framework.py 92.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
Q
qiaolongfei 已提交
30

M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33
try:
P
peizhilin 已提交
34
    if os.name == 'nt':
P
peizhilin 已提交
35
        import sys
P
peizhilin 已提交
36 37 38 39 40
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

41
    from . import core
42
except ImportError as e:
P
peizhilin 已提交
43
    if os.name == 'nt':
44
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
45
        raise ImportError(
46 47 48 49 50
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
51 52 53 54 55 56
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
57
except Exception as e:
58
    raise e
59
from . import unique_name
Y
Yu Yang 已提交
60

61
__all__ = [
62 63 64 65
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
66
    'name_scope',
S
sneaxiy 已提交
67 68 69
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
70
]
Y
Yu Yang 已提交
71

Q
qiaolongfei 已提交
72 73 74 75
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
76 77
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

78
_imperative_tracer_ = None
M
minqiyang 已提交
79
_imperative_current_expected_place_ = None
80 81 82 83 84 85 86 87 88


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
89

M
minqiyang 已提交
90
def _current_expected_place():
M
minqiyang 已提交
91
    return _imperative_current_expected_place_
M
minqiyang 已提交
92 93


S
sneaxiy 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _cpu_num():
    return int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))


def cuda_places(device_ids=None):
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
        gpus_env = os.getenv("FLAGS_selected_gpus")
        if gpus_env:
            device_ids = [int(s) for s in gpus_env.split(",")]
        else:
            device_ids = six.moves.range(core.get_cuda_device_count())
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


Q
Qiao Longfei 已提交
126 127 128 129 130 131 132 133 134
def is_pserver_mode(main_program):
    main = main_program if main_program \
        else default_main_program()
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
161
@signature_safe_contextmanager
162 163 164 165 166 167 168 169 170 171 172 173
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
174

175 176 177 178
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
179 180
          with name_scope("attention"):
             ...
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
200 201 202
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
203 204 205 206


def grad_var_name(var_name):
    """
207 208
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
209 210 211
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
212

213
def convert_np_dtype_to_dtype_(np_dtype):
214 215
    """
    Convert the data type in numpy to the data type in Paddle
216

217
    Args:
218
        np_dtype(np.dtype): the data type in numpy.
219

220 221
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
222 223

    """
224 225
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
226
        return core.VarDesc.VarType.FP32
227
    elif dtype == np.float64:
228
        return core.VarDesc.VarType.FP64
229
    elif dtype == np.float16:
230
        return core.VarDesc.VarType.FP16
231
    elif dtype == np.int32:
232
        return core.VarDesc.VarType.INT32
233
    elif dtype == np.int16:
234
        return core.VarDesc.VarType.INT16
235
    elif dtype == np.int64:
236
        return core.VarDesc.VarType.INT64
237
    elif dtype == np.bool:
238
        return core.VarDesc.VarType.BOOL
239 240
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
241 242
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
243 244
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
245
    else:
M
minqiyang 已提交
246
        raise ValueError("Not supported numpy dtype %s" % dtype)
247 248 249


def dtype_is_floating(dtype):
250 251 252
    """
    Check the data type is floating or not.
    Args:
253
        dtype(np.dtype|core.VarDesc.VarType): data type.
254 255 256 257 258
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
259
    if not isinstance(dtype, core.VarDesc.VarType):
260 261
        dtype = convert_np_dtype_to_dtype_(dtype)

262 263 264 265
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
266 267


Y
Yang Yang(Tony) 已提交
268
def _debug_string_(proto, throw_on_error=True):
269 270 271 272 273 274 275 276 277 278 279
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
280
    error_fields = list()
Y
Yang Yang(Tony) 已提交
281
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
282 283
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
284 285 286
    return proto.__str__()


X
Xin Pan 已提交
287
class Variable(object):
288
    """
289 290 291
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
292
    two variables in different blocks could have the same name.
293

294 295
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
296

297
    Most of a Variable's member variables can be setted to be None. It mean
298
    it is not available or will be specified later.
299 300

    Args:
301
        block(Block): The block that the variable belongs to.
302 303
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
304 305
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
306
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
307
            Some kinds of variable do not contain shape, just set it to None.
308 309 310
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
311
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
312
            series data.
313
            Default: None
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
336 337
    """

Y
Yu Yang 已提交
338 339
    def __init__(self,
                 block,
Y
Yu Yang 已提交
340
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
341 342 343 344
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
345
                 capacity=None,
Q
QI JUN 已提交
346
                 persistable=None,
F
fengjiayi 已提交
347
                 error_clip=None,
Y
Yu Yang 已提交
348
                 stop_gradient=False,
F
fengjiayi 已提交
349
                 is_data=False,
Y
Yu Yang 已提交
350
                 **kwargs):
Y
Yu Yang 已提交
351
        self.block = block
F
fengjiayi 已提交
352
        self.error_clip = error_clip
Y
Yu Yang 已提交
353 354

        if name is None:
Y
Yu Yang 已提交
355
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
356
        is_new_var = False
M
minqiyang 已提交
357
        name = cpt.to_text(name)
M
minqiyang 已提交
358
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
359 360

        if self.desc is None:
M
minqiyang 已提交
361
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
362
            is_new_var = True
Y
Yu Yang 已提交
363

Y
Yu Yang 已提交
364 365 366 367 368 369 370 371
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
372
        if shape is not None:
Y
Yu Yang 已提交
373
            if is_new_var:
374
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
375 376 377 378 379 380 381 382
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
383
        if dtype is not None:
384
            if not isinstance(dtype, core.VarDesc.VarType):
385
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
386
            if is_new_var:
F
fengjiayi 已提交
387
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
388
            else:
F
fengjiayi 已提交
389
                old_dtype = self.dtype
Q
QI JUN 已提交
390
                if dtype != old_dtype:
Y
Yu Yang 已提交
391 392 393 394 395
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
396 397

        if lod_level is not None:
Y
Yu Yang 已提交
398
            if is_new_var:
399
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
400 401 402 403 404 405 406
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
407 408 409 410 411 412 413 414 415 416 417
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

418 419 420 421 422 423 424 425
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
426
        self.block.vars[name] = self
Y
Yu Yang 已提交
427
        self.op = None
M
minqiyang 已提交
428
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
429
        self.is_data = is_data
X
Xin Pan 已提交
430
        if _in_imperative_mode():
M
minqiyang 已提交
431 432 433
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
434
            self._ivar.desc = self.desc
435
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
436

437
    def _numpy(self):
M
minqiyang 已提交
438
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
439
        return np.array(new_ivar.value().get_tensor())
440 441

    def _backward(self):
X
Xin Pan 已提交
442
        self._ivar._run_backward()
443 444

    def _gradient(self):
M
minqiyang 已提交
445
        return np.array(self._ivar._grad_value())
446

X
Xin Pan 已提交
447 448
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
449

450
    def __str__(self):
Y
Yang Yang(Tony) 已提交
451 452
        return self.to_string(True)

F
update  
fengjiayi 已提交
453
    def to_string(self, throw_on_error, with_details=False):
454 455 456 457
        """
        Get debug string.

        Args:
458 459
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
460
            with_details(bool): more details about variables and parameters
461 462
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
463

464 465
        Returns:
            str: The debug string.
466
        """
F
update  
fengjiayi 已提交
467 468
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
469
        protostr = self.desc.serialize_to_string()
470
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
471 472 473 474
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
475 476
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
477
        return res_str
478 479 480

    __repr__ = __str__

W
Wu Yi 已提交
481
    def _set_desc(self, input):
482 483 484 485 486 487 488 489 490
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
491 492
        self.desc = input

493 494
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
495 496 497 498
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
499 500 501

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
502 503 504
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
505

506 507 508 509
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
510 511 512 513
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
514 515
    @property
    def name(self):
M
minqiyang 已提交
516
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
517

T
typhoonzero 已提交
518 519 520 521
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
522 523 524
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
525
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
526 527

    @property
F
fengjiayi 已提交
528 529
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
530 531 532

    @property
    def lod_level(self):
533
        return self.desc.lod_level()
Y
Yu Yang 已提交
534

Y
Yu Yang 已提交
535 536 537 538
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
539
    def _set_error_clip(self, error_clip):
540 541 542 543 544 545 546 547 548
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
549 550
        self.error_clip = error_clip

Y
Yu Yang 已提交
551

F
fengjiayi 已提交
552 553 554
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
555

556 557
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
558 559 560 561
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
562
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
563 564 565 566 567
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
568 569 570 571
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
572 573 574 575 576 577 578 579 580
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
581
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
582 583 584 585 586 587
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
588 589 590 591 592 593 594 595
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
596 597
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
598 599
        return self.op_proto_map[type]

600 601 602 603
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
604
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
605 606
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
607 608
        }

F
fengjiayi 已提交
609

X
Xin Pan 已提交
610
class Operator(object):
611
    """
612 613 614 615 616 617 618
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
619
        type(str): The type of operator. Default None.
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
640
        Block.append_op or Block._prepend_op instead.
641 642 643 644 645 646 647 648 649 650

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
651
    """
652 653 654
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
655 656
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
657
    }
658

Y
Yu Yang 已提交
659 660
    def __init__(self,
                 block,
Y
Yu Yang 已提交
661
                 desc,
Y
Yu Yang 已提交
662 663 664
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
665
                 attrs=None):
Y
Yu Yang 已提交
666
        self.block = block
Y
Yu Yang 已提交
667
        self.desc = desc
G
gongweibao 已提交
668 669 670 671 672
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
673 674 675 676
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
677 678
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
679 680 681

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
682 683
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
684

G
gongweibao 已提交
685 686
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
687

F
fengjiayi 已提交
688 689 690 691 692
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
693 694 695 696 697
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
698
        self.desc.set_type(type)
F
fengjiayi 已提交
699
        proto = OpProtoHolder.instance().get_op_proto(type)
700

701 702 703
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
704 705
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
706
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
707 708
                    return True
            return False
Q
QI JUN 已提交
709

Y
Yang Yang(Tony) 已提交
710 711 712 713 714 715 716
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
717 718 719 720
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
721 722
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
723 724 725
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
726
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
727
                            in_arg_names.append(arg)
728 729
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
730
                        else:
M
minqiyang 已提交
731
                            in_arg_names.append(cpt.to_text(arg.name))
732
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
733 734
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
735

Y
Yu Yang 已提交
736
        if outputs is not None:
737
            for m in proto.outputs:
Q
qingqing01 已提交
738 739 740 741 742 743
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
744
            for out_proto in proto.outputs:
Q
qingqing01 已提交
745 746
                if out_proto.name not in outputs:
                    continue
747 748 749 750
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
751 752
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
753 754 755
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
756
                    out_arg_names.append(cpt.to_text(arg.name))
757 758
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
759

G
gongweibao 已提交
760 761
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
762
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
763
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
764
                attr_name = attr.name
G
gongweibao 已提交
765
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
766
                    continue
G
gongweibao 已提交
767
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
768 769
                self._update_desc_attr(attr_name, attr_val)

770
        self.desc.check_attrs()
W
Wu Yi 已提交
771
        if self._has_kernel(type):
Q
QI JUN 已提交
772
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
773
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
774

X
Xin Pan 已提交
775 776 777
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
778
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
779
            if inputs is not None:
X
Xin Pan 已提交
780 781 782 783 784 785
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
786
            if outputs is not None:
X
Xin Pan 已提交
787 788 789 790 791
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
792

W
Wu Yi 已提交
793
    def _has_kernel(self, op_type):
794 795
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
796
    def to_string(self, throw_on_error):
797
        """
798 799
        Get debug string.

800
        Args:
801 802
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
803

804 805
        Returns:
            str: The debug string.
806 807

        """
808
        protostr = self.desc.serialize_to_string()
809
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
810 811 812 813
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
814 815 816

    __repr__ = __str__

F
fengjiayi 已提交
817 818 819 820 821
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
822
        """
823
        Get the input arguments according to the input parameter name.
824

825 826
        Args:
            name(str): The input parameter name.
827

828 829 830
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
831
        """
F
fengjiayi 已提交
832 833
        return self.desc.input(name)

W
Wu Yi 已提交
834
    def _rename_input(self, old_name, new_name):
835 836 837 838 839 840 841 842 843 844
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
845
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
846

W
Wu Yi 已提交
847
    def _rename_output(self, old_name, new_name):
848 849 850 851 852 853 854 855 856 857
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
858
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
859

F
fengjiayi 已提交
860 861 862 863
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
864 865 866 867 868 869 870 871
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
872
    def output(self, name):
873
        """
874
        Get output arguments by the output parameter name.
875

876 877
        Args:
            name(str): The output parameter name.
878

879 880 881
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
882
        """
F
fengjiayi 已提交
883 884 885 886 887 888
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

889 890 891 892 893 894 895 896
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
897
    def has_attr(self, name):
898
        """
899 900
        Whether this Operator has the attribute with name or not.

901
        Args:
902
            name(str): the attribute name.
903

904 905
        Returns:
            bool: True if has this attribute.
906 907

        """
F
fengjiayi 已提交
908 909 910
        return self.desc.has_attr(name)

    def attr_type(self, name):
911
        """
912
        Get the type of attribute by attribute's name.
913

914 915
        Args:
            name(str): the attribute name.
916

917 918
        Returns:
            core.AttrType: the attribute type.
919
        """
F
fengjiayi 已提交
920 921
        return self.desc.attr_type(name)

W
Wu Yi 已提交
922
    def _set_attr(self, name, val):
923 924 925 926 927 928 929 930 931 932
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
946 947
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
948 949
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
950
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
951 952 953 954
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
955
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
956

F
fengjiayi 已提交
957 958 959 960 961
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
962
        """
963 964
        Get the attribute by name.

965
        Args:
966
            name(str): the attribute name.
967

968 969
        Returns:
            bool|int|str|float|list: The attribute value. The return value
970 971
            can be any valid attribute type.
        """
F
fengjiayi 已提交
972
        return self.desc.attr(name)
Y
Yu Yang 已提交
973

W
Wu Yi 已提交
974
    def _block_attr_id(self, name):
975
        """
G
gongweibao 已提交
976
        Get the block attribute's id by name.
977

978 979
        Args:
            name(str): the attribute name.
980

981 982
        Returns:
            int: the block index.
983
        """
W
Wu Yi 已提交
984
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
985

W
Wu Yi 已提交
986
    def _block_attr(self, name):
G
gongweibao 已提交
987 988 989 990 991 992 993 994 995 996
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
997
        id = self._block_attr_id(name)
G
gongweibao 已提交
998 999 1000
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1001
    def _blocks_attr(self, name):
G
gongweibao 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1012
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1013 1014 1015 1016 1017
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1018
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1029
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1030

J
JiayiFeng 已提交
1031
    def all_attrs(self):
F
fengjiayi 已提交
1032
        """
1033 1034 1035
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1036
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1037 1038 1039 1040
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1041 1042
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1043
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1044 1045 1046
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1047
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1048 1049 1050 1051
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1052 1053
        return attr_map

Y
Yu Yang 已提交
1054

Y
Yu Yang 已提交
1055
class Block(object):
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1070
        use `Program._create_block()` to create a block.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1085
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1086
        self.desc = program.desc.block(idx)
1087
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1088
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1089
        self.program = program
1090
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1091

1092
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1093 1094
        return self.to_string(True)

F
fengjiayi 已提交
1095 1096
    def to_string(self, throw_on_error, with_details=False):
        """
1097 1098
        Get debug string.

F
fengjiayi 已提交
1099 1100
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1101
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1102
            with_details(bool): more details about variables and parameters
1103 1104
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1105

1106 1107
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1108 1109 1110 1111
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1112
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1113 1114
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1115
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1116
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1117
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1118
            for op in self.ops:
F
fengjiayi 已提交
1119 1120
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1121 1122 1123
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1124 1125
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1126 1127
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1128 1129 1130

    __repr__ = __str__

Y
Yu Yang 已提交
1131 1132
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1133
        return self.desc.parent
Y
Yu Yang 已提交
1134

Y
Yu Yang 已提交
1135 1136 1137 1138
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1139
    def _set_forward_block_idx(self, idx):
1140 1141 1142 1143 1144 1145 1146 1147 1148
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1149
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1150

Y
Yu Yang 已提交
1151 1152
    @property
    def idx(self):
Y
Yu Yang 已提交
1153
        return self.desc.id
Y
Yu Yang 已提交
1154

Q
Qiao Longfei 已提交
1155
    def var(self, name):
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1169
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1170 1171 1172
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1173 1174
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1175
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1176
        return v
Q
Qiao Longfei 已提交
1177

X
Xin Pan 已提交
1178
    def _find_var_recursive(self, name):
1179 1180 1181 1182 1183 1184 1185
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1186
            Variable: the Variable with the giving name. Or None if not found.
1187
        """
Y
Yu Yang 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1212
        return None
Y
Yu Yang 已提交
1213

X
Xin Pan 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1233

Q
Qiao Longfei 已提交
1234
    def all_parameters(self):
1235
        return list(self.iter_parameters())
1236

1237
    def iter_parameters(self):
M
minqiyang 已提交
1238
        return (item[1] for item in six.iteritems(self.vars)
1239
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1240

Y
Yu Yang 已提交
1241
    def create_var(self, *args, **kwargs):
1242
        var = Variable(block=self, *args, **kwargs)
1243 1244
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1245
        return var
Y
Yu Yang 已提交
1246

Q
Qiao Longfei 已提交
1247 1248 1249
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1250
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1251 1252
        """
        Rename variable in vars and ops' inputs and outputs
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1265
        """
M
minqiyang 已提交
1266 1267
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1268

T
typhoonzero 已提交
1269
        if not self.has_var(name):
1270
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1271 1272
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1273
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1274 1275 1276 1277 1278 1279 1280
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1281
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1282 1283 1284 1285
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1286
        orig_var_type = v.type
M
minqiyang 已提交
1287
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1288
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1289
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1290
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1291 1292 1293 1294
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1295
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1296 1297 1298 1299 1300 1301 1302
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1303
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1304 1305
            var = Variable(
                self,
T
typhoonzero 已提交
1306
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1307 1308 1309 1310
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1311
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1312 1313 1314
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1315
        self._sync_with_cpp()
1316
        return var
T
typhoonzero 已提交
1317

W
Wu Yi 已提交
1318 1319
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1320
        self.desc._remove_var(cpt.to_bytes(name))
1321 1322
        del self.vars[name]

Y
Yu Yang 已提交
1323 1324
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1325
        param = Parameter(global_block, *args, **kwargs)
1326
        if 'initializer' in kwargs:
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1347
        return param
Y
Yu Yang 已提交
1348

Y
Yu Yang 已提交
1349
    def append_op(self, *args, **kwargs):
1350 1351 1352 1353 1354 1355
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1356
        op_desc = self.desc.append_op()
1357 1358 1359 1360 1361 1362 1363 1364
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1365

M
minqiyang 已提交
1366 1367
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1368 1369 1370 1371
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1372
        if _in_imperative_mode():
1373
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1374
                                       _imperative_current_expected_place_,
1375
                                       stop_gradient)
Y
Yu Yang 已提交
1376

W
Wu Yi 已提交
1377
    def _insert_op(self, index, *args, **kwargs):
1378 1379 1380 1381 1382 1383 1384 1385 1386
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1387 1388
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1389 1390 1391 1392
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1393
    def _remove_op(self, index):
1394 1395 1396 1397 1398 1399 1400 1401 1402
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1403 1404
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1405 1406
        del self.ops[index]

W
Wu Yi 已提交
1407
    def _slice_ops(self, start, end):
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1418
        return self.ops[start:end]
Y
Yancey1989 已提交
1419

W
Wu Yi 已提交
1420 1421
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1422 1423 1424 1425 1426 1427 1428
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1429
        self.ops.insert(0, op)
1430
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1431 1432
        return op

W
Wu Yi 已提交
1433
    def _sync_with_cpp(self):
1434
        """
1435 1436
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1437
        """
Q
Qiao Longfei 已提交
1438 1439 1440 1441 1442
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1443
        # sync variables removed from c++ end
1444
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1445
            if not self.desc.find_var(cpt.to_bytes(var)):
1446 1447
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1448
        # sync operators from cpp
1449 1450 1451 1452
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1469 1470 1471 1472 1473

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1474
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1475 1476 1477 1478 1479 1480 1481

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1495 1496 1497 1498
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1499
    def _copy_param_info_from(self, other):
1500
        """
1501 1502
        Copy the information of parameters from the other block.

1503
        Args:
1504 1505 1506 1507 1508
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1509 1510 1511 1512 1513

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1514 1515
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1516
        for p in other.iter_parameters():
1517 1518 1519
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1520
                raise ValueError("_copy_param_info_from should be invoked with "
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1533
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1534
                error_clip=p.error_clip,
1535 1536 1537
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1538
    def _clone_variable(self, var):
1539 1540
        """
        Clone a variable into current block.
1541

1542 1543 1544 1545
        Args:
            var: the variable to be cloned.

        Returns:
1546
            Variable: the new  variable cloned from 'var' in current block.
1547 1548
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1549 1550 1551 1552 1553
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1554 1555
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1556
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1557 1558 1559 1560 1561 1562
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1563 1564
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1565 1566 1567 1568 1569 1570 1571
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1572 1573
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1574
        return ret_var
1575

Y
Yu Yang 已提交
1576

1577 1578
class IrGraph(object):
    """
1579 1580 1581 1582
    Python IrGraph. Beneath it is a core.Graph, which is used for
    create a c++ Ir Pass Graph. An IrGraph is just a graph view of
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1583 1584 1585 1586
    """

    def __init__(self, graph, for_test=False):
        """
1587 1588
        Construct an IrGraph using core.Graph.

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1599 1600 1601
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1602 1603
        return self._for_test

W
WangZhen 已提交
1604
    def all_nodes(self):
1605 1606 1607
        """
        Return all nodes included in the graph as a set.
        """
W
WangZhen 已提交
1608
        return {node for node in self.graph.nodes()}
1609 1610

    def all_vars(self):
1611 1612 1613
        """
        Return all variable nodes included in the graph as a set.
        """
1614 1615
        return {node for node in self.graph.nodes() if node.is_var()}

W
WangZhen 已提交
1616
    def all_persistable_vars(self):
1617 1618 1619
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1620 1621 1622 1623 1624 1625 1626
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
        return persistable_nodes

1627
    def all_ops(self):
1628 1629 1630
        """
        Return all operator nodes included in the graph as a set.
        """
1631 1632
        return {node for node in self.graph.nodes() if node.is_op()}

W
WangZhen 已提交
1633 1634
    def var_node(self, name):
        """
1635 1636
        Get a variable node by name from the graph.

W
WangZhen 已提交
1637 1638
        Args:
            name(str): the name of the variable node.
1639

W
WangZhen 已提交
1640 1641 1642
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1643

W
WangZhen 已提交
1644
        Returns:
1645
            core.Node: the variable node with the giving name.
W
WangZhen 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
        var_nodes = self.all_vars()
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1660
    def create_param_node(self, name, var_type, shape, var_dtype):
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
            core.Node: the created persistable variable node.
        """
1674 1675 1676 1677 1678 1679 1680 1681
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
        return self.graph.create_var_node(var_desc)

    def create_var_node(self, name, var_type, shape, var_dtype):
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
            core.Node: the created variable node.
        """

1696 1697 1698 1699 1700 1701 1702
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        return self.graph.create_var_node(var_desc)

    def create_var_node_from_desc(self, var_desc):
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
            core.Node: the created variable node.
        """
1713 1714 1715
        return self.graph.create_var_node(var_desc)

    def create_op_node(self, op_type, attrs, inputs, outputs):
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
            core.Node: the created operator node.
        """
1728 1729
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
1730
        for attr, value in six.iteritems(attrs):
1731
            self._update_desc_attr(op_desc, attr, value)
1732
        for input_name, var_nodes in six.iteritems(inputs):
1733 1734 1735 1736
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
1737
        for output_name, var_nodes in six.iteritems(outputs):
1738 1739 1740 1741 1742 1743 1744
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
        return self.graph.create_op_node(op_desc)

    def create_op_node_from_desc(self, op_desc):
1745 1746 1747 1748 1749 1750 1751 1752 1753
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
            core.Node: the created operator node.
        """
1754 1755 1756
        return self.graph.create_op_node(op_desc)

    def update_input_link(self, old_input_node, new_input_node, op_node):
1757 1758 1759 1760 1761 1762 1763 1764
        """
        Update the input's link of a operator node.

        Args:
            old_input_node(core.Node): the old input node of the giving op_node.
            new_input_node(core.Node): the new input node of the giving op_node.
            op_node(core.Node): the operator node that is needed to update input's link.
        """
W
WangZhen 已提交
1765 1766 1767
        assert old_input_node in self.graph.nodes() and new_input_node in \
        self.graph.nodes() and op_node in self.graph.nodes(), \
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
1768 1769 1770 1771 1772 1773 1774
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
        op_node.op()._rename_input(old_input_node.name(), new_input_node.name())

    def link_to(self, node_in, node_out):
1775 1776 1777 1778 1779 1780 1781
        """
        Connect two nodes.

        Args:
            node_in(core.Node): the input node.
            node_out(core.Node): the output node.
        """
1782
        assert node_in in self.graph.nodes() and node_out in self.graph.nodes(), \
W
WangZhen 已提交
1783
            'The two arguments(node_in&node_out) must be in the graph nodes.'
1784 1785 1786 1787
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
1788 1789 1790 1791 1792 1793 1794
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
1795
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
1796 1797 1798 1799
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
1800 1801
        core.graph_safe_remove_nodes(self.graph, remove_nodes)

W
WangZhen 已提交
1802
    def has_circle(self):
1803 1804 1805 1806 1807 1808
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
1809 1810 1811
        return core.has_circle(self.graph)

    def graph_num(self):
1812 1813 1814 1815 1816 1817
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
1818 1819 1820
        return core.graph_num(self.graph)

    def topology_sort(self):
1821 1822 1823 1824 1825 1826 1827 1828
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
            set(core.Node): nodes in topology order.
        """
W
WangZhen 已提交
1829 1830 1831
        return core.topology_sort(self.graph)

    def build_adjacency_list(self):
1832 1833 1834 1835 1836 1837
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
            dict{core.Node: set(core.Node)}: the adjacency list.
        """
W
WangZhen 已提交
1838 1839
        return core.build_adjacency_list(self.graph)

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
            marked_nodes(set(core.Node)): nodes that are needed to be marked.
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

1854 1855 1856 1857 1858 1859 1860 1861 1862
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

1863 1864 1865 1866 1867 1868
        if remove_ctr_var:
            remove_ctr_vars = set()
            for node in self.graph.nodes():
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
1869 1870
        ops_num = 0
        for node in self.graph.nodes():
1871
            if node.is_op():
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
                ops_num += 1
        print('Total ops num = {}.'.format(ops_num))
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
                marked_nodes = set(marked_nodes)
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
1898
        convert_pass = core.get_pass('graph_to_program_pass')
1899 1900
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
1921
class Program(object):
D
dzhwinter 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1933
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1934 1935

    Returns:
Y
yuyang18 已提交
1936
        A empty program.
D
dzhwinter 已提交
1937 1938

    Examples:
Y
yuyang18 已提交
1939 1940 1941 1942 1943 1944
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1945 1946 1947

    """

1948 1949
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1950 1951
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1952
        self._seed = 0
Y
yuyang18 已提交
1953
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1954
        self._op_role_var = []
T
tangwei12 已提交
1955

1956 1957
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
1958
        self._is_distributed = False
1959
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
1960
        self._is_chief = False
1961 1962 1963
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
1964
        self._endpoints = []
1965 1966 1967
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
1968
        self._trainers_endpoints = []
1969
        # the distributed lookup table names
T
tangwei12 已提交
1970
        self._distributed_lookup_table = None
D
dzhwinter 已提交
1971
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
1972
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
1973
        self.__is_mem_optimized = False
D
dzhwinter 已提交
1974 1975

    @property
D
dzhwinter 已提交
1976
    def _is_mem_optimized(self):
D
dzhwinter 已提交
1977 1978
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
1979
        return self.__is_mem_optimized
D
dzhwinter 已提交
1980

D
dzhwinter 已提交
1981 1982 1983
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
1984 1985 1986

    @property
    def op_role(self):
Y
yuyang18 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2000 2001 2002
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2003
    def op_role(self, role):
Y
yuyang18 已提交
2004 2005 2006 2007
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2008 2009 2010 2011 2012 2013 2014
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2015 2016 2017 2018
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2019
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2020

S
rename  
sneaxiy 已提交
2021
    @signature_safe_contextmanager
W
Wu Yi 已提交
2022
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2023 2024 2025 2026 2027 2028 2029
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2030
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2031 2032 2033 2034

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2035
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2036 2037
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2038 2039 2040
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2041 2042
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2043 2044 2045 2046
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2047
        yield
X
Xin Pan 已提交
2048 2049
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2050

S
rename  
sneaxiy 已提交
2051
    @signature_safe_contextmanager
X
Xin Pan 已提交
2052
    def _lr_schedule_guard(self, is_with_opt=False):
2053 2054 2055 2056 2057 2058 2059
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2060 2061 2062 2063
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2064 2065 2066 2067 2068 2069 2070

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2071 2072 2073 2074

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2075 2076
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2077 2078
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2079 2080 2081
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2082 2083
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2084

2085
    def __str__(self):
Y
yuyang18 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2095 2096
        return self.to_string(True)

F
fengjiayi 已提交
2097 2098 2099
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2100

F
fengjiayi 已提交
2101
        Args:
Y
yuyang18 已提交
2102 2103
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2104

Y
yuyang18 已提交
2105 2106 2107 2108
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2109 2110
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2111 2112 2113 2114

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2125 2126
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2127 2128
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2129

W
Wu Yi 已提交
2130
    def _get_desc(self):
Y
yuyang18 已提交
2131 2132 2133 2134 2135 2136 2137
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2138 2139
        return self.desc

X
version  
Xin Pan 已提交
2140 2141 2142
    def _version(self):
        return self.desc._version()

2143
    def clone(self, for_test=False):
Y
yuyang18 已提交
2144 2145 2146
        """
        Create a new, duplicated program.

2147

Y
yuyang18 已提交
2148 2149 2150 2151
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2152

Y
yuyang18 已提交
2153 2154 2155 2156
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2157 2158 2159 2160 2161
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2162 2163

        Args:
Y
yuyang18 已提交
2164 2165
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2166

D
dzhwinter 已提交
2167
        Returns:
Y
yuyang18 已提交
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2221 2222
        """
        if for_test:
X
Xin Pan 已提交
2223
            p = self._inference_optimize(prune_read_op=False)
2224
        else:
2225
            p = Program()
G
gongweibao 已提交
2226 2227
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2228
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2229 2230 2231
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2232 2233 2234 2235

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2236
            p._sync_with_cpp()
2237

W
Wu Yi 已提交
2238
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2239
        p._copy_data_info_from(self)
2240
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2241
        return p
2242

W
Wu Yi 已提交
2243
    def _prune(self, targets):
Y
yuyang18 已提交
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2259 2260 2261 2262 2263 2264
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2265 2266
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2267
                    # and we need to find the current op that generate this
2268 2269 2270 2271 2272 2273 2274 2275
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2276
                    t = t.op
2277 2278 2279 2280
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2281
                else:
2282 2283
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2284 2285 2286 2287

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2288 2289 2290
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2291
        res._sync_with_cpp()
2292 2293
        return res

X
Xin Pan 已提交
2294
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2295
        """
F
fengjiayi 已提交
2296 2297 2298 2299 2300
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2301
        3. change the :code:`is_test`
Y
yuyang18 已提交
2302 2303 2304
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2305
        Args:
X
Xin Pan 已提交
2306 2307
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2308

Y
yuyang18 已提交
2309 2310 2311 2312 2313 2314
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2315
        res = Program()
2316
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2317 2318 2319 2320

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2321
        if prune_read_op:
2322 2323 2324 2325 2326 2327 2328 2329 2330
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2331
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2332 2333

        # change all `is_test` attributes to True
M
minqiyang 已提交
2334
        for i in six.moves.range(res.desc.num_blocks()):
2335
            block = res.desc.block(i)
M
minqiyang 已提交
2336
            for j in six.moves.range(block.op_size()):
2337 2338
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2339
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2340 2341 2342
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2343
        res._sync_with_cpp()
2344 2345
        return res

2346 2347
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2348 2349 2350 2351 2352 2353 2354
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2355
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2356 2357 2358 2359

        Returns:
            Program: A deserialized program desc.
        """
2360 2361
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2362
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2363
        p._sync_with_cpp()
2364
        return p
Y
Yu Yang 已提交
2365

2366
    @staticmethod
2367
    def _construct_from_desc(desc):
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2383 2384
    @property
    def random_seed(self):
Y
yuyang18 已提交
2385 2386 2387 2388 2389 2390
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2391 2392
        return self._seed

Q
qiaolongfei 已提交
2393 2394
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2395 2396 2397
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2398 2399
        return self.desc.num_blocks()

D
dzhwinter 已提交
2400 2401 2402 2403 2404 2405
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2406
    def __repr__(self):
2407
        return self.__str__()
2408

Y
Yu Yang 已提交
2409
    def global_block(self):
Y
yuyang18 已提交
2410 2411 2412
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2413 2414
        return self.blocks[0]

Q
Qiao Longfei 已提交
2415
    def block(self, index):
Y
yuyang18 已提交
2416 2417 2418 2419 2420 2421 2422 2423
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2424 2425
        return self.blocks[index]

Y
Yu Yang 已提交
2426
    def current_block(self):
Y
yuyang18 已提交
2427 2428 2429 2430
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2431 2432
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2433
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2444
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2445 2446 2447
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2448 2449 2450 2451
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2452
    def _rollback(self):
Y
yuyang18 已提交
2453 2454 2455 2456 2457
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2458 2459
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2460
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2471 2472 2473
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2474
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2475

W
Wu Yi 已提交
2476
    def _copy_param_info_from(self, other):
2477
        """
2478
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2479

Y
yuyang18 已提交
2480 2481 2482
        Notes: This is a very low level API. Users should not invoke it
        directly.

2483 2484 2485 2486 2487 2488 2489
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2490
            raise TypeError("_copy_param_info_from should be invoked with "
2491 2492 2493
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2494
            raise ValueError("_copy_param_info_from should be invoked with two "
2495
                             "program, with represent the same topology")
W
Wu Yi 已提交
2496
        self.global_block()._copy_param_info_from(other.global_block())
2497

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2513
        self._parameters_on_pservers = other._parameters_on_pservers
2514
        self._endpoints = other._endpoints
2515
        self._ps_endpoint = other._ps_endpoint
2516 2517
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2518
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2519 2520
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2521

Y
yuyang18 已提交
2522 2523 2524
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2525 2526 2527 2528 2529 2530 2531
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2532
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2533 2534 2535
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2536
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2537
                             "program, with represent the same topology")
2538
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2539 2540 2541
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2542
    def list_vars(self):
Y
yuyang18 已提交
2543 2544 2545 2546 2547 2548
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2549
        for each_block in self.blocks:
2550
            for each_var in list(each_block.vars.values()):
2551 2552
                yield each_var

Y
Yu Yang 已提交
2553

Y
Yu Yang 已提交
2554
class Parameter(Variable):
2555
    """
2556
    Parameter is derived from Variable. A parameter is a persistable
2557
    Variable, and will be updated by optimizers after each iteration.
2558
    The training of a neural network is essentially the updating of
2559 2560
    its parameters.

2561
    Relative to a general Variable, a Parameter has several its own
2562 2563
    member variables:

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2576 2577
    """

Y
Yu Yang 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2588 2589 2590

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2591 2592 2593 2594
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2595 2596
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2597
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2598

W
wanghaoshuang 已提交
2599
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2600

F
fengjiayi 已提交
2601 2602 2603
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2604 2605 2606
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2607

F
update  
fengjiayi 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2622
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2623
            for attr_name in additional_attr:
2624 2625
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2626 2627
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2628 2629 2630 2631
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2632

Y
Yu Yang 已提交
2633
# program is a global instance.
Y
Yu Yang 已提交
2634 2635
_main_program_ = Program()
_startup_program_ = Program()
2636

2637

2638
def default_startup_program():
Y
Yu Yang 已提交
2639
    """
Y
yuyang18 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2649

Y
Yu Yang 已提交
2650 2651 2652
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2653
    return _startup_program_
2654

2655

2656
def default_main_program():
Y
Yu Yang 已提交
2657
    """
Y
yuyang18 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2667

Y
Yu Yang 已提交
2668 2669 2670
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2671
    return _main_program_
Y
Yu Yang 已提交
2672 2673 2674 2675 2676


def switch_main_program(program):
    """
    Switch the main program to a new program.
2677

Y
Yu Yang 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2692
    Switch the startup program to a new program
Y
Yu Yang 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
2705
@signature_safe_contextmanager
Y
Yu Yang 已提交
2706 2707
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2708 2709 2710
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2711

Y
Yu Yang 已提交
2712
    Examples:
Y
yuyang18 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2723

Y
Yu Yang 已提交
2724
    Examples:
Y
yuyang18 已提交
2725 2726 2727 2728 2729 2730

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2731

Y
Yu Yang 已提交
2732
    Args:
Y
yuyang18 已提交
2733
        main_program(Program): New main program inside `with` statement.
2734
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2748 2749


W
Wu Yi 已提交
2750
def _get_var(name, program=None):
X
xuwei06 已提交
2751
    """
Y
yuyang18 已提交
2752
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2753

X
xuwei06 已提交
2754 2755 2756
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2757
        If None, default_global_program() will be used.
X
xuwei06 已提交
2758 2759 2760 2761 2762 2763 2764

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2765
    assert isinstance(program, Program)
X
xuwei06 已提交
2766 2767

    return program.global_block().var(name)
2768 2769


S
rename  
sneaxiy 已提交
2770
@signature_safe_contextmanager
2771 2772 2773 2774
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2775

2776
    yield
P
Paddle CI 已提交
2777

2778
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
2779 2780


S
rename  
sneaxiy 已提交
2781
@signature_safe_contextmanager
P
Paddle CI 已提交
2782
def _imperative_place_guard(place):
M
minqiyang 已提交
2783 2784 2785
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
2786

2787
    yield
M
minqiyang 已提交
2788

M
minqiyang 已提交
2789
    _imperative_current_expected_place_ = tmp_place