memcontrol.c 185.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359
#if defined(CONFIG_MEMCG_KMEM)
360 361
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
362 363 364 365
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
366 367 368 369 370 371 372

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
373

374 375 376 377
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

378 379
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
380 381
};

382 383
/* internal only representation about the status of kmem accounting. */
enum {
384
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 387 388 389 390 391 392
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
393 394 395 396 397 398 399 400

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
401 402 403 404 405
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
406 407 408 409 410 411 412 413 414
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
415 416
#endif

417 418
/* Stuffs for move charges at task migration. */
/*
419 420
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 422
 */
enum move_type {
423
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 426 427
	NR_MOVE_TYPE,
};

428 429
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
430
	spinlock_t	  lock; /* for from, to */
431 432
	struct mem_cgroup *from;
	struct mem_cgroup *to;
433
	unsigned long immigrate_flags;
434
	unsigned long precharge;
435
	unsigned long moved_charge;
436
	unsigned long moved_swap;
437 438 439
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
440
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 442
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
443

D
Daisuke Nishimura 已提交
444 445
static bool move_anon(void)
{
446
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
447 448
}

449 450
static bool move_file(void)
{
451
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 453
}

454 455 456 457
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
458
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460

461 462
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
464
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 467 468
	NR_CHARGE_TYPE,
};

469
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
470 471 472 473
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
474
	_KMEM,
G
Glauber Costa 已提交
475 476
};

477 478
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
480 481
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
482

483 484 485 486 487 488 489 490
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

491 492 493 494 495 496 497
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

498 499
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
500
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

516 517 518 519 520
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

521 522 523 524 525 526
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

540
	css = css_from_id(id - 1, &memory_cgrp_subsys);
L
Li Zefan 已提交
541 542 543
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
544
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
545
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
546 547 548

void sock_update_memcg(struct sock *sk)
{
549
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
550
		struct mem_cgroup *memcg;
551
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
552 553 554

		BUG_ON(!sk->sk_prot->proto_cgroup);

555 556 557 558 559 560 561 562 563 564
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
565
			css_get(&sk->sk_cgrp->memcg->css);
566 567 568
			return;
		}

G
Glauber Costa 已提交
569 570
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
571
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
572 573
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
574
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
575 576 577 578 579 580 581 582
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
583
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
584 585 586
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
587
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
588 589
	}
}
G
Glauber Costa 已提交
590 591 592 593 594 595

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

596
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
597 598
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
599

600 601
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
602
	if (!memcg_proto_activated(&memcg->tcp_mem))
603 604 605 606 607 608 609 610 611
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

612
#ifdef CONFIG_MEMCG_KMEM
613 614
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
615 616 617 618 619
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
620 621 622 623 624 625
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
626 627
int memcg_limited_groups_array_size;

628 629 630 631 632 633
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
634
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
635 636
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
637
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
638 639 640
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
641
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
642

643 644 645 646 647 648
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
649
struct static_key memcg_kmem_enabled_key;
650
EXPORT_SYMBOL(memcg_kmem_enabled_key);
651 652 653

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
654
	if (memcg_kmem_is_active(memcg)) {
655
		static_key_slow_dec(&memcg_kmem_enabled_key);
656 657
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
658 659 660 661 662
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
663 664 665 666 667 668 669 670 671 672 673 674 675
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

676
static void drain_all_stock_async(struct mem_cgroup *memcg);
677

678
static struct mem_cgroup_per_zone *
679
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
680
{
681 682 683
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

684
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
685 686
}

687
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
688
{
689
	return &memcg->css;
690 691
}

692
static struct mem_cgroup_per_zone *
693
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
694
{
695 696
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
697

698
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
699 700
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

778
	mctz = soft_limit_tree_from_page(page);
779 780 781 782 783
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
784
		mz = mem_cgroup_page_zoneinfo(memcg, page);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
808 809
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
810

811 812 813 814
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
876
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
877
				 enum mem_cgroup_stat_index idx)
878
{
879
	long val = 0;
880 881
	int cpu;

882 883
	get_online_cpus();
	for_each_online_cpu(cpu)
884
		val += per_cpu(memcg->stat->count[idx], cpu);
885
#ifdef CONFIG_HOTPLUG_CPU
886 887 888
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
889 890
#endif
	put_online_cpus();
891 892 893
	return val;
}

894
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
895 896 897
					 bool charge)
{
	int val = (charge) ? 1 : -1;
898
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
899 900
}

901
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
902 903 904 905 906
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

907
	get_online_cpus();
908
	for_each_online_cpu(cpu)
909
		val += per_cpu(memcg->stat->events[idx], cpu);
910
#ifdef CONFIG_HOTPLUG_CPU
911 912 913
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
914
#endif
915
	put_online_cpus();
916 917 918
	return val;
}

919
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
920
					 struct page *page,
921
					 bool anon, int nr_pages)
922
{
923 924 925 926 927 928
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
929
				nr_pages);
930
	else
931
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
932
				nr_pages);
933

934 935 936 937
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

938 939
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
940
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
941
	else {
942
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
943 944
		nr_pages = -nr_pages; /* for event */
	}
945

946
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
947 948
}

949
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
950 951 952 953 954 955 956
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

957 958 959
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
960
{
961
	unsigned long nr = 0;
962 963
	int zid;

964
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
965

966 967 968 969 970 971 972 973 974 975 976 977
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
978
}
979

980
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
981
			unsigned int lru_mask)
982
{
983
	unsigned long nr = 0;
984
	int nid;
985

986
	for_each_node_state(nid, N_MEMORY)
987 988
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
989 990
}

991 992
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
993 994 995
{
	unsigned long val, next;

996
	val = __this_cpu_read(memcg->stat->nr_page_events);
997
	next = __this_cpu_read(memcg->stat->targets[target]);
998
	/* from time_after() in jiffies.h */
999 1000 1001 1002 1003
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
1004 1005 1006
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1007 1008 1009 1010 1011 1012 1013 1014
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1015
	}
1016
	return false;
1017 1018 1019 1020 1021 1022
}

/*
 * Check events in order.
 *
 */
1023
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1024
{
1025
	preempt_disable();
1026
	/* threshold event is triggered in finer grain than soft limit */
1027 1028
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1029
		bool do_softlimit;
1030
		bool do_numainfo __maybe_unused;
1031

1032 1033
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1034 1035 1036 1037 1038 1039
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1040
		mem_cgroup_threshold(memcg);
1041 1042
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1043
#if MAX_NUMNODES > 1
1044
		if (unlikely(do_numainfo))
1045
			atomic_inc(&memcg->numainfo_events);
1046
#endif
1047 1048
	} else
		preempt_enable();
1049 1050
}

1051
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1052
{
1053 1054 1055 1056 1057 1058 1059 1060
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1061
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1062 1063
}

1064
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1065
{
1066
	struct mem_cgroup *memcg = NULL;
1067

1068 1069
	rcu_read_lock();
	do {
1070 1071 1072 1073 1074 1075
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1076
			memcg = root_mem_cgroup;
1077 1078 1079 1080 1081
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1082
	} while (!css_tryget(&memcg->css));
1083
	rcu_read_unlock();
1084
	return memcg;
1085 1086
}

1087 1088 1089 1090 1091 1092 1093
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1094
		struct mem_cgroup *last_visited)
1095
{
1096
	struct cgroup_subsys_state *prev_css, *next_css;
1097

1098
	prev_css = last_visited ? &last_visited->css : NULL;
1099
skip_node:
1100
	next_css = css_next_descendant_pre(prev_css, &root->css);
1101 1102 1103 1104 1105 1106 1107

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1108 1109 1110 1111 1112 1113 1114 1115
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1116
	 */
1117
	if (next_css) {
1118 1119
		if ((next_css == &root->css) ||
		    ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1120
			return mem_cgroup_from_css(next_css);
1121 1122 1123

		prev_css = next_css;
		goto skip_node;
1124 1125 1126 1127 1128
	}

	return NULL;
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1157 1158 1159 1160 1161 1162 1163 1164 1165

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
				!css_tryget(&position->css))
1166 1167 1168 1169 1170 1171 1172 1173
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1174
				   struct mem_cgroup *root,
1175 1176
				   int sequence)
{
1177 1178
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1208
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1209
				   struct mem_cgroup *prev,
1210
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1211
{
1212
	struct mem_cgroup *memcg = NULL;
1213
	struct mem_cgroup *last_visited = NULL;
1214

1215 1216
	if (mem_cgroup_disabled())
		return NULL;
1217

1218 1219
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1220

1221
	if (prev && !reclaim)
1222
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1223

1224 1225
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1226
			goto out_css_put;
1227
		return root;
1228
	}
K
KAMEZAWA Hiroyuki 已提交
1229

1230
	rcu_read_lock();
1231
	while (!memcg) {
1232
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1233
		int uninitialized_var(seq);
1234

1235 1236 1237
		if (reclaim) {
			struct mem_cgroup_per_zone *mz;

1238
			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1239
			iter = &mz->reclaim_iter[reclaim->priority];
1240
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1241
				iter->last_visited = NULL;
1242 1243
				goto out_unlock;
			}
M
Michal Hocko 已提交
1244

1245
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1246
		}
K
KAMEZAWA Hiroyuki 已提交
1247

1248
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1249

1250
		if (reclaim) {
1251 1252
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1253

M
Michal Hocko 已提交
1254
			if (!memcg)
1255 1256 1257 1258
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1259

1260
		if (prev && !memcg)
1261
			goto out_unlock;
1262
	}
1263 1264
out_unlock:
	rcu_read_unlock();
1265 1266 1267 1268
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1269
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1270
}
K
KAMEZAWA Hiroyuki 已提交
1271

1272 1273 1274 1275 1276 1277 1278
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1279 1280 1281 1282 1283 1284
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1285

1286 1287 1288 1289 1290 1291
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1292
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1293
	     iter != NULL;				\
1294
	     iter = mem_cgroup_iter(root, iter, NULL))
1295

1296
#define for_each_mem_cgroup(iter)			\
1297
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1298
	     iter != NULL;				\
1299
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1300

1301
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1302
{
1303
	struct mem_cgroup *memcg;
1304 1305

	rcu_read_lock();
1306 1307
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1308 1309 1310 1311
		goto out;

	switch (idx) {
	case PGFAULT:
1312 1313 1314 1315
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1316 1317 1318 1319 1320 1321 1322
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1323
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1324

1325 1326 1327
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1328
 * @memcg: memcg of the wanted lruvec
1329 1330 1331 1332 1333 1334 1335 1336 1337
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1338
	struct lruvec *lruvec;
1339

1340 1341 1342 1343
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1344

1345
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1356 1357
}

K
KAMEZAWA Hiroyuki 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1371

1372
/**
1373
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1374
 * @page: the page
1375
 * @zone: zone of the page
1376
 */
1377
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1378 1379
{
	struct mem_cgroup_per_zone *mz;
1380 1381
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1382
	struct lruvec *lruvec;
1383

1384 1385 1386 1387
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1388

K
KAMEZAWA Hiroyuki 已提交
1389
	pc = lookup_page_cgroup(page);
1390
	memcg = pc->mem_cgroup;
1391 1392

	/*
1393
	 * Surreptitiously switch any uncharged offlist page to root:
1394 1395 1396 1397 1398 1399 1400
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1401
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1402 1403
		pc->mem_cgroup = memcg = root_mem_cgroup;

1404
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1415
}
1416

1417
/**
1418 1419 1420 1421
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1422
 *
1423 1424
 * This function must be called when a page is added to or removed from an
 * lru list.
1425
 */
1426 1427
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1428 1429
{
	struct mem_cgroup_per_zone *mz;
1430
	unsigned long *lru_size;
1431 1432 1433 1434

	if (mem_cgroup_disabled())
		return;

1435 1436 1437 1438
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1439
}
1440

1441
/*
1442
 * Checks whether given mem is same or in the root_mem_cgroup's
1443 1444
 * hierarchy subtree
 */
1445 1446
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1447
{
1448 1449
	if (root_memcg == memcg)
		return true;
1450
	if (!root_memcg->use_hierarchy || !memcg)
1451
		return false;
1452
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1453 1454 1455 1456 1457 1458 1459
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1460
	rcu_read_lock();
1461
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1462 1463
	rcu_read_unlock();
	return ret;
1464 1465
}

1466 1467
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1468
{
1469
	struct mem_cgroup *curr = NULL;
1470
	struct task_struct *p;
1471
	bool ret;
1472

1473
	p = find_lock_task_mm(task);
1474
	if (p) {
1475
		curr = get_mem_cgroup_from_mm(p->mm);
1476 1477 1478 1479 1480 1481 1482
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1483
		rcu_read_lock();
1484 1485 1486
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1487
		rcu_read_unlock();
1488
	}
1489
	/*
1490
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1491
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1492 1493
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1494
	 */
1495
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1496
	css_put(&curr->css);
1497 1498 1499
	return ret;
}

1500
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1501
{
1502
	unsigned long inactive_ratio;
1503
	unsigned long inactive;
1504
	unsigned long active;
1505
	unsigned long gb;
1506

1507 1508
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1509

1510 1511 1512 1513 1514 1515
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1516
	return inactive * inactive_ratio < active;
1517 1518
}

1519 1520 1521
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1522
/**
1523
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1524
 * @memcg: the memory cgroup
1525
 *
1526
 * Returns the maximum amount of memory @mem can be charged with, in
1527
 * pages.
1528
 */
1529
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1530
{
1531 1532
	unsigned long long margin;

1533
	margin = res_counter_margin(&memcg->res);
1534
	if (do_swap_account)
1535
		margin = min(margin, res_counter_margin(&memcg->memsw));
1536
	return margin >> PAGE_SHIFT;
1537 1538
}

1539
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1540 1541
{
	/* root ? */
1542
	if (mem_cgroup_disabled() || !css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1543 1544
		return vm_swappiness;

1545
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1546 1547
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1562 1563 1564 1565

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1566
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1567
{
1568
	atomic_inc(&memcg_moving);
1569
	atomic_inc(&memcg->moving_account);
1570 1571 1572
	synchronize_rcu();
}

1573
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1574
{
1575 1576 1577 1578
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1579 1580
	if (memcg) {
		atomic_dec(&memcg_moving);
1581
		atomic_dec(&memcg->moving_account);
1582
	}
1583
}
1584

1585
/*
Q
Qiang Huang 已提交
1586
 * A routine for checking "mem" is under move_account() or not.
1587
 *
Q
Qiang Huang 已提交
1588 1589 1590
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1591
 */
1592
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1593
{
1594 1595
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1596
	bool ret = false;
1597 1598 1599 1600 1601 1602 1603 1604 1605
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1606

1607 1608
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1609 1610
unlock:
	spin_unlock(&mc.lock);
1611 1612 1613
	return ret;
}

1614
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1615 1616
{
	if (mc.moving_task && current != mc.moving_task) {
1617
		if (mem_cgroup_under_move(memcg)) {
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1647
#define K(x) ((x) << (PAGE_SHIFT-10))
1648
/**
1649
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1650 1651 1652 1653 1654 1655 1656 1657
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1658
	/* oom_info_lock ensures that parallel ooms do not interleave */
1659
	static DEFINE_MUTEX(oom_info_lock);
1660 1661
	struct mem_cgroup *iter;
	unsigned int i;
1662

1663
	if (!p)
1664 1665
		return;

1666
	mutex_lock(&oom_info_lock);
1667 1668
	rcu_read_lock();

T
Tejun Heo 已提交
1669 1670 1671 1672 1673
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1674 1675 1676

	rcu_read_unlock();

1677
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1678 1679 1680
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1681
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1682 1683 1684
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1685
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1686 1687 1688
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1689 1690

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1691 1692
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1708
	mutex_unlock(&oom_info_lock);
1709 1710
}

1711 1712 1713 1714
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1715
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1716 1717
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1718 1719
	struct mem_cgroup *iter;

1720
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1721
		num++;
1722 1723 1724
	return num;
}

D
David Rientjes 已提交
1725 1726 1727
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1728
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1729 1730 1731
{
	u64 limit;

1732 1733
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1734
	/*
1735
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1736
	 */
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1751 1752
}

1753 1754
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1755 1756 1757 1758 1759 1760 1761
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1762
	/*
1763 1764 1765
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1766
	 */
1767
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1768 1769 1770 1771 1772
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1773 1774
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1775
		struct css_task_iter it;
1776 1777
		struct task_struct *task;

1778 1779
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1792
				css_task_iter_end(&it);
1793 1794 1795 1796 1797 1798 1799 1800
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1813
		}
1814
		css_task_iter_end(&it);
1815 1816 1817 1818 1819 1820 1821 1822 1823
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1860 1861
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1862
 * @memcg: the target memcg
1863 1864 1865 1866 1867 1868 1869
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1870
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1871 1872
		int nid, bool noswap)
{
1873
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1874 1875 1876
		return true;
	if (noswap || !total_swap_pages)
		return false;
1877
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1878 1879 1880 1881
		return true;
	return false;

}
1882
#if MAX_NUMNODES > 1
1883 1884 1885 1886 1887 1888 1889

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1890
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1891 1892
{
	int nid;
1893 1894 1895 1896
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1897
	if (!atomic_read(&memcg->numainfo_events))
1898
		return;
1899
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1900 1901 1902
		return;

	/* make a nodemask where this memcg uses memory from */
1903
	memcg->scan_nodes = node_states[N_MEMORY];
1904

1905
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1906

1907 1908
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1909
	}
1910

1911 1912
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1927
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1928 1929 1930
{
	int node;

1931 1932
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1933

1934
	node = next_node(node, memcg->scan_nodes);
1935
	if (node == MAX_NUMNODES)
1936
		node = first_node(memcg->scan_nodes);
1937 1938 1939 1940 1941 1942 1943 1944 1945
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1946
	memcg->last_scanned_node = node;
1947 1948 1949
	return node;
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1985
#else
1986
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1987 1988 1989
{
	return 0;
}
1990

1991 1992 1993 1994
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1995 1996
#endif

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2045
	}
2046 2047
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2048 2049
}

2050 2051 2052 2053 2054 2055
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2056 2057
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2058 2059 2060 2061
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2062
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2063
{
2064
	struct mem_cgroup *iter, *failed = NULL;
2065

2066 2067
	spin_lock(&memcg_oom_lock);

2068
	for_each_mem_cgroup_tree(iter, memcg) {
2069
		if (iter->oom_lock) {
2070 2071 2072 2073 2074
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2075 2076
			mem_cgroup_iter_break(memcg, iter);
			break;
2077 2078
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2079
	}
K
KAMEZAWA Hiroyuki 已提交
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2092
		}
2093 2094
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2095 2096 2097 2098

	spin_unlock(&memcg_oom_lock);

	return !failed;
2099
}
2100

2101
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2102
{
K
KAMEZAWA Hiroyuki 已提交
2103 2104
	struct mem_cgroup *iter;

2105
	spin_lock(&memcg_oom_lock);
2106
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2107
	for_each_mem_cgroup_tree(iter, memcg)
2108
		iter->oom_lock = false;
2109
	spin_unlock(&memcg_oom_lock);
2110 2111
}

2112
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2113 2114 2115
{
	struct mem_cgroup *iter;

2116
	for_each_mem_cgroup_tree(iter, memcg)
2117 2118 2119
		atomic_inc(&iter->under_oom);
}

2120
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2121 2122 2123
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2124 2125 2126 2127 2128
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2129
	for_each_mem_cgroup_tree(iter, memcg)
2130
		atomic_add_unless(&iter->under_oom, -1, 0);
2131 2132
}

K
KAMEZAWA Hiroyuki 已提交
2133 2134
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2135
struct oom_wait_info {
2136
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2137 2138 2139 2140 2141 2142
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2143 2144
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2145 2146 2147
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2148
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2149 2150

	/*
2151
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2152 2153
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2154 2155
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2156 2157 2158 2159
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2160
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2161
{
2162
	atomic_inc(&memcg->oom_wakeups);
2163 2164
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2165 2166
}

2167
static void memcg_oom_recover(struct mem_cgroup *memcg)
2168
{
2169 2170
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2171 2172
}

2173
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2174
{
2175 2176
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2177
	/*
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2190
	 */
2191 2192 2193 2194
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2195 2196 2197 2198
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2199
 * @handle: actually kill/wait or just clean up the OOM state
2200
 *
2201 2202
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2203
 *
2204
 * Memcg supports userspace OOM handling where failed allocations must
2205 2206 2207 2208
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2209
 * the end of the page fault to complete the OOM handling.
2210 2211
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2212
 * completed, %false otherwise.
2213
 */
2214
bool mem_cgroup_oom_synchronize(bool handle)
2215
{
2216
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2217
	struct oom_wait_info owait;
2218
	bool locked;
2219 2220 2221

	/* OOM is global, do not handle */
	if (!memcg)
2222
		return false;
2223

2224 2225
	if (!handle)
		goto cleanup;
2226 2227 2228 2229 2230 2231

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2232

2233
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2247
		schedule();
2248 2249 2250 2251 2252
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2253 2254 2255 2256 2257 2258 2259 2260
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2261 2262
cleanup:
	current->memcg_oom.memcg = NULL;
2263
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2264
	return true;
2265 2266
}

2267
/*
2268
 * Used to update mapped file or writeback or other statistics.
2269 2270 2271
 *
 * Notes: Race condition
 *
2272
 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2286 2287
 * small, we check memcg->moving_account and detect there are possibility
 * of race or not. If there is, we take a lock.
2288
 */
2289

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2303
	 * need to take move_lock_mem_cgroup(). Because we already hold
2304
	 * rcu_read_lock(), any calls to move_account will be delayed until
Q
Qiang Huang 已提交
2305
	 * rcu_read_unlock().
2306
	 */
Q
Qiang Huang 已提交
2307 2308
	VM_BUG_ON(!rcu_read_lock_held());
	if (atomic_read(&memcg->moving_account) <= 0)
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2326
	 * should take move_lock_mem_cgroup().
2327 2328 2329 2330
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2331
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2332
				 enum mem_cgroup_stat_index idx, int val)
2333
{
2334
	struct mem_cgroup *memcg;
2335
	struct page_cgroup *pc = lookup_page_cgroup(page);
2336
	unsigned long uninitialized_var(flags);
2337

2338
	if (mem_cgroup_disabled())
2339
		return;
2340

2341
	VM_BUG_ON(!rcu_read_lock_held());
2342 2343
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344
		return;
2345

2346
	this_cpu_add(memcg->stat->count[idx], val);
2347
}
2348

2349 2350 2351 2352
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2353
#define CHARGE_BATCH	32U
2354 2355
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2356
	unsigned int nr_pages;
2357
	struct work_struct work;
2358
	unsigned long flags;
2359
#define FLUSHING_CACHED_CHARGE	0
2360 2361
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2362
static DEFINE_MUTEX(percpu_charge_mutex);
2363

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2374
 */
2375
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2376 2377 2378 2379
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2380 2381 2382
	if (nr_pages > CHARGE_BATCH)
		return false;

2383
	stock = &get_cpu_var(memcg_stock);
2384 2385
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2399 2400 2401 2402
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2403
		if (do_swap_account)
2404 2405
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2416
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2417
	drain_stock(stock);
2418
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2419 2420
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2432 2433
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2434
 * This will be consumed by consume_stock() function, later.
2435
 */
2436
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2437 2438 2439
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2440
	if (stock->cached != memcg) { /* reset if necessary */
2441
		drain_stock(stock);
2442
		stock->cached = memcg;
2443
	}
2444
	stock->nr_pages += nr_pages;
2445 2446 2447 2448
	put_cpu_var(memcg_stock);
}

/*
2449
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2450 2451
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2452
 */
2453
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2454
{
2455
	int cpu, curcpu;
2456

2457 2458
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2459
	curcpu = get_cpu();
2460 2461
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462
		struct mem_cgroup *memcg;
2463

2464 2465
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2466
			continue;
2467
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2468
			continue;
2469 2470 2471 2472 2473 2474
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2475
	}
2476
	put_cpu();
2477 2478 2479 2480 2481 2482

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2483
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2484 2485 2486
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2487
	put_online_cpus();
2488 2489 2490 2491 2492 2493 2494 2495
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2496
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2497
{
2498 2499 2500 2501 2502
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2503
	drain_all_stock(root_memcg, false);
2504
	mutex_unlock(&percpu_charge_mutex);
2505 2506 2507
}

/* This is a synchronous drain interface. */
2508
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2509 2510
{
	/* called when force_empty is called */
2511
	mutex_lock(&percpu_charge_mutex);
2512
	drain_all_stock(root_memcg, true);
2513
	mutex_unlock(&percpu_charge_mutex);
2514 2515
}

2516 2517 2518 2519
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2520
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2521 2522 2523
{
	int i;

2524
	spin_lock(&memcg->pcp_counter_lock);
2525
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2526
		long x = per_cpu(memcg->stat->count[i], cpu);
2527

2528 2529
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2530
	}
2531
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2532
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2533

2534 2535
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2536
	}
2537
	spin_unlock(&memcg->pcp_counter_lock);
2538 2539
}

2540
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2541 2542 2543 2544 2545
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2546
	struct mem_cgroup *iter;
2547

2548
	if (action == CPU_ONLINE)
2549 2550
		return NOTIFY_OK;

2551
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2552
		return NOTIFY_OK;
2553

2554
	for_each_mem_cgroup(iter)
2555 2556
		mem_cgroup_drain_pcp_counter(iter, cpu);

2557 2558 2559 2560 2561
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2562

2563
/* See mem_cgroup_try_charge() for details */
2564 2565 2566 2567 2568 2569 2570
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2571
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2572
				unsigned int nr_pages, unsigned int min_pages,
2573
				bool invoke_oom)
2574
{
2575
	unsigned long csize = nr_pages * PAGE_SIZE;
2576 2577 2578 2579 2580
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2581
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2582 2583 2584 2585

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2586
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2587 2588 2589
		if (likely(!ret))
			return CHARGE_OK;

2590
		res_counter_uncharge(&memcg->res, csize);
2591 2592 2593 2594
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2595 2596 2597 2598
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2599
	if (nr_pages > min_pages)
2600 2601 2602 2603 2604
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2605 2606 2607
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2608
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2609
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2610
		return CHARGE_RETRY;
2611
	/*
2612 2613 2614 2615 2616 2617 2618
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2619
	 */
2620
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2621 2622 2623 2624 2625 2626 2627 2628 2629
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2630 2631
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2632

2633
	return CHARGE_NOMEM;
2634 2635
}

2636 2637 2638 2639 2640
/**
 * mem_cgroup_try_charge - try charging a memcg
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
2641
 *
2642 2643
 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2644
 */
2645 2646 2647 2648
static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)
2649
{
2650
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2651 2652
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	int ret;
2653

2654 2655
	if (mem_cgroup_is_root(memcg))
		goto done;
K
KAMEZAWA Hiroyuki 已提交
2656
	/*
2657 2658 2659 2660
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
K
KAMEZAWA Hiroyuki 已提交
2661
	 */
2662
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2663 2664
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
K
KAMEZAWA Hiroyuki 已提交
2665
		goto bypass;
2666

2667
	if (unlikely(task_in_memcg_oom(current)))
2668
		goto nomem;
2669

2670 2671
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;
K
KAMEZAWA Hiroyuki 已提交
2672
again:
2673 2674
	if (consume_stock(memcg, nr_pages))
		goto done;
2675

2676
	do {
2677
		bool invoke_oom = oom && !nr_oom_retries;
2678

2679
		/* If killed, bypass charge */
2680
		if (fatal_signal_pending(current))
2681
			goto bypass;
2682

2683 2684
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2685 2686 2687 2688
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2689
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2690
			goto again;
2691 2692 2693
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2694
			if (!oom || invoke_oom)
K
KAMEZAWA Hiroyuki 已提交
2695
				goto nomem;
2696 2697
			nr_oom_retries--;
			break;
2698
		}
2699 2700
	} while (ret != CHARGE_OK);

2701
	if (batch > nr_pages)
2702
		refill_stock(memcg, batch - nr_pages);
2703
done:
2704 2705
	return 0;
nomem:
2706
	if (!(gfp_mask & __GFP_NOFAIL))
2707
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2708
bypass:
2709
	return -EINTR;
2710
}
2711

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
/**
 * mem_cgroup_try_charge_mm - try charging a mm
 * @mm: mm_struct to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
 *
 * Returns the charged mem_cgroup associated with the given mm_struct or
 * NULL the charge failed.
 */
static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)

{
	struct mem_cgroup *memcg;
	int ret;

	memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
	css_put(&memcg->css);
	if (ret == -EINTR)
		memcg = root_mem_cgroup;
	else if (ret)
		memcg = NULL;

	return memcg;
}

2741 2742 2743 2744 2745
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2746
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2747
				       unsigned int nr_pages)
2748
{
2749
	if (!mem_cgroup_is_root(memcg)) {
2750 2751
		unsigned long bytes = nr_pages * PAGE_SIZE;

2752
		res_counter_uncharge(&memcg->res, bytes);
2753
		if (do_swap_account)
2754
			res_counter_uncharge(&memcg->memsw, bytes);
2755
	}
2756 2757
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2776 2777
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2778 2779 2780
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2781 2782 2783 2784 2785 2786
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2787
	return mem_cgroup_from_id(id);
2788 2789
}

2790
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2791
{
2792
	struct mem_cgroup *memcg = NULL;
2793
	struct page_cgroup *pc;
2794
	unsigned short id;
2795 2796
	swp_entry_t ent;

2797
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2798 2799

	pc = lookup_page_cgroup(page);
2800
	lock_page_cgroup(pc);
2801
	if (PageCgroupUsed(pc)) {
2802 2803 2804
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2805
	} else if (PageSwapCache(page)) {
2806
		ent.val = page_private(page);
2807
		id = lookup_swap_cgroup_id(ent);
2808
		rcu_read_lock();
2809 2810 2811
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2812
		rcu_read_unlock();
2813
	}
2814
	unlock_page_cgroup(pc);
2815
	return memcg;
2816 2817
}

2818
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2819
				       struct page *page,
2820
				       unsigned int nr_pages,
2821 2822
				       enum charge_type ctype,
				       bool lrucare)
2823
{
2824
	struct page_cgroup *pc = lookup_page_cgroup(page);
2825
	struct zone *uninitialized_var(zone);
2826
	struct lruvec *lruvec;
2827
	bool was_on_lru = false;
2828
	bool anon;
2829

2830
	lock_page_cgroup(pc);
2831
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2832 2833 2834 2835
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2836 2837 2838 2839 2840 2841 2842 2843 2844

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2845
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2846
			ClearPageLRU(page);
2847
			del_page_from_lru_list(page, lruvec, page_lru(page));
2848 2849 2850 2851
			was_on_lru = true;
		}
	}

2852
	pc->mem_cgroup = memcg;
2853 2854 2855 2856 2857 2858
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2859
	 */
K
KAMEZAWA Hiroyuki 已提交
2860
	smp_wmb();
2861
	SetPageCgroupUsed(pc);
2862

2863 2864
	if (lrucare) {
		if (was_on_lru) {
2865
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2866
			VM_BUG_ON_PAGE(PageLRU(page), page);
2867
			SetPageLRU(page);
2868
			add_page_to_lru_list(page, lruvec, page_lru(page));
2869 2870 2871 2872
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2873
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2874 2875 2876 2877
		anon = true;
	else
		anon = false;

2878
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2879
	unlock_page_cgroup(pc);
2880

2881
	/*
2882 2883 2884
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2885
	 */
2886
	memcg_check_events(memcg, page);
2887
}
2888

2889 2890
static DEFINE_MUTEX(set_limit_mutex);

2891
#ifdef CONFIG_MEMCG_KMEM
2892 2893 2894 2895 2896 2897
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2898 2899
static DEFINE_MUTEX(activate_kmem_mutex);

2900 2901 2902
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2903
		memcg_kmem_is_active(memcg);
2904 2905
}

G
Glauber Costa 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2916
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2917 2918
}

2919
#ifdef CONFIG_SLABINFO
2920
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2921
{
2922
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2923 2924 2925 2926 2927 2928 2929
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

2930
	mutex_lock(&memcg_slab_mutex);
2931 2932
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2933
	mutex_unlock(&memcg_slab_mutex);
2934 2935 2936 2937 2938

	return 0;
}
#endif

2939
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2940 2941 2942 2943 2944 2945 2946 2947
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2948 2949
	ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
				    oom_gfp_allowed(gfp));
2950 2951
	if (ret == -EINTR)  {
		/*
2952
		 * mem_cgroup_try_charge() chosed to bypass to root due to
2953 2954 2955 2956 2957 2958 2959 2960 2961
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2962
		 * mem_cgroup_try_charge() above. Tasks that were already
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

2977
static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2978 2979 2980 2981
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2982 2983 2984 2985 2986

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2987 2988 2989 2990 2991 2992 2993 2994
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2995
	if (memcg_kmem_test_and_clear_dead(memcg))
2996
		css_put(&memcg->css);
2997 2998
}

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3039
	VM_BUG_ON(!is_root_cache(s));
3040 3041 3042

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
3043
		struct memcg_cache_params *new_params;
3044 3045 3046
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3047
		size += offsetof(struct memcg_cache_params, memcg_caches);
3048

3049 3050
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3051 3052
			return -ENOMEM;

3053
		new_params->is_root_cache = true;
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3067
			new_params->memcg_caches[i] =
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3080 3081 3082
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3083 3084 3085 3086
	}
	return 0;
}

3087 3088
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3089
{
3090
	size_t size;
3091 3092 3093 3094

	if (!memcg_kmem_enabled())
		return 0;

3095 3096
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3097
		size += memcg_limited_groups_array_size * sizeof(void *);
3098 3099
	} else
		size = sizeof(struct memcg_cache_params);
3100

3101 3102 3103 3104
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3105
	if (memcg) {
3106
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3107
		s->memcg_params->root_cache = root_cache;
3108
		css_get(&memcg->css);
3109 3110 3111
	} else
		s->memcg_params->is_root_cache = true;

3112 3113 3114
	return 0;
}

3115 3116
void memcg_free_cache_params(struct kmem_cache *s)
{
3117 3118 3119 3120
	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		css_put(&s->memcg_params->memcg->css);
3121 3122 3123
	kfree(s->memcg_params);
}

3124 3125
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
3126
{
3127 3128
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
3129
	struct kmem_cache *cachep;
3130 3131
	int id;

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
3142 3143
		return;

3144
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3145
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3146
	/*
3147 3148 3149
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
3150
	 */
3151 3152
	if (!cachep)
		return;
3153

3154
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3155

3156
	/*
3157 3158 3159
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3160
	 */
3161 3162
	smp_wmb();

3163 3164
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
3165
}
3166

3167
static void memcg_unregister_cache(struct kmem_cache *cachep)
3168
{
3169
	struct kmem_cache *root_cache;
3170 3171 3172
	struct mem_cgroup *memcg;
	int id;

3173
	lockdep_assert_held(&memcg_slab_mutex);
3174

3175
	BUG_ON(is_root_cache(cachep));
3176

3177 3178
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
3179
	id = memcg_cache_id(memcg);
3180

3181 3182
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
3183

3184 3185 3186
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
3187 3188
}

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

3220
int __memcg_cleanup_cache_params(struct kmem_cache *s)
3221 3222
{
	struct kmem_cache *c;
3223
	int i, failed = 0;
3224

3225
	mutex_lock(&memcg_slab_mutex);
3226 3227
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3228 3229 3230
		if (!c)
			continue;

3231
		memcg_unregister_cache(c);
3232 3233 3234

		if (cache_from_memcg_idx(s, i))
			failed++;
3235
	}
3236
	mutex_unlock(&memcg_slab_mutex);
3237
	return failed;
3238 3239
}

3240
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3241 3242
{
	struct kmem_cache *cachep;
3243
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
3244 3245 3246 3247

	if (!memcg_kmem_is_active(memcg))
		return;

3248 3249
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
3250
		cachep = memcg_params_to_cache(params);
3251 3252
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3253
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
3254
	}
3255
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
3256 3257
}

3258
struct memcg_register_cache_work {
3259 3260 3261 3262 3263
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3264
static void memcg_register_cache_func(struct work_struct *w)
3265
{
3266 3267
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
3268 3269
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3270

3271
	mutex_lock(&memcg_slab_mutex);
3272
	memcg_register_cache(memcg, cachep);
3273 3274
	mutex_unlock(&memcg_slab_mutex);

3275
	css_put(&memcg->css);
3276 3277 3278 3279 3280 3281
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3282 3283
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
3284
{
3285
	struct memcg_register_cache_work *cw;
3286

3287
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3288 3289
	if (cw == NULL) {
		css_put(&memcg->css);
3290 3291 3292 3293 3294 3295
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3296
	INIT_WORK(&cw->work, memcg_register_cache_func);
3297 3298 3299
	schedule_work(&cw->work);
}

3300 3301
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3302 3303 3304 3305
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3306
	 * in __memcg_schedule_register_cache will recurse.
3307 3308 3309 3310 3311 3312 3313 3314
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3315
	__memcg_schedule_register_cache(memcg, cachep);
3316 3317
	memcg_resume_kmem_account();
}
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
	int res;

	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
				PAGE_SIZE << order);
	if (!res)
		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
}

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3353
	struct kmem_cache *memcg_cachep;
3354 3355 3356 3357

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3358 3359 3360
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3361 3362 3363 3364
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3365
		goto out;
3366

3367 3368 3369
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3370
		goto out;
3371 3372
	}

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3386 3387 3388
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3389
	 */
3390
	memcg_schedule_register_cache(memcg, cachep);
3391 3392 3393 3394
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3395 3396
}

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3418 3419 3420 3421

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3422 3423 3424 3425 3426 3427
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3428 3429 3430 3431 3432 3433
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3434 3435 3436
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3447
	memcg = get_mem_cgroup_from_mm(current->mm);
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3510
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3511 3512
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3513
#else
3514
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3515 3516
{
}
3517 3518
#endif /* CONFIG_MEMCG_KMEM */

3519 3520
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3521
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3522 3523
/*
 * Because tail pages are not marked as "used", set it. We're under
3524 3525 3526
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3527
 */
3528
void mem_cgroup_split_huge_fixup(struct page *head)
3529 3530
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3531
	struct page_cgroup *pc;
3532
	struct mem_cgroup *memcg;
3533
	int i;
3534

3535 3536
	if (mem_cgroup_disabled())
		return;
3537 3538

	memcg = head_pc->mem_cgroup;
3539 3540
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3541
		pc->mem_cgroup = memcg;
3542 3543 3544
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3545 3546
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3547
}
3548
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3549

3550
/**
3551
 * mem_cgroup_move_account - move account of the page
3552
 * @page: the page
3553
 * @nr_pages: number of regular pages (>1 for huge pages)
3554 3555 3556 3557 3558
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3559
 * - page is not on LRU (isolate_page() is useful.)
3560
 * - compound_lock is held when nr_pages > 1
3561
 *
3562 3563
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3564
 */
3565 3566 3567 3568
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3569
				   struct mem_cgroup *to)
3570
{
3571 3572
	unsigned long flags;
	int ret;
3573
	bool anon = PageAnon(page);
3574

3575
	VM_BUG_ON(from == to);
3576
	VM_BUG_ON_PAGE(PageLRU(page), page);
3577 3578 3579 3580 3581 3582 3583
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3584
	if (nr_pages > 1 && !PageTransHuge(page))
3585 3586 3587 3588 3589 3590 3591 3592
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3593
	move_lock_mem_cgroup(from, &flags);
3594

3595 3596 3597 3598 3599 3600
	if (!anon && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3601

3602 3603 3604 3605 3606 3607
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3608

3609
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3610

3611
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3612
	pc->mem_cgroup = to;
3613
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3614
	move_unlock_mem_cgroup(from, &flags);
3615 3616
	ret = 0;
unlock:
3617
	unlock_page_cgroup(pc);
3618 3619 3620
	/*
	 * check events
	 */
3621 3622
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3623
out:
3624 3625 3626
	return ret;
}

3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3647
 */
3648 3649
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3650
				  struct mem_cgroup *child)
3651 3652
{
	struct mem_cgroup *parent;
3653
	unsigned int nr_pages;
3654
	unsigned long uninitialized_var(flags);
3655 3656
	int ret;

3657
	VM_BUG_ON(mem_cgroup_is_root(child));
3658

3659 3660 3661 3662 3663
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3664

3665
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3666

3667 3668 3669 3670 3671 3672
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3673

3674
	if (nr_pages > 1) {
3675
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3676
		flags = compound_lock_irqsave(page);
3677
	}
3678

3679
	ret = mem_cgroup_move_account(page, nr_pages,
3680
				pc, child, parent);
3681 3682
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3683

3684
	if (nr_pages > 1)
3685
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3686
	putback_lru_page(page);
3687
put:
3688
	put_page(page);
3689
out:
3690 3691 3692
	return ret;
}

3693
int mem_cgroup_charge_anon(struct page *page,
3694
			      struct mm_struct *mm, gfp_t gfp_mask)
3695
{
3696
	unsigned int nr_pages = 1;
3697
	struct mem_cgroup *memcg;
3698
	bool oom = true;
A
Andrea Arcangeli 已提交
3699

3700 3701 3702 3703 3704 3705 3706
	if (mem_cgroup_disabled())
		return 0;

	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
	VM_BUG_ON(!mm);

A
Andrea Arcangeli 已提交
3707
	if (PageTransHuge(page)) {
3708
		nr_pages <<= compound_order(page);
3709
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3710 3711 3712 3713 3714
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3715
	}
3716

3717 3718 3719
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
	if (!memcg)
		return -ENOMEM;
3720 3721
	__mem_cgroup_commit_charge(memcg, page, nr_pages,
				   MEM_CGROUP_CHARGE_TYPE_ANON, false);
3722 3723 3724
	return 0;
}

3725 3726 3727
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3728
 * struct page_cgroup is acquired. This refcnt will be consumed by
3729 3730
 * "commit()" or removed by "cancel()"
 */
3731 3732 3733 3734
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3735
{
3736
	struct mem_cgroup *memcg = NULL;
3737
	struct page_cgroup *pc;
3738
	int ret;
3739

3740 3741 3742 3743 3744 3745 3746 3747 3748
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
3749 3750 3751
		goto out;
	if (do_swap_account)
		memcg = try_get_mem_cgroup_from_page(page);
3752
	if (!memcg)
3753 3754
		memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3755
	css_put(&memcg->css);
3756
	if (ret == -EINTR)
3757 3758 3759 3760 3761 3762
		memcg = root_mem_cgroup;
	else if (ret)
		return ret;
out:
	*memcgp = memcg;
	return 0;
3763 3764
}

3765 3766 3767
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
3768 3769
	if (mem_cgroup_disabled()) {
		*memcgp = NULL;
3770
		return 0;
3771
	}
3772 3773 3774 3775 3776 3777 3778
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
3779
		struct mem_cgroup *memcg;
3780

3781 3782 3783 3784 3785
		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
		if (!memcg)
			return -ENOMEM;
		*memcgp = memcg;
		return 0;
3786
	}
3787 3788 3789
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3790 3791 3792 3793 3794 3795 3796 3797 3798
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3799
static void
3800
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3801
					enum charge_type ctype)
3802
{
3803
	if (mem_cgroup_disabled())
3804
		return;
3805
	if (!memcg)
3806
		return;
3807

3808
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3809 3810 3811
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3812 3813 3814
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3815
	 */
3816
	if (do_swap_account && PageSwapCache(page)) {
3817
		swp_entry_t ent = {.val = page_private(page)};
3818
		mem_cgroup_uncharge_swap(ent);
3819
	}
3820 3821
}

3822 3823
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3824
{
3825
	__mem_cgroup_commit_charge_swapin(page, memcg,
3826
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3827 3828
}

3829
int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3830
				gfp_t gfp_mask)
3831
{
3832
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3833
	struct mem_cgroup *memcg;
3834 3835
	int ret;

3836
	if (mem_cgroup_disabled())
3837 3838 3839 3840
		return 0;
	if (PageCompound(page))
		return 0;

3841
	if (PageSwapCache(page)) { /* shmem */
3842 3843
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3844 3845 3846 3847
		if (ret)
			return ret;
		__mem_cgroup_commit_charge_swapin(page, memcg, type);
		return 0;
3848
	}
3849

3850 3851 3852
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
	if (!memcg)
		return -ENOMEM;
3853 3854
	__mem_cgroup_commit_charge(memcg, page, 1, type, false);
	return 0;
3855 3856
}

3857
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3858 3859
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3860 3861 3862
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3863

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3875
		batch->memcg = memcg;
3876 3877
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3878
	 * In those cases, all pages freed continuously can be expected to be in
3879 3880 3881 3882 3883 3884 3885 3886
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3887
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3888 3889
		goto direct_uncharge;

3890 3891 3892 3893 3894
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3895
	if (batch->memcg != memcg)
3896 3897
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3898
	batch->nr_pages++;
3899
	if (uncharge_memsw)
3900
		batch->memsw_nr_pages++;
3901 3902
	return;
direct_uncharge:
3903
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3904
	if (uncharge_memsw)
3905 3906 3907
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3908
}
3909

3910
/*
3911
 * uncharge if !page_mapped(page)
3912
 */
3913
static struct mem_cgroup *
3914 3915
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3916
{
3917
	struct mem_cgroup *memcg = NULL;
3918 3919
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3920
	bool anon;
3921

3922
	if (mem_cgroup_disabled())
3923
		return NULL;
3924

A
Andrea Arcangeli 已提交
3925
	if (PageTransHuge(page)) {
3926
		nr_pages <<= compound_order(page);
3927
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
3928
	}
3929
	/*
3930
	 * Check if our page_cgroup is valid
3931
	 */
3932
	pc = lookup_page_cgroup(page);
3933
	if (unlikely(!PageCgroupUsed(pc)))
3934
		return NULL;
3935

3936
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3937

3938
	memcg = pc->mem_cgroup;
3939

K
KAMEZAWA Hiroyuki 已提交
3940 3941 3942
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3943 3944
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3945
	switch (ctype) {
3946
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3947 3948 3949 3950 3951
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3952 3953
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3954
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3955
		/* See mem_cgroup_prepare_migration() */
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3977
	}
K
KAMEZAWA Hiroyuki 已提交
3978

3979
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3980

3981
	ClearPageCgroupUsed(pc);
3982 3983 3984 3985 3986 3987
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3988

3989
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3990
	/*
3991
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
3992
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
3993
	 */
3994
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3995
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3996
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
3997
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
3998
	}
3999 4000 4001 4002 4003 4004
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4005
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4006

4007
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4008 4009 4010

unlock_out:
	unlock_page_cgroup(pc);
4011
	return NULL;
4012 4013
}

4014 4015
void mem_cgroup_uncharge_page(struct page *page)
{
4016 4017 4018
	/* early check. */
	if (page_mapped(page))
		return;
4019
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4032 4033
	if (PageSwapCache(page))
		return;
4034
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4035 4036 4037 4038
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
4039 4040
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
4041
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4042 4043
}

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4058 4059
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4080 4081 4082 4083 4084 4085
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4086
	memcg_oom_recover(batch->memcg);
4087 4088 4089 4090
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4091
#ifdef CONFIG_SWAP
4092
/*
4093
 * called after __delete_from_swap_cache() and drop "page" account.
4094 4095
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4096 4097
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4098 4099
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4100 4101 4102 4103 4104
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4105
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4106

K
KAMEZAWA Hiroyuki 已提交
4107 4108
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4109
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4110 4111
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4112
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4113
}
4114
#endif
4115

A
Andrew Morton 已提交
4116
#ifdef CONFIG_MEMCG_SWAP
4117 4118 4119 4120 4121
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4122
{
4123
	struct mem_cgroup *memcg;
4124
	unsigned short id;
4125 4126 4127 4128

	if (!do_swap_account)
		return;

4129 4130 4131
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4132
	if (memcg) {
4133 4134 4135 4136
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4137
		if (!mem_cgroup_is_root(memcg))
4138
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4139
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4140
		css_put(&memcg->css);
4141
	}
4142
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4143
}
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4160
				struct mem_cgroup *from, struct mem_cgroup *to)
4161 4162 4163
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4164 4165
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4166 4167 4168

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4169
		mem_cgroup_swap_statistics(to, true);
4170
		/*
4171 4172 4173
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4174 4175 4176 4177 4178 4179
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4180
		 */
L
Li Zefan 已提交
4181
		css_get(&to->css);
4182 4183 4184 4185 4186 4187
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4188
				struct mem_cgroup *from, struct mem_cgroup *to)
4189 4190 4191
{
	return -EINVAL;
}
4192
#endif
K
KAMEZAWA Hiroyuki 已提交
4193

4194
/*
4195 4196
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4197
 */
4198 4199
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4200
{
4201
	struct mem_cgroup *memcg = NULL;
4202
	unsigned int nr_pages = 1;
4203
	struct page_cgroup *pc;
4204
	enum charge_type ctype;
4205

4206
	*memcgp = NULL;
4207

4208
	if (mem_cgroup_disabled())
4209
		return;
4210

4211 4212 4213
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4214 4215 4216
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4217 4218
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4250
	}
4251
	unlock_page_cgroup(pc);
4252 4253 4254 4255
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4256
	if (!memcg)
4257
		return;
4258

4259
	*memcgp = memcg;
4260 4261 4262 4263 4264 4265 4266
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4267
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4268
	else
4269
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4270 4271 4272 4273 4274
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4275
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4276
}
4277

4278
/* remove redundant charge if migration failed*/
4279
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4280
	struct page *oldpage, struct page *newpage, bool migration_ok)
4281
{
4282
	struct page *used, *unused;
4283
	struct page_cgroup *pc;
4284
	bool anon;
4285

4286
	if (!memcg)
4287
		return;
4288

4289
	if (!migration_ok) {
4290 4291
		used = oldpage;
		unused = newpage;
4292
	} else {
4293
		used = newpage;
4294 4295
		unused = oldpage;
	}
4296
	anon = PageAnon(used);
4297 4298 4299 4300
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4301
	css_put(&memcg->css);
4302
	/*
4303 4304 4305
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4306
	 */
4307 4308 4309 4310 4311
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4312
	/*
4313 4314 4315 4316 4317 4318
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4319
	 */
4320
	if (anon)
4321
		mem_cgroup_uncharge_page(used);
4322
}
4323

4324 4325 4326 4327 4328 4329 4330 4331
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4332
	struct mem_cgroup *memcg = NULL;
4333 4334 4335 4336 4337 4338 4339 4340 4341
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4342 4343
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4344
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4345 4346
		ClearPageCgroupUsed(pc);
	}
4347 4348
	unlock_page_cgroup(pc);

4349 4350 4351 4352 4353 4354
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4355 4356 4357 4358 4359
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4360
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4361 4362
}

4363 4364 4365 4366 4367 4368
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4369 4370 4371 4372 4373
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4393 4394
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4395 4396 4397 4398
	}
}
#endif

4399
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4400
				unsigned long long val)
4401
{
4402
	int retry_count;
4403
	u64 memswlimit, memlimit;
4404
	int ret = 0;
4405 4406
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4407
	int enlarge;
4408 4409 4410 4411 4412 4413 4414 4415 4416

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4417

4418
	enlarge = 0;
4419
	while (retry_count) {
4420 4421 4422 4423
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4424 4425 4426
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4427
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4428 4429 4430 4431 4432 4433
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4434 4435
			break;
		}
4436 4437 4438 4439 4440

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4441
		ret = res_counter_set_limit(&memcg->res, val);
4442 4443 4444 4445 4446 4447
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4448 4449 4450 4451 4452
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4453 4454
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4455 4456
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4457
		if (curusage >= oldusage)
4458 4459 4460
			retry_count--;
		else
			oldusage = curusage;
4461
	}
4462 4463
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4464

4465 4466 4467
	return ret;
}

L
Li Zefan 已提交
4468 4469
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4470
{
4471
	int retry_count;
4472
	u64 memlimit, memswlimit, oldusage, curusage;
4473 4474
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4475
	int enlarge = 0;
4476

4477
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4478
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4479
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4480 4481 4482 4483 4484 4485 4486 4487
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4488
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4489 4490 4491 4492 4493 4494 4495 4496
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4497 4498 4499
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4500
		ret = res_counter_set_limit(&memcg->memsw, val);
4501 4502 4503 4504 4505 4506
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4507 4508 4509 4510 4511
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4512 4513 4514
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4515
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4516
		/* Usage is reduced ? */
4517
		if (curusage >= oldusage)
4518
			retry_count--;
4519 4520
		else
			oldusage = curusage;
4521
	}
4522 4523
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4524 4525 4526
	return ret;
}

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4619 4620 4621 4622 4623 4624 4625
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4626
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4627 4628
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4629
 */
4630
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4631
				int node, int zid, enum lru_list lru)
4632
{
4633
	struct lruvec *lruvec;
4634
	unsigned long flags;
4635
	struct list_head *list;
4636 4637
	struct page *busy;
	struct zone *zone;
4638

K
KAMEZAWA Hiroyuki 已提交
4639
	zone = &NODE_DATA(node)->node_zones[zid];
4640 4641
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4642

4643
	busy = NULL;
4644
	do {
4645
		struct page_cgroup *pc;
4646 4647
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4648
		spin_lock_irqsave(&zone->lru_lock, flags);
4649
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4650
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4651
			break;
4652
		}
4653 4654 4655
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4656
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4657
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4658 4659
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4660
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4661

4662
		pc = lookup_page_cgroup(page);
4663

4664
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4665
			/* found lock contention or "pc" is obsolete. */
4666
			busy = page;
4667 4668
		} else
			busy = NULL;
4669
		cond_resched();
4670
	} while (!list_empty(list));
4671 4672 4673
}

/*
4674 4675
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4676
 * This enables deleting this mem_cgroup.
4677 4678
 *
 * Caller is responsible for holding css reference on the memcg.
4679
 */
4680
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4681
{
4682
	int node, zid;
4683
	u64 usage;
4684

4685
	do {
4686 4687
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4688 4689
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4690
		for_each_node_state(node, N_MEMORY) {
4691
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4692 4693
				enum lru_list lru;
				for_each_lru(lru) {
4694
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4695
							node, zid, lru);
4696
				}
4697
			}
4698
		}
4699 4700
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4701
		cond_resched();
4702

4703
		/*
4704 4705 4706 4707 4708
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4709 4710 4711 4712 4713 4714
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4715 4716 4717
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4718 4719
}

4720 4721
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4732 4733
}

4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4744

4745
	/* returns EBUSY if there is a task or if we come here twice. */
4746
	if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4747 4748
		return -EBUSY;

4749 4750
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4751
	/* try to free all pages in this cgroup */
4752
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4753
		int progress;
4754

4755 4756 4757
		if (signal_pending(current))
			return -EINTR;

4758
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4759
						false);
4760
		if (!progress) {
4761
			nr_retries--;
4762
			/* maybe some writeback is necessary */
4763
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4764
		}
4765 4766

	}
K
KAMEZAWA Hiroyuki 已提交
4767
	lru_add_drain();
4768 4769 4770
	mem_cgroup_reparent_charges(memcg);

	return 0;
4771 4772
}

4773 4774
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4775
{
4776
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4777

4778 4779
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4780
	return mem_cgroup_force_empty(memcg);
4781 4782
}

4783 4784
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4785
{
4786
	return mem_cgroup_from_css(css)->use_hierarchy;
4787 4788
}

4789 4790
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4791 4792
{
	int retval = 0;
4793
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4794
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4795

4796
	mutex_lock(&memcg_create_mutex);
4797 4798 4799 4800

	if (memcg->use_hierarchy == val)
		goto out;

4801
	/*
4802
	 * If parent's use_hierarchy is set, we can't make any modifications
4803 4804 4805 4806 4807 4808
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4809
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4810
				(val == 1 || val == 0)) {
4811
		if (list_empty(&memcg->css.cgroup->children))
4812
			memcg->use_hierarchy = val;
4813 4814 4815 4816
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4817 4818

out:
4819
	mutex_unlock(&memcg_create_mutex);
4820 4821 4822 4823

	return retval;
}

4824

4825
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4826
					       enum mem_cgroup_stat_index idx)
4827
{
K
KAMEZAWA Hiroyuki 已提交
4828
	struct mem_cgroup *iter;
4829
	long val = 0;
4830

4831
	/* Per-cpu values can be negative, use a signed accumulator */
4832
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4833 4834 4835 4836 4837
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4838 4839
}

4840
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4841
{
K
KAMEZAWA Hiroyuki 已提交
4842
	u64 val;
4843

4844
	if (!mem_cgroup_is_root(memcg)) {
4845
		if (!swap)
4846
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4847
		else
4848
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4849 4850
	}

4851 4852 4853 4854
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4855 4856
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4857

K
KAMEZAWA Hiroyuki 已提交
4858
	if (swap)
4859
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4860 4861 4862 4863

	return val << PAGE_SHIFT;
}

4864 4865
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
4866
{
4867
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4868
	u64 val;
4869
	int name;
G
Glauber Costa 已提交
4870
	enum res_type type;
4871 4872 4873

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4874

4875 4876
	switch (type) {
	case _MEM:
4877
		if (name == RES_USAGE)
4878
			val = mem_cgroup_usage(memcg, false);
4879
		else
4880
			val = res_counter_read_u64(&memcg->res, name);
4881 4882
		break;
	case _MEMSWAP:
4883
		if (name == RES_USAGE)
4884
			val = mem_cgroup_usage(memcg, true);
4885
		else
4886
			val = res_counter_read_u64(&memcg->memsw, name);
4887
		break;
4888 4889 4890
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4891 4892 4893
	default:
		BUG();
	}
4894

4895
	return val;
B
Balbir Singh 已提交
4896
}
4897 4898

#ifdef CONFIG_MEMCG_KMEM
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4927
	mutex_lock(&memcg_create_mutex);
4928
	if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
4929 4930 4931 4932
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4933

4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
4945
	mutex_lock(&memcg_slab_mutex);
4946
	err = memcg_update_all_caches(memcg_id + 1);
4947
	mutex_unlock(&memcg_slab_mutex);
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4968
out:
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
4997 4998 4999
	return ret;
}

5000
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5001
{
5002
	int ret = 0;
5003
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5004

5005 5006
	if (!parent)
		return 0;
5007

5008
	mutex_lock(&activate_kmem_mutex);
5009
	/*
5010 5011
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
5012
	 */
5013 5014 5015
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
5016
	return ret;
5017
}
5018 5019 5020 5021 5022 5023
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
5024
#endif /* CONFIG_MEMCG_KMEM */
5025

5026 5027 5028 5029
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5030
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5031
			    char *buffer)
B
Balbir Singh 已提交
5032
{
5033
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5034 5035
	enum res_type type;
	int name;
5036 5037 5038
	unsigned long long val;
	int ret;

5039 5040
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5041

5042
	switch (name) {
5043
	case RES_LIMIT:
5044 5045 5046 5047
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5048 5049
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5050 5051 5052
		if (ret)
			break;
		if (type == _MEM)
5053
			ret = mem_cgroup_resize_limit(memcg, val);
5054
		else if (type == _MEMSWAP)
5055
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5056
		else if (type == _KMEM)
5057
			ret = memcg_update_kmem_limit(memcg, val);
5058 5059
		else
			return -EINVAL;
5060
		break;
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5075 5076 5077 5078 5079
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5080 5081
}

5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5092 5093
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5106
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5107
{
5108
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5109 5110
	int name;
	enum res_type type;
5111

5112 5113
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5114

5115
	switch (name) {
5116
	case RES_MAX_USAGE:
5117
		if (type == _MEM)
5118
			res_counter_reset_max(&memcg->res);
5119
		else if (type == _MEMSWAP)
5120
			res_counter_reset_max(&memcg->memsw);
5121 5122 5123 5124
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5125 5126
		break;
	case RES_FAILCNT:
5127
		if (type == _MEM)
5128
			res_counter_reset_failcnt(&memcg->res);
5129
		else if (type == _MEMSWAP)
5130
			res_counter_reset_failcnt(&memcg->memsw);
5131 5132 5133 5134
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5135 5136
		break;
	}
5137

5138
	return 0;
5139 5140
}

5141
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5142 5143
					struct cftype *cft)
{
5144
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5145 5146
}

5147
#ifdef CONFIG_MMU
5148
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5149 5150
					struct cftype *cft, u64 val)
{
5151
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5152 5153 5154

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5155

5156
	/*
5157 5158 5159 5160
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5161
	 */
5162
	memcg->move_charge_at_immigrate = val;
5163 5164
	return 0;
}
5165
#else
5166
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5167 5168 5169 5170 5171
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5172

5173
#ifdef CONFIG_NUMA
5174
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5175
{
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5188
	int nid;
5189
	unsigned long nr;
5190
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5191

5192 5193 5194 5195 5196 5197 5198 5199 5200
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5201 5202
	}

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5218 5219 5220 5221 5222 5223
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5224 5225 5226 5227 5228
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5229
static int memcg_stat_show(struct seq_file *m, void *v)
5230
{
5231
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5232 5233
	struct mem_cgroup *mi;
	unsigned int i;
5234

5235
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5236
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5237
			continue;
5238 5239
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5240
	}
L
Lee Schermerhorn 已提交
5241

5242 5243 5244 5245 5246 5247 5248 5249
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5250
	/* Hierarchical information */
5251 5252
	{
		unsigned long long limit, memsw_limit;
5253
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5254
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5255
		if (do_swap_account)
5256 5257
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5258
	}
K
KOSAKI Motohiro 已提交
5259

5260 5261 5262
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5263
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5264
			continue;
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5285
	}
K
KAMEZAWA Hiroyuki 已提交
5286

K
KOSAKI Motohiro 已提交
5287 5288 5289 5290
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5291
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5292 5293 5294 5295 5296
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5297
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5298
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5299

5300 5301 5302 5303
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5304
			}
5305 5306 5307 5308
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5309 5310 5311
	}
#endif

5312 5313 5314
	return 0;
}

5315 5316
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5317
{
5318
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5319

5320
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5321 5322
}

5323 5324
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5325
{
5326
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5327

5328
	if (val > 100)
K
KOSAKI Motohiro 已提交
5329 5330
		return -EINVAL;

5331 5332 5333 5334
	if (css_parent(css))
		memcg->swappiness = val;
	else
		vm_swappiness = val;
5335

K
KOSAKI Motohiro 已提交
5336 5337 5338
	return 0;
}

5339 5340 5341 5342 5343 5344 5345 5346
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5347
		t = rcu_dereference(memcg->thresholds.primary);
5348
	else
5349
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5350 5351 5352 5353 5354 5355 5356

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5357
	 * current_threshold points to threshold just below or equal to usage.
5358 5359 5360
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5361
	i = t->current_threshold;
5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5385
	t->current_threshold = i - 1;
5386 5387 5388 5389 5390 5391
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5392 5393 5394 5395 5396 5397 5398
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5399 5400 5401 5402 5403 5404 5405
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5406 5407 5408 5409 5410 5411 5412
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5413 5414
}

5415
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5416 5417 5418
{
	struct mem_cgroup_eventfd_list *ev;

5419
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5420 5421 5422 5423
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5424
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5425
{
K
KAMEZAWA Hiroyuki 已提交
5426 5427
	struct mem_cgroup *iter;

5428
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5429
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5430 5431
}

5432
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5433
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5434
{
5435 5436
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5437
	u64 threshold, usage;
5438
	int i, size, ret;
5439 5440 5441 5442 5443 5444

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5445

5446
	if (type == _MEM)
5447
		thresholds = &memcg->thresholds;
5448
	else if (type == _MEMSWAP)
5449
		thresholds = &memcg->memsw_thresholds;
5450 5451 5452 5453 5454 5455
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5456
	if (thresholds->primary)
5457 5458
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5459
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5460 5461

	/* Allocate memory for new array of thresholds */
5462
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5463
			GFP_KERNEL);
5464
	if (!new) {
5465 5466 5467
		ret = -ENOMEM;
		goto unlock;
	}
5468
	new->size = size;
5469 5470

	/* Copy thresholds (if any) to new array */
5471 5472
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5473
				sizeof(struct mem_cgroup_threshold));
5474 5475
	}

5476
	/* Add new threshold */
5477 5478
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5479 5480

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5481
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5482 5483 5484
			compare_thresholds, NULL);

	/* Find current threshold */
5485
	new->current_threshold = -1;
5486
	for (i = 0; i < size; i++) {
5487
		if (new->entries[i].threshold <= usage) {
5488
			/*
5489 5490
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5491 5492
			 * it here.
			 */
5493
			++new->current_threshold;
5494 5495
		} else
			break;
5496 5497
	}

5498 5499 5500 5501 5502
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5503

5504
	/* To be sure that nobody uses thresholds */
5505 5506 5507 5508 5509 5510 5511 5512
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5513
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5514 5515
	struct eventfd_ctx *eventfd, const char *args)
{
5516
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5517 5518
}

5519
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5520 5521
	struct eventfd_ctx *eventfd, const char *args)
{
5522
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5523 5524
}

5525
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5526
	struct eventfd_ctx *eventfd, enum res_type type)
5527
{
5528 5529
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5530
	u64 usage;
5531
	int i, j, size;
5532 5533 5534

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5535
		thresholds = &memcg->thresholds;
5536
	else if (type == _MEMSWAP)
5537
		thresholds = &memcg->memsw_thresholds;
5538 5539 5540
	else
		BUG();

5541 5542 5543
	if (!thresholds->primary)
		goto unlock;

5544 5545 5546 5547 5548 5549
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5550 5551 5552
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5553 5554 5555
			size++;
	}

5556
	new = thresholds->spare;
5557

5558 5559
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5560 5561
		kfree(new);
		new = NULL;
5562
		goto swap_buffers;
5563 5564
	}

5565
	new->size = size;
5566 5567

	/* Copy thresholds and find current threshold */
5568 5569 5570
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5571 5572
			continue;

5573
		new->entries[j] = thresholds->primary->entries[i];
5574
		if (new->entries[j].threshold <= usage) {
5575
			/*
5576
			 * new->current_threshold will not be used
5577 5578 5579
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5580
			++new->current_threshold;
5581 5582 5583 5584
		}
		j++;
	}

5585
swap_buffers:
5586 5587
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5588 5589 5590 5591 5592 5593
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5594
	rcu_assign_pointer(thresholds->primary, new);
5595

5596
	/* To be sure that nobody uses thresholds */
5597
	synchronize_rcu();
5598
unlock:
5599 5600
	mutex_unlock(&memcg->thresholds_lock);
}
5601

5602
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5603 5604
	struct eventfd_ctx *eventfd)
{
5605
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5606 5607
}

5608
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5609 5610
	struct eventfd_ctx *eventfd)
{
5611
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5612 5613
}

5614
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5615
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5616 5617 5618 5619 5620 5621 5622
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5623
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5624 5625 5626 5627 5628

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5629
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5630
		eventfd_signal(eventfd, 1);
5631
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5632 5633 5634 5635

	return 0;
}

5636
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5637
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5638 5639 5640
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5641
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5642

5643
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5644 5645 5646 5647 5648 5649
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5650
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5651 5652
}

5653
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5654
{
5655
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5656

5657 5658
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5659 5660 5661
	return 0;
}

5662
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5663 5664
	struct cftype *cft, u64 val)
{
5665
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5666 5667

	/* cannot set to root cgroup and only 0 and 1 are allowed */
5668
	if (!css_parent(css) || !((val == 0) || (val == 1)))
5669 5670
		return -EINVAL;

5671
	memcg->oom_kill_disable = val;
5672
	if (!val)
5673
		memcg_oom_recover(memcg);
5674

5675 5676 5677
	return 0;
}

A
Andrew Morton 已提交
5678
#ifdef CONFIG_MEMCG_KMEM
5679
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5680
{
5681 5682
	int ret;

5683
	memcg->kmemcg_id = -1;
5684 5685 5686
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5687

5688
	return mem_cgroup_sockets_init(memcg, ss);
5689
}
5690

5691
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5692
{
5693
	mem_cgroup_sockets_destroy(memcg);
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5720 5721 5722 5723 5724 5725 5726

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5727
		css_put(&memcg->css);
G
Glauber Costa 已提交
5728
}
5729
#else
5730
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5731 5732 5733
{
	return 0;
}
G
Glauber Costa 已提交
5734

5735 5736 5737 5738 5739
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5740 5741
{
}
5742 5743
#endif

5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5757 5758 5759 5760 5761
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5762
static void memcg_event_remove(struct work_struct *work)
5763
{
5764 5765
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5766
	struct mem_cgroup *memcg = event->memcg;
5767 5768 5769

	remove_wait_queue(event->wqh, &event->wait);

5770
	event->unregister_event(memcg, event->eventfd);
5771 5772 5773 5774 5775 5776

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
5777
	css_put(&memcg->css);
5778 5779 5780 5781 5782 5783 5784
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
5785 5786
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
5787
{
5788 5789
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
5790
	struct mem_cgroup *memcg = event->memcg;
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
5803
		spin_lock(&memcg->event_list_lock);
5804 5805 5806 5807 5808 5809 5810 5811
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5812
		spin_unlock(&memcg->event_list_lock);
5813 5814 5815 5816 5817
	}

	return 0;
}

5818
static void memcg_event_ptable_queue_proc(struct file *file,
5819 5820
		wait_queue_head_t *wqh, poll_table *pt)
{
5821 5822
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5823 5824 5825 5826 5827 5828

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5829 5830
 * DO NOT USE IN NEW FILES.
 *
5831 5832 5833 5834 5835
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5836
static int memcg_write_event_control(struct cgroup_subsys_state *css,
5837
				     struct cftype *cft, char *buffer)
5838
{
5839
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5840
	struct mem_cgroup_event *event;
5841 5842 5843 5844
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5845
	const char *name;
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5863
	event->memcg = memcg;
5864
	INIT_LIST_HEAD(&event->list);
5865 5866 5867
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

5893 5894 5895 5896 5897
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
5898 5899
	 *
	 * DO NOT ADD NEW FILES.
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
5913 5914
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
5915 5916 5917 5918 5919
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

5920
	/*
5921 5922 5923
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
5924
	 */
5925 5926
	cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
					&memory_cgrp_subsys);
5927
	ret = -EINVAL;
5928
	if (IS_ERR(cfile_css))
5929
		goto out_put_cfile;
5930 5931
	if (cfile_css != css) {
		css_put(cfile_css);
5932
		goto out_put_cfile;
5933
	}
5934

5935
	ret = event->register_event(memcg, event->eventfd, buffer);
5936 5937 5938 5939 5940
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

5941 5942 5943
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5944 5945 5946 5947 5948 5949 5950

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
5951
	css_put(css);
5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5964 5965
static struct cftype mem_cgroup_files[] = {
	{
5966
		.name = "usage_in_bytes",
5967
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5968
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5969
	},
5970 5971
	{
		.name = "max_usage_in_bytes",
5972
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5973
		.trigger = mem_cgroup_reset,
5974
		.read_u64 = mem_cgroup_read_u64,
5975
	},
B
Balbir Singh 已提交
5976
	{
5977
		.name = "limit_in_bytes",
5978
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5979
		.write_string = mem_cgroup_write,
5980
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5981
	},
5982 5983 5984 5985
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5986
		.read_u64 = mem_cgroup_read_u64,
5987
	},
B
Balbir Singh 已提交
5988 5989
	{
		.name = "failcnt",
5990
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5991
		.trigger = mem_cgroup_reset,
5992
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5993
	},
5994 5995
	{
		.name = "stat",
5996
		.seq_show = memcg_stat_show,
5997
	},
5998 5999 6000 6001
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
6002 6003
	{
		.name = "use_hierarchy",
6004
		.flags = CFTYPE_INSANE,
6005 6006 6007
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6008
	{
6009 6010
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6011 6012 6013
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6014 6015 6016 6017 6018
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6019 6020 6021 6022 6023
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6024 6025
	{
		.name = "oom_control",
6026
		.seq_show = mem_cgroup_oom_control_read,
6027
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6028 6029
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6030 6031 6032
	{
		.name = "pressure_level",
	},
6033 6034 6035
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6036
		.seq_show = memcg_numa_stat_show,
6037 6038
	},
#endif
6039 6040 6041 6042 6043
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6044
		.read_u64 = mem_cgroup_read_u64,
6045 6046 6047 6048
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6049
		.read_u64 = mem_cgroup_read_u64,
6050 6051 6052 6053 6054
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6055
		.read_u64 = mem_cgroup_read_u64,
6056 6057 6058 6059 6060
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6061
		.read_u64 = mem_cgroup_read_u64,
6062
	},
6063 6064 6065
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6066
		.seq_show = mem_cgroup_slabinfo_read,
6067 6068
	},
#endif
6069
#endif
6070
	{ },	/* terminate */
6071
};
6072

6073 6074 6075 6076 6077
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6078
		.read_u64 = mem_cgroup_read_u64,
6079 6080 6081 6082 6083
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6084
		.read_u64 = mem_cgroup_read_u64,
6085 6086 6087 6088 6089
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6090
		.read_u64 = mem_cgroup_read_u64,
6091 6092 6093 6094 6095
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6096
		.read_u64 = mem_cgroup_read_u64,
6097 6098 6099 6100
	},
	{ },	/* terminate */
};
#endif
6101
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6102 6103
{
	struct mem_cgroup_per_node *pn;
6104
	struct mem_cgroup_per_zone *mz;
6105
	int zone, tmp = node;
6106 6107 6108 6109 6110 6111 6112 6113
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6114 6115
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6116
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6117 6118
	if (!pn)
		return 1;
6119 6120 6121

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6122
		lruvec_init(&mz->lruvec);
6123 6124
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6125
		mz->memcg = memcg;
6126
	}
6127
	memcg->nodeinfo[node] = pn;
6128 6129 6130
	return 0;
}

6131
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6132
{
6133
	kfree(memcg->nodeinfo[node]);
6134 6135
}

6136 6137
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6138
	struct mem_cgroup *memcg;
6139
	size_t size;
6140

6141 6142
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6143

6144
	memcg = kzalloc(size, GFP_KERNEL);
6145
	if (!memcg)
6146 6147
		return NULL;

6148 6149
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6150
		goto out_free;
6151 6152
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6153 6154

out_free:
6155
	kfree(memcg);
6156
	return NULL;
6157 6158
}

6159
/*
6160 6161 6162 6163 6164 6165 6166 6167
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6168
 */
6169 6170

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6171
{
6172
	int node;
6173

6174
	mem_cgroup_remove_from_trees(memcg);
6175 6176 6177 6178 6179 6180

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6192
	disarm_static_keys(memcg);
6193
	kfree(memcg);
6194
}
6195

6196 6197 6198
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6199
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6200
{
6201
	if (!memcg->res.parent)
6202
		return NULL;
6203
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6204
}
G
Glauber Costa 已提交
6205
EXPORT_SYMBOL(parent_mem_cgroup);
6206

6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6230
static struct cgroup_subsys_state * __ref
6231
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6232
{
6233
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6234
	long error = -ENOMEM;
6235
	int node;
B
Balbir Singh 已提交
6236

6237 6238
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6239
		return ERR_PTR(error);
6240

B
Bob Liu 已提交
6241
	for_each_node(node)
6242
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6243
			goto free_out;
6244

6245
	/* root ? */
6246
	if (parent_css == NULL) {
6247
		root_mem_cgroup = memcg;
6248 6249 6250
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6251
	}
6252

6253 6254 6255 6256 6257
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6258
	vmpressure_init(&memcg->vmpressure);
6259 6260
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6261 6262 6263 6264 6265 6266 6267 6268 6269

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6270
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6271
{
6272 6273
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6274

6275 6276 6277
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6278
	if (!parent)
6279 6280
		return 0;

6281
	mutex_lock(&memcg_create_mutex);
6282 6283 6284 6285 6286 6287

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6288 6289
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6290
		res_counter_init(&memcg->kmem, &parent->kmem);
6291

6292
		/*
6293 6294
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6295
		 */
6296
	} else {
6297 6298
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6299
		res_counter_init(&memcg->kmem, NULL);
6300 6301 6302 6303 6304
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6305
		if (parent != root_mem_cgroup)
6306
			memory_cgrp_subsys.broken_hierarchy = true;
6307
	}
6308
	mutex_unlock(&memcg_create_mutex);
6309

6310
	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
B
Balbir Singh 已提交
6311 6312
}

M
Michal Hocko 已提交
6313 6314 6315 6316 6317 6318 6319 6320
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6321
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6322 6323 6324 6325 6326 6327

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6328
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6329 6330
}

6331
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6332
{
6333
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6334
	struct mem_cgroup_event *event, *tmp;
6335
	struct cgroup_subsys_state *iter;
6336 6337 6338 6339 6340 6341

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6342 6343
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6344 6345 6346
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6347
	spin_unlock(&memcg->event_list_lock);
6348

6349 6350
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6351
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6352 6353 6354 6355 6356 6357 6358 6359

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

6360
	memcg_unregister_all_caches(memcg);
6361
	vmpressure_cleanup(&memcg->vmpressure);
6362 6363
}

6364
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6365
{
6366
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6403

6404
	memcg_destroy_kmem(memcg);
6405
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6406 6407
}

6408
#ifdef CONFIG_MMU
6409
/* Handlers for move charge at task migration. */
6410 6411
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6412
{
6413 6414
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6415
	struct mem_cgroup *memcg = mc.to;
6416

6417
	if (mem_cgroup_is_root(memcg)) {
6418 6419 6420 6421 6422 6423 6424 6425
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6426
		 * "memcg" cannot be under rmdir() because we've already checked
6427 6428 6429 6430
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6431
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6432
			goto one_by_one;
6433
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6434
						PAGE_SIZE * count, &dummy)) {
6435
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6452
		ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6453
		if (ret)
6454
			/* mem_cgroup_clear_mc() will do uncharge later */
6455
			return ret;
6456 6457
		mc.precharge++;
	}
6458 6459 6460 6461
	return ret;
}

/**
6462
 * get_mctgt_type - get target type of moving charge
6463 6464 6465
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6466
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6467 6468 6469 6470 6471 6472
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6473 6474 6475
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6476 6477 6478 6479 6480
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6481
	swp_entry_t	ent;
6482 6483 6484
};

enum mc_target_type {
6485
	MC_TARGET_NONE = 0,
6486
	MC_TARGET_PAGE,
6487
	MC_TARGET_SWAP,
6488 6489
};

D
Daisuke Nishimura 已提交
6490 6491
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6492
{
D
Daisuke Nishimura 已提交
6493
	struct page *page = vm_normal_page(vma, addr, ptent);
6494

D
Daisuke Nishimura 已提交
6495 6496 6497 6498
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6499
		if (!move_anon())
D
Daisuke Nishimura 已提交
6500
			return NULL;
6501 6502
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6503 6504 6505 6506 6507 6508 6509
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6510
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6511 6512 6513 6514 6515 6516 6517 6518
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6519 6520 6521 6522
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6523
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6524 6525 6526 6527 6528
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6529 6530 6531 6532 6533 6534 6535
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6536

6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6556 6557
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
6570
#endif
6571 6572 6573
	return page;
}

6574
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6575 6576 6577 6578
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6579
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6580 6581 6582 6583 6584 6585
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6586 6587
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6588 6589

	if (!page && !ent.val)
6590
		return ret;
6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6606 6607
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6608
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6609 6610 6611
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6612 6613 6614 6615
	}
	return ret;
}

6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6630
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6651 6652 6653 6654 6655 6656 6657 6658
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6659
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6660 6661
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6662
		spin_unlock(ptl);
6663
		return 0;
6664
	}
6665

6666 6667
	if (pmd_trans_unstable(pmd))
		return 0;
6668 6669
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6670
		if (get_mctgt_type(vma, addr, *pte, NULL))
6671 6672 6673 6674
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6675 6676 6677
	return 0;
}

6678 6679 6680 6681 6682
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6683
	down_read(&mm->mmap_sem);
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6695
	up_read(&mm->mmap_sem);
6696 6697 6698 6699 6700 6701 6702 6703 6704

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6705 6706 6707 6708 6709
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6710 6711
}

6712 6713
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6714
{
6715 6716
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6717
	int i;
6718

6719
	/* we must uncharge all the leftover precharges from mc.to */
6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6731
	}
6732 6733 6734 6735 6736 6737
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6738 6739 6740

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6741 6742 6743 6744 6745 6746 6747 6748 6749

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6750
		/* we've already done css_get(mc.to) */
6751 6752
		mc.moved_swap = 0;
	}
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6768
	spin_lock(&mc.lock);
6769 6770
	mc.from = NULL;
	mc.to = NULL;
6771
	spin_unlock(&mc.lock);
6772
	mem_cgroup_end_move(from);
6773 6774
}

6775
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6776
				 struct cgroup_taskset *tset)
6777
{
6778
	struct task_struct *p = cgroup_taskset_first(tset);
6779
	int ret = 0;
6780
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6781
	unsigned long move_charge_at_immigrate;
6782

6783 6784 6785 6786 6787 6788 6789
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6790 6791 6792
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6793
		VM_BUG_ON(from == memcg);
6794 6795 6796 6797 6798

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6799 6800 6801 6802
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6803
			VM_BUG_ON(mc.moved_charge);
6804
			VM_BUG_ON(mc.moved_swap);
6805
			mem_cgroup_start_move(from);
6806
			spin_lock(&mc.lock);
6807
			mc.from = from;
6808
			mc.to = memcg;
6809
			mc.immigrate_flags = move_charge_at_immigrate;
6810
			spin_unlock(&mc.lock);
6811
			/* We set mc.moving_task later */
6812 6813 6814 6815

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6816 6817
		}
		mmput(mm);
6818 6819 6820 6821
	}
	return ret;
}

6822
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6823
				     struct cgroup_taskset *tset)
6824
{
6825
	mem_cgroup_clear_mc();
6826 6827
}

6828 6829 6830
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6831
{
6832 6833 6834 6835
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6836 6837 6838 6839
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6840

6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6851
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6852
		if (mc.precharge < HPAGE_PMD_NR) {
6853
			spin_unlock(ptl);
6854 6855 6856 6857 6858 6859 6860 6861
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6862
							pc, mc.from, mc.to)) {
6863 6864 6865 6866 6867 6868 6869
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6870
		spin_unlock(ptl);
6871
		return 0;
6872 6873
	}

6874 6875
	if (pmd_trans_unstable(pmd))
		return 0;
6876 6877 6878 6879
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6880
		swp_entry_t ent;
6881 6882 6883 6884

		if (!mc.precharge)
			break;

6885
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6886 6887 6888 6889 6890
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6891
			if (!mem_cgroup_move_account(page, 1, pc,
6892
						     mc.from, mc.to)) {
6893
				mc.precharge--;
6894 6895
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6896 6897
			}
			putback_lru_page(page);
6898
put:			/* get_mctgt_type() gets the page */
6899 6900
			put_page(page);
			break;
6901 6902
		case MC_TARGET_SWAP:
			ent = target.ent;
6903
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6904
				mc.precharge--;
6905 6906 6907
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6908
			break;
6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6923
		ret = mem_cgroup_do_precharge(1);
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6967
	up_read(&mm->mmap_sem);
6968 6969
}

6970
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6971
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6972
{
6973
	struct task_struct *p = cgroup_taskset_first(tset);
6974
	struct mm_struct *mm = get_task_mm(p);
6975 6976

	if (mm) {
6977 6978
		if (mc.to)
			mem_cgroup_move_charge(mm);
6979 6980
		mmput(mm);
	}
6981 6982
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6983
}
6984
#else	/* !CONFIG_MMU */
6985
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6986
				 struct cgroup_taskset *tset)
6987 6988 6989
{
	return 0;
}
6990
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6991
				     struct cgroup_taskset *tset)
6992 6993
{
}
6994
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6995
				 struct cgroup_taskset *tset)
6996 6997 6998
{
}
#endif
B
Balbir Singh 已提交
6999

7000 7001 7002 7003
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
7004
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7005 7006 7007 7008 7009 7010
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7011 7012
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7013 7014
}

7015
struct cgroup_subsys memory_cgrp_subsys = {
7016
	.css_alloc = mem_cgroup_css_alloc,
7017
	.css_online = mem_cgroup_css_online,
7018 7019
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7020 7021
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7022
	.attach = mem_cgroup_move_task,
7023
	.bind = mem_cgroup_bind,
7024
	.base_cftypes = mem_cgroup_files,
7025
	.early_init = 0,
B
Balbir Singh 已提交
7026
};
7027

A
Andrew Morton 已提交
7028
#ifdef CONFIG_MEMCG_SWAP
7029 7030
static int __init enable_swap_account(char *s)
{
7031
	if (!strcmp(s, "1"))
7032
		really_do_swap_account = 1;
7033
	else if (!strcmp(s, "0"))
7034 7035 7036
		really_do_swap_account = 0;
	return 1;
}
7037
__setup("swapaccount=", enable_swap_account);
7038

7039 7040
static void __init memsw_file_init(void)
{
7041
	WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7042 7043 7044 7045 7046 7047 7048 7049
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7050
}
7051

7052
#else
7053
static void __init enable_swap_cgroup(void)
7054 7055
{
}
7056
#endif
7057 7058

/*
7059 7060 7061 7062 7063 7064
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7065 7066 7067 7068
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7069
	enable_swap_cgroup();
7070
	mem_cgroup_soft_limit_tree_init();
7071
	memcg_stock_init();
7072 7073 7074
	return 0;
}
subsys_initcall(mem_cgroup_init);