
    Args:
189
        dtype(np.dtype|core.VarDesc.VarType): data type.
190 191 192 193 194
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
195
    if not isinstance(dtype, core.VarDesc.VarType):
196 197
        dtype = convert_np_dtype_to_dtype_(dtype)

198 199 200 201
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
202 203


Y
Yang Yang(Tony) 已提交
204
def _debug_string_(proto, throw_on_error=True):
205 206 207 208 209 210 211 212 213 214 215
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
216
    error_fields = list()
Y
Yang Yang(Tony) 已提交
217
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
218 219
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
220 221 222
    return proto.__str__()


X
Xin Pan 已提交
223
class Variable(object):
224
    """
225 226 227
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
228
    two variables in different blocks could have the same name.
229

230 231
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
232

233
    Most of a Variable's member variables can be setted to be None. It mean
234
    it is not available or will be specified later.
235 236

    Args:
237
        block(Block): The block that the variable belongs to.
238 239
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
240 241
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
242
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
243
            Some kinds of variable do not contain shape, just set it to None.
244 245 246
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
247
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
248
            series data.
249
            Default: None
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
272 273
    """

Y
Yu Yang 已提交
274 275
    def __init__(self,
                 block,
Y
Yu Yang 已提交
276
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
277 278 279 280
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
281
                 capacity=None,
Q
QI JUN 已提交
282
                 persistable=None,
F
fengjiayi 已提交
283
                 error_clip=None,
Y
Yu Yang 已提交
284
                 stop_gradient=False,
F
fengjiayi 已提交
285
                 is_data=False,
Y
Yu Yang 已提交
286
                 **kwargs):
Y
Yu Yang 已提交
287
        self.block = block
F
fengjiayi 已提交
288
        self.error_clip = error_clip
Y
Yu Yang 已提交
289 290

        if name is None:
Y
Yu Yang 已提交
291
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
292
        is_new_var = False
M
minqiyang 已提交
293
        name = cpt.to_text(name)
M
minqiyang 已提交
294
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
295 296

        if self.desc is None:
M
minqiyang 已提交
297
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
298
            is_new_var = True
Y
Yu Yang 已提交
299

Y
Yu Yang 已提交
300 301 302 303 304 305 306 307
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
308
        if shape is not None:
Y
Yu Yang 已提交
309
            if is_new_var:
310
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
311 312 313 314 315 316 317 318
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
319
        if dtype is not None:
320
            if not isinstance(dtype, core.VarDesc.VarType):
321
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
322
            if is_new_var:
F
fengjiayi 已提交
323
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
324
            else:
F
fengjiayi 已提交
325
                old_dtype = self.dtype
Q
QI JUN 已提交
326
                if dtype != old_dtype:
Y
Yu Yang 已提交
327 328 329 330 331
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
332 333

        if lod_level is not None:
Y
Yu Yang 已提交
334
            if is_new_var:
335
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
336 337 338 339 340 341 342
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
343 344 345 346 347 348 349 350 351 352 353
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

354 355 356 357 358 359 360 361
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
362
        self.block.vars[name] = self
Y
Yu Yang 已提交
363
        self.op = None
M
minqiyang 已提交
364
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
365
        self.is_data = is_data
X
Xin Pan 已提交
366 367 368
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
369
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
370

371
    def _numpy(self):
M
minqiyang 已提交
372
        scope = _imperative_tracer().get_scope()
373 374 375 376
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

    def _backward(self):
377
        scope = _imperative_tracer().get_scope()
X
Xin Pan 已提交
378
        self._ivar._run_backward(scope)
379 380

    def _gradient(self):
X
Xin Pan 已提交
381
        return np.array(self._ivar._grad())
382

M
minqiyang 已提交
383 384 385 386 387 388 389 390
    @property
    def _value(self):
        return self._ivar.value

    @_value.setter
    def _value(self, v):
        self._ivar.value = v

391
    def __str__(self):
Y
Yang Yang(Tony) 已提交
392 393
        return self.to_string(True)

F
update  
fengjiayi 已提交
394
    def to_string(self, throw_on_error, with_details=False):
395 396 397 398
        """
        Get debug string.

        Args:
399 400
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
401
            with_details(bool): more details about variables and parameters
402 403
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
404

405 406
        Returns:
            str: The debug string.
407
        """
F
update  
fengjiayi 已提交
408 409
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
410
        protostr = self.desc.serialize_to_string()
411
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
412 413 414 415
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
416 417
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
418
        return res_str
419 420 421

    __repr__ = __str__

W
Wu Yi 已提交
422
    def _set_desc(self, input):
423 424 425 426 427 428 429 430 431
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
432 433
        self.desc = input

434 435 436 437 438 439 440 441
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

442 443 444 445
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
446 447 448 449
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
450 451
    @property
    def name(self):
M
minqiyang 已提交
452
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
453

T
typhoonzero 已提交
454 455 456 457
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
458 459 460
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
461
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
462 463

    @property
F
fengjiayi 已提交
464 465
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
466 467 468

    @property
    def lod_level(self):
469
        return self.desc.lod_level()
Y
Yu Yang 已提交
470

Y
Yu Yang 已提交
471 472 473 474
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
475
    def _set_error_clip(self, error_clip):
476 477 478 479 480 481 482 483 484
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
485 486
        self.error_clip = error_clip

Y
Yu Yang 已提交
487

F
fengjiayi 已提交
488 489 490
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
491

492 493
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
494 495 496 497
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
498
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
499 500 501 502 503
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
504 505 506 507
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
508 509 510 511 512 513 514 515 516
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
517
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
518 519 520 521 522 523
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
524 525 526 527 528 529 530 531
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
532 533
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
534 535
        return self.op_proto_map[type]

536 537 538 539
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
540
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
541
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
542 543
        }

F
fengjiayi 已提交
544

X
Xin Pan 已提交
545
class Operator(object):
546
    """
547 548 549 550 551 552 553
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
554
        type(str): The type of operator. Default None.
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
575
        Block.append_op or Block._prepend_op instead.
576 577 578 579 580 581 582 583 584 585

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
586
    """
587 588 589
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
590 591
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
592
    }
593

Y
Yu Yang 已提交
594 595
    def __init__(self,
                 block,
Y
Yu Yang 已提交
596
                 desc,
Y
Yu Yang 已提交
597 598 599
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
600
                 attrs=None):
Y
Yu Yang 已提交
601
        self.block = block
Y
Yu Yang 已提交
602
        self.desc = desc
G
gongweibao 已提交
603 604 605 606 607
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
608 609 610 611
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
612 613
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
614 615 616

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
617 618
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
619

G
gongweibao 已提交
620 621
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
622

F
fengjiayi 已提交
623 624 625 626 627
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
628
        self.desc.set_type(type)
F
fengjiayi 已提交
629
        proto = OpProtoHolder.instance().get_op_proto(type)
630

631 632 633
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
634 635
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
636
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
637 638
                    return True
            return False
Q
QI JUN 已提交
639

Y
Yang Yang(Tony) 已提交
640 641 642 643 644 645 646
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
647 648 649 650
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
651 652
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
653 654 655
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
656
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
657
                            in_arg_names.append(arg)
658 659
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
660
                        else:
M
minqiyang 已提交
661
                            in_arg_names.append(cpt.to_text(arg.name))
662
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
663 664
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
665

Y
Yu Yang 已提交
666
        if outputs is not None:
667 668 669 670 671 672 673
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
674 675
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
676 677 678
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
679

F
fengjiayi 已提交
680
            for out_proto in proto.outputs:
681 682 683 684
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
685 686
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
687 688 689
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
690
                    out_arg_names.append(cpt.to_text(arg.name))
691 692
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
693

G
gongweibao 已提交
694 695
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
696
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
697
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
698
                attr_name = attr.name
G
gongweibao 已提交
699
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
700
                    continue
G
gongweibao 已提交
701
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
702 703
                self._update_desc_attr(attr_name, attr_val)

704
        self.desc.check_attrs()
M
minqiyang 已提交
705

W
Wu Yi 已提交
706
        if self._has_kernel(type):
Q
QI JUN 已提交
707
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
708
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
709

X
Xin Pan 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
            self.inputs = []
            if inputs is not None:
                for inp in inputs.values():
                    if isinstance(inp, Variable):
                        self.inputs.append(inp)
                    elif isinstance(inp, list) or isinstance(inp, tuple):
                        self.inputs.extend(inp[:])
            self.outputs = []
            if outputs is not None:
                for out in outputs.values():
                    if isinstance(out, Variable):
                        self.outputs.append(out)
                    elif isinstance(out, list) or isinstance(out, tuple):
                        self.outputs.extend(out[:])
F
fengjiayi 已提交
727

W
Wu Yi 已提交
728
    def _has_kernel(self, op_type):
729 730
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
731
    def to_string(self, throw_on_error):
732
        """
733 734
        Get debug string.

735
        Args:
736 737
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
738

739 740
        Returns:
            str: The debug string.
741 742

        """
743
        protostr = self.desc.serialize_to_string()
744
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
745 746 747 748
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
749 750 751

    __repr__ = __str__

F
fengjiayi 已提交
752 753 754 755 756
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
757
        """
758
        Get the input arguments according to the input parameter name.
759

760 761
        Args:
            name(str): The input parameter name.
762

763 764 765
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
766
        """
F
fengjiayi 已提交
767 768
        return self.desc.input(name)

W
Wu Yi 已提交
769
    def _rename_input(self, old_name, new_name):
770 771 772 773 774 775 776 777 778 779
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
780
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
781

W
Wu Yi 已提交
782
    def _rename_output(self, old_name, new_name):
783 784 785 786 787 788 789 790 791 792
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
793
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
794

F
fengjiayi 已提交
795 796 797 798
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
799 800 801 802 803 804 805 806
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
807
    def output(self, name):
808
        """
809
        Get output arguments by the output parameter name.
810

811 812
        Args:
            name(str): The output parameter name.
813

814 815 816
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
817
        """
F
fengjiayi 已提交
818 819 820 821 822 823
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

824 825 826 827 828 829 830 831
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
832
    def has_attr(self, name):
833
        """
834 835
        Whether this Operator has the attribute with name or not.

836
        Args:
837
            name(str): the attribute name.
838

839 840
        Returns:
            bool: True if has this attribute.
841 842

        """
F
fengjiayi 已提交
843 844 845
        return self.desc.has_attr(name)

    def attr_type(self, name):
846
        """
847
        Get the type of attribute by attribute's name.
848

849 850
        Args:
            name(str): the attribute name.
851

852 853
        Returns:
            core.AttrType: the attribute type.
854
        """
F
fengjiayi 已提交
855 856
        return self.desc.attr_type(name)

W
Wu Yi 已提交
857
    def _set_attr(self, name, val):
858 859 860 861 862 863 864 865 866 867
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
881 882
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
883 884
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
885
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
886 887 888 889
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
890
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
891

F
fengjiayi 已提交
892 893 894 895 896
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
897
        """
898 899
        Get the attribute by name.

900
        Args:
901
            name(str): the attribute name.
902

903 904
        Returns:
            bool|int|str|float|list: The attribute value. The return value
905 906
            can be any valid attribute type.
        """
F
fengjiayi 已提交
907
        return self.desc.attr(name)
Y
Yu Yang 已提交
908

W
Wu Yi 已提交
909
    def _block_attr_id(self, name):
910
        """
G
gongweibao 已提交
911
        Get the block attribute's id by name.
912

913 914
        Args:
            name(str): the attribute name.
915

916 917
        Returns:
            int: the block index.
918
        """
W
Wu Yi 已提交
919
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
920

W
Wu Yi 已提交
921
    def _block_attr(self, name):
G
gongweibao 已提交
922 923 924 925 926 927 928 929 930 931
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
932
        id = self._block_attr_id(name)
G
gongweibao 已提交
933 934 935
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
936
    def _blocks_attr(self, name):
G
gongweibao 已提交
937 938 939 940 941 942 943 944 945 946
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
947
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
948 949 950 951 952
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
953
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
954 955 956 957 958 959 960 961 962 963
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
964
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
965

J
JiayiFeng 已提交
966
    def all_attrs(self):
F
fengjiayi 已提交
967
        """
968 969 970
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
971
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
972 973 974 975
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
976 977
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
978
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
979 980 981
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
982
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
983 984 985 986
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
987 988
        return attr_map

Y
Yu Yang 已提交
989

Y
Yu Yang 已提交
990
class Block(object):
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1005
        use `Program._create_block()` to create a block.
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1020
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1021
        self.desc = program.desc.block(idx)
1022
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1023
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1024
        self.program = program
1025
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1026

1027
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1028 1029
        return self.to_string(True)

F
fengjiayi 已提交
1030 1031
    def to_string(self, throw_on_error, with_details=False):
        """
1032 1033
        Get debug string.

F
fengjiayi 已提交
1034 1035
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1036
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1037
            with_details(bool): more details about variables and parameters
1038 1039
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1040

1041 1042
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1043 1044 1045 1046
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1047
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1048 1049
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1050
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1051
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1052
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1053
            for op in self.ops:
F
fengjiayi 已提交
1054 1055
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1056 1057 1058
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1059 1060
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1061 1062
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1063 1064 1065

    __repr__ = __str__

Y
Yu Yang 已提交
1066 1067
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1068
        return self.desc.parent
Y
Yu Yang 已提交
1069

Y
Yu Yang 已提交
1070 1071 1072 1073
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1074
    def _set_forward_block_idx(self, idx):
1075 1076 1077 1078 1079 1080 1081 1082 1083
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1084
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1085

Y
Yu Yang 已提交
1086 1087
    @property
    def idx(self):
Y
Yu Yang 已提交
1088
        return self.desc.id
Y
Yu Yang 已提交
1089

Q
Qiao Longfei 已提交
1090
    def var(self, name):
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1104
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1105 1106 1107
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1108 1109
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1110
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1111
        return v
Q
Qiao Longfei 已提交
1112

X
Xin Pan 已提交
1113
    def _find_var_recursive(self, name):
1114 1115 1116 1117 1118 1119 1120
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1121
            Variable: the Variable with the giving name. Or None if not found.
1122
        """
Y
Yu Yang 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1147
        return None
Y
Yu Yang 已提交
1148

X
Xin Pan 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1168

Q
Qiao Longfei 已提交
1169
    def all_parameters(self):
1170
        return list(self.iter_parameters())
1171

1172
    def iter_parameters(self):
M
minqiyang 已提交
1173
        return (item[1] for item in six.iteritems(self.vars)
1174
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1175

Y
Yu Yang 已提交
1176
    def create_var(self, *args, **kwargs):
1177
        var = Variable(block=self, *args, **kwargs)
1178 1179
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1180
        return var
Y
Yu Yang 已提交
1181

Q
Qiao Longfei 已提交
1182 1183 1184
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1185
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1186 1187
        """
        Rename variable in vars and ops' inputs and outputs
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1200
        """
M
minqiyang 已提交
1201 1202
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1203

T
typhoonzero 已提交
1204
        if not self.has_var(name):
1205
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1206 1207
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1208
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1209 1210 1211 1212 1213 1214 1215
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1216
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1217 1218 1219 1220
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1221
        orig_var_type = v.type
M
minqiyang 已提交
1222
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1223
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1224
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1225
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1226 1227 1228 1229
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1230
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1231 1232 1233 1234 1235 1236 1237
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1238
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1239 1240
            var = Variable(
                self,
T
typhoonzero 已提交
1241
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1242 1243 1244 1245
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1246
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1247 1248 1249
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1250
        self._sync_with_cpp()
1251
        return var
T
typhoonzero 已提交
1252

W
Wu Yi 已提交
1253 1254
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1255
        self.desc._remove_var(cpt.to_bytes(name))
1256 1257
        del self.vars[name]

Y
Yu Yang 已提交
1258 1259
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1260
        param = Parameter(global_block, *args, **kwargs)
1261
        if 'initializer' in kwargs:
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1282
        return param
Y
Yu Yang 已提交
1283

Y
Yu Yang 已提交
1284
    def append_op(self, *args, **kwargs):
1285 1286 1287 1288 1289 1290
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1291
        op_desc = self.desc.append_op()
1292
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
1293
        if _in_imperative_mode():
X
Xin Pan 已提交
1294
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
M
minqiyang 已提交
1295 1296
                                       [v._ivar for v in op.outputs], self.desc,
                                       kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1297 1298 1299
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1300
    def _insert_op(self, index, *args, **kwargs):
1301 1302 1303 1304 1305 1306 1307 1308 1309
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1310 1311
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1312 1313 1314 1315
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1316
    def _remove_op(self, index):
1317 1318 1319 1320 1321 1322 1323 1324 1325
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1326 1327
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1328 1329
        del self.ops[index]

W
Wu Yi 已提交
1330
    def _slice_ops(self, start, end):
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1341
        return self.ops[start:end]
Y
Yancey1989 已提交
1342

W
Wu Yi 已提交
1343 1344
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1345
        op = Operator(self, op_desc, *args, **kwargs)
M
minqiyang 已提交
1346 1347
        if _in_imperative_mode():
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
M
minqiyang 已提交
1348 1349
                                       [v._ivar for v in op.outputs], self.desc,
                                       kwargs.get("stop_gradient", False))
Q
qiaolongfei 已提交
1350
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1351 1352
        return op

W
Wu Yi 已提交
1353
    def _sync_with_cpp(self):
1354
        """
1355 1356
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1357
        """
Q
Qiao Longfei 已提交
1358 1359 1360 1361 1362
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1363
        # sync variables removed from c++ end
1364
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1365
            if not self.desc.find_var(cpt.to_bytes(var)):
1366 1367
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1368
        # sync operators from cpp
1369 1370 1371 1372
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1389 1390 1391 1392 1393

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1394
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1395 1396 1397 1398 1399 1400 1401

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1415 1416 1417 1418
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1419
    def _copy_param_info_from(self, other):
1420
        """
1421 1422
        Copy the information of parameters from the other block.

1423
        Args:
1424 1425 1426 1427 1428
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1429 1430 1431 1432 1433

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1434 1435
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1436
        for p in other.iter_parameters():
1437 1438 1439
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1440
                raise ValueError("_copy_param_info_from should be invoked with "
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1453
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1454
                error_clip=p.error_clip,
1455 1456 1457
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1458
    def _clone_variable(self, var):
1459 1460
        """
        Clone a variable into current block.
1461

1462 1463 1464 1465
        Args:
            var: the variable to be cloned.

        Returns:
1466
            Variable: the new  variable cloned from 'var' in current block.
1467 1468
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1469 1470 1471 1472 1473
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1474 1475
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1476
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1477 1478 1479 1480 1481 1482
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1483 1484
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1485 1486 1487 1488 1489 1490 1491
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1492 1493
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1494
        return ret_var
1495

Y
Yu Yang 已提交
1496 1497

class Program(object):
D
dzhwinter 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1509
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1510 1511

    Returns:
Y
yuyang18 已提交
1512
        A empty program.
D
dzhwinter 已提交
1513 1514

    Examples:
Y
yuyang18 已提交
1515 1516 1517 1518 1519 1520
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1521 1522 1523

    """

1524 1525
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1526 1527
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1528
        self._seed = 0
Y
yuyang18 已提交
1529
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1530
        self._op_role_var = []
T
tangwei12 已提交
1531 1532 1533 1534

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1535
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1536
        self._endpoints = []
1537
        self._trainers_endpoints = []
T
tangwei12 已提交
1538
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1539 1540 1541

    @property
    def op_role(self):
Y
yuyang18 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1555 1556 1557 1558 1559 1560 1561 1562
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1563 1564 1565 1566 1567 1568 1569
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1570 1571 1572 1573
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1574
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1575 1576

    @contextlib.contextmanager
W
Wu Yi 已提交
1577
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1578 1579 1580 1581 1582 1583 1584
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1585
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1586 1587 1588 1589

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1590
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1591 1592
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1593 1594 1595
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1596 1597
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1598 1599 1600 1601
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1602
        yield
X
Xin Pan 已提交
1603 1604
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1605

1606
    @contextlib.contextmanager
X
Xin Pan 已提交
1607
    def _lr_schedule_guard(self, is_with_opt=False):
1608 1609 1610 1611 1612 1613 1614
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1615 1616 1617 1618
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1619 1620 1621 1622 1623 1624 1625

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1626 1627 1628 1629

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1630 1631
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1632 1633
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1634 1635 1636
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1637 1638
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1639

1640
    def __str__(self):
Y
yuyang18 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1650 1651
        return self.to_string(True)

F
fengjiayi 已提交
1652 1653 1654
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1655

F
fengjiayi 已提交
1656
        Args:
Y
yuyang18 已提交
1657 1658
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1659

Y
yuyang18 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1680 1681
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1682 1683
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1684

W
Wu Yi 已提交
1685
    def _get_desc(self):
Y
yuyang18 已提交
1686 1687 1688 1689 1690 1691 1692
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1693 1694
        return self.desc

X
version  
Xin Pan 已提交
1695 1696 1697
    def _version(self):
        return self.desc._version()

1698
    def clone(self, for_test=False):
Y
yuyang18 已提交
1699 1700 1701
        """
        Create a new, duplicated program.

1702

Y
yuyang18 已提交
1703 1704 1705 1706
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1707

Y
yuyang18 已提交
1708 1709 1710 1711
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1712 1713 1714 1715 1716
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1717 1718

        Args:
Y
yuyang18 已提交
1719 1720
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1721

D
dzhwinter 已提交
1722
        Returns:
Y
yuyang18 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1776 1777
        """
        if for_test:
X
Xin Pan 已提交
1778
            p = self._inference_optimize(prune_read_op=False)
1779
        else:
1780
            p = Program()
G
gongweibao 已提交
1781 1782
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1783
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1784 1785 1786
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1787 1788 1789 1790

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1791
            p._sync_with_cpp()
1792

W
Wu Yi 已提交
1793
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1794
        p._copy_data_info_from(self)
1795
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1796
        return p
1797

W
Wu Yi 已提交
1798
    def _prune(self, targets):
Y
yuyang18 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1814 1815 1816 1817 1818 1819
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1820 1821
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1822
                    # and we need to find the current op that generate this
1823 1824 1825 1826 1827 1828 1829 1830
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1831
                    t = t.op
1832 1833 1834 1835
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1836
                else:
1837 1838
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1839 1840 1841 1842

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1843 1844 1845
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1846
        res._sync_with_cpp()
1847 1848
        return res

X
Xin Pan 已提交
1849
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1850
        """
F
fengjiayi 已提交
1851 1852 1853 1854 1855
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1856
        3. change the :code:`is_test`
Y
yuyang18 已提交
1857 1858 1859
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1860
        Args:
X
Xin Pan 已提交
1861 1862
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1863

Y
yuyang18 已提交
1864 1865 1866 1867 1868 1869
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1870
        res = Program()
1871
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1872 1873 1874 1875

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1876
        if prune_read_op:
1877 1878 1879 1880 1881 1882 1883 1884 1885
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1886
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1887 1888

        # change all `is_test` attributes to True
M
minqiyang 已提交
1889
        for i in six.moves.range(res.desc.num_blocks()):
1890
            block = res.desc.block(i)
M
minqiyang 已提交
1891
            for j in six.moves.range(block.op_size()):
1892 1893
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1894
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1895 1896 1897
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1898
        res._sync_with_cpp()
1899 1900
        return res

1901 1902
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1903 1904 1905 1906 1907 1908 1909
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1910
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1911 1912 1913 1914

        Returns:
            Program: A deserialized program desc.
        """
1915 1916
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1917
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1918
        p._sync_with_cpp()
1919
        return p
Y
Yu Yang 已提交
1920

D
dzhwinter 已提交
1921 1922
    @property
    def random_seed(self):
Y
yuyang18 已提交
1923 1924 1925 1926 1927 1928
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1929 1930
        return self._seed

Q
qiaolongfei 已提交
1931 1932
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1933 1934 1935
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1936 1937
        return self.desc.num_blocks()

D
dzhwinter 已提交
1938 1939 1940 1941 1942 1943
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1944
    def __repr__(self):
1945
        return self.__str__()
1946

Y
Yu Yang 已提交
1947
    def global_block(self):
Y
yuyang18 已提交
1948 1949 1950
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1951 1952
        return self.blocks[0]

Q
Qiao Longfei 已提交
1953
    def block(self, index):
Y
yuyang18 已提交
1954 1955 1956 1957 1958 1959 1960 1961
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1962 1963
        return self.blocks[index]

Y
Yu Yang 已提交
1964
    def current_block(self):
Y
yuyang18 已提交
1965 1966 1967 1968
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1969 1970
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1971
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1982
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1983 1984 1985
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1986 1987 1988 1989
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1990
    def _rollback(self):
Y
yuyang18 已提交
1991 1992 1993 1994 1995
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1996 1997
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1998
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2009 2010 2011
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2012
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2013

W
Wu Yi 已提交
2014
    def _copy_param_info_from(self, other):
2015
        """
2016
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2017

Y
yuyang18 已提交
2018 2019 2020
        Notes: This is a very low level API. Users should not invoke it
        directly.

2021 2022 2023 2024 2025 2026 2027
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2028
            raise TypeError("_copy_param_info_from should be invoked with "
2029 2030 2031
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2032
            raise ValueError("_copy_param_info_from should be invoked with two "
2033
                             "program, with represent the same topology")
W
Wu Yi 已提交
2034
        self.global_block()._copy_param_info_from(other.global_block())
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2055
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2056 2057
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2058

Y
yuyang18 已提交
2059 2060 2061
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2062 2063 2064 2065 2066 2067 2068
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2069
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2070 2071 2072
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2073
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2074
                             "program, with represent the same topology")
2075
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2076 2077 2078
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2079
    def list_vars(self):
Y
yuyang18 已提交
2080 2081 2082 2083 2084 2085
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2086
        for each_block in self.blocks:
2087
            for each_var in list(each_block.vars.values()):
2088 2089
                yield each_var

Y
Yu Yang 已提交
2090

Y
Yu Yang 已提交
2091
class Parameter(Variable):
2092
    """
2093
    Parameter is derived from Variable. A parameter is a persistable
2094
    Variable, and will be updated by optimizers after each iteration.
2095
    The training of a neural network is essentially the updating of
2096 2097
    its parameters.

2098
    Relative to a general Variable, a Parameter has several its own
2099 2100
    member variables:

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2113 2114
    """

Y
Yu Yang 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2125 2126 2127

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2128 2129 2130 2131
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2132 2133
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2134
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2135

W
wanghaoshuang 已提交
2136
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2137

F
fengjiayi 已提交
2138 2139 2140
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2141 2142 2143
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2144

F
update  
fengjiayi 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2159
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2160
            for attr_name in additional_attr:
2161 2162
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2163 2164
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2165 2166 2167 2168
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2169

Y
Yu Yang 已提交
2170
# program is a global instance.
Y
Yu Yang 已提交
2171 2172
_main_program_ = Program()
_startup_program_ = Program()
2173

2174

2175
def default_startup_program():
Y
Yu Yang 已提交
2176
    """
Y
yuyang18 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2186

Y
Yu Yang 已提交
2187 2188 2189
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2190
    return _startup_program_
2191

2192

2193
def default_main_program():
Y
Yu Yang 已提交
2194
    """
Y
yuyang18 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2204

Y
Yu Yang 已提交
2205 2206 2207
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2208
    return _main_program_
Y
Yu Yang 已提交
2209 2210 2211 2212 2213


def switch_main_program(program):
    """
    Switch the main program to a new program.
2214

Y
Yu Yang 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2229
    Switch the startup program to a new program
Y
Yu Yang 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2245 2246 2247
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2248

Y
Yu Yang 已提交
2249
    Examples:
Y
yuyang18 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2260

Y
Yu Yang 已提交
2261
    Examples:
Y
yuyang18 已提交
2262 2263 2264 2265 2266 2267

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2268

Y
Yu Yang 已提交
2269
    Args:
Y
yuyang18 已提交
2270
        main_program(Program): New main program inside `with` statement.
2271
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2285 2286


W
Wu Yi 已提交
2287
def _get_var(name, program=None):
X
xuwei06 已提交
2288
    """
Y
yuyang18 已提交
2289
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2290

X
xuwei06 已提交
2291 2292 2293
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2294
        If None, default_global_program() will be used.
X
xuwei06 已提交
2295 2296 2297 2298 2299 2300 2301

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2302
    assert isinstance(program, Program)
X
xuwei06 已提交
2303 2304

    return program.global_block().var(name)
2305 2306 2307 2308 2309 2310 2311 2312 2313


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace