core.c 173.2 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
P
Peter Zijlstra 已提交
16
#include <linux/idr.h>
17
#include <linux/file.h>
T
Thomas Gleixner 已提交
18
#include <linux/poll.h>
19
#include <linux/slab.h>
20
#include <linux/hash.h>
T
Thomas Gleixner 已提交
21
#include <linux/sysfs.h>
22
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
23
#include <linux/percpu.h>
24
#include <linux/ptrace.h>
P
Peter Zijlstra 已提交
25
#include <linux/reboot.h>
26
#include <linux/vmstat.h>
P
Peter Zijlstra 已提交
27
#include <linux/device.h>
28
#include <linux/export.h>
29
#include <linux/vmalloc.h>
30 31
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
32 33 34
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
35
#include <linux/kernel_stat.h>
36
#include <linux/perf_event.h>
L
Li Zefan 已提交
37
#include <linux/ftrace_event.h>
38
#include <linux/hw_breakpoint.h>
39
#include <linux/mm_types.h>
T
Thomas Gleixner 已提交
40

41 42
#include "internal.h"

43 44
#include <asm/irq_regs.h>

45
struct remote_function_call {
46 47 48 49
	struct task_struct	*p;
	int			(*func)(void *info);
	void			*info;
	int			ret;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
};

static void remote_function(void *data)
{
	struct remote_function_call *tfc = data;
	struct task_struct *p = tfc->p;

	if (p) {
		tfc->ret = -EAGAIN;
		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
			return;
	}

	tfc->ret = tfc->func(tfc->info);
}

/**
 * task_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 *
 * returns: @func return value, or
 *	    -ESRCH  - when the process isn't running
 *	    -EAGAIN - when the process moved away
 */
static int
task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
83 84 85 86
		.p	= p,
		.func	= func,
		.info	= info,
		.ret	= -ESRCH, /* No such (running) process */
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	};

	if (task_curr(p))
		smp_call_function_single(task_cpu(p), remote_function, &data, 1);

	return data.ret;
}

/**
 * cpu_function_call - call a function on the cpu
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func on the remote cpu.
 *
 * returns: @func return value or -ENXIO when the cpu is offline
 */
static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
{
	struct remote_function_call data = {
107 108 109 110
		.p	= NULL,
		.func	= func,
		.info	= info,
		.ret	= -ENXIO, /* No such CPU */
111 112 113 114 115 116 117
	};

	smp_call_function_single(cpu, remote_function, &data, 1);

	return data.ret;
}

S
Stephane Eranian 已提交
118 119 120 121
#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
		       PERF_FLAG_FD_OUTPUT  |\
		       PERF_FLAG_PID_CGROUP)

122 123 124 125 126 127 128
/*
 * branch priv levels that need permission checks
 */
#define PERF_SAMPLE_BRANCH_PERM_PLM \
	(PERF_SAMPLE_BRANCH_KERNEL |\
	 PERF_SAMPLE_BRANCH_HV)

129 130 131 132 133 134
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

S
Stephane Eranian 已提交
135 136 137 138
/*
 * perf_sched_events : >0 events exist
 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 */
139
struct static_key_deferred perf_sched_events __read_mostly;
S
Stephane Eranian 已提交
140
static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
141
static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
S
Stephane Eranian 已提交
142

143 144 145
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
146

P
Peter Zijlstra 已提交
147 148 149 150
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

151
/*
152
 * perf event paranoia level:
153 154
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
155
 *   1 - disallow cpu events for unpriv
156
 *   2 - disallow kernel profiling for unpriv
157
 */
158
int sysctl_perf_event_paranoid __read_mostly = 1;
159

160 161
/* Minimum for 512 kiB + 1 user control page */
int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
162 163

/*
164
 * max perf event sample rate
165
 */
P
Peter Zijlstra 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
#define DEFAULT_MAX_SAMPLE_RATE 100000
int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
static int max_samples_per_tick __read_mostly =
	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);

int perf_proc_update_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec(table, write, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);

	return 0;
}
184

185
static atomic64_t perf_event_id;
186

187 188 189 190
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type);

static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
191 192 193 194 195
			     enum event_type_t event_type,
			     struct task_struct *task);

static void update_context_time(struct perf_event_context *ctx);
static u64 perf_event_time(struct perf_event *event);
196

197 198 199
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb);

200
void __weak perf_event_print_debug(void)	{ }
T
Thomas Gleixner 已提交
201

202
extern __weak const char *perf_pmu_name(void)
T
Thomas Gleixner 已提交
203
{
204
	return "pmu";
T
Thomas Gleixner 已提交
205 206
}

207 208 209 210 211
static inline u64 perf_clock(void)
{
	return local_clock();
}

S
Stephane Eranian 已提交
212 213 214 215 216 217
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
			  struct perf_event_context *ctx)
{
	raw_spin_lock(&cpuctx->ctx.lock);
	if (ctx)
		raw_spin_lock(&ctx->lock);
}

static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
			    struct perf_event_context *ctx)
{
	if (ctx)
		raw_spin_unlock(&ctx->lock);
	raw_spin_unlock(&cpuctx->ctx.lock);
}

S
Stephane Eranian 已提交
234 235
#ifdef CONFIG_CGROUP_PERF

236 237 238 239 240
/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
S
Stephane Eranian 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task)
{
	return container_of(task_subsys_state(task, perf_subsys_id),
			struct perf_cgroup, css);
}

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);

	return !event->cgrp || event->cgrp == cpuctx->cgrp;
}

257
static inline bool perf_tryget_cgroup(struct perf_event *event)
S
Stephane Eranian 已提交
258
{
259
	return css_tryget(&event->cgrp->css);
S
Stephane Eranian 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

static inline void perf_put_cgroup(struct perf_event *event)
{
	css_put(&event->cgrp->css);
}

static inline void perf_detach_cgroup(struct perf_event *event)
{
	perf_put_cgroup(event);
	event->cgrp = NULL;
}

static inline int is_cgroup_event(struct perf_event *event)
{
	return event->cgrp != NULL;
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	struct perf_cgroup_info *t;

	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	return t->time;
}

static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
{
	struct perf_cgroup_info *info;
	u64 now;

	now = perf_clock();

	info = this_cpu_ptr(cgrp->info);

	info->time += now - info->timestamp;
	info->timestamp = now;
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
	if (cgrp_out)
		__update_cgrp_time(cgrp_out);
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
308 309
	struct perf_cgroup *cgrp;

S
Stephane Eranian 已提交
310
	/*
311 312
	 * ensure we access cgroup data only when needed and
	 * when we know the cgroup is pinned (css_get)
S
Stephane Eranian 已提交
313
	 */
314
	if (!is_cgroup_event(event))
S
Stephane Eranian 已提交
315 316
		return;

317 318 319 320 321 322
	cgrp = perf_cgroup_from_task(current);
	/*
	 * Do not update time when cgroup is not active
	 */
	if (cgrp == event->cgrp)
		__update_cgrp_time(event->cgrp);
S
Stephane Eranian 已提交
323 324 325
}

static inline void
326 327
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
328 329 330 331
{
	struct perf_cgroup *cgrp;
	struct perf_cgroup_info *info;

332 333 334 335 336 337
	/*
	 * ctx->lock held by caller
	 * ensure we do not access cgroup data
	 * unless we have the cgroup pinned (css_get)
	 */
	if (!task || !ctx->nr_cgroups)
S
Stephane Eranian 已提交
338 339 340 341
		return;

	cgrp = perf_cgroup_from_task(task);
	info = this_cpu_ptr(cgrp->info);
342
	info->timestamp = ctx->timestamp;
S
Stephane Eranian 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
}

#define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
#define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */

/*
 * reschedule events based on the cgroup constraint of task.
 *
 * mode SWOUT : schedule out everything
 * mode SWIN : schedule in based on cgroup for next
 */
void perf_cgroup_switch(struct task_struct *task, int mode)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/*
	 * disable interrupts to avoid geting nr_cgroup
	 * changes via __perf_event_disable(). Also
	 * avoids preemption.
	 */
	local_irq_save(flags);

	/*
	 * we reschedule only in the presence of cgroup
	 * constrained events.
	 */
	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * perf_cgroup_events says at least one
		 * context on this CPU has cgroup events.
		 *
		 * ctx->nr_cgroups reports the number of cgroup
		 * events for a context.
		 */
		if (cpuctx->ctx.nr_cgroups > 0) {
384 385
			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
			perf_pmu_disable(cpuctx->ctx.pmu);
S
Stephane Eranian 已提交
386 387 388 389 390 391 392 393 394 395 396

			if (mode & PERF_CGROUP_SWOUT) {
				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
				/*
				 * must not be done before ctxswout due
				 * to event_filter_match() in event_sched_out()
				 */
				cpuctx->cgrp = NULL;
			}

			if (mode & PERF_CGROUP_SWIN) {
397
				WARN_ON_ONCE(cpuctx->cgrp);
S
Stephane Eranian 已提交
398 399 400 401 402 403 404
				/* set cgrp before ctxsw in to
				 * allow event_filter_match() to not
				 * have to pass task around
				 */
				cpuctx->cgrp = perf_cgroup_from_task(task);
				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
			}
405 406
			perf_pmu_enable(cpuctx->ctx.pmu);
			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
S
Stephane Eranian 已提交
407 408 409 410 411 412 413 414
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

415 416
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
417
{
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/*
	 * next is NULL when called from perf_event_enable_on_exec()
	 * that will systematically cause a cgroup_switch()
	 */
	if (next)
		cgrp2 = perf_cgroup_from_task(next);

	/*
	 * only schedule out current cgroup events if we know
	 * that we are switching to a different cgroup. Otherwise,
	 * do no touch the cgroup events.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
S
Stephane Eranian 已提交
440 441
}

442 443
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
444
{
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	struct perf_cgroup *cgrp1;
	struct perf_cgroup *cgrp2 = NULL;

	/*
	 * we come here when we know perf_cgroup_events > 0
	 */
	cgrp1 = perf_cgroup_from_task(task);

	/* prev can never be NULL */
	cgrp2 = perf_cgroup_from_task(prev);

	/*
	 * only need to schedule in cgroup events if we are changing
	 * cgroup during ctxsw. Cgroup events were not scheduled
	 * out of ctxsw out if that was not the case.
	 */
	if (cgrp1 != cgrp2)
		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
S
Stephane Eranian 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
}

static inline int perf_cgroup_connect(int fd, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	struct perf_cgroup *cgrp;
	struct cgroup_subsys_state *css;
	struct file *file;
	int ret = 0, fput_needed;

	file = fget_light(fd, &fput_needed);
	if (!file)
		return -EBADF;

	css = cgroup_css_from_dir(file, perf_subsys_id);
479 480 481 482
	if (IS_ERR(css)) {
		ret = PTR_ERR(css);
		goto out;
	}
S
Stephane Eranian 已提交
483 484 485 486

	cgrp = container_of(css, struct perf_cgroup, css);
	event->cgrp = cgrp;

487
	/* must be done before we fput() the file */
488 489 490 491 492
	if (!perf_tryget_cgroup(event)) {
		event->cgrp = NULL;
		ret = -ENOENT;
		goto out;
	}
493

S
Stephane Eranian 已提交
494 495 496 497 498 499 500 501 502
	/*
	 * all events in a group must monitor
	 * the same cgroup because a task belongs
	 * to only one perf cgroup at a time
	 */
	if (group_leader && group_leader->cgrp != cgrp) {
		perf_detach_cgroup(event);
		ret = -EINVAL;
	}
503
out:
S
Stephane Eranian 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	fput_light(file, fput_needed);
	return ret;
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
	struct perf_cgroup_info *t;
	t = per_cpu_ptr(event->cgrp->info, event->cpu);
	event->shadow_ctx_time = now - t->timestamp;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
	/*
	 * when the current task's perf cgroup does not match
	 * the event's, we need to remember to call the
	 * perf_mark_enable() function the first time a task with
	 * a matching perf cgroup is scheduled in.
	 */
	if (is_cgroup_event(event) && !perf_cgroup_match(event))
		event->cgrp_defer_enabled = 1;
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
	struct perf_event *sub;
	u64 tstamp = perf_event_time(event);

	if (!event->cgrp_defer_enabled)
		return;

	event->cgrp_defer_enabled = 0;

	event->tstamp_enabled = tstamp - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
			sub->cgrp_defer_enabled = 0;
		}
	}
}
#else /* !CONFIG_CGROUP_PERF */

static inline bool
perf_cgroup_match(struct perf_event *event)
{
	return true;
}

static inline void perf_detach_cgroup(struct perf_event *event)
{}

static inline int is_cgroup_event(struct perf_event *event)
{
	return 0;
}

static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
{
	return 0;
}

static inline void update_cgrp_time_from_event(struct perf_event *event)
{
}

static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
{
}

578 579
static inline void perf_cgroup_sched_out(struct task_struct *task,
					 struct task_struct *next)
S
Stephane Eranian 已提交
580 581 582
{
}

583 584
static inline void perf_cgroup_sched_in(struct task_struct *prev,
					struct task_struct *task)
S
Stephane Eranian 已提交
585 586 587 588 589 590 591 592 593 594 595
{
}

static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
				      struct perf_event_attr *attr,
				      struct perf_event *group_leader)
{
	return -EINVAL;
}

static inline void
596 597
perf_cgroup_set_timestamp(struct task_struct *task,
			  struct perf_event_context *ctx)
S
Stephane Eranian 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
{
}

void
perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
{
}

static inline void
perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
{
}

static inline u64 perf_cgroup_event_time(struct perf_event *event)
{
	return 0;
}

static inline void
perf_cgroup_defer_enabled(struct perf_event *event)
{
}

static inline void
perf_cgroup_mark_enabled(struct perf_event *event,
			 struct perf_event_context *ctx)
{
}
#endif

P
Peter Zijlstra 已提交
628
void perf_pmu_disable(struct pmu *pmu)
629
{
P
Peter Zijlstra 已提交
630 631 632
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
633 634
}

P
Peter Zijlstra 已提交
635
void perf_pmu_enable(struct pmu *pmu)
636
{
P
Peter Zijlstra 已提交
637 638 639
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
640 641
}

642 643 644 645 646 647 648
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
649
static void perf_pmu_rotate_start(struct pmu *pmu)
650
{
P
Peter Zijlstra 已提交
651
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
652
	struct list_head *head = &__get_cpu_var(rotation_list);
653

654
	WARN_ON(!irqs_disabled());
655

656 657
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
658 659
}

660
static void get_ctx(struct perf_event_context *ctx)
661
{
662
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
663 664
}

665
static void put_ctx(struct perf_event_context *ctx)
666
{
667 668 669
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
670 671
		if (ctx->task)
			put_task_struct(ctx->task);
672
		kfree_rcu(ctx, rcu_head);
673
	}
674 675
}

676
static void unclone_ctx(struct perf_event_context *ctx)
677 678 679 680 681 682 683
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_tgid_nr_ns(p, event->ns);
}

static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
{
	/*
	 * only top level events have the pid namespace they were created in
	 */
	if (event->parent)
		event = event->parent;

	return task_pid_nr_ns(p, event->ns);
}

706
/*
707
 * If we inherit events we want to return the parent event id
708 709
 * to userspace.
 */
710
static u64 primary_event_id(struct perf_event *event)
711
{
712
	u64 id = event->id;
713

714 715
	if (event->parent)
		id = event->parent->id;
716 717 718 719

	return id;
}

720
/*
721
 * Get the perf_event_context for a task and lock it.
722 723 724
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
725
static struct perf_event_context *
P
Peter Zijlstra 已提交
726
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
727
{
728
	struct perf_event_context *ctx;
729 730

	rcu_read_lock();
P
Peter Zijlstra 已提交
731
retry:
P
Peter Zijlstra 已提交
732
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
733 734 735 736
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
737
		 * perf_event_task_sched_out, though the
738 739 740 741 742 743
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
744
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
745
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
746
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
747 748
			goto retry;
		}
749 750

		if (!atomic_inc_not_zero(&ctx->refcount)) {
751
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
752 753
			ctx = NULL;
		}
754 755 756 757 758 759 760 761 762 763
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
764 765
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
766
{
767
	struct perf_event_context *ctx;
768 769
	unsigned long flags;

P
Peter Zijlstra 已提交
770
	ctx = perf_lock_task_context(task, ctxn, &flags);
771 772
	if (ctx) {
		++ctx->pin_count;
773
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
774 775 776 777
	}
	return ctx;
}

778
static void perf_unpin_context(struct perf_event_context *ctx)
779 780 781
{
	unsigned long flags;

782
	raw_spin_lock_irqsave(&ctx->lock, flags);
783
	--ctx->pin_count;
784
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
785 786
}

787 788 789 790 791 792 793 794 795 796 797
/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

798 799 800
static u64 perf_event_time(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
S
Stephane Eranian 已提交
801 802 803 804

	if (is_cgroup_event(event))
		return perf_cgroup_event_time(event);

805 806 807
	return ctx ? ctx->time : 0;
}

808 809
/*
 * Update the total_time_enabled and total_time_running fields for a event.
810
 * The caller of this function needs to hold the ctx->lock.
811 812 813 814 815 816 817 818 819
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;
S
Stephane Eranian 已提交
820 821 822 823 824 825 826 827 828 829 830
	/*
	 * in cgroup mode, time_enabled represents
	 * the time the event was enabled AND active
	 * tasks were in the monitored cgroup. This is
	 * independent of the activity of the context as
	 * there may be a mix of cgroup and non-cgroup events.
	 *
	 * That is why we treat cgroup events differently
	 * here.
	 */
	if (is_cgroup_event(event))
831
		run_end = perf_cgroup_event_time(event);
S
Stephane Eranian 已提交
832 833
	else if (ctx->is_active)
		run_end = ctx->time;
834 835 836 837
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
838 839 840 841

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
842
		run_end = perf_event_time(event);
843 844

	event->total_time_running = run_end - event->tstamp_running;
S
Stephane Eranian 已提交
845

846 847
}

848 849 850 851 852 853 854 855 856 857 858 859
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

860 861 862 863 864 865 866 867 868
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

869
/*
870
 * Add a event from the lists for its context.
871 872
 * Must be called with ctx->mutex and ctx->lock held.
 */
873
static void
874
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
875
{
876 877
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
878 879

	/*
880 881 882
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
883
	 */
884
	if (event->group_leader == event) {
885 886
		struct list_head *list;

887 888 889
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

890 891
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
892
	}
P
Peter Zijlstra 已提交
893

894
	if (is_cgroup_event(event))
S
Stephane Eranian 已提交
895 896
		ctx->nr_cgroups++;

897 898 899
	if (has_branch_stack(event))
		ctx->nr_branch_stack++;

900
	list_add_rcu(&event->event_entry, &ctx->event_list);
901
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
902
		perf_pmu_rotate_start(ctx->pmu);
903 904
	ctx->nr_events++;
	if (event->attr.inherit_stat)
905
		ctx->nr_stat++;
906 907
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
/*
 * Called at perf_event creation and when events are attached/detached from a
 * group.
 */
static void perf_event__read_size(struct perf_event *event)
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		size += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_ID)
		entry += sizeof(u64);

	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
		size += sizeof(u64);
	}

	size += entry * nr;
	event->read_size = size;
}

static void perf_event__header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

	perf_event__read_size(event);

	if (sample_type & PERF_SAMPLE_IP)
		size += sizeof(data->ip);

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	if (sample_type & PERF_SAMPLE_ADDR)
		size += sizeof(data->addr);

	if (sample_type & PERF_SAMPLE_PERIOD)
		size += sizeof(data->period);

	if (sample_type & PERF_SAMPLE_READ)
		size += event->read_size;

	event->header_size = size;
}

static void perf_event__id_header_size(struct perf_event *event)
{
	struct perf_sample_data *data;
	u64 sample_type = event->attr.sample_type;
	u16 size = 0;

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	if (sample_type & PERF_SAMPLE_TID)
		size += sizeof(data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		size += sizeof(data->time);

	if (sample_type & PERF_SAMPLE_ID)
		size += sizeof(data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		size += sizeof(data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		size += sizeof(data->cpu_entry);

980
	event->id_header_size = size;
981 982
}

983 984
static void perf_group_attach(struct perf_event *event)
{
985
	struct perf_event *group_leader = event->group_leader, *pos;
986

P
Peter Zijlstra 已提交
987 988 989 990 991 992
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

993 994 995 996 997 998 999 1000 1001 1002 1003
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
1004 1005 1006 1007 1008

	perf_event__header_size(group_leader);

	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
		perf_event__header_size(pos);
1009 1010
}

1011
/*
1012
 * Remove a event from the lists for its context.
1013
 * Must be called with ctx->mutex and ctx->lock held.
1014
 */
1015
static void
1016
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1017
{
1018
	struct perf_cpu_context *cpuctx;
1019 1020 1021 1022
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1023
		return;
1024 1025 1026

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

1027
	if (is_cgroup_event(event)) {
S
Stephane Eranian 已提交
1028
		ctx->nr_cgroups--;
1029 1030 1031 1032 1033 1034 1035 1036 1037
		cpuctx = __get_cpu_context(ctx);
		/*
		 * if there are no more cgroup events
		 * then cler cgrp to avoid stale pointer
		 * in update_cgrp_time_from_cpuctx()
		 */
		if (!ctx->nr_cgroups)
			cpuctx->cgrp = NULL;
	}
S
Stephane Eranian 已提交
1038

1039 1040 1041
	if (has_branch_stack(event))
		ctx->nr_branch_stack--;

1042 1043
	ctx->nr_events--;
	if (event->attr.inherit_stat)
1044
		ctx->nr_stat--;
1045

1046
	list_del_rcu(&event->event_entry);
1047

1048 1049
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
1050

1051
	update_group_times(event);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
1062 1063
}

1064
static void perf_group_detach(struct perf_event *event)
1065 1066
{
	struct perf_event *sibling, *tmp;
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
1083
		goto out;
1084 1085 1086 1087
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
1088

1089
	/*
1090 1091
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
1092
	 * to whatever list we are on.
1093
	 */
1094
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1095 1096
		if (list)
			list_move_tail(&sibling->group_entry, list);
1097
		sibling->group_leader = sibling;
1098 1099 1100

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
1101
	}
1102 1103 1104 1105 1106 1107

out:
	perf_event__header_size(event->group_leader);

	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
		perf_event__header_size(tmp);
1108 1109
}

1110 1111 1112
static inline int
event_filter_match(struct perf_event *event)
{
S
Stephane Eranian 已提交
1113 1114
	return (event->cpu == -1 || event->cpu == smp_processor_id())
	    && perf_cgroup_match(event);
1115 1116
}

1117 1118
static void
event_sched_out(struct perf_event *event,
1119
		  struct perf_cpu_context *cpuctx,
1120
		  struct perf_event_context *ctx)
1121
{
1122
	u64 tstamp = perf_event_time(event);
1123 1124 1125 1126 1127 1128 1129 1130 1131
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
S
Stephane Eranian 已提交
1132
		delta = tstamp - event->tstamp_stopped;
1133
		event->tstamp_running += delta;
1134
		event->tstamp_stopped = tstamp;
1135 1136
	}

1137
	if (event->state != PERF_EVENT_STATE_ACTIVE)
1138
		return;
1139

1140 1141 1142 1143
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
1144
	}
1145
	event->tstamp_stopped = tstamp;
P
Peter Zijlstra 已提交
1146
	event->pmu->del(event, 0);
1147
	event->oncpu = -1;
1148

1149
	if (!is_software_event(event))
1150 1151
		cpuctx->active_oncpu--;
	ctx->nr_active--;
1152 1153
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq--;
1154
	if (event->attr.exclusive || !cpuctx->active_oncpu)
1155 1156 1157
		cpuctx->exclusive = 0;
}

1158
static void
1159
group_sched_out(struct perf_event *group_event,
1160
		struct perf_cpu_context *cpuctx,
1161
		struct perf_event_context *ctx)
1162
{
1163
	struct perf_event *event;
1164
	int state = group_event->state;
1165

1166
	event_sched_out(group_event, cpuctx, ctx);
1167 1168 1169 1170

	/*
	 * Schedule out siblings (if any):
	 */
1171 1172
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
1173

1174
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1175 1176 1177
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
1178
/*
1179
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
1180
 *
1181
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
1182 1183
 * remove it from the context list.
 */
1184
static int __perf_remove_from_context(void *info)
T
Thomas Gleixner 已提交
1185
{
1186 1187
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1188
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
1189

1190
	raw_spin_lock(&ctx->lock);
1191 1192
	event_sched_out(event, cpuctx, ctx);
	list_del_event(event, ctx);
1193 1194 1195 1196
	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
		ctx->is_active = 0;
		cpuctx->task_ctx = NULL;
	}
1197
	raw_spin_unlock(&ctx->lock);
1198 1199

	return 0;
T
Thomas Gleixner 已提交
1200 1201 1202 1203
}


/*
1204
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
1205
 *
1206
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
1207
 * call when the task is on a CPU.
1208
 *
1209 1210
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1211 1212
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
1213
 * When called from perf_event_exit_task, it's OK because the
1214
 * context has been detached from its task.
T
Thomas Gleixner 已提交
1215
 */
1216
static void perf_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
1217
{
1218
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1219 1220
	struct task_struct *task = ctx->task;

1221 1222
	lockdep_assert_held(&ctx->mutex);

T
Thomas Gleixner 已提交
1223 1224
	if (!task) {
		/*
1225
		 * Per cpu events are removed via an smp call and
1226
		 * the removal is always successful.
T
Thomas Gleixner 已提交
1227
		 */
1228
		cpu_function_call(event->cpu, __perf_remove_from_context, event);
T
Thomas Gleixner 已提交
1229 1230 1231 1232
		return;
	}

retry:
1233 1234
	if (!task_function_call(task, __perf_remove_from_context, event))
		return;
T
Thomas Gleixner 已提交
1235

1236
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1237
	/*
1238 1239
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1240
	 */
1241
	if (ctx->is_active) {
1242
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1243 1244 1245 1246
		goto retry;
	}

	/*
1247 1248
	 * Since the task isn't running, its safe to remove the event, us
	 * holding the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1249
	 */
1250
	list_del_event(event, ctx);
1251
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1252 1253
}

1254
/*
1255
 * Cross CPU call to disable a performance event
1256
 */
1257
int __perf_event_disable(void *info)
1258
{
1259 1260
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1261
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1262 1263

	/*
1264 1265
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
1266 1267 1268
	 *
	 * Can trigger due to concurrent perf_event_context_sched_out()
	 * flipping contexts around.
1269
	 */
1270
	if (ctx->task && cpuctx->task_ctx != ctx)
1271
		return -EINVAL;
1272

1273
	raw_spin_lock(&ctx->lock);
1274 1275

	/*
1276
	 * If the event is on, turn it off.
1277 1278
	 * If it is in error state, leave it in error state.
	 */
1279
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1280
		update_context_time(ctx);
S
Stephane Eranian 已提交
1281
		update_cgrp_time_from_event(event);
1282 1283 1284
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
1285
		else
1286 1287
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
1288 1289
	}

1290
	raw_spin_unlock(&ctx->lock);
1291 1292

	return 0;
1293 1294 1295
}

/*
1296
 * Disable a event.
1297
 *
1298 1299
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1300
 * remains valid.  This condition is satisifed when called through
1301 1302 1303 1304
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
1305
 * is the current context on this CPU and preemption is disabled,
1306
 * hence we can't get into perf_event_task_sched_out for this context.
1307
 */
1308
void perf_event_disable(struct perf_event *event)
1309
{
1310
	struct perf_event_context *ctx = event->ctx;
1311 1312 1313 1314
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1315
		 * Disable the event on the cpu that it's on
1316
		 */
1317
		cpu_function_call(event->cpu, __perf_event_disable, event);
1318 1319 1320
		return;
	}

P
Peter Zijlstra 已提交
1321
retry:
1322 1323
	if (!task_function_call(task, __perf_event_disable, event))
		return;
1324

1325
	raw_spin_lock_irq(&ctx->lock);
1326
	/*
1327
	 * If the event is still active, we need to retry the cross-call.
1328
	 */
1329
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1330
		raw_spin_unlock_irq(&ctx->lock);
1331 1332 1333 1334 1335
		/*
		 * Reload the task pointer, it might have been changed by
		 * a concurrent perf_event_context_sched_out().
		 */
		task = ctx->task;
1336 1337 1338 1339 1340 1341 1342
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1343 1344 1345
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
1346
	}
1347
	raw_spin_unlock_irq(&ctx->lock);
1348
}
1349
EXPORT_SYMBOL_GPL(perf_event_disable);
1350

S
Stephane Eranian 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static void perf_set_shadow_time(struct perf_event *event,
				 struct perf_event_context *ctx,
				 u64 tstamp)
{
	/*
	 * use the correct time source for the time snapshot
	 *
	 * We could get by without this by leveraging the
	 * fact that to get to this function, the caller
	 * has most likely already called update_context_time()
	 * and update_cgrp_time_xx() and thus both timestamp
	 * are identical (or very close). Given that tstamp is,
	 * already adjusted for cgroup, we could say that:
	 *    tstamp - ctx->timestamp
	 * is equivalent to
	 *    tstamp - cgrp->timestamp.
	 *
	 * Then, in perf_output_read(), the calculation would
	 * work with no changes because:
	 * - event is guaranteed scheduled in
	 * - no scheduled out in between
	 * - thus the timestamp would be the same
	 *
	 * But this is a bit hairy.
	 *
	 * So instead, we have an explicit cgroup call to remain
	 * within the time time source all along. We believe it
	 * is cleaner and simpler to understand.
	 */
	if (is_cgroup_event(event))
		perf_cgroup_set_shadow_time(event, tstamp);
	else
		event->shadow_ctx_time = tstamp - ctx->timestamp;
}

P
Peter Zijlstra 已提交
1386 1387 1388 1389
#define MAX_INTERRUPTS (~0ULL)

static void perf_log_throttle(struct perf_event *event, int enable);

1390
static int
1391
event_sched_in(struct perf_event *event,
1392
		 struct perf_cpu_context *cpuctx,
1393
		 struct perf_event_context *ctx)
1394
{
1395 1396
	u64 tstamp = perf_event_time(event);

1397
	if (event->state <= PERF_EVENT_STATE_OFF)
1398 1399
		return 0;

1400
	event->state = PERF_EVENT_STATE_ACTIVE;
1401
	event->oncpu = smp_processor_id();
P
Peter Zijlstra 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

	/*
	 * Unthrottle events, since we scheduled we might have missed several
	 * ticks already, also for a heavily scheduling task there is little
	 * guarantee it'll get a tick in a timely manner.
	 */
	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
		perf_log_throttle(event, 1);
		event->hw.interrupts = 0;
	}

1413 1414 1415 1416 1417
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
1418
	if (event->pmu->add(event, PERF_EF_START)) {
1419 1420
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
1421 1422 1423
		return -EAGAIN;
	}

1424
	event->tstamp_running += tstamp - event->tstamp_stopped;
1425

S
Stephane Eranian 已提交
1426
	perf_set_shadow_time(event, ctx, tstamp);
1427

1428
	if (!is_software_event(event))
1429
		cpuctx->active_oncpu++;
1430
	ctx->nr_active++;
1431 1432
	if (event->attr.freq && event->attr.sample_freq)
		ctx->nr_freq++;
1433

1434
	if (event->attr.exclusive)
1435 1436
		cpuctx->exclusive = 1;

1437 1438 1439
	return 0;
}

1440
static int
1441
group_sched_in(struct perf_event *group_event,
1442
	       struct perf_cpu_context *cpuctx,
1443
	       struct perf_event_context *ctx)
1444
{
1445
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
1446
	struct pmu *pmu = group_event->pmu;
1447 1448
	u64 now = ctx->time;
	bool simulate = false;
1449

1450
	if (group_event->state == PERF_EVENT_STATE_OFF)
1451 1452
		return 0;

P
Peter Zijlstra 已提交
1453
	pmu->start_txn(pmu);
1454

1455
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
1456
		pmu->cancel_txn(pmu);
1457
		return -EAGAIN;
1458
	}
1459 1460 1461 1462

	/*
	 * Schedule in siblings as one group (if any):
	 */
1463
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1464
		if (event_sched_in(event, cpuctx, ctx)) {
1465
			partial_group = event;
1466 1467 1468 1469
			goto group_error;
		}
	}

1470
	if (!pmu->commit_txn(pmu))
1471
		return 0;
1472

1473 1474 1475 1476
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	 * The events up to the failed event are scheduled out normally,
	 * tstamp_stopped will be updated.
	 *
	 * The failed events and the remaining siblings need to have
	 * their timings updated as if they had gone thru event_sched_in()
	 * and event_sched_out(). This is required to get consistent timings
	 * across the group. This also takes care of the case where the group
	 * could never be scheduled by ensuring tstamp_stopped is set to mark
	 * the time the event was actually stopped, such that time delta
	 * calculation in update_event_times() is correct.
1487
	 */
1488 1489
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
1490 1491 1492 1493 1494 1495 1496 1497
			simulate = true;

		if (simulate) {
			event->tstamp_running += now - event->tstamp_stopped;
			event->tstamp_stopped = now;
		} else {
			event_sched_out(event, cpuctx, ctx);
		}
1498
	}
1499
	event_sched_out(group_event, cpuctx, ctx);
1500

P
Peter Zijlstra 已提交
1501
	pmu->cancel_txn(pmu);
1502

1503 1504 1505
	return -EAGAIN;
}

1506
/*
1507
 * Work out whether we can put this event group on the CPU now.
1508
 */
1509
static int group_can_go_on(struct perf_event *event,
1510 1511 1512 1513
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
1514
	 * Groups consisting entirely of software events can always go on.
1515
	 */
1516
	if (event->group_flags & PERF_GROUP_SOFTWARE)
1517 1518 1519
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
1520
	 * events can go on.
1521 1522 1523 1524 1525
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
1526
	 * events on the CPU, it can't go on.
1527
	 */
1528
	if (event->attr.exclusive && cpuctx->active_oncpu)
1529 1530 1531 1532 1533 1534 1535 1536
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

1537 1538
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
1539
{
1540 1541
	u64 tstamp = perf_event_time(event);

1542
	list_add_event(event, ctx);
1543
	perf_group_attach(event);
1544 1545 1546
	event->tstamp_enabled = tstamp;
	event->tstamp_running = tstamp;
	event->tstamp_stopped = tstamp;
1547 1548
}

1549 1550 1551 1552 1553 1554
static void task_ctx_sched_out(struct perf_event_context *ctx);
static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type,
	     struct task_struct *task);
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
				struct perf_event_context *ctx,
				struct task_struct *task)
{
	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
	if (ctx)
		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
}

T
Thomas Gleixner 已提交
1568
/*
1569
 * Cross CPU call to install and enable a performance event
1570 1571
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
1572
 */
1573
static int  __perf_install_in_context(void *info)
T
Thomas Gleixner 已提交
1574
{
1575 1576
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1577
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1578 1579 1580
	struct perf_event_context *task_ctx = cpuctx->task_ctx;
	struct task_struct *task = current;

1581
	perf_ctx_lock(cpuctx, task_ctx);
1582
	perf_pmu_disable(cpuctx->ctx.pmu);
T
Thomas Gleixner 已提交
1583 1584

	/*
1585
	 * If there was an active task_ctx schedule it out.
T
Thomas Gleixner 已提交
1586
	 */
1587
	if (task_ctx)
1588
		task_ctx_sched_out(task_ctx);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

	/*
	 * If the context we're installing events in is not the
	 * active task_ctx, flip them.
	 */
	if (ctx->task && task_ctx != ctx) {
		if (task_ctx)
			raw_spin_unlock(&task_ctx->lock);
		raw_spin_lock(&ctx->lock);
		task_ctx = ctx;
	}

	if (task_ctx) {
		cpuctx->task_ctx = task_ctx;
1603 1604
		task = task_ctx->task;
	}
1605

1606
	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
T
Thomas Gleixner 已提交
1607

1608
	update_context_time(ctx);
S
Stephane Eranian 已提交
1609 1610 1611 1612 1613 1614
	/*
	 * update cgrp time only if current cgrp
	 * matches event->cgrp. Must be done before
	 * calling add_event_to_ctx()
	 */
	update_cgrp_time_from_event(event);
T
Thomas Gleixner 已提交
1615

1616
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
1617

1618
	/*
1619
	 * Schedule everything back in
1620
	 */
1621
	perf_event_sched_in(cpuctx, task_ctx, task);
1622 1623 1624

	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, task_ctx);
1625 1626

	return 0;
T
Thomas Gleixner 已提交
1627 1628 1629
}

/*
1630
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
1631
 *
1632 1633
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
1634
 *
1635
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
1636 1637 1638 1639
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
 */
static void
1640 1641
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
1642 1643 1644 1645
			int cpu)
{
	struct task_struct *task = ctx->task;

1646 1647
	lockdep_assert_held(&ctx->mutex);

1648
	event->ctx = ctx;
1649 1650
	if (event->cpu != -1)
		event->cpu = cpu;
1651

T
Thomas Gleixner 已提交
1652 1653
	if (!task) {
		/*
1654
		 * Per cpu events are installed via an smp call and
1655
		 * the install is always successful.
T
Thomas Gleixner 已提交
1656
		 */
1657
		cpu_function_call(cpu, __perf_install_in_context, event);
T
Thomas Gleixner 已提交
1658 1659 1660 1661
		return;
	}

retry:
1662 1663
	if (!task_function_call(task, __perf_install_in_context, event))
		return;
T
Thomas Gleixner 已提交
1664

1665
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1666
	/*
1667 1668
	 * If we failed to find a running task, but find the context active now
	 * that we've acquired the ctx->lock, retry.
T
Thomas Gleixner 已提交
1669
	 */
1670
	if (ctx->is_active) {
1671
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1672 1673 1674 1675
		goto retry;
	}

	/*
1676 1677
	 * Since the task isn't running, its safe to add the event, us holding
	 * the ctx->lock ensures the task won't get scheduled in.
T
Thomas Gleixner 已提交
1678
	 */
1679
	add_event_to_ctx(event, ctx);
1680
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
1681 1682
}

1683
/*
1684
 * Put a event into inactive state and update time fields.
1685 1686 1687 1688 1689 1690
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
1691
static void __perf_event_mark_enabled(struct perf_event *event)
1692
{
1693
	struct perf_event *sub;
1694
	u64 tstamp = perf_event_time(event);
1695

1696
	event->state = PERF_EVENT_STATE_INACTIVE;
1697
	event->tstamp_enabled = tstamp - event->total_time_enabled;
P
Peter Zijlstra 已提交
1698
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1699 1700
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
P
Peter Zijlstra 已提交
1701
	}
1702 1703
}

1704
/*
1705
 * Cross CPU call to enable a performance event
1706
 */
1707
static int __perf_event_enable(void *info)
1708
{
1709 1710 1711
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
1712
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1713
	int err;
1714

1715 1716
	if (WARN_ON_ONCE(!ctx->is_active))
		return -EINVAL;
1717

1718
	raw_spin_lock(&ctx->lock);
1719
	update_context_time(ctx);
1720

1721
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1722
		goto unlock;
S
Stephane Eranian 已提交
1723 1724 1725 1726

	/*
	 * set current task's cgroup time reference point
	 */
1727
	perf_cgroup_set_timestamp(current, ctx);
S
Stephane Eranian 已提交
1728

1729
	__perf_event_mark_enabled(event);
1730

S
Stephane Eranian 已提交
1731 1732 1733
	if (!event_filter_match(event)) {
		if (is_cgroup_event(event))
			perf_cgroup_defer_enabled(event);
1734
		goto unlock;
S
Stephane Eranian 已提交
1735
	}
1736

1737
	/*
1738
	 * If the event is in a group and isn't the group leader,
1739
	 * then don't put it on unless the group is on.
1740
	 */
1741
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1742
		goto unlock;
1743

1744
	if (!group_can_go_on(event, cpuctx, 1)) {
1745
		err = -EEXIST;
1746
	} else {
1747
		if (event == leader)
1748
			err = group_sched_in(event, cpuctx, ctx);
1749
		else
1750
			err = event_sched_in(event, cpuctx, ctx);
1751
	}
1752 1753 1754

	if (err) {
		/*
1755
		 * If this event can't go on and it's part of a
1756 1757
		 * group, then the whole group has to come off.
		 */
1758
		if (leader != event)
1759
			group_sched_out(leader, cpuctx, ctx);
1760
		if (leader->attr.pinned) {
1761
			update_group_times(leader);
1762
			leader->state = PERF_EVENT_STATE_ERROR;
1763
		}
1764 1765
	}

P
Peter Zijlstra 已提交
1766
unlock:
1767
	raw_spin_unlock(&ctx->lock);
1768 1769

	return 0;
1770 1771 1772
}

/*
1773
 * Enable a event.
1774
 *
1775 1776
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1777
 * remains valid.  This condition is satisfied when called through
1778 1779
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1780
 */
1781
void perf_event_enable(struct perf_event *event)
1782
{
1783
	struct perf_event_context *ctx = event->ctx;
1784 1785 1786 1787
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1788
		 * Enable the event on the cpu that it's on
1789
		 */
1790
		cpu_function_call(event->cpu, __perf_event_enable, event);
1791 1792 1793
		return;
	}

1794
	raw_spin_lock_irq(&ctx->lock);
1795
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1796 1797 1798
		goto out;

	/*
1799 1800
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1801 1802 1803 1804
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1805 1806
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1807

P
Peter Zijlstra 已提交
1808
retry:
1809
	if (!ctx->is_active) {
1810
		__perf_event_mark_enabled(event);
1811 1812 1813
		goto out;
	}

1814
	raw_spin_unlock_irq(&ctx->lock);
1815 1816 1817

	if (!task_function_call(task, __perf_event_enable, event))
		return;
1818

1819
	raw_spin_lock_irq(&ctx->lock);
1820 1821

	/*
1822
	 * If the context is active and the event is still off,
1823 1824
	 * we need to retry the cross-call.
	 */
1825 1826 1827 1828 1829 1830
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
		/*
		 * task could have been flipped by a concurrent
		 * perf_event_context_sched_out()
		 */
		task = ctx->task;
1831
		goto retry;
1832
	}
1833

P
Peter Zijlstra 已提交
1834
out:
1835
	raw_spin_unlock_irq(&ctx->lock);
1836
}
1837
EXPORT_SYMBOL_GPL(perf_event_enable);
1838

1839
int perf_event_refresh(struct perf_event *event, int refresh)
1840
{
1841
	/*
1842
	 * not supported on inherited events
1843
	 */
1844
	if (event->attr.inherit || !is_sampling_event(event))
1845 1846
		return -EINVAL;

1847 1848
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1849 1850

	return 0;
1851
}
1852
EXPORT_SYMBOL_GPL(perf_event_refresh);
1853

1854 1855 1856
static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1857
{
1858
	struct perf_event *event;
1859
	int is_active = ctx->is_active;
1860

1861
	ctx->is_active &= ~event_type;
1862
	if (likely(!ctx->nr_events))
1863 1864
		return;

1865
	update_context_time(ctx);
S
Stephane Eranian 已提交
1866
	update_cgrp_time_from_cpuctx(cpuctx);
1867
	if (!ctx->nr_active)
1868
		return;
1869

P
Peter Zijlstra 已提交
1870
	perf_pmu_disable(ctx->pmu);
1871
	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1872 1873
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1874
	}
1875

1876
	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1877
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1878
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1879
	}
P
Peter Zijlstra 已提交
1880
	perf_pmu_enable(ctx->pmu);
1881 1882
}

1883 1884 1885
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1886 1887 1888 1889
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1890
 * in them directly with an fd; we can only enable/disable all
1891
 * events via prctl, or enable/disable all events in a family
1892 1893
 * via ioctl, which will have the same effect on both contexts.
 */
1894 1895
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1896 1897
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1898
		&& ctx1->parent_gen == ctx2->parent_gen
1899
		&& !ctx1->pin_count && !ctx2->pin_count;
1900 1901
}

1902 1903
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1904 1905 1906
{
	u64 value;

1907
	if (!event->attr.inherit_stat)
1908 1909 1910
		return;

	/*
1911
	 * Update the event value, we cannot use perf_event_read()
1912 1913
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1914
	 * we know the event must be on the current CPU, therefore we
1915 1916
	 * don't need to use it.
	 */
1917 1918
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1919 1920
		event->pmu->read(event);
		/* fall-through */
1921

1922 1923
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1924 1925 1926 1927 1928 1929 1930
		break;

	default:
		break;
	}

	/*
1931
	 * In order to keep per-task stats reliable we need to flip the event
1932 1933
	 * values when we flip the contexts.
	 */
1934 1935 1936
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1937

1938 1939
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1940

1941
	/*
1942
	 * Since we swizzled the values, update the user visible data too.
1943
	 */
1944 1945
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1946 1947 1948 1949 1950
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1951 1952
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1953
{
1954
	struct perf_event *event, *next_event;
1955 1956 1957 1958

	if (!ctx->nr_stat)
		return;

1959 1960
	update_context_time(ctx);

1961 1962
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1963

1964 1965
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1966

1967 1968
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1969

1970
		__perf_event_sync_stat(event, next_event);
1971

1972 1973
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1974 1975 1976
	}
}

1977 1978
static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
					 struct task_struct *next)
T
Thomas Gleixner 已提交
1979
{
P
Peter Zijlstra 已提交
1980
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1981 1982
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1983
	struct perf_cpu_context *cpuctx;
1984
	int do_switch = 1;
T
Thomas Gleixner 已提交
1985

P
Peter Zijlstra 已提交
1986 1987
	if (likely(!ctx))
		return;
1988

P
Peter Zijlstra 已提交
1989 1990
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1991 1992
		return;

1993 1994
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1995
	next_ctx = next->perf_event_ctxp[ctxn];
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
2007 2008
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2009
		if (context_equiv(ctx, next_ctx)) {
2010 2011
			/*
			 * XXX do we need a memory barrier of sorts
2012
			 * wrt to rcu_dereference() of perf_event_ctxp
2013
			 */
P
Peter Zijlstra 已提交
2014 2015
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
2016 2017 2018
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
2019

2020
			perf_event_sync_stat(ctx, next_ctx);
2021
		}
2022 2023
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
2024
	}
2025
	rcu_read_unlock();
2026

2027
	if (do_switch) {
2028
		raw_spin_lock(&ctx->lock);
2029
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2030
		cpuctx->task_ctx = NULL;
2031
		raw_spin_unlock(&ctx->lock);
2032
	}
T
Thomas Gleixner 已提交
2033 2034
}

P
Peter Zijlstra 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
2049 2050
void __perf_event_task_sched_out(struct task_struct *task,
				 struct task_struct *next)
P
Peter Zijlstra 已提交
2051 2052 2053 2054 2055
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
S
Stephane Eranian 已提交
2056 2057 2058 2059 2060 2061 2062

	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch out PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2063
		perf_cgroup_sched_out(task, next);
P
Peter Zijlstra 已提交
2064 2065
}

2066
static void task_ctx_sched_out(struct perf_event_context *ctx)
2067
{
P
Peter Zijlstra 已提交
2068
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2069

2070 2071
	if (!cpuctx->task_ctx)
		return;
2072 2073 2074 2075

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

2076
	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2077 2078 2079
	cpuctx->task_ctx = NULL;
}

2080 2081 2082 2083 2084 2085 2086
/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2087 2088
}

2089
static void
2090
ctx_pinned_sched_in(struct perf_event_context *ctx,
2091
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
2092
{
2093
	struct perf_event *event;
T
Thomas Gleixner 已提交
2094

2095 2096
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
2097
			continue;
2098
		if (!event_filter_match(event))
2099 2100
			continue;

S
Stephane Eranian 已提交
2101 2102 2103 2104
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

2105
		if (group_can_go_on(event, cpuctx, 1))
2106
			group_sched_in(event, cpuctx, ctx);
2107 2108 2109 2110 2111

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
2112 2113 2114
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
2115
		}
2116
	}
2117 2118 2119 2120
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
2121
		      struct perf_cpu_context *cpuctx)
2122 2123 2124
{
	struct perf_event *event;
	int can_add_hw = 1;
2125

2126 2127 2128
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
2129
			continue;
2130 2131
		/*
		 * Listen to the 'cpu' scheduling filter constraint
2132
		 * of events:
2133
		 */
2134
		if (!event_filter_match(event))
T
Thomas Gleixner 已提交
2135 2136
			continue;

S
Stephane Eranian 已提交
2137 2138 2139 2140
		/* may need to reset tstamp_enabled */
		if (is_cgroup_event(event))
			perf_cgroup_mark_enabled(event, ctx);

P
Peter Zijlstra 已提交
2141
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2142
			if (group_sched_in(event, cpuctx, ctx))
2143
				can_add_hw = 0;
P
Peter Zijlstra 已提交
2144
		}
T
Thomas Gleixner 已提交
2145
	}
2146 2147 2148 2149 2150
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2151 2152
	     enum event_type_t event_type,
	     struct task_struct *task)
2153
{
S
Stephane Eranian 已提交
2154
	u64 now;
2155
	int is_active = ctx->is_active;
S
Stephane Eranian 已提交
2156

2157
	ctx->is_active |= event_type;
2158
	if (likely(!ctx->nr_events))
2159
		return;
2160

S
Stephane Eranian 已提交
2161 2162
	now = perf_clock();
	ctx->timestamp = now;
2163
	perf_cgroup_set_timestamp(task, ctx);
2164 2165 2166 2167
	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
2168
	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2169
		ctx_pinned_sched_in(ctx, cpuctx);
2170 2171

	/* Then walk through the lower prio flexible groups */
2172
	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2173
		ctx_flexible_sched_in(ctx, cpuctx);
2174 2175
}

2176
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
S
Stephane Eranian 已提交
2177 2178
			     enum event_type_t event_type,
			     struct task_struct *task)
2179 2180 2181
{
	struct perf_event_context *ctx = &cpuctx->ctx;

S
Stephane Eranian 已提交
2182
	ctx_sched_in(ctx, cpuctx, event_type, task);
2183 2184
}

S
Stephane Eranian 已提交
2185 2186
static void perf_event_context_sched_in(struct perf_event_context *ctx,
					struct task_struct *task)
2187
{
P
Peter Zijlstra 已提交
2188
	struct perf_cpu_context *cpuctx;
2189

P
Peter Zijlstra 已提交
2190
	cpuctx = __get_cpu_context(ctx);
2191 2192 2193
	if (cpuctx->task_ctx == ctx)
		return;

2194
	perf_ctx_lock(cpuctx, ctx);
P
Peter Zijlstra 已提交
2195
	perf_pmu_disable(ctx->pmu);
2196 2197 2198 2199 2200 2201 2202
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

2203 2204
	if (ctx->nr_events)
		cpuctx->task_ctx = ctx;
2205

2206 2207
	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);

2208 2209 2210
	perf_pmu_enable(ctx->pmu);
	perf_ctx_unlock(cpuctx, ctx);

2211 2212 2213 2214
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
2215
	perf_pmu_rotate_start(ctx->pmu);
2216 2217
}

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/*
 * When sampling the branck stack in system-wide, it may be necessary
 * to flush the stack on context switch. This happens when the branch
 * stack does not tag its entries with the pid of the current task.
 * Otherwise it becomes impossible to associate a branch entry with a
 * task. This ambiguity is more likely to appear when the branch stack
 * supports priv level filtering and the user sets it to monitor only
 * at the user level (which could be a useful measurement in system-wide
 * mode). In that case, the risk is high of having a branch stack with
 * branch from multiple tasks. Flushing may mean dropping the existing
 * entries or stashing them somewhere in the PMU specific code layer.
 *
 * This function provides the context switch callback to the lower code
 * layer. It is invoked ONLY when there is at least one system-wide context
 * with at least one active event using taken branch sampling.
 */
static void perf_branch_stack_sched_in(struct task_struct *prev,
				       struct task_struct *task)
{
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
	unsigned long flags;

	/* no need to flush branch stack if not changing task */
	if (prev == task)
		return;

	local_irq_save(flags);

	rcu_read_lock();

	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

		/*
		 * check if the context has at least one
		 * event using PERF_SAMPLE_BRANCH_STACK
		 */
		if (cpuctx->ctx.nr_branch_stack > 0
		    && pmu->flush_branch_stack) {

			pmu = cpuctx->ctx.pmu;

			perf_ctx_lock(cpuctx, cpuctx->task_ctx);

			perf_pmu_disable(pmu);

			pmu->flush_branch_stack();

			perf_pmu_enable(pmu);

			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
		}
	}

	rcu_read_unlock();

	local_irq_restore(flags);
}

P
Peter Zijlstra 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
2289 2290
void __perf_event_task_sched_in(struct task_struct *prev,
				struct task_struct *task)
P
Peter Zijlstra 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

S
Stephane Eranian 已提交
2300
		perf_event_context_sched_in(ctx, task);
P
Peter Zijlstra 已提交
2301
	}
S
Stephane Eranian 已提交
2302 2303 2304 2305 2306 2307
	/*
	 * if cgroup events exist on this CPU, then we need
	 * to check if we have to switch in PMU state.
	 * cgroup event are system-wide mode only
	 */
	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2308
		perf_cgroup_sched_in(prev, task);
2309 2310 2311 2312

	/* check for system-wide branch_stack events */
	if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
		perf_branch_stack_sched_in(prev, task);
2313 2314
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
2342
#define REDUCE_FLS(a, b)		\
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

2382 2383 2384
	if (!divisor)
		return dividend;

2385 2386 2387
	return div64_u64(dividend, divisor);
}

2388 2389 2390
static DEFINE_PER_CPU(int, perf_throttled_count);
static DEFINE_PER_CPU(u64, perf_throttled_seq);

2391
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2392
{
2393
	struct hw_perf_event *hwc = &event->hw;
2394
	s64 period, sample_period;
2395 2396
	s64 delta;

2397
	period = perf_calculate_period(event, nsec, count);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
2408

2409
	if (local64_read(&hwc->period_left) > 8*sample_period) {
2410 2411 2412
		if (disable)
			event->pmu->stop(event, PERF_EF_UPDATE);

2413
		local64_set(&hwc->period_left, 0);
2414 2415 2416

		if (disable)
			event->pmu->start(event, PERF_EF_RELOAD);
2417
	}
2418 2419
}

2420 2421 2422 2423 2424 2425 2426
/*
 * combine freq adjustment with unthrottling to avoid two passes over the
 * events. At the same time, make sure, having freq events does not change
 * the rate of unthrottling as that would introduce bias.
 */
static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
					   int needs_unthr)
2427
{
2428 2429
	struct perf_event *event;
	struct hw_perf_event *hwc;
2430
	u64 now, period = TICK_NSEC;
2431
	s64 delta;
2432

2433 2434 2435 2436 2437 2438
	/*
	 * only need to iterate over all events iff:
	 * - context have events in frequency mode (needs freq adjust)
	 * - there are events to unthrottle on this cpu
	 */
	if (!(ctx->nr_freq || needs_unthr))
2439 2440
		return;

2441
	raw_spin_lock(&ctx->lock);
2442
	perf_pmu_disable(ctx->pmu);
2443

2444
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2445
		if (event->state != PERF_EVENT_STATE_ACTIVE)
2446 2447
			continue;

2448
		if (!event_filter_match(event))
2449 2450
			continue;

2451
		hwc = &event->hw;
2452

2453 2454
		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
			hwc->interrupts = 0;
2455
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
2456
			event->pmu->start(event, 0);
2457 2458
		}

2459
		if (!event->attr.freq || !event->attr.sample_freq)
2460 2461
			continue;

2462 2463 2464 2465 2466
		/*
		 * stop the event and update event->count
		 */
		event->pmu->stop(event, PERF_EF_UPDATE);

2467
		now = local64_read(&event->count);
2468 2469
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
2470

2471 2472 2473
		/*
		 * restart the event
		 * reload only if value has changed
2474 2475 2476
		 * we have stopped the event so tell that
		 * to perf_adjust_period() to avoid stopping it
		 * twice.
2477
		 */
2478
		if (delta > 0)
2479
			perf_adjust_period(event, period, delta, false);
2480 2481

		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2482
	}
2483

2484
	perf_pmu_enable(ctx->pmu);
2485
	raw_spin_unlock(&ctx->lock);
2486 2487
}

2488
/*
2489
 * Round-robin a context's events:
2490
 */
2491
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
2492
{
2493 2494 2495 2496 2497 2498
	/*
	 * Rotate the first entry last of non-pinned groups. Rotation might be
	 * disabled by the inheritance code.
	 */
	if (!ctx->rotate_disable)
		list_rotate_left(&ctx->flexible_groups);
2499 2500
}

2501
/*
2502 2503 2504
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
2505
 */
2506
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2507
{
P
Peter Zijlstra 已提交
2508
	struct perf_event_context *ctx = NULL;
2509
	int rotate = 0, remove = 1;
2510

2511
	if (cpuctx->ctx.nr_events) {
2512
		remove = 0;
2513 2514 2515
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
2516

P
Peter Zijlstra 已提交
2517
	ctx = cpuctx->task_ctx;
2518
	if (ctx && ctx->nr_events) {
2519
		remove = 0;
2520 2521 2522
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
2523

2524
	if (!rotate)
2525 2526
		goto done;

2527
	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
P
Peter Zijlstra 已提交
2528
	perf_pmu_disable(cpuctx->ctx.pmu);
2529

2530 2531 2532
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
	if (ctx)
		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
2533

2534 2535 2536
	rotate_ctx(&cpuctx->ctx);
	if (ctx)
		rotate_ctx(ctx);
2537

2538
	perf_event_sched_in(cpuctx, ctx, current);
2539

2540 2541
	perf_pmu_enable(cpuctx->ctx.pmu);
	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2542
done:
2543 2544 2545 2546 2547 2548 2549 2550
	if (remove)
		list_del_init(&cpuctx->rotation_list);
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
2551 2552
	struct perf_event_context *ctx;
	int throttled;
2553

2554 2555
	WARN_ON(!irqs_disabled());

2556 2557 2558
	__this_cpu_inc(perf_throttled_seq);
	throttled = __this_cpu_xchg(perf_throttled_count, 0);

2559
	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2560 2561 2562 2563 2564 2565 2566
		ctx = &cpuctx->ctx;
		perf_adjust_freq_unthr_context(ctx, throttled);

		ctx = cpuctx->task_ctx;
		if (ctx)
			perf_adjust_freq_unthr_context(ctx, throttled);

2567 2568 2569 2570
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
2571 2572
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

2583
	__perf_event_mark_enabled(event);
2584 2585 2586 2587

	return 1;
}

2588
/*
2589
 * Enable all of a task's events that have been marked enable-on-exec.
2590 2591
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
2592
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2593
{
2594
	struct perf_event *event;
2595 2596
	unsigned long flags;
	int enabled = 0;
2597
	int ret;
2598 2599

	local_irq_save(flags);
2600
	if (!ctx || !ctx->nr_events)
2601 2602
		goto out;

2603 2604 2605 2606 2607 2608 2609
	/*
	 * We must ctxsw out cgroup events to avoid conflict
	 * when invoking perf_task_event_sched_in() later on
	 * in this function. Otherwise we end up trying to
	 * ctxswin cgroup events which are already scheduled
	 * in.
	 */
2610
	perf_cgroup_sched_out(current, NULL);
2611

2612
	raw_spin_lock(&ctx->lock);
2613
	task_ctx_sched_out(ctx);
2614

2615
	list_for_each_entry(event, &ctx->event_list, event_entry) {
2616 2617 2618
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
2619 2620 2621
	}

	/*
2622
	 * Unclone this context if we enabled any event.
2623
	 */
2624 2625
	if (enabled)
		unclone_ctx(ctx);
2626

2627
	raw_spin_unlock(&ctx->lock);
2628

2629 2630 2631
	/*
	 * Also calls ctxswin for cgroup events, if any:
	 */
S
Stephane Eranian 已提交
2632
	perf_event_context_sched_in(ctx, ctx->task);
P
Peter Zijlstra 已提交
2633
out:
2634 2635 2636
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
2637
/*
2638
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
2639
 */
2640
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
2641
{
2642 2643
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
2644
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
2645

2646 2647 2648 2649
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
2650 2651
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
2652 2653 2654 2655
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

2656
	raw_spin_lock(&ctx->lock);
S
Stephane Eranian 已提交
2657
	if (ctx->is_active) {
2658
		update_context_time(ctx);
S
Stephane Eranian 已提交
2659 2660
		update_cgrp_time_from_event(event);
	}
2661
	update_event_times(event);
2662 2663
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		event->pmu->read(event);
2664
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
2665 2666
}

P
Peter Zijlstra 已提交
2667 2668
static inline u64 perf_event_count(struct perf_event *event)
{
2669
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
2670 2671
}

2672
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
2673 2674
{
	/*
2675 2676
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
2677
	 */
2678 2679 2680 2681
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
2682 2683 2684
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

2685
		raw_spin_lock_irqsave(&ctx->lock, flags);
2686 2687 2688 2689 2690
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
S
Stephane Eranian 已提交
2691
		if (ctx->is_active) {
2692
			update_context_time(ctx);
S
Stephane Eranian 已提交
2693 2694
			update_cgrp_time_from_event(event);
		}
2695
		update_event_times(event);
2696
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2697 2698
	}

P
Peter Zijlstra 已提交
2699
	return perf_event_count(event);
T
Thomas Gleixner 已提交
2700 2701
}

2702
/*
2703
 * Initialize the perf_event context in a task_struct:
2704
 */
2705
static void __perf_event_init_context(struct perf_event_context *ctx)
2706
{
2707
	raw_spin_lock_init(&ctx->lock);
2708
	mutex_init(&ctx->mutex);
2709 2710
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2711 2712
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
T
Thomas Gleixner 已提交
2728
	}
2729 2730 2731
	ctx->pmu = pmu;

	return ctx;
2732 2733
}

2734 2735 2736 2737 2738
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;
T
Thomas Gleixner 已提交
2739 2740

	rcu_read_lock();
2741
	if (!vpid)
T
Thomas Gleixner 已提交
2742 2743
		task = current;
	else
2744
		task = find_task_by_vpid(vpid);
T
Thomas Gleixner 已提交
2745 2746 2747 2748 2749 2750 2751 2752
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/* Reuse ptrace permission checks for now. */
2753 2754 2755 2756
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

2757 2758 2759 2760 2761 2762 2763
	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

2764 2765 2766
/*
 * Returns a matching context with refcount and pincount.
 */
P
Peter Zijlstra 已提交
2767
static struct perf_event_context *
M
Matt Helsley 已提交
2768
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2769
{
2770
	struct perf_event_context *ctx;
2771
	struct perf_cpu_context *cpuctx;
2772
	unsigned long flags;
P
Peter Zijlstra 已提交
2773
	int ctxn, err;
T
Thomas Gleixner 已提交
2774

2775
	if (!task) {
2776
		/* Must be root to operate on a CPU event: */
2777
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2778 2779 2780
			return ERR_PTR(-EACCES);

		/*
2781
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2782 2783 2784
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2785
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2786 2787
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2788
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2789
		ctx = &cpuctx->ctx;
2790
		get_ctx(ctx);
2791
		++ctx->pin_count;
T
Thomas Gleixner 已提交
2792 2793 2794 2795

		return ctx;
	}

P
Peter Zijlstra 已提交
2796 2797 2798 2799 2800
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2801
retry:
P
Peter Zijlstra 已提交
2802
	ctx = perf_lock_task_context(task, ctxn, &flags);
2803
	if (ctx) {
2804
		unclone_ctx(ctx);
2805
		++ctx->pin_count;
2806
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2807
	} else {
2808
		ctx = alloc_perf_context(pmu, task);
2809 2810 2811
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2812

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		err = 0;
		mutex_lock(&task->perf_event_mutex);
		/*
		 * If it has already passed perf_event_exit_task().
		 * we must see PF_EXITING, it takes this mutex too.
		 */
		if (task->flags & PF_EXITING)
			err = -ESRCH;
		else if (task->perf_event_ctxp[ctxn])
			err = -EAGAIN;
2823
		else {
2824
			get_ctx(ctx);
2825
			++ctx->pin_count;
2826
			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2827
		}
2828 2829 2830
		mutex_unlock(&task->perf_event_mutex);

		if (unlikely(err)) {
2831
			put_ctx(ctx);
2832 2833 2834 2835

			if (err == -EAGAIN)
				goto retry;
			goto errout;
2836 2837 2838
		}
	}

T
Thomas Gleixner 已提交
2839
	return ctx;
2840

P
Peter Zijlstra 已提交
2841
errout:
2842
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2843 2844
}

L
Li Zefan 已提交
2845 2846
static void perf_event_free_filter(struct perf_event *event);

2847
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2848
{
2849
	struct perf_event *event;
P
Peter Zijlstra 已提交
2850

2851 2852 2853
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2854
	perf_event_free_filter(event);
2855
	kfree(event);
P
Peter Zijlstra 已提交
2856 2857
}

2858
static void ring_buffer_put(struct ring_buffer *rb);
2859

2860
static void free_event(struct perf_event *event)
2861
{
2862
	irq_work_sync(&event->pending);
2863

2864
	if (!event->parent) {
2865
		if (event->attach_state & PERF_ATTACH_TASK)
2866
			static_key_slow_dec_deferred(&perf_sched_events);
2867
		if (event->attr.mmap || event->attr.mmap_data)
2868 2869 2870 2871 2872
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2873 2874
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2875 2876
		if (is_cgroup_event(event)) {
			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2877
			static_key_slow_dec_deferred(&perf_sched_events);
2878
		}
2879 2880 2881 2882 2883 2884 2885 2886

		if (has_branch_stack(event)) {
			static_key_slow_dec_deferred(&perf_sched_events);
			/* is system-wide event */
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_dec(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
2887
	}
2888

2889 2890 2891
	if (event->rb) {
		ring_buffer_put(event->rb);
		event->rb = NULL;
2892 2893
	}

S
Stephane Eranian 已提交
2894 2895 2896
	if (is_cgroup_event(event))
		perf_detach_cgroup(event);

2897 2898
	if (event->destroy)
		event->destroy(event);
2899

P
Peter Zijlstra 已提交
2900 2901 2902
	if (event->ctx)
		put_ctx(event->ctx);

2903
	call_rcu(&event->rcu_head, free_event_rcu);
2904 2905
}

2906
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2907
{
2908
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2909

2910
	WARN_ON_ONCE(ctx->parent_ctx);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2924
	raw_spin_lock_irq(&ctx->lock);
2925
	perf_group_detach(event);
2926
	raw_spin_unlock_irq(&ctx->lock);
2927
	perf_remove_from_context(event);
2928
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2929

2930
	free_event(event);
T
Thomas Gleixner 已提交
2931 2932 2933

	return 0;
}
2934
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2935

2936 2937 2938
/*
 * Called when the last reference to the file is gone.
 */
2939
static void put_event(struct perf_event *event)
2940
{
P
Peter Zijlstra 已提交
2941
	struct task_struct *owner;
2942

2943 2944
	if (!atomic_long_dec_and_test(&event->refcount))
		return;
2945

P
Peter Zijlstra 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	rcu_read_lock();
	owner = ACCESS_ONCE(event->owner);
	/*
	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
	 * !owner it means the list deletion is complete and we can indeed
	 * free this event, otherwise we need to serialize on
	 * owner->perf_event_mutex.
	 */
	smp_read_barrier_depends();
	if (owner) {
		/*
		 * Since delayed_put_task_struct() also drops the last
		 * task reference we can safely take a new reference
		 * while holding the rcu_read_lock().
		 */
		get_task_struct(owner);
	}
	rcu_read_unlock();

	if (owner) {
		mutex_lock(&owner->perf_event_mutex);
		/*
		 * We have to re-check the event->owner field, if it is cleared
		 * we raced with perf_event_exit_task(), acquiring the mutex
		 * ensured they're done, and we can proceed with freeing the
		 * event.
		 */
		if (event->owner)
			list_del_init(&event->owner_entry);
		mutex_unlock(&owner->perf_event_mutex);
		put_task_struct(owner);
	}

2979 2980 2981 2982 2983 2984 2985
	perf_event_release_kernel(event);
}

static int perf_release(struct inode *inode, struct file *file)
{
	put_event(file->private_data);
	return 0;
2986 2987
}

2988
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2989
{
2990
	struct perf_event *child;
2991 2992
	u64 total = 0;

2993 2994 2995
	*enabled = 0;
	*running = 0;

2996
	mutex_lock(&event->child_mutex);
2997
	total += perf_event_read(event);
2998 2999 3000 3001 3002 3003
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
3004
		total += perf_event_read(child);
3005 3006 3007
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
3008
	mutex_unlock(&event->child_mutex);
3009 3010 3011

	return total;
}
3012
EXPORT_SYMBOL_GPL(perf_event_read_value);
3013

3014
static int perf_event_read_group(struct perf_event *event,
3015 3016
				   u64 read_format, char __user *buf)
{
3017
	struct perf_event *leader = event->group_leader, *sub;
3018 3019
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
3020
	u64 values[5];
3021
	u64 count, enabled, running;
3022

3023
	mutex_lock(&ctx->mutex);
3024
	count = perf_event_read_value(leader, &enabled, &running);
3025 3026

	values[n++] = 1 + leader->nr_siblings;
3027 3028 3029 3030
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3031 3032 3033
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
3034 3035 3036 3037

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
3038
		goto unlock;
3039

3040
	ret = size;
3041

3042
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3043
		n = 0;
3044

3045
		values[n++] = perf_event_read_value(sub, &enabled, &running);
3046 3047 3048 3049 3050
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

3051
		if (copy_to_user(buf + ret, values, size)) {
3052 3053 3054
			ret = -EFAULT;
			goto unlock;
		}
3055 3056

		ret += size;
3057
	}
3058 3059
unlock:
	mutex_unlock(&ctx->mutex);
3060

3061
	return ret;
3062 3063
}

3064
static int perf_event_read_one(struct perf_event *event,
3065 3066
				 u64 read_format, char __user *buf)
{
3067
	u64 enabled, running;
3068 3069 3070
	u64 values[4];
	int n = 0;

3071 3072 3073 3074 3075
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
3076
	if (read_format & PERF_FORMAT_ID)
3077
		values[n++] = primary_event_id(event);
3078 3079 3080 3081 3082 3083 3084

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
3085
/*
3086
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
3087 3088
 */
static ssize_t
3089
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
3090
{
3091
	u64 read_format = event->attr.read_format;
3092
	int ret;
T
Thomas Gleixner 已提交
3093

3094
	/*
3095
	 * Return end-of-file for a read on a event that is in
3096 3097 3098
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
3099
	if (event->state == PERF_EVENT_STATE_ERROR)
3100 3101
		return 0;

3102
	if (count < event->read_size)
3103 3104
		return -ENOSPC;

3105
	WARN_ON_ONCE(event->ctx->parent_ctx);
3106
	if (read_format & PERF_FORMAT_GROUP)
3107
		ret = perf_event_read_group(event, read_format, buf);
3108
	else
3109
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
3110

3111
	return ret;
T
Thomas Gleixner 已提交
3112 3113 3114 3115 3116
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
3117
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
3118

3119
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
3120 3121 3122 3123
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
3124
	struct perf_event *event = file->private_data;
3125
	struct ring_buffer *rb;
3126
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
3127

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	/*
	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
	 * grabs the rb reference but perf_event_set_output() overrides it.
	 * Here is the timeline for two threads T1, T2:
	 * t0: T1, rb = rcu_dereference(event->rb)
	 * t1: T2, old_rb = event->rb
	 * t2: T2, event->rb = new rb
	 * t3: T2, ring_buffer_detach(old_rb)
	 * t4: T1, ring_buffer_attach(rb1)
	 * t5: T1, poll_wait(event->waitq)
	 *
	 * To avoid this problem, we grab mmap_mutex in perf_poll()
	 * thereby ensuring that the assignment of the new ring buffer
	 * and the detachment of the old buffer appear atomic to perf_poll()
	 */
	mutex_lock(&event->mmap_mutex);

P
Peter Zijlstra 已提交
3145
	rcu_read_lock();
3146
	rb = rcu_dereference(event->rb);
3147 3148
	if (rb) {
		ring_buffer_attach(event, rb);
3149
		events = atomic_xchg(&rb->poll, 0);
3150
	}
P
Peter Zijlstra 已提交
3151
	rcu_read_unlock();
T
Thomas Gleixner 已提交
3152

3153 3154
	mutex_unlock(&event->mmap_mutex);

3155
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
3156 3157 3158 3159

	return events;
}

3160
static void perf_event_reset(struct perf_event *event)
3161
{
3162
	(void)perf_event_read(event);
3163
	local64_set(&event->count, 0);
3164
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
3165 3166
}

3167
/*
3168 3169 3170 3171
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
3172
 */
3173 3174
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3175
{
3176
	struct perf_event *child;
P
Peter Zijlstra 已提交
3177

3178 3179 3180 3181
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
3182
		func(child);
3183
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
3184 3185
}

3186 3187
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
3188
{
3189 3190
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
3191

3192 3193
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
3194
	event = event->group_leader;
3195

3196 3197
	perf_event_for_each_child(event, func);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3198
		perf_event_for_each_child(sibling, func);
3199
	mutex_unlock(&ctx->mutex);
3200 3201
}

3202
static int perf_event_period(struct perf_event *event, u64 __user *arg)
3203
{
3204
	struct perf_event_context *ctx = event->ctx;
3205 3206 3207
	int ret = 0;
	u64 value;

3208
	if (!is_sampling_event(event))
3209 3210
		return -EINVAL;

3211
	if (copy_from_user(&value, arg, sizeof(value)))
3212 3213 3214 3215 3216
		return -EFAULT;

	if (!value)
		return -EINVAL;

3217
	raw_spin_lock_irq(&ctx->lock);
3218 3219
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
3220 3221 3222 3223
			ret = -EINVAL;
			goto unlock;
		}

3224
		event->attr.sample_freq = value;
3225
	} else {
3226 3227
		event->attr.sample_period = value;
		event->hw.sample_period = value;
3228 3229
	}
unlock:
3230
	raw_spin_unlock_irq(&ctx->lock);
3231 3232 3233 3234

	return ret;
}

3235 3236
static const struct file_operations perf_fops;

3237
static struct file *perf_fget_light(int fd, int *fput_needed)
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

3251
	return file;
3252 3253 3254 3255
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
3256
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3257

3258 3259
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
3260 3261
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
3262
	u32 flags = arg;
3263 3264

	switch (cmd) {
3265 3266
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
3267
		break;
3268 3269
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
3270
		break;
3271 3272
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
3273
		break;
P
Peter Zijlstra 已提交
3274

3275 3276
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
3277

3278 3279
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
3280

3281
	case PERF_EVENT_IOC_SET_OUTPUT:
3282
	{
3283
		struct file *output_file = NULL;
3284 3285 3286 3287 3288
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
3289 3290 3291 3292
			output_file = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_file))
				return PTR_ERR(output_file);
			output_event = output_file->private_data;
3293 3294 3295 3296
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
3297
			fput_light(output_file, fput_needed);
3298 3299 3300

		return ret;
	}
3301

L
Li Zefan 已提交
3302 3303 3304
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

3305
	default:
P
Peter Zijlstra 已提交
3306
		return -ENOTTY;
3307
	}
P
Peter Zijlstra 已提交
3308 3309

	if (flags & PERF_IOC_FLAG_GROUP)
3310
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
3311
	else
3312
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
3313 3314

	return 0;
3315 3316
}

3317
int perf_event_task_enable(void)
3318
{
3319
	struct perf_event *event;
3320

3321 3322 3323 3324
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
3325 3326 3327 3328

	return 0;
}

3329
int perf_event_task_disable(void)
3330
{
3331
	struct perf_event *event;
3332

3333 3334 3335 3336
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
3337 3338 3339 3340

	return 0;
}

3341
static int perf_event_index(struct perf_event *event)
3342
{
P
Peter Zijlstra 已提交
3343 3344 3345
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

3346
	if (event->state != PERF_EVENT_STATE_ACTIVE)
3347 3348
		return 0;

3349
	return event->pmu->event_idx(event);
3350 3351
}

3352
static void calc_timer_values(struct perf_event *event,
3353
				u64 *now,
3354 3355
				u64 *enabled,
				u64 *running)
3356
{
3357
	u64 ctx_time;
3358

3359 3360
	*now = perf_clock();
	ctx_time = event->shadow_ctx_time + *now;
3361 3362 3363 3364
	*enabled = ctx_time - event->tstamp_enabled;
	*running = ctx_time - event->tstamp_running;
}

3365
void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3366 3367 3368
{
}

3369 3370 3371 3372 3373
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
3374
void perf_event_update_userpage(struct perf_event *event)
3375
{
3376
	struct perf_event_mmap_page *userpg;
3377
	struct ring_buffer *rb;
3378
	u64 enabled, running, now;
3379 3380

	rcu_read_lock();
3381 3382 3383 3384 3385 3386 3387 3388 3389
	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we can be called in
	 * NMI context
	 */
3390
	calc_timer_values(event, &now, &enabled, &running);
3391 3392
	rb = rcu_dereference(event->rb);
	if (!rb)
3393 3394
		goto unlock;

3395
	userpg = rb->user_page;
3396

3397 3398 3399 3400 3401
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
3402
	++userpg->lock;
3403
	barrier();
3404
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
3405
	userpg->offset = perf_event_count(event);
3406
	if (userpg->index)
3407
		userpg->offset -= local64_read(&event->hw.prev_count);
3408

3409
	userpg->time_enabled = enabled +
3410
			atomic64_read(&event->child_total_time_enabled);
3411

3412
	userpg->time_running = running +
3413
			atomic64_read(&event->child_total_time_running);
3414

3415
	arch_perf_update_userpage(userpg, now);
3416

3417
	barrier();
3418
	++userpg->lock;
3419
	preempt_enable();
3420
unlock:
3421
	rcu_read_unlock();
3422 3423
}

3424 3425 3426
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
3427
	struct ring_buffer *rb;
3428 3429 3430 3431 3432 3433 3434 3435 3436
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
3437 3438
	rb = rcu_dereference(event->rb);
	if (!rb)
3439 3440 3441 3442 3443
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

3444
	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
static void ring_buffer_attach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (!list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	if (!list_empty(&event->rb_entry))
		goto unlock;

	list_add(&event->rb_entry, &rb->event_list);
unlock:
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_detach(struct perf_event *event,
			       struct ring_buffer *rb)
{
	unsigned long flags;

	if (list_empty(&event->rb_entry))
		return;

	spin_lock_irqsave(&rb->event_lock, flags);
	list_del_init(&event->rb_entry);
	wake_up_all(&event->waitq);
	spin_unlock_irqrestore(&rb->event_lock, flags);
}

static void ring_buffer_wakeup(struct perf_event *event)
{
	struct ring_buffer *rb;

	rcu_read_lock();
	rb = rcu_dereference(event->rb);
3496 3497 3498 3499
	if (!rb)
		goto unlock;

	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3500
		wake_up_all(&event->waitq);
3501 3502

unlock:
3503 3504 3505
	rcu_read_unlock();
}

3506
static void rb_free_rcu(struct rcu_head *rcu_head)
3507
{
3508
	struct ring_buffer *rb;
3509

3510 3511
	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
	rb_free(rb);
3512 3513
}

3514
static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3515
{
3516
	struct ring_buffer *rb;
3517

3518
	rcu_read_lock();
3519 3520 3521 3522
	rb = rcu_dereference(event->rb);
	if (rb) {
		if (!atomic_inc_not_zero(&rb->refcount))
			rb = NULL;
3523 3524 3525
	}
	rcu_read_unlock();

3526
	return rb;
3527 3528
}

3529
static void ring_buffer_put(struct ring_buffer *rb)
3530
{
3531 3532 3533
	struct perf_event *event, *n;
	unsigned long flags;

3534
	if (!atomic_dec_and_test(&rb->refcount))
3535
		return;
3536

3537 3538 3539 3540 3541 3542 3543
	spin_lock_irqsave(&rb->event_lock, flags);
	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
		list_del_init(&event->rb_entry);
		wake_up_all(&event->waitq);
	}
	spin_unlock_irqrestore(&rb->event_lock, flags);

3544
	call_rcu(&rb->rcu_head, rb_free_rcu);
3545 3546 3547 3548
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
3549
	struct perf_event *event = vma->vm_file->private_data;
3550

3551
	atomic_inc(&event->mmap_count);
3552 3553 3554 3555
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
3556
	struct perf_event *event = vma->vm_file->private_data;
3557

3558
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3559
		unsigned long size = perf_data_size(event->rb);
3560
		struct user_struct *user = event->mmap_user;
3561
		struct ring_buffer *rb = event->rb;
3562

3563
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3564
		vma->vm_mm->pinned_vm -= event->mmap_locked;
3565
		rcu_assign_pointer(event->rb, NULL);
3566
		ring_buffer_detach(event, rb);
3567
		mutex_unlock(&event->mmap_mutex);
3568

3569
		ring_buffer_put(rb);
3570
		free_uid(user);
3571
	}
3572 3573
}

3574
static const struct vm_operations_struct perf_mmap_vmops = {
3575 3576 3577 3578
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3579 3580 3581 3582
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3583
	struct perf_event *event = file->private_data;
3584
	unsigned long user_locked, user_lock_limit;
3585
	struct user_struct *user = current_user();
3586
	unsigned long locked, lock_limit;
3587
	struct ring_buffer *rb;
3588 3589
	unsigned long vma_size;
	unsigned long nr_pages;
3590
	long user_extra, extra;
3591
	int ret = 0, flags = 0;
3592

3593 3594 3595
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
3596
	 * same rb.
3597 3598 3599 3600
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3601
	if (!(vma->vm_flags & VM_SHARED))
3602
		return -EINVAL;
3603 3604 3605 3606

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3607
	/*
3608
	 * If we have rb pages ensure they're a power-of-two number, so we
3609 3610 3611
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3612 3613
		return -EINVAL;

3614
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3615 3616
		return -EINVAL;

3617 3618
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3619

3620 3621
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3622 3623 3624
	if (event->rb) {
		if (event->rb->nr_pages == nr_pages)
			atomic_inc(&event->rb->refcount);
3625
		else
3626 3627 3628 3629
			ret = -EINVAL;
		goto unlock;
	}

3630
	user_extra = nr_pages + 1;
3631
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3632 3633 3634 3635 3636 3637

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3638
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3639

3640 3641 3642
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3643

3644
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3645
	lock_limit >>= PAGE_SHIFT;
3646
	locked = vma->vm_mm->pinned_vm + extra;
3647

3648 3649
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3650 3651 3652
		ret = -EPERM;
		goto unlock;
	}
3653

3654
	WARN_ON(event->rb);
3655

3656
	if (vma->vm_flags & VM_WRITE)
3657
		flags |= RING_BUFFER_WRITABLE;
3658

3659 3660 3661 3662
	rb = rb_alloc(nr_pages, 
		event->attr.watermark ? event->attr.wakeup_watermark : 0,
		event->cpu, flags);

3663
	if (!rb) {
3664
		ret = -ENOMEM;
3665
		goto unlock;
3666
	}
3667
	rcu_assign_pointer(event->rb, rb);
3668

3669 3670 3671
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
3672
	vma->vm_mm->pinned_vm += event->mmap_locked;
3673

3674 3675
	perf_event_update_userpage(event);

3676
unlock:
3677 3678
	if (!ret)
		atomic_inc(&event->mmap_count);
3679
	mutex_unlock(&event->mmap_mutex);
3680 3681 3682

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3683 3684

	return ret;
3685 3686
}

P
Peter Zijlstra 已提交
3687 3688 3689
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3690
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3691 3692 3693
	int retval;

	mutex_lock(&inode->i_mutex);
3694
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3695 3696 3697 3698 3699 3700 3701 3702
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3703
static const struct file_operations perf_fops = {
3704
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3705 3706 3707
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3708 3709
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3710
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3711
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3712 3713
};

3714
/*
3715
 * Perf event wakeup
3716 3717 3718 3719 3720
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3721
void perf_event_wakeup(struct perf_event *event)
3722
{
3723
	ring_buffer_wakeup(event);
3724

3725 3726 3727
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3728
	}
3729 3730
}

3731
static void perf_pending_event(struct irq_work *entry)
3732
{
3733 3734
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3735

3736 3737 3738
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3739 3740
	}

3741 3742 3743
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3744 3745 3746
	}
}

3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
static void
perf_output_sample_regs(struct perf_output_handle *handle,
			struct pt_regs *regs, u64 mask)
{
	int bit;

	for_each_set_bit(bit, (const unsigned long *) &mask,
			 sizeof(mask) * BITS_PER_BYTE) {
		u64 val;

		val = perf_reg_value(regs, bit);
		perf_output_put(handle, val);
	}
}

static void perf_sample_regs_user(struct perf_regs_user *regs_user,
				  struct pt_regs *regs)
{
	if (!user_mode(regs)) {
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		regs_user->regs = regs;
		regs_user->abi  = perf_reg_abi(current);
	}
}

3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
/*
 * Get remaining task size from user stack pointer.
 *
 * It'd be better to take stack vma map and limit this more
 * precisly, but there's no way to get it safely under interrupt,
 * so using TASK_SIZE as limit.
 */
static u64 perf_ustack_task_size(struct pt_regs *regs)
{
	unsigned long addr = perf_user_stack_pointer(regs);

	if (!addr || addr >= TASK_SIZE)
		return 0;

	return TASK_SIZE - addr;
}

static u16
perf_sample_ustack_size(u16 stack_size, u16 header_size,
			struct pt_regs *regs)
{
	u64 task_size;

	/* No regs, no stack pointer, no dump. */
	if (!regs)
		return 0;

	/*
	 * Check if we fit in with the requested stack size into the:
	 * - TASK_SIZE
	 *   If we don't, we limit the size to the TASK_SIZE.
	 *
	 * - remaining sample size
	 *   If we don't, we customize the stack size to
	 *   fit in to the remaining sample size.
	 */

	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
	stack_size = min(stack_size, (u16) task_size);

	/* Current header size plus static size and dynamic size. */
	header_size += 2 * sizeof(u64);

	/* Do we fit in with the current stack dump size? */
	if ((u16) (header_size + stack_size) < header_size) {
		/*
		 * If we overflow the maximum size for the sample,
		 * we customize the stack dump size to fit in.
		 */
		stack_size = USHRT_MAX - header_size - sizeof(u64);
		stack_size = round_up(stack_size, sizeof(u64));
	}

	return stack_size;
}

static void
perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
			  struct pt_regs *regs)
{
	/* Case of a kernel thread, nothing to dump */
	if (!regs) {
		u64 size = 0;
		perf_output_put(handle, size);
	} else {
		unsigned long sp;
		unsigned int rem;
		u64 dyn_size;

		/*
		 * We dump:
		 * static size
		 *   - the size requested by user or the best one we can fit
		 *     in to the sample max size
		 * data
		 *   - user stack dump data
		 * dynamic size
		 *   - the actual dumped size
		 */

		/* Static size. */
		perf_output_put(handle, dump_size);

		/* Data. */
		sp = perf_user_stack_pointer(regs);
		rem = __output_copy_user(handle, (void *) sp, dump_size);
		dyn_size = dump_size - rem;

		perf_output_skip(handle, rem);

		/* Dynamic size. */
		perf_output_put(handle, dyn_size);
	}
}

3894 3895 3896
static void __perf_event_header__init_id(struct perf_event_header *header,
					 struct perf_sample_data *data,
					 struct perf_event *event)
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
{
	u64 sample_type = event->attr.sample_type;

	data->type = sample_type;
	header->size += event->id_header_size;

	if (sample_type & PERF_SAMPLE_TID) {
		/* namespace issues */
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
	}

	if (sample_type & PERF_SAMPLE_TIME)
		data->time = perf_clock();

	if (sample_type & PERF_SAMPLE_ID)
		data->id = primary_event_id(event);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		data->stream_id = event->id;

	if (sample_type & PERF_SAMPLE_CPU) {
		data->cpu_entry.cpu	 = raw_smp_processor_id();
		data->cpu_entry.reserved = 0;
	}
}

3924 3925 3926
void perf_event_header__init_id(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event)
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
{
	if (event->attr.sample_id_all)
		__perf_event_header__init_id(header, data, event);
}

static void __perf_event__output_id_sample(struct perf_output_handle *handle,
					   struct perf_sample_data *data)
{
	u64 sample_type = data->type;

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);
}

3953 3954 3955
void perf_event__output_id_sample(struct perf_event *event,
				  struct perf_output_handle *handle,
				  struct perf_sample_data *sample)
3956 3957 3958 3959 3960
{
	if (event->attr.sample_id_all)
		__perf_event__output_id_sample(handle, sample);
}

3961
static void perf_output_read_one(struct perf_output_handle *handle,
3962 3963
				 struct perf_event *event,
				 u64 enabled, u64 running)
3964
{
3965
	u64 read_format = event->attr.read_format;
3966 3967 3968
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3969
	values[n++] = perf_event_count(event);
3970
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3971
		values[n++] = enabled +
3972
			atomic64_read(&event->child_total_time_enabled);
3973 3974
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3975
		values[n++] = running +
3976
			atomic64_read(&event->child_total_time_running);
3977 3978
	}
	if (read_format & PERF_FORMAT_ID)
3979
		values[n++] = primary_event_id(event);
3980

3981
	__output_copy(handle, values, n * sizeof(u64));
3982 3983 3984
}

/*
3985
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3986 3987
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3988 3989
			    struct perf_event *event,
			    u64 enabled, u64 running)
3990
{
3991 3992
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3993 3994 3995 3996 3997 3998
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3999
		values[n++] = enabled;
4000 4001

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4002
		values[n++] = running;
4003

4004
	if (leader != event)
4005 4006
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
4007
	values[n++] = perf_event_count(leader);
4008
	if (read_format & PERF_FORMAT_ID)
4009
		values[n++] = primary_event_id(leader);
4010

4011
	__output_copy(handle, values, n * sizeof(u64));
4012

4013
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4014 4015
		n = 0;

4016
		if (sub != event)
4017 4018
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
4019
		values[n++] = perf_event_count(sub);
4020
		if (read_format & PERF_FORMAT_ID)
4021
			values[n++] = primary_event_id(sub);
4022

4023
		__output_copy(handle, values, n * sizeof(u64));
4024 4025 4026
	}
}

4027 4028 4029
#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
				 PERF_FORMAT_TOTAL_TIME_RUNNING)

4030
static void perf_output_read(struct perf_output_handle *handle,
4031
			     struct perf_event *event)
4032
{
4033
	u64 enabled = 0, running = 0, now;
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	u64 read_format = event->attr.read_format;

	/*
	 * compute total_time_enabled, total_time_running
	 * based on snapshot values taken when the event
	 * was last scheduled in.
	 *
	 * we cannot simply called update_context_time()
	 * because of locking issue as we are called in
	 * NMI context
	 */
4045
	if (read_format & PERF_FORMAT_TOTAL_TIMES)
4046
		calc_timer_values(event, &now, &enabled, &running);
4047

4048
	if (event->attr.read_format & PERF_FORMAT_GROUP)
4049
		perf_output_read_group(handle, event, enabled, running);
4050
	else
4051
		perf_output_read_one(handle, event, enabled, running);
4052 4053
}

4054 4055 4056
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
4057
			struct perf_event *event)
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
4088
		perf_output_read(handle, event);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

4099
			__output_copy(handle, data->callchain, size);
4100 4101 4102 4103 4104 4105 4106 4107 4108
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
4109 4110
			__output_copy(handle, data->raw->data,
					   data->raw->size);
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct ring_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		if (data->br_stack) {
			size_t size;

			size = data->br_stack->nr
			     * sizeof(struct perf_branch_entry);

			perf_output_put(handle, data->br_stack->nr);
			perf_output_copy(handle, data->br_stack->entries, size);
		} else {
			/*
			 * we always store at least the value of nr
			 */
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		u64 abi = data->regs_user.abi;

		/*
		 * If there are no regs to dump, notice it through
		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
		 */
		perf_output_put(handle, abi);

		if (abi) {
			u64 mask = event->attr.sample_regs_user;
			perf_output_sample_regs(handle,
						data->regs_user.regs,
						mask);
		}
	}
4171 4172 4173 4174 4175

	if (sample_type & PERF_SAMPLE_STACK_USER)
		perf_output_sample_ustack(handle,
					  data->stack_user_size,
					  data->regs_user.regs);
4176 4177 4178 4179
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
4180
			 struct perf_event *event,
4181
			 struct pt_regs *regs)
4182
{
4183
	u64 sample_type = event->attr.sample_type;
4184

4185
	header->type = PERF_RECORD_SAMPLE;
4186
	header->size = sizeof(*header) + event->header_size;
4187 4188 4189

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
4190

4191
	__perf_event_header__init_id(header, data, event);
4192

4193
	if (sample_type & PERF_SAMPLE_IP)
4194 4195
		data->ip = perf_instruction_pointer(regs);

4196
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4197
		int size = 1;
4198

4199
		data->callchain = perf_callchain(event, regs);
4200 4201 4202 4203 4204

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
4205 4206
	}

4207
	if (sample_type & PERF_SAMPLE_RAW) {
4208 4209 4210 4211 4212 4213 4214 4215
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
4216
		header->size += size;
4217
	}
4218 4219 4220 4221 4222 4223 4224 4225 4226

	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
		int size = sizeof(u64); /* nr */
		if (data->br_stack) {
			size += data->br_stack->nr
			      * sizeof(struct perf_branch_entry);
		}
		header->size += size;
	}
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240

	if (sample_type & PERF_SAMPLE_REGS_USER) {
		/* regs dump ABI info */
		int size = sizeof(u64);

		perf_sample_regs_user(&data->regs_user, regs);

		if (data->regs_user.regs) {
			u64 mask = event->attr.sample_regs_user;
			size += hweight64(mask) * sizeof(u64);
		}

		header->size += size;
	}
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269

	if (sample_type & PERF_SAMPLE_STACK_USER) {
		/*
		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
		 * processed as the last one or have additional check added
		 * in case new sample type is added, because we could eat
		 * up the rest of the sample size.
		 */
		struct perf_regs_user *uregs = &data->regs_user;
		u16 stack_size = event->attr.sample_stack_user;
		u16 size = sizeof(u64);

		if (!uregs->abi)
			perf_sample_regs_user(uregs, regs);

		stack_size = perf_sample_ustack_size(stack_size, header->size,
						     uregs->regs);

		/*
		 * If there is something to dump, add space for the dump
		 * itself and for the field that tells the dynamic size,
		 * which is how many have been actually dumped.
		 */
		if (stack_size)
			size += sizeof(u64) + stack_size;

		data->stack_user_size = stack_size;
		header->size += size;
	}
4270
}
4271

4272
static void perf_event_output(struct perf_event *event,
4273 4274 4275 4276 4277
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
4278

4279 4280 4281
	/* protect the callchain buffers */
	rcu_read_lock();

4282
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
4283

4284
	if (perf_output_begin(&handle, event, header.size))
4285
		goto exit;
4286

4287
	perf_output_sample(&handle, &header, data, event);
4288

4289
	perf_output_end(&handle);
4290 4291 4292

exit:
	rcu_read_unlock();
4293 4294
}

4295
/*
4296
 * read event_id
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
4307
perf_event_read_event(struct perf_event *event,
4308 4309 4310
			struct task_struct *task)
{
	struct perf_output_handle handle;
4311
	struct perf_sample_data sample;
4312
	struct perf_read_event read_event = {
4313
		.header = {
4314
			.type = PERF_RECORD_READ,
4315
			.misc = 0,
4316
			.size = sizeof(read_event) + event->read_size,
4317
		},
4318 4319
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
4320
	};
4321
	int ret;
4322

4323
	perf_event_header__init_id(&read_event.header, &sample, event);
4324
	ret = perf_output_begin(&handle, event, read_event.header.size);
4325 4326 4327
	if (ret)
		return;

4328
	perf_output_put(&handle, read_event);
4329
	perf_output_read(&handle, event);
4330
	perf_event__output_id_sample(event, &handle, &sample);
4331

4332 4333 4334
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
4335
/*
P
Peter Zijlstra 已提交
4336 4337
 * task tracking -- fork/exit
 *
4338
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
4339 4340
 */

P
Peter Zijlstra 已提交
4341
struct perf_task_event {
4342
	struct task_struct		*task;
4343
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
4344 4345 4346 4347 4348 4349

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
4350 4351
		u32				tid;
		u32				ptid;
4352
		u64				time;
4353
	} event_id;
P
Peter Zijlstra 已提交
4354 4355
};

4356
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
4357
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4358 4359
{
	struct perf_output_handle handle;
4360
	struct perf_sample_data	sample;
P
Peter Zijlstra 已提交
4361
	struct task_struct *task = task_event->task;
4362
	int ret, size = task_event->event_id.header.size;
4363

4364
	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
P
Peter Zijlstra 已提交
4365

4366
	ret = perf_output_begin(&handle, event,
4367
				task_event->event_id.header.size);
4368
	if (ret)
4369
		goto out;
P
Peter Zijlstra 已提交
4370

4371 4372
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
4373

4374 4375
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
4376

4377
	perf_output_put(&handle, task_event->event_id);
4378

4379 4380
	perf_event__output_id_sample(event, &handle, &sample);

P
Peter Zijlstra 已提交
4381
	perf_output_end(&handle);
4382 4383
out:
	task_event->event_id.header.size = size;
P
Peter Zijlstra 已提交
4384 4385
}

4386
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
4387
{
P
Peter Zijlstra 已提交
4388
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4389 4390
		return 0;

4391
	if (!event_filter_match(event))
4392 4393
		return 0;

4394 4395
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
4396 4397 4398 4399 4400
		return 1;

	return 0;
}

4401
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
4402
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4403
{
4404
	struct perf_event *event;
P
Peter Zijlstra 已提交
4405

4406 4407 4408
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
4409 4410 4411
	}
}

4412
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
4413 4414
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
4415
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
4416
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4417
	int ctxn;
P
Peter Zijlstra 已提交
4418

4419
	rcu_read_lock();
P
Peter Zijlstra 已提交
4420
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4421
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4422
		if (cpuctx->unique_pmu != pmu)
4423
			goto next;
P
Peter Zijlstra 已提交
4424
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
4425 4426 4427 4428 4429

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
4430
				goto next;
P
Peter Zijlstra 已提交
4431 4432 4433 4434
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
4435 4436
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4437
	}
P
Peter Zijlstra 已提交
4438 4439 4440
	rcu_read_unlock();
}

4441 4442
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
4443
			      int new)
P
Peter Zijlstra 已提交
4444
{
P
Peter Zijlstra 已提交
4445
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
4446

4447 4448 4449
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
4450 4451
		return;

P
Peter Zijlstra 已提交
4452
	task_event = (struct perf_task_event){
4453 4454
		.task	  = task,
		.task_ctx = task_ctx,
4455
		.event_id    = {
P
Peter Zijlstra 已提交
4456
			.header = {
4457
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4458
				.misc = 0,
4459
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
4460
			},
4461 4462
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
4463 4464
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
4465
			.time = perf_clock(),
P
Peter Zijlstra 已提交
4466 4467 4468
		},
	};

4469
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
4470 4471
}

4472
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
4473
{
4474
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
4475 4476
}

4477 4478 4479 4480 4481
/*
 * comm tracking
 */

struct perf_comm_event {
4482 4483
	struct task_struct	*task;
	char			*comm;
4484 4485 4486 4487 4488 4489 4490
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
4491
	} event_id;
4492 4493
};

4494
static void perf_event_comm_output(struct perf_event *event,
4495 4496 4497
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
4498
	struct perf_sample_data sample;
4499
	int size = comm_event->event_id.header.size;
4500 4501 4502 4503
	int ret;

	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4504
				comm_event->event_id.header.size);
4505 4506

	if (ret)
4507
		goto out;
4508

4509 4510
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4511

4512
	perf_output_put(&handle, comm_event->event_id);
4513
	__output_copy(&handle, comm_event->comm,
4514
				   comm_event->comm_size);
4515 4516 4517

	perf_event__output_id_sample(event, &handle, &sample);

4518
	perf_output_end(&handle);
4519 4520
out:
	comm_event->event_id.header.size = size;
4521 4522
}

4523
static int perf_event_comm_match(struct perf_event *event)
4524
{
P
Peter Zijlstra 已提交
4525
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4526 4527
		return 0;

4528
	if (!event_filter_match(event))
4529 4530
		return 0;

4531
	if (event->attr.comm)
4532 4533 4534 4535 4536
		return 1;

	return 0;
}

4537
static void perf_event_comm_ctx(struct perf_event_context *ctx,
4538 4539
				  struct perf_comm_event *comm_event)
{
4540
	struct perf_event *event;
4541

4542 4543 4544
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
4545 4546 4547
	}
}

4548
static void perf_event_comm_event(struct perf_comm_event *comm_event)
4549 4550
{
	struct perf_cpu_context *cpuctx;
4551
	struct perf_event_context *ctx;
4552
	char comm[TASK_COMM_LEN];
4553
	unsigned int size;
P
Peter Zijlstra 已提交
4554
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4555
	int ctxn;
4556

4557
	memset(comm, 0, sizeof(comm));
4558
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4559
	size = ALIGN(strlen(comm)+1, sizeof(u64));
4560 4561 4562 4563

	comm_event->comm = comm;
	comm_event->comm_size = size;

4564
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4565
	rcu_read_lock();
P
Peter Zijlstra 已提交
4566
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4567
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4568
		if (cpuctx->unique_pmu != pmu)
4569
			goto next;
P
Peter Zijlstra 已提交
4570
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
4571 4572 4573

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4574
			goto next;
P
Peter Zijlstra 已提交
4575 4576 4577 4578

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
4579 4580
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4581
	}
4582
	rcu_read_unlock();
4583 4584
}

4585
void perf_event_comm(struct task_struct *task)
4586
{
4587
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
4588 4589
	struct perf_event_context *ctx;
	int ctxn;
4590

P
Peter Zijlstra 已提交
4591 4592 4593 4594
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
4595

P
Peter Zijlstra 已提交
4596 4597
		perf_event_enable_on_exec(ctx);
	}
4598

4599
	if (!atomic_read(&nr_comm_events))
4600
		return;
4601

4602
	comm_event = (struct perf_comm_event){
4603
		.task	= task,
4604 4605
		/* .comm      */
		/* .comm_size */
4606
		.event_id  = {
4607
			.header = {
4608
				.type = PERF_RECORD_COMM,
4609 4610 4611 4612 4613
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4614 4615 4616
		},
	};

4617
	perf_event_comm_event(&comm_event);
4618 4619
}

4620 4621 4622 4623 4624
/*
 * mmap tracking
 */

struct perf_mmap_event {
4625 4626 4627 4628
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4629 4630 4631 4632 4633 4634 4635 4636 4637

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4638
	} event_id;
4639 4640
};

4641
static void perf_event_mmap_output(struct perf_event *event,
4642 4643 4644
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4645
	struct perf_sample_data sample;
4646
	int size = mmap_event->event_id.header.size;
4647
	int ret;
4648

4649 4650
	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
	ret = perf_output_begin(&handle, event,
4651
				mmap_event->event_id.header.size);
4652
	if (ret)
4653
		goto out;
4654

4655 4656
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4657

4658
	perf_output_put(&handle, mmap_event->event_id);
4659
	__output_copy(&handle, mmap_event->file_name,
4660
				   mmap_event->file_size);
4661 4662 4663

	perf_event__output_id_sample(event, &handle, &sample);

4664
	perf_output_end(&handle);
4665 4666
out:
	mmap_event->event_id.header.size = size;
4667 4668
}

4669
static int perf_event_mmap_match(struct perf_event *event,
4670 4671
				   struct perf_mmap_event *mmap_event,
				   int executable)
4672
{
P
Peter Zijlstra 已提交
4673
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4674 4675
		return 0;

4676
	if (!event_filter_match(event))
4677 4678
		return 0;

4679 4680
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4681 4682 4683 4684 4685
		return 1;

	return 0;
}

4686
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4687 4688
				  struct perf_mmap_event *mmap_event,
				  int executable)
4689
{
4690
	struct perf_event *event;
4691

4692
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4693
		if (perf_event_mmap_match(event, mmap_event, executable))
4694
			perf_event_mmap_output(event, mmap_event);
4695 4696 4697
	}
}

4698
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4699 4700
{
	struct perf_cpu_context *cpuctx;
4701
	struct perf_event_context *ctx;
4702 4703
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4704 4705 4706
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4707
	const char *name;
P
Peter Zijlstra 已提交
4708
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4709
	int ctxn;
4710

4711 4712
	memset(tmp, 0, sizeof(tmp));

4713
	if (file) {
4714
		/*
4715
		 * d_path works from the end of the rb backwards, so we
4716 4717 4718 4719
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4720 4721 4722 4723
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4724
		name = d_path(&file->f_path, buf, PATH_MAX);
4725 4726 4727 4728 4729
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4730 4731 4732
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4733
			goto got_name;
4734
		}
4735 4736 4737 4738

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4739 4740 4741 4742 4743 4744 4745 4746
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4747 4748
		}

4749 4750 4751 4752 4753
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4754
	size = ALIGN(strlen(name)+1, sizeof(u64));
4755 4756 4757 4758

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4759
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4760

4761
	rcu_read_lock();
P
Peter Zijlstra 已提交
4762
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4763
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4764
		if (cpuctx->unique_pmu != pmu)
4765
			goto next;
P
Peter Zijlstra 已提交
4766 4767
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4768 4769 4770

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4771
			goto next;
P
Peter Zijlstra 已提交
4772 4773 4774 4775 4776 4777

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4778 4779
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4780
	}
4781 4782
	rcu_read_unlock();

4783 4784 4785
	kfree(buf);
}

4786
void perf_event_mmap(struct vm_area_struct *vma)
4787
{
4788 4789
	struct perf_mmap_event mmap_event;

4790
	if (!atomic_read(&nr_mmap_events))
4791 4792 4793
		return;

	mmap_event = (struct perf_mmap_event){
4794
		.vma	= vma,
4795 4796
		/* .file_name */
		/* .file_size */
4797
		.event_id  = {
4798
			.header = {
4799
				.type = PERF_RECORD_MMAP,
4800
				.misc = PERF_RECORD_MISC_USER,
4801 4802 4803 4804
				/* .size */
			},
			/* .pid */
			/* .tid */
4805 4806
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4807
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4808 4809 4810
		},
	};

4811
	perf_event_mmap_event(&mmap_event);
4812 4813
}

4814 4815 4816 4817
/*
 * IRQ throttle logging
 */

4818
static void perf_log_throttle(struct perf_event *event, int enable)
4819 4820
{
	struct perf_output_handle handle;
4821
	struct perf_sample_data sample;
4822 4823 4824 4825 4826
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4827
		u64				id;
4828
		u64				stream_id;
4829 4830
	} throttle_event = {
		.header = {
4831
			.type = PERF_RECORD_THROTTLE,
4832 4833 4834
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4835
		.time		= perf_clock(),
4836 4837
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4838 4839
	};

4840
	if (enable)
4841
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4842

4843 4844 4845
	perf_event_header__init_id(&throttle_event.header, &sample, event);

	ret = perf_output_begin(&handle, event,
4846
				throttle_event.header.size);
4847 4848 4849 4850
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
4851
	perf_event__output_id_sample(event, &handle, &sample);
4852 4853 4854
	perf_output_end(&handle);
}

4855
/*
4856
 * Generic event overflow handling, sampling.
4857 4858
 */

4859
static int __perf_event_overflow(struct perf_event *event,
4860 4861
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4862
{
4863 4864
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4865
	u64 seq;
4866 4867
	int ret = 0;

4868 4869 4870 4871 4872 4873 4874
	/*
	 * Non-sampling counters might still use the PMI to fold short
	 * hardware counters, ignore those.
	 */
	if (unlikely(!is_sampling_event(event)))
		return 0;

4875 4876 4877 4878 4879 4880 4881 4882 4883
	seq = __this_cpu_read(perf_throttled_seq);
	if (seq != hwc->interrupts_seq) {
		hwc->interrupts_seq = seq;
		hwc->interrupts = 1;
	} else {
		hwc->interrupts++;
		if (unlikely(throttle
			     && hwc->interrupts >= max_samples_per_tick)) {
			__this_cpu_inc(perf_throttled_count);
P
Peter Zijlstra 已提交
4884 4885
			hwc->interrupts = MAX_INTERRUPTS;
			perf_log_throttle(event, 0);
4886 4887
			ret = 1;
		}
4888
	}
4889

4890
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4891
		u64 now = perf_clock();
4892
		s64 delta = now - hwc->freq_time_stamp;
4893

4894
		hwc->freq_time_stamp = now;
4895

4896
		if (delta > 0 && delta < 2*TICK_NSEC)
4897
			perf_adjust_period(event, delta, hwc->last_period, true);
4898 4899
	}

4900 4901
	/*
	 * XXX event_limit might not quite work as expected on inherited
4902
	 * events
4903 4904
	 */

4905 4906
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4907
		ret = 1;
4908
		event->pending_kill = POLL_HUP;
4909 4910
		event->pending_disable = 1;
		irq_work_queue(&event->pending);
4911 4912
	}

4913
	if (event->overflow_handler)
4914
		event->overflow_handler(event, data, regs);
4915
	else
4916
		perf_event_output(event, data, regs);
4917

P
Peter Zijlstra 已提交
4918
	if (event->fasync && event->pending_kill) {
4919 4920
		event->pending_wakeup = 1;
		irq_work_queue(&event->pending);
P
Peter Zijlstra 已提交
4921 4922
	}

4923
	return ret;
4924 4925
}

4926
int perf_event_overflow(struct perf_event *event,
4927 4928
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4929
{
4930
	return __perf_event_overflow(event, 1, data, regs);
4931 4932
}

4933
/*
4934
 * Generic software event infrastructure
4935 4936
 */

4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4948
/*
4949 4950
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4951 4952 4953 4954
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4955
static u64 perf_swevent_set_period(struct perf_event *event)
4956
{
4957
	struct hw_perf_event *hwc = &event->hw;
4958 4959 4960 4961 4962
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4963 4964

again:
4965
	old = val = local64_read(&hwc->period_left);
4966 4967
	if (val < 0)
		return 0;
4968

4969 4970 4971
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4972
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4973
		goto again;
4974

4975
	return nr;
4976 4977
}

4978
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4979
				    struct perf_sample_data *data,
4980
				    struct pt_regs *regs)
4981
{
4982
	struct hw_perf_event *hwc = &event->hw;
4983
	int throttle = 0;
4984

4985 4986
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4987

4988 4989
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4990

4991
	for (; overflow; overflow--) {
4992
		if (__perf_event_overflow(event, throttle,
4993
					    data, regs)) {
4994 4995 4996 4997 4998 4999
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
5000
		throttle = 1;
5001
	}
5002 5003
}

P
Peter Zijlstra 已提交
5004
static void perf_swevent_event(struct perf_event *event, u64 nr,
5005
			       struct perf_sample_data *data,
5006
			       struct pt_regs *regs)
5007
{
5008
	struct hw_perf_event *hwc = &event->hw;
5009

5010
	local64_add(nr, &event->count);
5011

5012 5013 5014
	if (!regs)
		return;

5015
	if (!is_sampling_event(event))
5016
		return;
5017

5018 5019 5020 5021 5022 5023
	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
		data->period = nr;
		return perf_swevent_overflow(event, 1, data, regs);
	} else
		data->period = event->hw.last_period;

5024
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5025
		return perf_swevent_overflow(event, 1, data, regs);
5026

5027
	if (local64_add_negative(nr, &hwc->period_left))
5028
		return;
5029

5030
	perf_swevent_overflow(event, 0, data, regs);
5031 5032
}

5033 5034 5035
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
5036
	if (event->hw.state & PERF_HES_STOPPED)
5037
		return 1;
P
Peter Zijlstra 已提交
5038

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

5050
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
5051
				enum perf_type_id type,
L
Li Zefan 已提交
5052 5053 5054
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
5055
{
5056
	if (event->attr.type != type)
5057
		return 0;
5058

5059
	if (event->attr.config != event_id)
5060 5061
		return 0;

5062 5063
	if (perf_exclude_event(event, regs))
		return 0;
5064 5065 5066 5067

	return 1;
}

5068 5069 5070 5071 5072 5073 5074
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

5075 5076
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5077
{
5078 5079 5080 5081
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
5082

5083 5084
/* For the read side: events when they trigger */
static inline struct hlist_head *
5085
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5086 5087
{
	struct swevent_hlist *hlist;
5088

5089
	hlist = rcu_dereference(swhash->swevent_hlist);
5090 5091 5092
	if (!hlist)
		return NULL;

5093 5094 5095 5096 5097
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
5098
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
5109
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
5110 5111 5112 5113 5114
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
5115 5116 5117
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5118
				    u64 nr,
5119 5120
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
5121
{
5122
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5123
	struct perf_event *event;
5124 5125
	struct hlist_node *node;
	struct hlist_head *head;
5126

5127
	rcu_read_lock();
5128
	head = find_swevent_head_rcu(swhash, type, event_id);
5129 5130 5131 5132
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
5133
		if (perf_swevent_match(event, type, event_id, data, regs))
5134
			perf_swevent_event(event, nr, data, regs);
5135
	}
5136 5137
end:
	rcu_read_unlock();
5138 5139
}

5140
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
5141
{
5142
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
5143

5144
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
5145
}
I
Ingo Molnar 已提交
5146
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
5147

5148
inline void perf_swevent_put_recursion_context(int rctx)
5149
{
5150
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5151

5152
	put_recursion_context(swhash->recursion, rctx);
5153
}
5154

5155
void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5156
{
5157
	struct perf_sample_data data;
5158 5159
	int rctx;

5160
	preempt_disable_notrace();
5161 5162 5163
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
5164

5165
	perf_sample_data_init(&data, addr, 0);
5166

5167
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5168 5169

	perf_swevent_put_recursion_context(rctx);
5170
	preempt_enable_notrace();
5171 5172
}

5173
static void perf_swevent_read(struct perf_event *event)
5174 5175 5176
{
}

P
Peter Zijlstra 已提交
5177
static int perf_swevent_add(struct perf_event *event, int flags)
5178
{
5179
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5180
	struct hw_perf_event *hwc = &event->hw;
5181 5182
	struct hlist_head *head;

5183
	if (is_sampling_event(event)) {
5184
		hwc->last_period = hwc->sample_period;
5185
		perf_swevent_set_period(event);
5186
	}
5187

P
Peter Zijlstra 已提交
5188 5189
	hwc->state = !(flags & PERF_EF_START);

5190
	head = find_swevent_head(swhash, event);
5191 5192 5193 5194 5195
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

5196 5197 5198
	return 0;
}

P
Peter Zijlstra 已提交
5199
static void perf_swevent_del(struct perf_event *event, int flags)
5200
{
5201
	hlist_del_rcu(&event->hlist_entry);
5202 5203
}

P
Peter Zijlstra 已提交
5204
static void perf_swevent_start(struct perf_event *event, int flags)
5205
{
P
Peter Zijlstra 已提交
5206
	event->hw.state = 0;
5207
}
I
Ingo Molnar 已提交
5208

P
Peter Zijlstra 已提交
5209
static void perf_swevent_stop(struct perf_event *event, int flags)
5210
{
P
Peter Zijlstra 已提交
5211
	event->hw.state = PERF_HES_STOPPED;
5212 5213
}

5214 5215
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
5216
swevent_hlist_deref(struct swevent_htable *swhash)
5217
{
5218 5219
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
5220 5221
}

5222
static void swevent_hlist_release(struct swevent_htable *swhash)
5223
{
5224
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5225

5226
	if (!hlist)
5227 5228
		return;

5229
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
5230
	kfree_rcu(hlist, rcu_head);
5231 5232 5233 5234
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
5235
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5236

5237
	mutex_lock(&swhash->hlist_mutex);
5238

5239 5240
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
5241

5242
	mutex_unlock(&swhash->hlist_mutex);
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
5260
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5261 5262
	int err = 0;

5263
	mutex_lock(&swhash->hlist_mutex);
5264

5265
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5266 5267 5268 5269 5270 5271 5272
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
5273
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5274
	}
5275
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
5276
exit:
5277
	mutex_unlock(&swhash->hlist_mutex);
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
5301
fail:
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

5312
struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5313

5314 5315 5316
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
5317

5318 5319
	WARN_ON(event->parent);

5320
	static_key_slow_dec(&perf_swevent_enabled[event_id]);
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

5331 5332 5333 5334 5335 5336
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5337 5338 5339 5340 5341 5342 5343 5344 5345
	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

5346
	if (event_id >= PERF_COUNT_SW_MAX)
5347 5348 5349 5350 5351 5352 5353 5354 5355
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

5356
		static_key_slow_inc(&perf_swevent_enabled[event_id]);
5357 5358 5359 5360 5361 5362
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

5363 5364 5365 5366 5367
static int perf_swevent_event_idx(struct perf_event *event)
{
	return 0;
}

5368
static struct pmu perf_swevent = {
5369
	.task_ctx_nr	= perf_sw_context,
5370

5371
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
5372 5373 5374 5375
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5376
	.read		= perf_swevent_read,
5377 5378

	.event_idx	= perf_swevent_event_idx,
5379 5380
};

5381 5382
#ifdef CONFIG_EVENT_TRACING

5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
5397 5398
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;
5399 5400 5401 5402
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
5403 5404 5405 5406 5407 5408 5409 5410 5411
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5412 5413
		   struct pt_regs *regs, struct hlist_head *head, int rctx,
		   struct task_struct *task)
5414 5415
{
	struct perf_sample_data data;
5416 5417 5418
	struct perf_event *event;
	struct hlist_node *node;

5419 5420 5421 5422 5423
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

5424
	perf_sample_data_init(&data, addr, 0);
5425 5426
	data.raw = &raw;

5427 5428
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
5429
			perf_swevent_event(event, count, &data, regs);
5430
	}
5431

5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
	/*
	 * If we got specified a target task, also iterate its context and
	 * deliver this event there too.
	 */
	if (task && task != current) {
		struct perf_event_context *ctx;
		struct trace_entry *entry = record;

		rcu_read_lock();
		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
		if (!ctx)
			goto unlock;

		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
			if (event->attr.type != PERF_TYPE_TRACEPOINT)
				continue;
			if (event->attr.config != entry->type)
				continue;
			if (perf_tp_event_match(event, &data, regs))
				perf_swevent_event(event, count, &data, regs);
		}
unlock:
		rcu_read_unlock();
	}

5457
	perf_swevent_put_recursion_context(rctx);
5458 5459 5460
}
EXPORT_SYMBOL_GPL(perf_tp_event);

5461
static void tp_perf_event_destroy(struct perf_event *event)
5462
{
5463
	perf_trace_destroy(event);
5464 5465
}

5466
static int perf_tp_event_init(struct perf_event *event)
5467
{
5468 5469
	int err;

5470 5471 5472
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

5473 5474 5475 5476 5477 5478
	/*
	 * no branch sampling for tracepoint events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

5479 5480
	err = perf_trace_init(event);
	if (err)
5481
		return err;
5482

5483
	event->destroy = tp_perf_event_destroy;
5484

5485 5486 5487 5488
	return 0;
}

static struct pmu perf_tracepoint = {
5489 5490
	.task_ctx_nr	= perf_sw_context,

5491
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
5492 5493 5494 5495
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
5496
	.read		= perf_swevent_read,
5497 5498

	.event_idx	= perf_swevent_event_idx,
5499 5500 5501 5502
};

static inline void perf_tp_register(void)
{
P
Peter Zijlstra 已提交
5503
	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5504
}
L
Li Zefan 已提交
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

5529
#else
L
Li Zefan 已提交
5530

5531
static inline void perf_tp_register(void)
5532 5533
{
}
L
Li Zefan 已提交
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

5544
#endif /* CONFIG_EVENT_TRACING */
5545

5546
#ifdef CONFIG_HAVE_HW_BREAKPOINT
5547
void perf_bp_event(struct perf_event *bp, void *data)
5548
{
5549 5550 5551
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

5552
	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5553

P
Peter Zijlstra 已提交
5554
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5555
		perf_swevent_event(bp, 1, &sample, regs);
5556 5557 5558
}
#endif

5559 5560 5561
/*
 * hrtimer based swevent callback
 */
5562

5563
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5564
{
5565 5566 5567 5568 5569
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
5570

5571
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
P
Peter Zijlstra 已提交
5572 5573 5574 5575

	if (event->state != PERF_EVENT_STATE_ACTIVE)
		return HRTIMER_NORESTART;

5576
	event->pmu->read(event);
5577

5578
	perf_sample_data_init(&data, 0, event->hw.last_period);
5579 5580 5581
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
5582
		if (!(event->attr.exclude_idle && is_idle_task(current)))
5583
			if (__perf_event_overflow(event, 1, &data, regs))
5584 5585
				ret = HRTIMER_NORESTART;
	}
5586

5587 5588
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5589

5590
	return ret;
5591 5592
}

5593
static void perf_swevent_start_hrtimer(struct perf_event *event)
5594
{
5595
	struct hw_perf_event *hwc = &event->hw;
5596 5597 5598 5599
	s64 period;

	if (!is_sampling_event(event))
		return;
5600

5601 5602 5603 5604
	period = local64_read(&hwc->period_left);
	if (period) {
		if (period < 0)
			period = 10000;
P
Peter Zijlstra 已提交
5605

5606 5607 5608 5609 5610
		local64_set(&hwc->period_left, 0);
	} else {
		period = max_t(u64, 10000, hwc->sample_period);
	}
	__hrtimer_start_range_ns(&hwc->hrtimer,
5611
				ns_to_ktime(period), 0,
5612
				HRTIMER_MODE_REL_PINNED, 0);
5613
}
5614 5615

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5616
{
5617 5618
	struct hw_perf_event *hwc = &event->hw;

5619
	if (is_sampling_event(event)) {
5620
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
5621
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5622 5623 5624

		hrtimer_cancel(&hwc->hrtimer);
	}
5625 5626
}

P
Peter Zijlstra 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
static void perf_swevent_init_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (!is_sampling_event(event))
		return;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;

	/*
	 * Since hrtimers have a fixed rate, we can do a static freq->period
	 * mapping and avoid the whole period adjust feedback stuff.
	 */
	if (event->attr.freq) {
		long freq = event->attr.sample_freq;

		event->attr.sample_period = NSEC_PER_SEC / freq;
		hwc->sample_period = event->attr.sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
		event->attr.freq = 0;
	}
}

5651 5652 5653 5654 5655
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
5656
{
5657 5658 5659
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
5660
	now = local_clock();
5661 5662
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
5663 5664
}

P
Peter Zijlstra 已提交
5665
static void cpu_clock_event_start(struct perf_event *event, int flags)
5666
{
P
Peter Zijlstra 已提交
5667
	local64_set(&event->hw.prev_count, local_clock());
5668 5669 5670
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5671
static void cpu_clock_event_stop(struct perf_event *event, int flags)
5672
{
5673 5674 5675
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
5676

P
Peter Zijlstra 已提交
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5690 5691 5692 5693
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5694

5695 5696 5697 5698 5699 5700 5701 5702
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

5703 5704 5705 5706 5707 5708
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5709 5710
	perf_swevent_init_hrtimer(event);

5711
	return 0;
5712 5713
}

5714
static struct pmu perf_cpu_clock = {
5715 5716
	.task_ctx_nr	= perf_sw_context,

5717
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5718 5719 5720 5721
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5722
	.read		= cpu_clock_event_read,
5723 5724

	.event_idx	= perf_swevent_event_idx,
5725 5726 5727 5728 5729 5730 5731
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5732
{
5733 5734
	u64 prev;
	s64 delta;
5735

5736 5737 5738 5739
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5740

P
Peter Zijlstra 已提交
5741
static void task_clock_event_start(struct perf_event *event, int flags)
5742
{
P
Peter Zijlstra 已提交
5743
	local64_set(&event->hw.prev_count, event->ctx->time);
5744 5745 5746
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5747
static void task_clock_event_stop(struct perf_event *event, int flags)
5748 5749 5750
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5751 5752 5753 5754 5755 5756
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5757

P
Peter Zijlstra 已提交
5758 5759 5760 5761 5762 5763
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5764 5765 5766 5767
}

static void task_clock_event_read(struct perf_event *event)
{
5768 5769 5770
	u64 now = perf_clock();
	u64 delta = now - event->ctx->timestamp;
	u64 time = event->ctx->time + delta;
5771 5772 5773 5774 5775

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5776
{
5777 5778 5779 5780 5781 5782
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

5783 5784 5785 5786 5787 5788
	/*
	 * no branch sampling for software events
	 */
	if (has_branch_stack(event))
		return -EOPNOTSUPP;

P
Peter Zijlstra 已提交
5789 5790
	perf_swevent_init_hrtimer(event);

5791
	return 0;
L
Li Zefan 已提交
5792 5793
}

5794
static struct pmu perf_task_clock = {
5795 5796
	.task_ctx_nr	= perf_sw_context,

5797
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5798 5799 5800 5801
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5802
	.read		= task_clock_event_read,
5803 5804

	.event_idx	= perf_swevent_event_idx,
5805
};
L
Li Zefan 已提交
5806

P
Peter Zijlstra 已提交
5807
static void perf_pmu_nop_void(struct pmu *pmu)
5808 5809
{
}
L
Li Zefan 已提交
5810

P
Peter Zijlstra 已提交
5811
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5812
{
P
Peter Zijlstra 已提交
5813
	return 0;
L
Li Zefan 已提交
5814 5815
}

P
Peter Zijlstra 已提交
5816
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5817
{
P
Peter Zijlstra 已提交
5818
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5819 5820
}

P
Peter Zijlstra 已提交
5821 5822 5823 5824 5825
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5826

P
Peter Zijlstra 已提交
5827
static void perf_pmu_cancel_txn(struct pmu *pmu)
5828
{
P
Peter Zijlstra 已提交
5829
	perf_pmu_enable(pmu);
5830 5831
}

5832 5833 5834 5835 5836
static int perf_event_idx_default(struct perf_event *event)
{
	return event->hw.idx + 1;
}

P
Peter Zijlstra 已提交
5837 5838 5839 5840 5841
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5842
{
P
Peter Zijlstra 已提交
5843
	struct pmu *pmu;
5844

P
Peter Zijlstra 已提交
5845 5846
	if (ctxn < 0)
		return NULL;
5847

P
Peter Zijlstra 已提交
5848 5849 5850 5851
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5852

P
Peter Zijlstra 已提交
5853
	return NULL;
5854 5855
}

5856
static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5857
{
5858 5859 5860 5861 5862 5863 5864
	int cpu;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);

5865 5866
		if (cpuctx->unique_pmu == old_pmu)
			cpuctx->unique_pmu = pmu;
5867 5868 5869 5870 5871 5872
	}
}

static void free_pmu_context(struct pmu *pmu)
{
	struct pmu *i;
5873

P
Peter Zijlstra 已提交
5874
	mutex_lock(&pmus_lock);
5875
	/*
P
Peter Zijlstra 已提交
5876
	 * Like a real lame refcount.
5877
	 */
5878 5879 5880
	list_for_each_entry(i, &pmus, entry) {
		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
			update_pmu_context(i, pmu);
P
Peter Zijlstra 已提交
5881
			goto out;
5882
		}
P
Peter Zijlstra 已提交
5883
	}
5884

5885
	free_percpu(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
5886 5887
out:
	mutex_unlock(&pmus_lock);
5888
}
P
Peter Zijlstra 已提交
5889
static struct idr pmu_idr;
5890

P
Peter Zijlstra 已提交
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
static ssize_t
type_show(struct device *dev, struct device_attribute *attr, char *page)
{
	struct pmu *pmu = dev_get_drvdata(dev);

	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
}

static struct device_attribute pmu_dev_attrs[] = {
       __ATTR_RO(type),
       __ATTR_NULL,
};

static int pmu_bus_running;
static struct bus_type pmu_bus = {
	.name		= "event_source",
	.dev_attrs	= pmu_dev_attrs,
};

static void pmu_dev_release(struct device *dev)
{
	kfree(dev);
}

static int pmu_dev_alloc(struct pmu *pmu)
{
	int ret = -ENOMEM;

	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
	if (!pmu->dev)
		goto out;

5923
	pmu->dev->groups = pmu->attr_groups;
P
Peter Zijlstra 已提交
5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
	device_initialize(pmu->dev);
	ret = dev_set_name(pmu->dev, "%s", pmu->name);
	if (ret)
		goto free_dev;

	dev_set_drvdata(pmu->dev, pmu);
	pmu->dev->bus = &pmu_bus;
	pmu->dev->release = pmu_dev_release;
	ret = device_add(pmu->dev);
	if (ret)
		goto free_dev;

out:
	return ret;

free_dev:
	put_device(pmu->dev);
	goto out;
}

5944
static struct lock_class_key cpuctx_mutex;
5945
static struct lock_class_key cpuctx_lock;
5946

P
Peter Zijlstra 已提交
5947
int perf_pmu_register(struct pmu *pmu, char *name, int type)
5948
{
P
Peter Zijlstra 已提交
5949
	int cpu, ret;
5950

5951
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5952 5953 5954 5955
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5956

P
Peter Zijlstra 已提交
5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
	pmu->type = -1;
	if (!name)
		goto skip_type;
	pmu->name = name;

	if (type < 0) {
		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
		if (!err)
			goto free_pdc;

		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
		if (err) {
			ret = err;
			goto free_pdc;
		}
	}
	pmu->type = type;

P
Peter Zijlstra 已提交
5975 5976 5977 5978 5979 5980
	if (pmu_bus_running) {
		ret = pmu_dev_alloc(pmu);
		if (ret)
			goto free_idr;
	}

P
Peter Zijlstra 已提交
5981
skip_type:
P
Peter Zijlstra 已提交
5982 5983 5984
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5985

P
Peter Zijlstra 已提交
5986 5987
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
P
Peter Zijlstra 已提交
5988
		goto free_dev;
5989

P
Peter Zijlstra 已提交
5990 5991 5992 5993
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5994
		__perf_event_init_context(&cpuctx->ctx);
5995
		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5996
		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5997
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5998
		cpuctx->ctx.pmu = pmu;
5999 6000
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
6001
		cpuctx->unique_pmu = pmu;
P
Peter Zijlstra 已提交
6002
	}
6003

P
Peter Zijlstra 已提交
6004
got_cpu_context:
P
Peter Zijlstra 已提交
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
6019
		}
6020
	}
6021

P
Peter Zijlstra 已提交
6022 6023 6024 6025 6026
	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

6027 6028 6029
	if (!pmu->event_idx)
		pmu->event_idx = perf_event_idx_default;

6030
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
6031 6032
	ret = 0;
unlock:
6033 6034
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
6035
	return ret;
P
Peter Zijlstra 已提交
6036

P
Peter Zijlstra 已提交
6037 6038 6039 6040
free_dev:
	device_del(pmu->dev);
	put_device(pmu->dev);

P
Peter Zijlstra 已提交
6041 6042 6043 6044
free_idr:
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);

P
Peter Zijlstra 已提交
6045 6046 6047
free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
6048 6049
}

6050
void perf_pmu_unregister(struct pmu *pmu)
6051
{
6052 6053 6054
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
6055

6056
	/*
P
Peter Zijlstra 已提交
6057 6058
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
6059
	 */
6060
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
6061
	synchronize_rcu();
6062

P
Peter Zijlstra 已提交
6063
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
6064 6065
	if (pmu->type >= PERF_TYPE_MAX)
		idr_remove(&pmu_idr, pmu->type);
P
Peter Zijlstra 已提交
6066 6067
	device_del(pmu->dev);
	put_device(pmu->dev);
6068
	free_pmu_context(pmu);
6069
}
6070

6071 6072 6073 6074
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;
6075
	int ret;
6076 6077

	idx = srcu_read_lock(&pmus_srcu);
P
Peter Zijlstra 已提交
6078 6079 6080 6081

	rcu_read_lock();
	pmu = idr_find(&pmu_idr, event->attr.type);
	rcu_read_unlock();
6082
	if (pmu) {
6083
		event->pmu = pmu;
6084 6085 6086
		ret = pmu->event_init(event);
		if (ret)
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6087
		goto unlock;
6088
	}
P
Peter Zijlstra 已提交
6089

6090
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6091
		event->pmu = pmu;
6092
		ret = pmu->event_init(event);
6093
		if (!ret)
P
Peter Zijlstra 已提交
6094
			goto unlock;
6095

6096 6097
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
6098
			goto unlock;
6099
		}
6100
	}
P
Peter Zijlstra 已提交
6101 6102
	pmu = ERR_PTR(-ENOENT);
unlock:
6103
	srcu_read_unlock(&pmus_srcu, idx);
6104

6105
	return pmu;
6106 6107
}

T
Thomas Gleixner 已提交
6108
/*
6109
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
6110
 */
6111
static struct perf_event *
6112
perf_event_alloc(struct perf_event_attr *attr, int cpu,
6113 6114 6115
		 struct task_struct *task,
		 struct perf_event *group_leader,
		 struct perf_event *parent_event,
6116 6117
		 perf_overflow_handler_t overflow_handler,
		 void *context)
T
Thomas Gleixner 已提交
6118
{
P
Peter Zijlstra 已提交
6119
	struct pmu *pmu;
6120 6121
	struct perf_event *event;
	struct hw_perf_event *hwc;
6122
	long err;
T
Thomas Gleixner 已提交
6123

6124 6125 6126 6127 6128
	if ((unsigned)cpu >= nr_cpu_ids) {
		if (!task || cpu != -1)
			return ERR_PTR(-EINVAL);
	}

6129
	event = kzalloc(sizeof(*event), GFP_KERNEL);
6130
	if (!event)
6131
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
6132

6133
	/*
6134
	 * Single events are their own group leaders, with an
6135 6136 6137
	 * empty sibling list:
	 */
	if (!group_leader)
6138
		group_leader = event;
6139

6140 6141
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
6142

6143 6144 6145
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
6146 6147
	INIT_LIST_HEAD(&event->rb_entry);

6148
	init_waitqueue_head(&event->waitq);
6149
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
6150

6151
	mutex_init(&event->mmap_mutex);
6152

6153
	atomic_long_set(&event->refcount, 1);
6154 6155 6156 6157 6158
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
6159

6160
	event->parent		= parent_event;
6161

6162 6163
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
6164

6165
	event->state		= PERF_EVENT_STATE_INACTIVE;
6166

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177
	if (task) {
		event->attach_state = PERF_ATTACH_TASK;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		/*
		 * hw_breakpoint is a bit difficult here..
		 */
		if (attr->type == PERF_TYPE_BREAKPOINT)
			event->hw.bp_target = task;
#endif
	}

6178
	if (!overflow_handler && parent_event) {
6179
		overflow_handler = parent_event->overflow_handler;
6180 6181
		context = parent_event->overflow_handler_context;
	}
6182

6183
	event->overflow_handler	= overflow_handler;
6184
	event->overflow_handler_context = context;
6185

6186
	if (attr->disabled)
6187
		event->state = PERF_EVENT_STATE_OFF;
6188

6189
	pmu = NULL;
6190

6191
	hwc = &event->hw;
6192
	hwc->sample_period = attr->sample_period;
6193
	if (attr->freq && attr->sample_freq)
6194
		hwc->sample_period = 1;
6195
	hwc->last_period = hwc->sample_period;
6196

6197
	local64_set(&hwc->period_left, hwc->sample_period);
6198

6199
	/*
6200
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
6201
	 */
6202
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6203 6204
		goto done;

6205
	pmu = perf_init_event(event);
6206

6207 6208
done:
	err = 0;
6209
	if (!pmu)
6210
		err = -EINVAL;
6211 6212
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
6213

6214
	if (err) {
6215 6216 6217
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
6218
		return ERR_PTR(err);
I
Ingo Molnar 已提交
6219
	}
6220

6221
	if (!event->parent) {
6222
		if (event->attach_state & PERF_ATTACH_TASK)
6223
			static_key_slow_inc(&perf_sched_events.key);
6224
		if (event->attr.mmap || event->attr.mmap_data)
6225 6226 6227 6228 6229
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
6230 6231 6232 6233 6234 6235 6236
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
6237 6238 6239 6240 6241 6242
		if (has_branch_stack(event)) {
			static_key_slow_inc(&perf_sched_events.key);
			if (!(event->attach_state & PERF_ATTACH_TASK))
				atomic_inc(&per_cpu(perf_branch_stack_events,
						    event->cpu));
		}
6243
	}
6244

6245
	return event;
T
Thomas Gleixner 已提交
6246 6247
}

6248 6249
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
6250 6251
{
	u32 size;
6252
	int ret;
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
6277 6278 6279
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
6280 6281
	 */
	if (size > sizeof(*attr)) {
6282 6283 6284
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
6285

6286 6287
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
6288

6289
		for (; addr < end; addr++) {
6290 6291 6292 6293 6294 6295
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
6296
		size = sizeof(*attr);
6297 6298 6299 6300 6301 6302
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

6303
	if (attr->__reserved_1)
6304 6305 6306 6307 6308 6309 6310 6311
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345
	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
		u64 mask = attr->branch_sample_type;

		/* only using defined bits */
		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
			return -EINVAL;

		/* at least one branch bit must be set */
		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
			return -EINVAL;

		/* kernel level capture: check permissions */
		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;

		/* propagate priv level, when not set for branch */
		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {

			/* exclude_kernel checked on syscall entry */
			if (!attr->exclude_kernel)
				mask |= PERF_SAMPLE_BRANCH_KERNEL;

			if (!attr->exclude_user)
				mask |= PERF_SAMPLE_BRANCH_USER;

			if (!attr->exclude_hv)
				mask |= PERF_SAMPLE_BRANCH_HV;
			/*
			 * adjust user setting (for HW filter setup)
			 */
			attr->branch_sample_type = mask;
		}
	}
6346

6347
	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6348
		ret = perf_reg_validate(attr->sample_regs_user);
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
		if (ret)
			return ret;
	}

	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
		if (!arch_perf_have_user_stack_dump())
			return -ENOSYS;

		/*
		 * We have __u32 type for the size, but so far
		 * we can only use __u16 as maximum due to the
		 * __u16 sample size limit.
		 */
		if (attr->sample_stack_user >= USHRT_MAX)
			ret = -EINVAL;
		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
			ret = -EINVAL;
	}
6367

6368 6369 6370 6371 6372 6373 6374 6375 6376
out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

6377 6378
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6379
{
6380
	struct ring_buffer *rb = NULL, *old_rb = NULL;
6381 6382
	int ret = -EINVAL;

6383
	if (!output_event)
6384 6385
		goto set;

6386 6387
	/* don't allow circular references */
	if (event == output_event)
6388 6389
		goto out;

6390 6391 6392 6393 6394 6395 6396
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
6397
	 * If its not a per-cpu rb, it must be the same task.
6398 6399 6400 6401
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

6402
set:
6403
	mutex_lock(&event->mmap_mutex);
6404 6405 6406
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
6407

6408
	if (output_event) {
6409 6410 6411
		/* get the rb we want to redirect to */
		rb = ring_buffer_get(output_event);
		if (!rb)
6412
			goto unlock;
6413 6414
	}

6415 6416
	old_rb = event->rb;
	rcu_assign_pointer(event->rb, rb);
6417 6418
	if (old_rb)
		ring_buffer_detach(event, old_rb);
6419
	ret = 0;
6420 6421 6422
unlock:
	mutex_unlock(&event->mmap_mutex);

6423 6424
	if (old_rb)
		ring_buffer_put(old_rb);
6425 6426 6427 6428
out:
	return ret;
}

T
Thomas Gleixner 已提交
6429
/**
6430
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
6431
 *
6432
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
6433
 * @pid:		target pid
I
Ingo Molnar 已提交
6434
 * @cpu:		target cpu
6435
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
6436
 */
6437 6438
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
6439
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
6440
{
6441 6442
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
6443 6444 6445
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
6446
	struct file *group_file = NULL;
M
Matt Helsley 已提交
6447
	struct task_struct *task = NULL;
6448
	struct pmu *pmu;
6449
	int event_fd;
6450
	int move_group = 0;
6451
	int fput_needed = 0;
6452
	int err;
T
Thomas Gleixner 已提交
6453

6454
	/* for future expandability... */
S
Stephane Eranian 已提交
6455
	if (flags & ~PERF_FLAG_ALL)
6456 6457
		return -EINVAL;

6458 6459 6460
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
6461

6462 6463 6464 6465 6466
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

6467
	if (attr.freq) {
6468
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6469 6470 6471
			return -EINVAL;
	}

S
Stephane Eranian 已提交
6472 6473 6474 6475 6476 6477 6478 6479 6480
	/*
	 * In cgroup mode, the pid argument is used to pass the fd
	 * opened to the cgroup directory in cgroupfs. The cpu argument
	 * designates the cpu on which to monitor threads from that
	 * cgroup.
	 */
	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
		return -EINVAL;

6481 6482 6483 6484
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

6485
	if (group_fd != -1) {
6486 6487 6488
		group_file = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_file)) {
			err = PTR_ERR(group_file);
6489
			goto err_fd;
6490
		}
6491
		group_leader = group_file->private_data;
6492 6493 6494 6495 6496 6497
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

S
Stephane Eranian 已提交
6498
	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6499 6500 6501 6502 6503 6504 6505
		task = find_lively_task_by_vpid(pid);
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}

6506 6507
	get_online_cpus();

6508 6509
	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
				 NULL, NULL);
6510 6511
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
6512
		goto err_task;
6513 6514
	}

S
Stephane Eranian 已提交
6515 6516 6517 6518
	if (flags & PERF_FLAG_PID_CGROUP) {
		err = perf_cgroup_connect(pid, event, &attr, group_leader);
		if (err)
			goto err_alloc;
6519 6520 6521 6522 6523 6524
		/*
		 * one more event:
		 * - that has cgroup constraint on event->cpu
		 * - that may need work on context switch
		 */
		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6525
		static_key_slow_inc(&perf_sched_events.key);
S
Stephane Eranian 已提交
6526 6527
	}

6528 6529 6530 6531 6532
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
6556 6557 6558 6559

	/*
	 * Get the target context (task or percpu):
	 */
6560
	ctx = find_get_context(pmu, task, event->cpu);
6561 6562
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6563
		goto err_alloc;
6564 6565
	}

6566 6567 6568 6569 6570
	if (task) {
		put_task_struct(task);
		task = NULL;
	}

I
Ingo Molnar 已提交
6571
	/*
6572
	 * Look up the group leader (we will attach this event to it):
6573
	 */
6574
	if (group_leader) {
6575
		err = -EINVAL;
6576 6577

		/*
I
Ingo Molnar 已提交
6578 6579 6580 6581
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
6582
			goto err_context;
I
Ingo Molnar 已提交
6583 6584 6585
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
6586
		 */
6587 6588 6589 6590 6591 6592 6593 6594
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

6595 6596 6597
		/*
		 * Only a group leader can be exclusive or pinned
		 */
6598
		if (attr.exclusive || attr.pinned)
6599
			goto err_context;
6600 6601 6602 6603 6604
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
6605
			goto err_context;
6606
	}
T
Thomas Gleixner 已提交
6607

6608 6609 6610
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
6611
		goto err_context;
6612
	}
6613

6614 6615 6616 6617
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
6618
		perf_remove_from_context(group_leader);
6619 6620
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6621
			perf_remove_from_context(sibling);
6622 6623 6624 6625
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
6626
	}
6627

6628
	WARN_ON_ONCE(ctx->parent_ctx);
6629
	mutex_lock(&ctx->mutex);
6630 6631

	if (move_group) {
6632
		synchronize_rcu();
6633
		perf_install_in_context(ctx, group_leader, event->cpu);
6634 6635 6636
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
6637
			perf_install_in_context(ctx, sibling, event->cpu);
6638 6639 6640 6641
			get_ctx(ctx);
		}
	}

6642
	perf_install_in_context(ctx, event, event->cpu);
6643
	++ctx->generation;
6644
	perf_unpin_context(ctx);
6645
	mutex_unlock(&ctx->mutex);
6646

6647 6648
	put_online_cpus();

6649
	event->owner = current;
P
Peter Zijlstra 已提交
6650

6651 6652 6653
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
6654

6655 6656 6657 6658
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(event);
6659
	perf_event__id_header_size(event);
6660

6661 6662 6663 6664 6665 6666
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
6667 6668 6669
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
6670

6671
err_context:
6672
	perf_unpin_context(ctx);
6673
	put_ctx(ctx);
6674
err_alloc:
6675
	free_event(event);
P
Peter Zijlstra 已提交
6676
err_task:
6677
	put_online_cpus();
P
Peter Zijlstra 已提交
6678 6679
	if (task)
		put_task_struct(task);
6680
err_group_fd:
6681
	fput_light(group_file, fput_needed);
6682 6683
err_fd:
	put_unused_fd(event_fd);
6684
	return err;
T
Thomas Gleixner 已提交
6685 6686
}

6687 6688 6689 6690 6691
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
6692
 * @task: task to profile (NULL for percpu)
6693 6694 6695
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
6696
				 struct task_struct *task,
6697 6698
				 perf_overflow_handler_t overflow_handler,
				 void *context)
6699 6700
{
	struct perf_event_context *ctx;
6701
	struct perf_event *event;
6702
	int err;
6703

6704 6705 6706
	/*
	 * Get the target context (task or percpu):
	 */
6707

6708 6709
	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
				 overflow_handler, context);
6710 6711 6712 6713
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
6714

M
Matt Helsley 已提交
6715
	ctx = find_get_context(event->pmu, task, cpu);
6716 6717
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
6718
		goto err_free;
6719
	}
6720 6721 6722 6723 6724

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
6725
	perf_unpin_context(ctx);
6726 6727 6728 6729
	mutex_unlock(&ctx->mutex);

	return event;

6730 6731 6732
err_free:
	free_event(event);
err:
6733
	return ERR_PTR(err);
6734
}
6735
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6736

6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
{
	struct perf_event_context *src_ctx;
	struct perf_event_context *dst_ctx;
	struct perf_event *event, *tmp;
	LIST_HEAD(events);

	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;

	mutex_lock(&src_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
				 event_entry) {
		perf_remove_from_context(event);
		put_ctx(src_ctx);
		list_add(&event->event_entry, &events);
	}
	mutex_unlock(&src_ctx->mutex);

	synchronize_rcu();

	mutex_lock(&dst_ctx->mutex);
	list_for_each_entry_safe(event, tmp, &events, event_entry) {
		list_del(&event->event_entry);
		if (event->state >= PERF_EVENT_STATE_OFF)
			event->state = PERF_EVENT_STATE_INACTIVE;
		perf_install_in_context(dst_ctx, event, dst_cpu);
		get_ctx(dst_ctx);
	}
	mutex_unlock(&dst_ctx->mutex);
}
EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);

6770
static void sync_child_event(struct perf_event *child_event,
6771
			       struct task_struct *child)
6772
{
6773
	struct perf_event *parent_event = child_event->parent;
6774
	u64 child_val;
6775

6776 6777
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
6778

P
Peter Zijlstra 已提交
6779
	child_val = perf_event_count(child_event);
6780 6781 6782 6783

	/*
	 * Add back the child's count to the parent's count:
	 */
6784
	atomic64_add(child_val, &parent_event->child_count);
6785 6786 6787 6788
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
6789 6790

	/*
6791
	 * Remove this event from the parent's list
6792
	 */
6793 6794 6795 6796
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
6797 6798

	/*
6799
	 * Release the parent event, if this was the last
6800 6801
	 * reference to it.
	 */
6802
	put_event(parent_event);
6803 6804
}

6805
static void
6806 6807
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
6808
			 struct task_struct *child)
6809
{
6810 6811 6812 6813 6814
	if (child_event->parent) {
		raw_spin_lock_irq(&child_ctx->lock);
		perf_group_detach(child_event);
		raw_spin_unlock_irq(&child_ctx->lock);
	}
6815

6816
	perf_remove_from_context(child_event);
6817

6818
	/*
6819
	 * It can happen that the parent exits first, and has events
6820
	 * that are still around due to the child reference. These
6821
	 * events need to be zapped.
6822
	 */
6823
	if (child_event->parent) {
6824 6825
		sync_child_event(child_event, child);
		free_event(child_event);
6826
	}
6827 6828
}

P
Peter Zijlstra 已提交
6829
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6830
{
6831 6832
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
6833
	unsigned long flags;
6834

P
Peter Zijlstra 已提交
6835
	if (likely(!child->perf_event_ctxp[ctxn])) {
6836
		perf_event_task(child, NULL, 0);
6837
		return;
P
Peter Zijlstra 已提交
6838
	}
6839

6840
	local_irq_save(flags);
6841 6842 6843 6844 6845 6846
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
6847
	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6848 6849 6850

	/*
	 * Take the context lock here so that if find_get_context is
6851
	 * reading child->perf_event_ctxp, we wait until it has
6852 6853
	 * incremented the context's refcount before we do put_ctx below.
	 */
6854
	raw_spin_lock(&child_ctx->lock);
6855
	task_ctx_sched_out(child_ctx);
P
Peter Zijlstra 已提交
6856
	child->perf_event_ctxp[ctxn] = NULL;
6857 6858 6859
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
6860
	 * the events from it.
6861 6862
	 */
	unclone_ctx(child_ctx);
6863
	update_context_time(child_ctx);
6864
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6865 6866

	/*
6867 6868 6869
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
6870
	 */
6871
	perf_event_task(child, child_ctx, 0);
6872

6873 6874 6875
	/*
	 * We can recurse on the same lock type through:
	 *
6876 6877
	 *   __perf_event_exit_task()
	 *     sync_child_event()
6878 6879
	 *       put_event()
	 *         mutex_lock(&ctx->mutex)
6880 6881 6882
	 *
	 * But since its the parent context it won't be the same instance.
	 */
6883
	mutex_lock(&child_ctx->mutex);
6884

6885
again:
6886 6887 6888 6889 6890
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6891
				 group_entry)
6892
		__perf_event_exit_task(child_event, child_ctx, child);
6893 6894

	/*
6895
	 * If the last event was a group event, it will have appended all
6896 6897 6898
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
6899 6900
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
6901
		goto again;
6902 6903 6904 6905

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
6906 6907
}

P
Peter Zijlstra 已提交
6908 6909 6910 6911 6912
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
P
Peter Zijlstra 已提交
6913
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6914 6915
	int ctxn;

P
Peter Zijlstra 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
	mutex_lock(&child->perf_event_mutex);
	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
				 owner_entry) {
		list_del_init(&event->owner_entry);

		/*
		 * Ensure the list deletion is visible before we clear
		 * the owner, closes a race against perf_release() where
		 * we need to serialize on the owner->perf_event_mutex.
		 */
		smp_wmb();
		event->owner = NULL;
	}
	mutex_unlock(&child->perf_event_mutex);

P
Peter Zijlstra 已提交
6931 6932 6933 6934
	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

6947
	put_event(parent);
6948

6949
	perf_group_detach(event);
6950 6951 6952 6953
	list_del_event(event, ctx);
	free_event(event);
}

6954 6955
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
6956
 * perf_event_init_task below, used by fork() in case of fail.
6957
 */
6958
void perf_event_free_task(struct task_struct *task)
6959
{
P
Peter Zijlstra 已提交
6960
	struct perf_event_context *ctx;
6961
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
6962
	int ctxn;
6963

P
Peter Zijlstra 已提交
6964 6965 6966 6967
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
6968

P
Peter Zijlstra 已提交
6969
		mutex_lock(&ctx->mutex);
6970
again:
P
Peter Zijlstra 已提交
6971 6972 6973
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
6974

P
Peter Zijlstra 已提交
6975 6976 6977
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
6978

P
Peter Zijlstra 已提交
6979 6980 6981
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
6982

P
Peter Zijlstra 已提交
6983
		mutex_unlock(&ctx->mutex);
6984

P
Peter Zijlstra 已提交
6985 6986
		put_ctx(ctx);
	}
6987 6988
}

6989 6990 6991 6992 6993 6994 6995 6996
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
7009
	unsigned long flags;
P
Peter Zijlstra 已提交
7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
7022
					   child,
P
Peter Zijlstra 已提交
7023
					   group_leader, parent_event,
7024
				           NULL, NULL);
P
Peter Zijlstra 已提交
7025 7026
	if (IS_ERR(child_event))
		return child_event;
7027 7028 7029 7030 7031 7032

	if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
		free_event(child_event);
		return NULL;
	}

P
Peter Zijlstra 已提交
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;
7057 7058
	child_event->overflow_handler_context
		= parent_event->overflow_handler_context;
P
Peter Zijlstra 已提交
7059

7060 7061 7062 7063
	/*
	 * Precalculate sample_data sizes
	 */
	perf_event__header_size(child_event);
7064
	perf_event__id_header_size(child_event);
7065

P
Peter Zijlstra 已提交
7066 7067 7068
	/*
	 * Link it up in the child's context:
	 */
7069
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7070
	add_event_to_ctx(child_event, child_ctx);
7071
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
7105 7106 7107 7108 7109
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
7110
		   struct task_struct *child, int ctxn,
7111 7112 7113
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
7114
	struct perf_event_context *child_ctx;
7115 7116 7117 7118

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
7119 7120
	}

7121
	child_ctx = child->perf_event_ctxp[ctxn];
7122 7123 7124 7125 7126 7127 7128
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
7129

7130
		child_ctx = alloc_perf_context(event->pmu, child);
7131 7132
		if (!child_ctx)
			return -ENOMEM;
7133

P
Peter Zijlstra 已提交
7134
		child->perf_event_ctxp[ctxn] = child_ctx;
7135 7136 7137 7138 7139 7140 7141 7142 7143
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
7144 7145
}

7146
/*
7147
 * Initialize the perf_event context in task_struct
7148
 */
P
Peter Zijlstra 已提交
7149
int perf_event_init_context(struct task_struct *child, int ctxn)
7150
{
7151
	struct perf_event_context *child_ctx, *parent_ctx;
7152 7153
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
7154
	struct task_struct *parent = current;
7155
	int inherited_all = 1;
7156
	unsigned long flags;
7157
	int ret = 0;
7158

P
Peter Zijlstra 已提交
7159
	if (likely(!parent->perf_event_ctxp[ctxn]))
7160 7161
		return 0;

7162
	/*
7163 7164
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
7165
	 */
P
Peter Zijlstra 已提交
7166
	parent_ctx = perf_pin_task_context(parent, ctxn);
7167

7168 7169 7170 7171 7172 7173 7174
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

7175 7176 7177 7178
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
7179
	mutex_lock(&parent_ctx->mutex);
7180 7181 7182 7183 7184

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
7185
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
7186 7187
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7188 7189 7190
		if (ret)
			break;
	}
7191

7192 7193 7194 7195 7196 7197 7198 7199 7200
	/*
	 * We can't hold ctx->lock when iterating the ->flexible_group list due
	 * to allocations, but we need to prevent rotation because
	 * rotate_ctx() will change the list from interrupt context.
	 */
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 1;
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);

7201
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
7202 7203
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
7204
		if (ret)
7205
			break;
7206 7207
	}

7208 7209 7210
	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
	parent_ctx->rotate_disable = 0;

P
Peter Zijlstra 已提交
7211
	child_ctx = child->perf_event_ctxp[ctxn];
7212

7213
	if (child_ctx && inherited_all) {
7214 7215 7216
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
P
Peter Zijlstra 已提交
7217 7218 7219
		 *
		 * Note that if the parent is a clone, the holding of
		 * parent_ctx->lock avoids it from being uncloned.
7220
		 */
P
Peter Zijlstra 已提交
7221
		cloned_ctx = parent_ctx->parent_ctx;
7222 7223
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
7224
			child_ctx->parent_gen = parent_ctx->parent_gen;
7225 7226 7227 7228 7229
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
7230 7231
	}

P
Peter Zijlstra 已提交
7232
	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7233
	mutex_unlock(&parent_ctx->mutex);
7234

7235
	perf_unpin_context(parent_ctx);
7236
	put_ctx(parent_ctx);
7237

7238
	return ret;
7239 7240
}

P
Peter Zijlstra 已提交
7241 7242 7243 7244 7245 7246 7247
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

7248 7249 7250 7251
	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);

P
Peter Zijlstra 已提交
7252 7253 7254 7255 7256 7257 7258 7259 7260
	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

7261 7262
static void __init perf_event_init_all_cpus(void)
{
7263
	struct swevent_htable *swhash;
7264 7265 7266
	int cpu;

	for_each_possible_cpu(cpu) {
7267 7268
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
7269
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7270 7271 7272
	}
}

7273
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
7274
{
P
Peter Zijlstra 已提交
7275
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
7276

7277
	mutex_lock(&swhash->hlist_mutex);
7278
	if (swhash->hlist_refcount > 0) {
7279 7280
		struct swevent_hlist *hlist;

7281 7282 7283
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7284
	}
7285
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
7286 7287
}

P
Peter Zijlstra 已提交
7288
#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7289
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
7290
{
7291 7292 7293 7294 7295 7296 7297
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
7298
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
7299
{
P
Peter Zijlstra 已提交
7300
	struct perf_event_context *ctx = __info;
7301
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
7302

P
Peter Zijlstra 已提交
7303
	perf_pmu_rotate_stop(ctx->pmu);
7304

7305
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7306
		__perf_remove_from_context(event);
7307
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7308
		__perf_remove_from_context(event);
T
Thomas Gleixner 已提交
7309
}
P
Peter Zijlstra 已提交
7310 7311 7312 7313 7314 7315 7316 7317 7318

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
7319
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
7320 7321 7322 7323 7324 7325 7326 7327

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

7328
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
7329
{
7330
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7331

7332 7333 7334
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
7335

P
Peter Zijlstra 已提交
7336
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
7337 7338
}
#else
7339
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
7340 7341
#endif

P
Peter Zijlstra 已提交
7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
static int
perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
{
	int cpu;

	for_each_online_cpu(cpu)
		perf_event_exit_cpu(cpu);

	return NOTIFY_OK;
}

/*
 * Run the perf reboot notifier at the very last possible moment so that
 * the generic watchdog code runs as long as possible.
 */
static struct notifier_block perf_reboot_notifier = {
	.notifier_call = perf_reboot,
	.priority = INT_MIN,
};

T
Thomas Gleixner 已提交
7362 7363 7364 7365 7366
static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

7367
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
7368 7369

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
7370
	case CPU_DOWN_FAILED:
7371
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
7372 7373
		break;

P
Peter Zijlstra 已提交
7374
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
7375
	case CPU_DOWN_PREPARE:
7376
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
7377 7378 7379 7380 7381 7382 7383 7384 7385
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

7386
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
7387
{
7388 7389
	int ret;

P
Peter Zijlstra 已提交
7390 7391
	idr_init(&pmu_idr);

7392
	perf_event_init_all_cpus();
7393
	init_srcu_struct(&pmus_srcu);
P
Peter Zijlstra 已提交
7394 7395 7396
	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
	perf_pmu_register(&perf_cpu_clock, NULL, -1);
	perf_pmu_register(&perf_task_clock, NULL, -1);
7397 7398
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
P
Peter Zijlstra 已提交
7399
	register_reboot_notifier(&perf_reboot_notifier);
7400 7401 7402

	ret = init_hw_breakpoint();
	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7403 7404 7405

	/* do not patch jump label more than once per second */
	jump_label_rate_limit(&perf_sched_events, HZ);
7406 7407 7408 7409 7410 7411 7412

	/*
	 * Build time assertion that we keep the data_head at the intended
	 * location.  IOW, validation we got the __reserved[] size right.
	 */
	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
		     != 1024);
T
Thomas Gleixner 已提交
7413
}
P
Peter Zijlstra 已提交
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441

static int __init perf_event_sysfs_init(void)
{
	struct pmu *pmu;
	int ret;

	mutex_lock(&pmus_lock);

	ret = bus_register(&pmu_bus);
	if (ret)
		goto unlock;

	list_for_each_entry(pmu, &pmus, entry) {
		if (!pmu->name || pmu->type < 0)
			continue;

		ret = pmu_dev_alloc(pmu);
		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
	}
	pmu_bus_running = 1;
	ret = 0;

unlock:
	mutex_unlock(&pmus_lock);

	return ret;
}
device_initcall(perf_event_sysfs_init);
S
Stephane Eranian 已提交
7442 7443

#ifdef CONFIG_CGROUP_PERF
7444
static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
S
Stephane Eranian 已提交
7445 7446 7447
{
	struct perf_cgroup *jc;

7448
	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
S
Stephane Eranian 已提交
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
	if (!jc)
		return ERR_PTR(-ENOMEM);

	jc->info = alloc_percpu(struct perf_cgroup_info);
	if (!jc->info) {
		kfree(jc);
		return ERR_PTR(-ENOMEM);
	}

	return &jc->css;
}

7461
static void perf_cgroup_destroy(struct cgroup *cont)
S
Stephane Eranian 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
{
	struct perf_cgroup *jc;
	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
			  struct perf_cgroup, css);
	free_percpu(jc->info);
	kfree(jc);
}

static int __perf_cgroup_move(void *info)
{
	struct task_struct *task = info;
	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
	return 0;
}

7477
static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
S
Stephane Eranian 已提交
7478
{
7479 7480 7481 7482
	struct task_struct *task;

	cgroup_taskset_for_each(task, cgrp, tset)
		task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7483 7484
}

7485 7486
static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
			     struct task_struct *task)
S
Stephane Eranian 已提交
7487 7488 7489 7490 7491 7492 7493 7494 7495
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

7496
	task_function_call(task, __perf_cgroup_move, task);
S
Stephane Eranian 已提交
7497 7498 7499
}

struct cgroup_subsys perf_subsys = {
7500 7501 7502 7503 7504
	.name		= "perf_event",
	.subsys_id	= perf_subsys_id,
	.create		= perf_cgroup_create,
	.destroy	= perf_cgroup_destroy,
	.exit		= perf_cgroup_exit,
7505
	.attach		= perf_cgroup_attach,
S
Stephane Eranian 已提交
7506 7507
};
#endif /* CONFIG_CGROUP_PERF */