memcontrol.c 151.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
T
Tejun Heo 已提交
80
struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
B
Balbir Singh 已提交
81

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84 85
int do_swap_account __read_mostly;
#else
86
#define do_swap_account		0
87 88
#endif

89 90 91
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
92
	"rss_huge",
93
	"mapped_file",
94
	"dirty",
95
	"writeback",
96 97 98 99 100 101 102 103 104 105
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

106 107 108 109 110 111 112 113
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

114 115 116 117 118 119 120 121
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
122
	MEM_CGROUP_TARGET_SOFTLIMIT,
123
	MEM_CGROUP_TARGET_NUMAINFO,
124 125
	MEM_CGROUP_NTARGETS,
};
126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130
struct mem_cgroup_stat_cpu {
131
	long count[MEM_CGROUP_STAT_NSTATS];
132
	unsigned long events[MEMCG_NR_EVENTS];
133
	unsigned long nr_page_events;
134
	unsigned long targets[MEM_CGROUP_NTARGETS];
135 136
};

137 138
struct reclaim_iter {
	struct mem_cgroup *position;
139 140 141 142
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

143 144 145 146
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
147
	struct lruvec		lruvec;
148
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
149

150
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
151

152
	struct rb_node		tree_node;	/* RB tree node */
153
	unsigned long		usage_in_excess;/* Set to the value by which */
154 155
						/* the soft limit is exceeded*/
	bool			on_tree;
156
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
157
						/* use container_of	   */
158 159 160 161 162 163
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
186
	unsigned long threshold;
187 188
};

K
KAMEZAWA Hiroyuki 已提交
189
/* For threshold */
190
struct mem_cgroup_threshold_ary {
191
	/* An array index points to threshold just below or equal to usage. */
192
	int current_threshold;
193 194 195 196 197
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
198 199 200 201 202 203 204 205 206 207 208 209

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
210 211 212 213 214
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
215

216 217 218
/*
 * cgroup_event represents events which userspace want to receive.
 */
219
struct mem_cgroup_event {
220
	/*
221
	 * memcg which the event belongs to.
222
	 */
223
	struct mem_cgroup *memcg;
224 225 226 227 228 229 230 231
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
232 233 234 235 236
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
237
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
238
			      struct eventfd_ctx *eventfd, const char *args);
239 240 241 242 243
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
244
	void (*unregister_event)(struct mem_cgroup *memcg,
245
				 struct eventfd_ctx *eventfd);
246 247 248 249 250 251 252 253 254 255
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

256 257
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
258

B
Balbir Singh 已提交
259 260 261 262 263 264 265 266
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
267 268 269 270 271 272

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

273 274 275 276
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

277
	unsigned long soft_limit;
278

279 280 281
	/* vmpressure notifications */
	struct vmpressure vmpressure;

282 283 284
	/* css_online() has been completed */
	int initialized;

285 286 287 288
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
289 290 291

	bool		oom_lock;
	atomic_t	under_oom;
292
	atomic_t	oom_wakeups;
293

294
	int	swappiness;
295 296
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
297

298 299 300 301
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
302
	struct mem_cgroup_thresholds thresholds;
303

304
	/* thresholds for mem+swap usage. RCU-protected */
305
	struct mem_cgroup_thresholds memsw_thresholds;
306

K
KAMEZAWA Hiroyuki 已提交
307 308
	/* For oom notifier event fd */
	struct list_head oom_notify;
309

310 311 312 313
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
314
	unsigned long move_charge_at_immigrate;
315 316 317
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
318
	atomic_t		moving_account;
319
	/* taken only while moving_account > 0 */
320 321 322
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
323
	/*
324
	 * percpu counter.
325
	 */
326
	struct mem_cgroup_stat_cpu __percpu *stat;
327 328 329 330 331 332
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
333

M
Michal Hocko 已提交
334
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
335
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
336
#endif
337
#if defined(CONFIG_MEMCG_KMEM)
338
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
339
	int kmemcg_id;
340
	bool kmem_acct_activated;
341
	bool kmem_acct_active;
342
#endif
343 344 345 346 347 348 349

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
350

351 352 353 354
#ifdef CONFIG_CGROUP_WRITEBACK
	struct list_head cgwb_list;
#endif

355 356 357 358
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

359 360
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
361 362
};

363
#ifdef CONFIG_MEMCG_KMEM
364
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
365
{
366
	return memcg->kmem_acct_active;
367
}
368 369
#endif

370 371
/* Stuffs for move charges at task migration. */
/*
372
 * Types of charges to be moved.
373
 */
374 375 376
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
377

378 379
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
380
	spinlock_t	  lock; /* for from, to */
381 382
	struct mem_cgroup *from;
	struct mem_cgroup *to;
383
	unsigned long flags;
384
	unsigned long precharge;
385
	unsigned long moved_charge;
386
	unsigned long moved_swap;
387 388 389
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
390
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
391 392
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
393

394 395 396 397
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
398
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
399
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
400

401 402
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
403
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
404
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
405
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
406 407 408
	NR_CHARGE_TYPE,
};

409
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
410 411 412 413
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
414
	_KMEM,
G
Glauber Costa 已提交
415 416
};

417 418
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
419
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
420 421
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
422

423 424 425 426 427 428 429
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

430 431
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
432
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
433 434
}

435 436 437 438 439 440 441 442 443 444 445 446 447
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

448 449 450 451 452
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

453 454 455 456 457 458
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
459 460
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
461
	return memcg->css.id;
L
Li Zefan 已提交
462 463
}

464 465 466 467 468 469
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
470 471 472 473
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

474
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
475 476 477
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
478
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
479
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
480 481 482

void sock_update_memcg(struct sock *sk)
{
483
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
484
		struct mem_cgroup *memcg;
485
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
486 487 488

		BUG_ON(!sk->sk_prot->proto_cgroup);

489 490 491 492 493 494 495 496 497 498
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
499
			css_get(&sk->sk_cgrp->memcg->css);
500 501 502
			return;
		}

G
Glauber Costa 已提交
503 504
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
505
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
506
		if (!mem_cgroup_is_root(memcg) &&
507 508
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
509
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
510 511 512 513 514 515 516 517
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
518
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
519 520 521
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
522
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
523 524
	}
}
G
Glauber Costa 已提交
525 526 527 528 529 530

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

531
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
532 533
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
534

535 536
#endif

537
#ifdef CONFIG_MEMCG_KMEM
538
/*
539
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
540 541 542 543 544
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
545
 *
546 547
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
548
 */
549 550
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
551

552 553 554 555 556 557 558 559 560 561 562 563 564
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

565 566 567 568 569 570
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
571
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
572 573
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
574
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
575 576 577
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
578
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
579

580 581 582 583 584 585
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
586
struct static_key memcg_kmem_enabled_key;
587
EXPORT_SYMBOL(memcg_kmem_enabled_key);
588 589 590

#endif /* CONFIG_MEMCG_KMEM */

591
static struct mem_cgroup_per_zone *
592
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
593
{
594 595 596
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

597
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
598 599
}

600
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
601
{
602
	return &memcg->css;
603 604
}

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

	if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

638
static struct mem_cgroup_per_zone *
639
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
640
{
641 642
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
643

644
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

662 663
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
664
					 unsigned long new_usage_in_excess)
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

694 695
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
696 697 698 699 700 701 702
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

703 704
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
705
{
706 707 708
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
709
	__mem_cgroup_remove_exceeded(mz, mctz);
710
	spin_unlock_irqrestore(&mctz->lock, flags);
711 712
}

713 714 715
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
716
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
717 718 719 720 721 722 723
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
724 725 726

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
727
	unsigned long excess;
728 729 730
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

731
	mctz = soft_limit_tree_from_page(page);
732 733 734 735 736
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
737
		mz = mem_cgroup_page_zoneinfo(memcg, page);
738
		excess = soft_limit_excess(memcg);
739 740 741 742 743
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
744 745 746
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
747 748
			/* if on-tree, remove it */
			if (mz->on_tree)
749
				__mem_cgroup_remove_exceeded(mz, mctz);
750 751 752 753
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
754
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
755
			spin_unlock_irqrestore(&mctz->lock, flags);
756 757 758 759 760 761 762
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
763 764
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
765

766 767 768 769
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
770
			mem_cgroup_remove_exceeded(mz, mctz);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
793
	__mem_cgroup_remove_exceeded(mz, mctz);
794
	if (!soft_limit_excess(mz->memcg) ||
795
	    !css_tryget_online(&mz->memcg->css))
796 797 798 799 800 801 802 803 804 805
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

806
	spin_lock_irq(&mctz->lock);
807
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
808
	spin_unlock_irq(&mctz->lock);
809 810 811
	return mz;
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
831
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
832
				 enum mem_cgroup_stat_index idx)
833
{
834
	long val = 0;
835 836
	int cpu;

837 838
	get_online_cpus();
	for_each_online_cpu(cpu)
839
		val += per_cpu(memcg->stat->count[idx], cpu);
840
#ifdef CONFIG_HOTPLUG_CPU
841 842 843
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
844 845
#endif
	put_online_cpus();
846 847 848
	return val;
}

849
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
850 851 852 853 854
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

855
	get_online_cpus();
856
	for_each_online_cpu(cpu)
857
		val += per_cpu(memcg->stat->events[idx], cpu);
858
#ifdef CONFIG_HOTPLUG_CPU
859 860 861
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
862
#endif
863
	put_online_cpus();
864 865 866
	return val;
}

867
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
868
					 struct page *page,
869
					 int nr_pages)
870
{
871 872 873 874
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
875
	if (PageAnon(page))
876
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
877
				nr_pages);
878
	else
879
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
880
				nr_pages);
881

882 883 884 885
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

886 887
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
888
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
889
	else {
890
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
891 892
		nr_pages = -nr_pages; /* for event */
	}
893

894
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
895 896
}

897
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
898 899 900 901 902 903 904
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

905 906 907
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
908
{
909
	unsigned long nr = 0;
910 911
	int zid;

912
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
913

914 915 916 917 918 919 920 921 922 923 924 925
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
926
}
927

928
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
929
			unsigned int lru_mask)
930
{
931
	unsigned long nr = 0;
932
	int nid;
933

934
	for_each_node_state(nid, N_MEMORY)
935 936
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
937 938
}

939 940
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
941 942 943
{
	unsigned long val, next;

944
	val = __this_cpu_read(memcg->stat->nr_page_events);
945
	next = __this_cpu_read(memcg->stat->targets[target]);
946
	/* from time_after() in jiffies.h */
947 948 949 950 951
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
952 953 954
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
955 956 957 958 959 960 961 962
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
963
	}
964
	return false;
965 966 967 968 969 970
}

/*
 * Check events in order.
 *
 */
971
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
972 973
{
	/* threshold event is triggered in finer grain than soft limit */
974 975
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
976
		bool do_softlimit;
977
		bool do_numainfo __maybe_unused;
978

979 980
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
981 982 983 984
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
985
		mem_cgroup_threshold(memcg);
986 987
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
988
#if MAX_NUMNODES > 1
989
		if (unlikely(do_numainfo))
990
			atomic_inc(&memcg->numainfo_events);
991
#endif
992
	}
993 994
}

995
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
996
{
997 998 999 1000 1001 1002 1003 1004
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1005
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1006 1007
}

1008
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1009
{
1010
	struct mem_cgroup *memcg = NULL;
1011

1012 1013
	rcu_read_lock();
	do {
1014 1015 1016 1017 1018 1019
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1020
			memcg = root_mem_cgroup;
1021 1022 1023 1024 1025
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1026
	} while (!css_tryget_online(&memcg->css));
1027
	rcu_read_unlock();
1028
	return memcg;
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1048
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1049
				   struct mem_cgroup *prev,
1050
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1051
{
1052 1053
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1054
	struct mem_cgroup *memcg = NULL;
1055
	struct mem_cgroup *pos = NULL;
1056

1057 1058
	if (mem_cgroup_disabled())
		return NULL;
1059

1060 1061
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1062

1063
	if (prev && !reclaim)
1064
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1065

1066 1067
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1068
			goto out;
1069
		return root;
1070
	}
K
KAMEZAWA Hiroyuki 已提交
1071

1072
	rcu_read_lock();
M
Michal Hocko 已提交
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
1084
			pos = READ_ONCE(iter->position);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1108
		}
K
KAMEZAWA Hiroyuki 已提交
1109

1110 1111 1112 1113 1114 1115
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1116

1117 1118
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1119

1120
		if (css_tryget(css)) {
1121 1122 1123 1124 1125 1126 1127
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1128

1129
			css_put(css);
1130
		}
1131

1132
		memcg = NULL;
1133
	}
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1154
	}
1155

1156 1157
out_unlock:
	rcu_read_unlock();
1158
out:
1159 1160 1161
	if (prev && prev != root)
		css_put(&prev->css);

1162
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1163
}
K
KAMEZAWA Hiroyuki 已提交
1164

1165 1166 1167 1168 1169 1170 1171
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1172 1173 1174 1175 1176 1177
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1178

1179 1180 1181 1182 1183 1184
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1185
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1186
	     iter != NULL;				\
1187
	     iter = mem_cgroup_iter(root, iter, NULL))
1188

1189
#define for_each_mem_cgroup(iter)			\
1190
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1191
	     iter != NULL;				\
1192
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1193

1194
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1195
{
1196
	struct mem_cgroup *memcg;
1197 1198

	rcu_read_lock();
1199 1200
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1201 1202 1203 1204
		goto out;

	switch (idx) {
	case PGFAULT:
1205 1206 1207 1208
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1209 1210 1211 1212 1213 1214 1215
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1216
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1217

1218 1219 1220
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1221
 * @memcg: memcg of the wanted lruvec
1222 1223 1224 1225 1226 1227 1228 1229 1230
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1231
	struct lruvec *lruvec;
1232

1233 1234 1235 1236
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1237

1238
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1249 1250 1251
}

/**
1252
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1253
 * @page: the page
1254
 * @zone: zone of the page
1255 1256 1257 1258
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1259
 */
1260
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1261 1262
{
	struct mem_cgroup_per_zone *mz;
1263
	struct mem_cgroup *memcg;
1264
	struct lruvec *lruvec;
1265

1266 1267 1268 1269
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1270

1271
	memcg = page->mem_cgroup;
1272
	/*
1273
	 * Swapcache readahead pages are added to the LRU - and
1274
	 * possibly migrated - before they are charged.
1275
	 */
1276 1277
	if (!memcg)
		memcg = root_mem_cgroup;
1278

1279
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1290
}
1291

1292
/**
1293 1294 1295 1296
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1297
 *
1298 1299
 * This function must be called when a page is added to or removed from an
 * lru list.
1300
 */
1301 1302
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1303 1304
{
	struct mem_cgroup_per_zone *mz;
1305
	unsigned long *lru_size;
1306 1307 1308 1309

	if (mem_cgroup_disabled())
		return;

1310 1311 1312 1313
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1314
}
1315

1316
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1317
{
1318
	if (root == memcg)
1319
		return true;
1320
	if (!root->use_hierarchy)
1321
		return false;
1322
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1323 1324
}

1325
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1326
{
1327
	struct mem_cgroup *task_memcg;
1328
	struct task_struct *p;
1329
	bool ret;
1330

1331
	p = find_lock_task_mm(task);
1332
	if (p) {
1333
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1334 1335 1336 1337 1338 1339 1340
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1341
		rcu_read_lock();
1342 1343
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1344
		rcu_read_unlock();
1345
	}
1346 1347
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1348 1349 1350
	return ret;
}

1351
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1352
{
1353
	unsigned long inactive_ratio;
1354
	unsigned long inactive;
1355
	unsigned long active;
1356
	unsigned long gb;
1357

1358 1359
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1360

1361 1362 1363 1364 1365 1366
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1367
	return inactive * inactive_ratio < active;
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1384
#define mem_cgroup_from_counter(counter, member)	\
1385 1386
	container_of(counter, struct mem_cgroup, member)

1387
/**
1388
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1389
 * @memcg: the memory cgroup
1390
 *
1391
 * Returns the maximum amount of memory @mem can be charged with, in
1392
 * pages.
1393
 */
1394
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1395
{
1396 1397 1398
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1399

1400
	count = page_counter_read(&memcg->memory);
1401
	limit = READ_ONCE(memcg->memory.limit);
1402 1403 1404 1405 1406
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1407
		limit = READ_ONCE(memcg->memsw.limit);
1408 1409 1410 1411 1412
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1413 1414
}

1415
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1416 1417
{
	/* root ? */
1418
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1419 1420
		return vm_swappiness;

1421
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1422 1423
}

1424
/*
Q
Qiang Huang 已提交
1425
 * A routine for checking "mem" is under move_account() or not.
1426
 *
Q
Qiang Huang 已提交
1427 1428 1429
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1430
 */
1431
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1432
{
1433 1434
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1435
	bool ret = false;
1436 1437 1438 1439 1440 1441 1442 1443 1444
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1445

1446 1447
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1448 1449
unlock:
	spin_unlock(&mc.lock);
1450 1451 1452
	return ret;
}

1453
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1454 1455
{
	if (mc.moving_task && current != mc.moving_task) {
1456
		if (mem_cgroup_under_move(memcg)) {
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1469
#define K(x) ((x) << (PAGE_SHIFT-10))
1470
/**
1471
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1472 1473 1474 1475 1476 1477 1478 1479
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1480
	/* oom_info_lock ensures that parallel ooms do not interleave */
1481
	static DEFINE_MUTEX(oom_info_lock);
1482 1483
	struct mem_cgroup *iter;
	unsigned int i;
1484

1485
	mutex_lock(&oom_info_lock);
1486 1487
	rcu_read_lock();

1488 1489 1490 1491 1492 1493 1494 1495
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1496
	pr_cont_cgroup_path(memcg->css.cgroup);
1497
	pr_cont("\n");
1498 1499 1500

	rcu_read_unlock();

1501 1502 1503 1504 1505 1506 1507 1508 1509
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1510 1511

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1512 1513
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1529
	mutex_unlock(&oom_info_lock);
1530 1531
}

1532 1533 1534 1535
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1536
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1537 1538
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1539 1540
	struct mem_cgroup *iter;

1541
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1542
		num++;
1543 1544 1545
	return num;
}

D
David Rientjes 已提交
1546 1547 1548
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1549
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1550
{
1551
	unsigned long limit;
1552

1553
	limit = memcg->memory.limit;
1554
	if (mem_cgroup_swappiness(memcg)) {
1555
		unsigned long memsw_limit;
1556

1557 1558
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1559 1560
	}
	return limit;
D
David Rientjes 已提交
1561 1562
}

1563 1564
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1565 1566 1567 1568 1569 1570 1571
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1572
	/*
1573 1574 1575
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1576
	 */
1577
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1578
		mark_tsk_oom_victim(current);
1579 1580 1581
		return;
	}

1582
	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1583
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1584
	for_each_mem_cgroup_tree(iter, memcg) {
1585
		struct css_task_iter it;
1586 1587
		struct task_struct *task;

1588 1589
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1602
				css_task_iter_end(&it);
1603 1604 1605 1606 1607 1608 1609 1610
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1623
		}
1624
		css_task_iter_end(&it);
1625 1626 1627 1628 1629 1630 1631 1632 1633
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1634 1635
#if MAX_NUMNODES > 1

1636 1637
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1638
 * @memcg: the target memcg
1639 1640 1641 1642 1643 1644 1645
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1646
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1647 1648
		int nid, bool noswap)
{
1649
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1650 1651 1652
		return true;
	if (noswap || !total_swap_pages)
		return false;
1653
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1654 1655 1656 1657
		return true;
	return false;

}
1658 1659 1660 1661 1662 1663 1664

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1665
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1666 1667
{
	int nid;
1668 1669 1670 1671
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1672
	if (!atomic_read(&memcg->numainfo_events))
1673
		return;
1674
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1675 1676 1677
		return;

	/* make a nodemask where this memcg uses memory from */
1678
	memcg->scan_nodes = node_states[N_MEMORY];
1679

1680
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1681

1682 1683
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1684
	}
1685

1686 1687
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1702
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1703 1704 1705
{
	int node;

1706 1707
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1708

1709
	node = next_node(node, memcg->scan_nodes);
1710
	if (node == MAX_NUMNODES)
1711
		node = first_node(memcg->scan_nodes);
1712 1713 1714 1715 1716 1717 1718 1719 1720
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1721
	memcg->last_scanned_node = node;
1722 1723 1724
	return node;
}
#else
1725
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1726 1727 1728 1729 1730
{
	return 0;
}
#endif

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1746
	excess = soft_limit_excess(root_memcg);
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1775
		if (!soft_limit_excess(root_memcg))
1776
			break;
1777
	}
1778 1779
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1780 1781
}

1782 1783 1784 1785 1786 1787
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1788 1789
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1790 1791 1792 1793
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1794
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1795
{
1796
	struct mem_cgroup *iter, *failed = NULL;
1797

1798 1799
	spin_lock(&memcg_oom_lock);

1800
	for_each_mem_cgroup_tree(iter, memcg) {
1801
		if (iter->oom_lock) {
1802 1803 1804 1805 1806
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1807 1808
			mem_cgroup_iter_break(memcg, iter);
			break;
1809 1810
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1811
	}
K
KAMEZAWA Hiroyuki 已提交
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1824
		}
1825 1826
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1827 1828 1829 1830

	spin_unlock(&memcg_oom_lock);

	return !failed;
1831
}
1832

1833
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1834
{
K
KAMEZAWA Hiroyuki 已提交
1835 1836
	struct mem_cgroup *iter;

1837
	spin_lock(&memcg_oom_lock);
1838
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1839
	for_each_mem_cgroup_tree(iter, memcg)
1840
		iter->oom_lock = false;
1841
	spin_unlock(&memcg_oom_lock);
1842 1843
}

1844
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1845 1846 1847
{
	struct mem_cgroup *iter;

1848
	for_each_mem_cgroup_tree(iter, memcg)
1849 1850 1851
		atomic_inc(&iter->under_oom);
}

1852
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1853 1854 1855
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1856 1857 1858 1859 1860
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1861
	for_each_mem_cgroup_tree(iter, memcg)
1862
		atomic_add_unless(&iter->under_oom, -1, 0);
1863 1864
}

K
KAMEZAWA Hiroyuki 已提交
1865 1866
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1867
struct oom_wait_info {
1868
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1869 1870 1871 1872 1873 1874
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1875 1876
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1877 1878 1879
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1880
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1881

1882 1883
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1884 1885 1886 1887
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1888
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1889
{
1890
	atomic_inc(&memcg->oom_wakeups);
1891 1892
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1893 1894
}

1895
static void memcg_oom_recover(struct mem_cgroup *memcg)
1896
{
1897 1898
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1899 1900
}

1901
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1902
{
1903 1904
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1905
	/*
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1918
	 */
1919 1920 1921 1922
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1923 1924 1925 1926
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1927
 * @handle: actually kill/wait or just clean up the OOM state
1928
 *
1929 1930
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1931
 *
1932
 * Memcg supports userspace OOM handling where failed allocations must
1933 1934 1935 1936
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1937
 * the end of the page fault to complete the OOM handling.
1938 1939
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1940
 * completed, %false otherwise.
1941
 */
1942
bool mem_cgroup_oom_synchronize(bool handle)
1943
{
1944
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1945
	struct oom_wait_info owait;
1946
	bool locked;
1947 1948 1949

	/* OOM is global, do not handle */
	if (!memcg)
1950
		return false;
1951

1952
	if (!handle || oom_killer_disabled)
1953
		goto cleanup;
1954 1955 1956 1957 1958 1959

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1960

1961
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1975
		schedule();
1976 1977 1978 1979 1980
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1981 1982 1983 1984 1985 1986 1987 1988
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1989 1990
cleanup:
	current->memcg_oom.memcg = NULL;
1991
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1992
	return true;
1993 1994
}

1995 1996 1997
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1998
 *
1999 2000 2001
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2002
 *
2003
 *   memcg = mem_cgroup_begin_page_stat(page);
2004 2005
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
2006
 *   mem_cgroup_end_page_stat(memcg);
2007
 */
2008
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
2009 2010
{
	struct mem_cgroup *memcg;
2011
	unsigned long flags;
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
2025 2026 2027 2028
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2029
again:
2030
	memcg = page->mem_cgroup;
2031
	if (unlikely(!memcg))
2032 2033
		return NULL;

Q
Qiang Huang 已提交
2034
	if (atomic_read(&memcg->moving_account) <= 0)
2035
		return memcg;
2036

2037
	spin_lock_irqsave(&memcg->move_lock, flags);
2038
	if (memcg != page->mem_cgroup) {
2039
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2040 2041
		goto again;
	}
2042 2043 2044 2045 2046 2047 2048 2049

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2050 2051

	return memcg;
2052
}
2053
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
2054

2055 2056 2057 2058
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2059
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2060
{
2061 2062 2063 2064 2065 2066 2067 2068
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2069

2070
	rcu_read_unlock();
2071
}
2072
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2083
				 enum mem_cgroup_stat_index idx, int val)
2084
{
2085
	VM_BUG_ON(!rcu_read_lock_held());
2086

2087 2088
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2089
}
2090

2091 2092 2093 2094
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2095
#define CHARGE_BATCH	32U
2096 2097
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2098
	unsigned int nr_pages;
2099
	struct work_struct work;
2100
	unsigned long flags;
2101
#define FLUSHING_CACHED_CHARGE	0
2102 2103
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2104
static DEFINE_MUTEX(percpu_charge_mutex);
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2116
 */
2117
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 2119
{
	struct memcg_stock_pcp *stock;
2120
	bool ret = false;
2121

2122
	if (nr_pages > CHARGE_BATCH)
2123
		return ret;
2124

2125
	stock = &get_cpu_var(memcg_stock);
2126
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2127
		stock->nr_pages -= nr_pages;
2128 2129
		ret = true;
	}
2130 2131 2132 2133 2134
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2135
 * Returns stocks cached in percpu and reset cached information.
2136 2137 2138 2139 2140
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2141
	if (stock->nr_pages) {
2142
		page_counter_uncharge(&old->memory, stock->nr_pages);
2143
		if (do_swap_account)
2144
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2145
		css_put_many(&old->css, stock->nr_pages);
2146
		stock->nr_pages = 0;
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2157
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2158
	drain_stock(stock);
2159
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2160 2161 2162
}

/*
2163
 * Cache charges(val) to local per_cpu area.
2164
 * This will be consumed by consume_stock() function, later.
2165
 */
2166
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2167 2168 2169
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2170
	if (stock->cached != memcg) { /* reset if necessary */
2171
		drain_stock(stock);
2172
		stock->cached = memcg;
2173
	}
2174
	stock->nr_pages += nr_pages;
2175 2176 2177 2178
	put_cpu_var(memcg_stock);
}

/*
2179
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2180
 * of the hierarchy under it.
2181
 */
2182
static void drain_all_stock(struct mem_cgroup *root_memcg)
2183
{
2184
	int cpu, curcpu;
2185

2186 2187 2188
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2189 2190
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2191
	curcpu = get_cpu();
2192 2193
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2194
		struct mem_cgroup *memcg;
2195

2196 2197
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2198
			continue;
2199
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2200
			continue;
2201 2202 2203 2204 2205 2206
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2207
	}
2208
	put_cpu();
A
Andrew Morton 已提交
2209
	put_online_cpus();
2210
	mutex_unlock(&percpu_charge_mutex);
2211 2212
}

2213 2214 2215 2216
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2217
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2218 2219 2220
{
	int i;

2221
	spin_lock(&memcg->pcp_counter_lock);
2222
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2223
		long x = per_cpu(memcg->stat->count[i], cpu);
2224

2225 2226
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2227
	}
2228
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2229
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2230

2231 2232
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2233
	}
2234
	spin_unlock(&memcg->pcp_counter_lock);
2235 2236
}

2237
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2238 2239 2240 2241 2242
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2243
	struct mem_cgroup *iter;
2244

2245
	if (action == CPU_ONLINE)
2246 2247
		return NOTIFY_OK;

2248
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2249
		return NOTIFY_OK;
2250

2251
	for_each_mem_cgroup(iter)
2252 2253
		mem_cgroup_drain_pcp_counter(iter, cpu);

2254 2255 2256 2257 2258
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2259 2260
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2261
{
2262
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2263
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2264
	struct mem_cgroup *mem_over_limit;
2265
	struct page_counter *counter;
2266
	unsigned long nr_reclaimed;
2267 2268
	bool may_swap = true;
	bool drained = false;
2269
	int ret = 0;
2270

2271 2272
	if (mem_cgroup_is_root(memcg))
		goto done;
2273
retry:
2274 2275
	if (consume_stock(memcg, nr_pages))
		goto done;
2276

2277
	if (!do_swap_account ||
2278 2279
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2280
			goto done_restock;
2281
		if (do_swap_account)
2282 2283
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2284
	} else {
2285
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2286
		may_swap = false;
2287
	}
2288

2289 2290 2291 2292
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2293

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2308 2309
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2310

2311 2312
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2313 2314
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2315

2316
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2317
		goto retry;
2318

2319
	if (!drained) {
2320
		drain_all_stock(mem_over_limit);
2321 2322 2323 2324
		drained = true;
		goto retry;
	}

2325 2326
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2327 2328 2329 2330 2331 2332 2333 2334 2335
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2336
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2337 2338 2339 2340 2341 2342 2343 2344
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2345 2346 2347
	if (nr_retries--)
		goto retry;

2348 2349 2350
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2351 2352 2353
	if (fatal_signal_pending(current))
		goto bypass;

2354 2355
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2356
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2357
nomem:
2358
	if (!(gfp_mask & __GFP_NOFAIL))
2359
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2360
bypass:
2361
	return -EINTR;
2362 2363

done_restock:
2364
	css_get_many(&memcg->css, batch);
2365 2366
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2377
done:
2378
	return ret;
2379
}
2380

2381
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2382
{
2383 2384 2385
	if (mem_cgroup_is_root(memcg))
		return;

2386
	page_counter_uncharge(&memcg->memory, nr_pages);
2387
	if (do_swap_account)
2388
		page_counter_uncharge(&memcg->memsw, nr_pages);
2389

2390
	css_put_many(&memcg->css, nr_pages);
2391 2392
}

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2403
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2404
{
2405
	struct mem_cgroup *memcg;
2406
	unsigned short id;
2407 2408
	swp_entry_t ent;

2409
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2410

2411
	memcg = page->mem_cgroup;
2412 2413
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2414
			memcg = NULL;
2415
	} else if (PageSwapCache(page)) {
2416
		ent.val = page_private(page);
2417
		id = lookup_swap_cgroup_id(ent);
2418
		rcu_read_lock();
2419
		memcg = mem_cgroup_from_id(id);
2420
		if (memcg && !css_tryget_online(&memcg->css))
2421
			memcg = NULL;
2422
		rcu_read_unlock();
2423
	}
2424
	return memcg;
2425 2426
}

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2458
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2459
			  bool lrucare)
2460
{
2461
	int isolated;
2462

2463
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2464 2465 2466 2467 2468

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2469 2470
	if (lrucare)
		lock_page_lru(page, &isolated);
2471

2472 2473
	/*
	 * Nobody should be changing or seriously looking at
2474
	 * page->mem_cgroup at this point:
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2486
	page->mem_cgroup = memcg;
2487

2488 2489
	if (lrucare)
		unlock_page_lru(page, isolated);
2490
}
2491

2492
#ifdef CONFIG_MEMCG_KMEM
2493 2494
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2495
{
2496
	struct page_counter *counter;
2497 2498
	int ret = 0;

2499 2500
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2501 2502
		return ret;

2503
	ret = try_charge(memcg, gfp, nr_pages);
2504 2505
	if (ret == -EINTR)  {
		/*
2506 2507 2508 2509 2510 2511
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2512 2513 2514
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2515 2516 2517
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2518 2519
		 * directed to the root cgroup in memcontrol.h
		 */
2520
		page_counter_charge(&memcg->memory, nr_pages);
2521
		if (do_swap_account)
2522
			page_counter_charge(&memcg->memsw, nr_pages);
2523
		css_get_many(&memcg->css, nr_pages);
2524 2525
		ret = 0;
	} else if (ret)
2526
		page_counter_uncharge(&memcg->kmem, nr_pages);
2527 2528 2529 2530

	return ret;
}

2531
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2532
{
2533
	page_counter_uncharge(&memcg->memory, nr_pages);
2534
	if (do_swap_account)
2535
		page_counter_uncharge(&memcg->memsw, nr_pages);
2536

2537
	page_counter_uncharge(&memcg->kmem, nr_pages);
2538

2539
	css_put_many(&memcg->css, nr_pages);
2540 2541
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2552
static int memcg_alloc_cache_id(void)
2553
{
2554 2555 2556
	int id, size;
	int err;

2557
	id = ida_simple_get(&memcg_cache_ida,
2558 2559 2560
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2561

2562
	if (id < memcg_nr_cache_ids)
2563 2564 2565 2566 2567 2568
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2569
	down_write(&memcg_cache_ids_sem);
2570 2571

	size = 2 * (id + 1);
2572 2573 2574 2575 2576
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2577
	err = memcg_update_all_caches(size);
2578 2579
	if (!err)
		err = memcg_update_all_list_lrus(size);
2580 2581 2582 2583 2584
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2585
	if (err) {
2586
		ida_simple_remove(&memcg_cache_ida, id);
2587 2588 2589 2590 2591 2592 2593
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2594
	ida_simple_remove(&memcg_cache_ida, id);
2595 2596
}

2597
struct memcg_kmem_cache_create_work {
2598 2599 2600 2601 2602
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2603
static void memcg_kmem_cache_create_func(struct work_struct *w)
2604
{
2605 2606
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2607 2608
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2609

2610
	memcg_create_kmem_cache(memcg, cachep);
2611

2612
	css_put(&memcg->css);
2613 2614 2615 2616 2617 2618
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2619 2620
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2621
{
2622
	struct memcg_kmem_cache_create_work *cw;
2623

2624
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2625
	if (!cw)
2626
		return;
2627 2628

	css_get(&memcg->css);
2629 2630 2631

	cw->memcg = memcg;
	cw->cachep = cachep;
2632
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2633 2634 2635 2636

	schedule_work(&cw->work);
}

2637 2638
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2639 2640 2641 2642
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2643
	 * in __memcg_schedule_kmem_cache_create will recurse.
2644 2645 2646 2647 2648 2649 2650
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2651
	current->memcg_kmem_skip_account = 1;
2652
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2653
	current->memcg_kmem_skip_account = 0;
2654
}
2655

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2669
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2670 2671
{
	struct mem_cgroup *memcg;
2672
	struct kmem_cache *memcg_cachep;
2673
	int kmemcg_id;
2674

2675
	VM_BUG_ON(!is_root_cache(cachep));
2676

2677
	if (current->memcg_kmem_skip_account)
2678 2679
		return cachep;

2680
	memcg = get_mem_cgroup_from_mm(current->mm);
2681
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2682
	if (kmemcg_id < 0)
2683
		goto out;
2684

2685
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2686 2687
	if (likely(memcg_cachep))
		return memcg_cachep;
2688 2689 2690 2691 2692 2693 2694 2695 2696

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2697 2698 2699
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2700
	 */
2701
	memcg_schedule_kmem_cache_create(memcg, cachep);
2702
out:
2703
	css_put(&memcg->css);
2704
	return cachep;
2705 2706
}

2707 2708 2709
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2710
		css_put(&cachep->memcg_params.memcg->css);
2711 2712
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2734

2735
	memcg = get_mem_cgroup_from_mm(current->mm);
2736

2737
	if (!memcg_kmem_is_active(memcg)) {
2738 2739 2740 2741
		css_put(&memcg->css);
		return true;
	}

2742
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2757
		memcg_uncharge_kmem(memcg, 1 << order);
2758 2759
		return;
	}
2760
	page->mem_cgroup = memcg;
2761 2762 2763 2764
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2765
	struct mem_cgroup *memcg = page->mem_cgroup;
2766 2767 2768 2769

	if (!memcg)
		return;

2770
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2771

2772
	memcg_uncharge_kmem(memcg, 1 << order);
2773
	page->mem_cgroup = NULL;
2774
}
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2786
			memcg = cachep->memcg_params.memcg;
2787 2788 2789 2790 2791 2792
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2793 2794
#endif /* CONFIG_MEMCG_KMEM */

2795 2796 2797 2798
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2799 2800 2801
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2802
 */
2803
void mem_cgroup_split_huge_fixup(struct page *head)
2804
{
2805
	int i;
2806

2807 2808
	if (mem_cgroup_disabled())
		return;
2809

2810
	for (i = 1; i < HPAGE_PMD_NR; i++)
2811
		head[i].mem_cgroup = head->mem_cgroup;
2812

2813
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2814
		       HPAGE_PMD_NR);
2815
}
2816
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2817

A
Andrew Morton 已提交
2818
#ifdef CONFIG_MEMCG_SWAP
2819 2820
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2821
{
2822 2823
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2824
}
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2837
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2838 2839 2840
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2841
				struct mem_cgroup *from, struct mem_cgroup *to)
2842 2843 2844
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2845 2846
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2847 2848 2849

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2850
		mem_cgroup_swap_statistics(to, true);
2851 2852 2853 2854 2855 2856
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2857
				struct mem_cgroup *from, struct mem_cgroup *to)
2858 2859 2860
{
	return -EINVAL;
}
2861
#endif
K
KAMEZAWA Hiroyuki 已提交
2862

2863
static DEFINE_MUTEX(memcg_limit_mutex);
2864

2865
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2866
				   unsigned long limit)
2867
{
2868 2869 2870
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2871
	int retry_count;
2872
	int ret;
2873 2874 2875 2876 2877 2878

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2879 2880
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2881

2882
	oldusage = page_counter_read(&memcg->memory);
2883

2884
	do {
2885 2886 2887 2888
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2889 2890 2891 2892

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2893
			ret = -EINVAL;
2894 2895
			break;
		}
2896 2897 2898 2899
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2900 2901 2902 2903

		if (!ret)
			break;

2904 2905
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2906
		curusage = page_counter_read(&memcg->memory);
2907
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2908
		if (curusage >= oldusage)
2909 2910 2911
			retry_count--;
		else
			oldusage = curusage;
2912 2913
	} while (retry_count);

2914 2915
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2916

2917 2918 2919
	return ret;
}

L
Li Zefan 已提交
2920
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2921
					 unsigned long limit)
2922
{
2923 2924 2925
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2926
	int retry_count;
2927
	int ret;
2928

2929
	/* see mem_cgroup_resize_res_limit */
2930 2931 2932 2933 2934 2935
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2936 2937 2938 2939
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2940 2941 2942 2943

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2944 2945 2946
			ret = -EINVAL;
			break;
		}
2947 2948 2949 2950
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2951 2952 2953 2954

		if (!ret)
			break;

2955 2956
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2957
		curusage = page_counter_read(&memcg->memsw);
2958
		/* Usage is reduced ? */
2959
		if (curusage >= oldusage)
2960
			retry_count--;
2961 2962
		else
			oldusage = curusage;
2963 2964
	} while (retry_count);

2965 2966
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2967

2968 2969 2970
	return ret;
}

2971 2972 2973 2974 2975 2976 2977 2978 2979
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2980
	unsigned long excess;
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3005
		spin_lock_irq(&mctz->lock);
3006
		__mem_cgroup_remove_exceeded(mz, mctz);
3007 3008 3009 3010 3011 3012

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3013 3014 3015
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3016
		excess = soft_limit_excess(mz->memcg);
3017 3018 3019 3020 3021 3022 3023 3024 3025
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3026
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3027
		spin_unlock_irq(&mctz->lock);
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3045 3046 3047 3048 3049 3050
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3051 3052
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3053 3054
	bool ret;

3055
	/*
3056 3057 3058 3059
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3060
	 */
3061 3062 3063 3064 3065 3066
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3067 3068
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3079 3080
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3081
	/* try to free all pages in this cgroup */
3082
	while (nr_retries && page_counter_read(&memcg->memory)) {
3083
		int progress;
3084

3085 3086 3087
		if (signal_pending(current))
			return -EINTR;

3088 3089
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3090
		if (!progress) {
3091
			nr_retries--;
3092
			/* maybe some writeback is necessary */
3093
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3094
		}
3095 3096

	}
3097 3098

	return 0;
3099 3100
}

3101 3102 3103
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3104
{
3105
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3106

3107 3108
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3109
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3110 3111
}

3112 3113
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3114
{
3115
	return mem_cgroup_from_css(css)->use_hierarchy;
3116 3117
}

3118 3119
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3120 3121
{
	int retval = 0;
3122
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3123
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3124

3125
	mutex_lock(&memcg_create_mutex);
3126 3127 3128 3129

	if (memcg->use_hierarchy == val)
		goto out;

3130
	/*
3131
	 * If parent's use_hierarchy is set, we can't make any modifications
3132 3133 3134 3135 3136 3137
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3138
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3139
				(val == 1 || val == 0)) {
3140
		if (!memcg_has_children(memcg))
3141
			memcg->use_hierarchy = val;
3142 3143 3144 3145
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3146 3147

out:
3148
	mutex_unlock(&memcg_create_mutex);
3149 3150 3151 3152

	return retval;
}

3153 3154
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3172 3173 3174 3175 3176 3177
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3178
		if (!swap)
3179
			val = page_counter_read(&memcg->memory);
3180
		else
3181
			val = page_counter_read(&memcg->memsw);
3182 3183 3184 3185
	}
	return val << PAGE_SHIFT;
}

3186 3187 3188 3189 3190 3191 3192
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3193

3194
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3195
			       struct cftype *cft)
B
Balbir Singh 已提交
3196
{
3197
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3198
	struct page_counter *counter;
3199

3200
	switch (MEMFILE_TYPE(cft->private)) {
3201
	case _MEM:
3202 3203
		counter = &memcg->memory;
		break;
3204
	case _MEMSWAP:
3205 3206
		counter = &memcg->memsw;
		break;
3207
	case _KMEM:
3208
		counter = &memcg->kmem;
3209
		break;
3210 3211 3212
	default:
		BUG();
	}
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3232
}
3233 3234

#ifdef CONFIG_MEMCG_KMEM
3235 3236
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3237 3238 3239 3240
{
	int err = 0;
	int memcg_id;

3241
	BUG_ON(memcg->kmemcg_id >= 0);
3242
	BUG_ON(memcg->kmem_acct_activated);
3243
	BUG_ON(memcg->kmem_acct_active);
3244

3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3257
	mutex_lock(&memcg_create_mutex);
3258 3259
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3260 3261 3262 3263
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3264

3265
	memcg_id = memcg_alloc_cache_id();
3266 3267 3268 3269 3270 3271
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3272 3273
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3274
	 */
3275
	err = page_counter_limit(&memcg->kmem, nr_pages);
3276 3277 3278 3279
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3280 3281
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3282 3283 3284
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3285
	memcg->kmemcg_id = memcg_id;
3286
	memcg->kmem_acct_activated = true;
3287
	memcg->kmem_acct_active = true;
3288
out:
3289 3290 3291 3292
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3293
				   unsigned long limit)
3294 3295 3296
{
	int ret;

3297
	mutex_lock(&memcg_limit_mutex);
3298
	if (!memcg_kmem_is_active(memcg))
3299
		ret = memcg_activate_kmem(memcg, limit);
3300
	else
3301 3302
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3303 3304 3305
	return ret;
}

3306
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3307
{
3308
	int ret = 0;
3309
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3310

3311 3312
	if (!parent)
		return 0;
3313

3314
	mutex_lock(&memcg_limit_mutex);
3315
	/*
3316 3317
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3318
	 */
3319
	if (memcg_kmem_is_active(parent))
3320 3321
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3322
	return ret;
3323
}
3324 3325
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3326
				   unsigned long limit)
3327 3328 3329
{
	return -EINVAL;
}
3330
#endif /* CONFIG_MEMCG_KMEM */
3331

3332 3333 3334 3335
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3336 3337
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3338
{
3339
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3340
	unsigned long nr_pages;
3341 3342
	int ret;

3343
	buf = strstrip(buf);
3344
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3345 3346
	if (ret)
		return ret;
3347

3348
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3349
	case RES_LIMIT:
3350 3351 3352 3353
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3354 3355 3356
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3357
			break;
3358 3359
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3360
			break;
3361 3362 3363 3364
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3365
		break;
3366 3367 3368
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3369 3370
		break;
	}
3371
	return ret ?: nbytes;
B
Balbir Singh 已提交
3372 3373
}

3374 3375
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3376
{
3377
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3378
	struct page_counter *counter;
3379

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3393

3394
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3395
	case RES_MAX_USAGE:
3396
		page_counter_reset_watermark(counter);
3397 3398
		break;
	case RES_FAILCNT:
3399
		counter->failcnt = 0;
3400
		break;
3401 3402
	default:
		BUG();
3403
	}
3404

3405
	return nbytes;
3406 3407
}

3408
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3409 3410
					struct cftype *cft)
{
3411
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3412 3413
}

3414
#ifdef CONFIG_MMU
3415
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3416 3417
					struct cftype *cft, u64 val)
{
3418
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3419

3420
	if (val & ~MOVE_MASK)
3421
		return -EINVAL;
3422

3423
	/*
3424 3425 3426 3427
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3428
	 */
3429
	memcg->move_charge_at_immigrate = val;
3430 3431
	return 0;
}
3432
#else
3433
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3434 3435 3436 3437 3438
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3439

3440
#ifdef CONFIG_NUMA
3441
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3442
{
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3455
	int nid;
3456
	unsigned long nr;
3457
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3458

3459 3460 3461 3462 3463 3464 3465 3466 3467
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3468 3469
	}

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3485 3486 3487 3488 3489 3490
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3491
static int memcg_stat_show(struct seq_file *m, void *v)
3492
{
3493
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3494
	unsigned long memory, memsw;
3495 3496
	struct mem_cgroup *mi;
	unsigned int i;
3497

3498 3499 3500 3501
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3502 3503
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3504
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3505
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3506
			continue;
3507 3508
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3509
	}
L
Lee Schermerhorn 已提交
3510

3511 3512 3513 3514 3515 3516 3517 3518
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3519
	/* Hierarchical information */
3520 3521 3522 3523
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3524
	}
3525 3526 3527 3528 3529
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3530

3531 3532 3533
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3534
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3535
			continue;
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3556
	}
K
KAMEZAWA Hiroyuki 已提交
3557

K
KOSAKI Motohiro 已提交
3558 3559 3560 3561
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3562
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3563 3564 3565 3566 3567
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3568
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3569
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3570

3571 3572 3573 3574
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3575
			}
3576 3577 3578 3579
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3580 3581 3582
	}
#endif

3583 3584 3585
	return 0;
}

3586 3587
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3588
{
3589
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3590

3591
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3592 3593
}

3594 3595
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3596
{
3597
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3598

3599
	if (val > 100)
K
KOSAKI Motohiro 已提交
3600 3601
		return -EINVAL;

3602
	if (css->parent)
3603 3604 3605
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3606

K
KOSAKI Motohiro 已提交
3607 3608 3609
	return 0;
}

3610 3611 3612
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3613
	unsigned long usage;
3614 3615 3616 3617
	int i;

	rcu_read_lock();
	if (!swap)
3618
		t = rcu_dereference(memcg->thresholds.primary);
3619
	else
3620
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3621 3622 3623 3624

	if (!t)
		goto unlock;

3625
	usage = mem_cgroup_usage(memcg, swap);
3626 3627

	/*
3628
	 * current_threshold points to threshold just below or equal to usage.
3629 3630 3631
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3632
	i = t->current_threshold;
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3656
	t->current_threshold = i - 1;
3657 3658 3659 3660 3661 3662
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3663 3664 3665 3666 3667 3668 3669
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3670 3671 3672 3673 3674 3675 3676
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3677 3678 3679 3680 3681 3682 3683
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3684 3685
}

3686
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3687 3688 3689
{
	struct mem_cgroup_eventfd_list *ev;

3690 3691
	spin_lock(&memcg_oom_lock);

3692
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3693
		eventfd_signal(ev->eventfd, 1);
3694 3695

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3696 3697 3698
	return 0;
}

3699
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3700
{
K
KAMEZAWA Hiroyuki 已提交
3701 3702
	struct mem_cgroup *iter;

3703
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3704
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3705 3706
}

3707
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3708
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3709
{
3710 3711
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3712 3713
	unsigned long threshold;
	unsigned long usage;
3714
	int i, size, ret;
3715

3716
	ret = page_counter_memparse(args, "-1", &threshold);
3717 3718 3719 3720
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3721

3722
	if (type == _MEM) {
3723
		thresholds = &memcg->thresholds;
3724
		usage = mem_cgroup_usage(memcg, false);
3725
	} else if (type == _MEMSWAP) {
3726
		thresholds = &memcg->memsw_thresholds;
3727
		usage = mem_cgroup_usage(memcg, true);
3728
	} else
3729 3730 3731
		BUG();

	/* Check if a threshold crossed before adding a new one */
3732
	if (thresholds->primary)
3733 3734
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3735
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3736 3737

	/* Allocate memory for new array of thresholds */
3738
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3739
			GFP_KERNEL);
3740
	if (!new) {
3741 3742 3743
		ret = -ENOMEM;
		goto unlock;
	}
3744
	new->size = size;
3745 3746

	/* Copy thresholds (if any) to new array */
3747 3748
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3749
				sizeof(struct mem_cgroup_threshold));
3750 3751
	}

3752
	/* Add new threshold */
3753 3754
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3755 3756

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3757
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3758 3759 3760
			compare_thresholds, NULL);

	/* Find current threshold */
3761
	new->current_threshold = -1;
3762
	for (i = 0; i < size; i++) {
3763
		if (new->entries[i].threshold <= usage) {
3764
			/*
3765 3766
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3767 3768
			 * it here.
			 */
3769
			++new->current_threshold;
3770 3771
		} else
			break;
3772 3773
	}

3774 3775 3776 3777 3778
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3779

3780
	/* To be sure that nobody uses thresholds */
3781 3782 3783 3784 3785 3786 3787 3788
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3789
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3790 3791
	struct eventfd_ctx *eventfd, const char *args)
{
3792
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3793 3794
}

3795
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3796 3797
	struct eventfd_ctx *eventfd, const char *args)
{
3798
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3799 3800
}

3801
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3802
	struct eventfd_ctx *eventfd, enum res_type type)
3803
{
3804 3805
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3806
	unsigned long usage;
3807
	int i, j, size;
3808 3809

	mutex_lock(&memcg->thresholds_lock);
3810 3811

	if (type == _MEM) {
3812
		thresholds = &memcg->thresholds;
3813
		usage = mem_cgroup_usage(memcg, false);
3814
	} else if (type == _MEMSWAP) {
3815
		thresholds = &memcg->memsw_thresholds;
3816
		usage = mem_cgroup_usage(memcg, true);
3817
	} else
3818 3819
		BUG();

3820 3821 3822
	if (!thresholds->primary)
		goto unlock;

3823 3824 3825 3826
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3827 3828 3829
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3830 3831 3832
			size++;
	}

3833
	new = thresholds->spare;
3834

3835 3836
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3837 3838
		kfree(new);
		new = NULL;
3839
		goto swap_buffers;
3840 3841
	}

3842
	new->size = size;
3843 3844

	/* Copy thresholds and find current threshold */
3845 3846 3847
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3848 3849
			continue;

3850
		new->entries[j] = thresholds->primary->entries[i];
3851
		if (new->entries[j].threshold <= usage) {
3852
			/*
3853
			 * new->current_threshold will not be used
3854 3855 3856
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3857
			++new->current_threshold;
3858 3859 3860 3861
		}
		j++;
	}

3862
swap_buffers:
3863 3864
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3865 3866 3867 3868 3869 3870
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3871
	rcu_assign_pointer(thresholds->primary, new);
3872

3873
	/* To be sure that nobody uses thresholds */
3874
	synchronize_rcu();
3875
unlock:
3876 3877
	mutex_unlock(&memcg->thresholds_lock);
}
3878

3879
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3880 3881
	struct eventfd_ctx *eventfd)
{
3882
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3883 3884
}

3885
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3886 3887
	struct eventfd_ctx *eventfd)
{
3888
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3889 3890
}

3891
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3892
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3893 3894 3895 3896 3897 3898 3899
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3900
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3901 3902 3903 3904 3905

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3906
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3907
		eventfd_signal(eventfd, 1);
3908
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3909 3910 3911 3912

	return 0;
}

3913
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3914
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3915 3916 3917
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3918
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3919

3920
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3921 3922 3923 3924 3925 3926
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3927
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3928 3929
}

3930
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3931
{
3932
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3933

3934 3935
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3936 3937 3938
	return 0;
}

3939
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3940 3941
	struct cftype *cft, u64 val)
{
3942
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3943 3944

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3945
	if (!css->parent || !((val == 0) || (val == 1)))
3946 3947
		return -EINVAL;

3948
	memcg->oom_kill_disable = val;
3949
	if (!val)
3950
		memcg_oom_recover(memcg);
3951

3952 3953 3954
	return 0;
}

A
Andrew Morton 已提交
3955
#ifdef CONFIG_MEMCG_KMEM
3956
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3957
{
3958 3959 3960 3961 3962
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3963

3964
	return mem_cgroup_sockets_init(memcg, ss);
3965
}
3966

3967 3968
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3969 3970 3971 3972
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
4011 4012
}

4013
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4014
{
4015 4016 4017 4018 4019
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
4020
	mem_cgroup_sockets_destroy(memcg);
4021
}
4022
#else
4023
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4024 4025 4026
{
	return 0;
}
G
Glauber Costa 已提交
4027

4028 4029 4030 4031
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

4032 4033 4034
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4035 4036
#endif

4037 4038 4039 4040 4041 4042 4043 4044 4045
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

#endif	/* CONFIG_CGROUP_WRITEBACK */

4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4059 4060 4061 4062 4063
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4064
static void memcg_event_remove(struct work_struct *work)
4065
{
4066 4067
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4068
	struct mem_cgroup *memcg = event->memcg;
4069 4070 4071

	remove_wait_queue(event->wqh, &event->wait);

4072
	event->unregister_event(memcg, event->eventfd);
4073 4074 4075 4076 4077 4078

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4079
	css_put(&memcg->css);
4080 4081 4082 4083 4084 4085 4086
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4087 4088
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4089
{
4090 4091
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4092
	struct mem_cgroup *memcg = event->memcg;
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4105
		spin_lock(&memcg->event_list_lock);
4106 4107 4108 4109 4110 4111 4112 4113
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4114
		spin_unlock(&memcg->event_list_lock);
4115 4116 4117 4118 4119
	}

	return 0;
}

4120
static void memcg_event_ptable_queue_proc(struct file *file,
4121 4122
		wait_queue_head_t *wqh, poll_table *pt)
{
4123 4124
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4125 4126 4127 4128 4129 4130

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4131 4132
 * DO NOT USE IN NEW FILES.
 *
4133 4134 4135 4136 4137
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4138 4139
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4140
{
4141
	struct cgroup_subsys_state *css = of_css(of);
4142
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4143
	struct mem_cgroup_event *event;
4144 4145 4146 4147
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4148
	const char *name;
4149 4150 4151
	char *endp;
	int ret;

4152 4153 4154
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4155 4156
	if (*endp != ' ')
		return -EINVAL;
4157
	buf = endp + 1;
4158

4159
	cfd = simple_strtoul(buf, &endp, 10);
4160 4161
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4162
	buf = endp + 1;
4163 4164 4165 4166 4167

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4168
	event->memcg = memcg;
4169
	INIT_LIST_HEAD(&event->list);
4170 4171 4172
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4198 4199 4200 4201 4202
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4203 4204
	 *
	 * DO NOT ADD NEW FILES.
4205
	 */
A
Al Viro 已提交
4206
	name = cfile.file->f_path.dentry->d_name.name;
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4218 4219
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4220 4221 4222 4223 4224
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4225
	/*
4226 4227 4228
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4229
	 */
A
Al Viro 已提交
4230
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4231
					       &memory_cgrp_subsys);
4232
	ret = -EINVAL;
4233
	if (IS_ERR(cfile_css))
4234
		goto out_put_cfile;
4235 4236
	if (cfile_css != css) {
		css_put(cfile_css);
4237
		goto out_put_cfile;
4238
	}
4239

4240
	ret = event->register_event(memcg, event->eventfd, buf);
4241 4242 4243 4244 4245
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4246 4247 4248
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4249 4250 4251 4252

	fdput(cfile);
	fdput(efile);

4253
	return nbytes;
4254 4255

out_put_css:
4256
	css_put(css);
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4269
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4270
	{
4271
		.name = "usage_in_bytes",
4272
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4273
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4274
	},
4275 4276
	{
		.name = "max_usage_in_bytes",
4277
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4278
		.write = mem_cgroup_reset,
4279
		.read_u64 = mem_cgroup_read_u64,
4280
	},
B
Balbir Singh 已提交
4281
	{
4282
		.name = "limit_in_bytes",
4283
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4284
		.write = mem_cgroup_write,
4285
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4286
	},
4287 4288 4289
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4290
		.write = mem_cgroup_write,
4291
		.read_u64 = mem_cgroup_read_u64,
4292
	},
B
Balbir Singh 已提交
4293 4294
	{
		.name = "failcnt",
4295
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4296
		.write = mem_cgroup_reset,
4297
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4298
	},
4299 4300
	{
		.name = "stat",
4301
		.seq_show = memcg_stat_show,
4302
	},
4303 4304
	{
		.name = "force_empty",
4305
		.write = mem_cgroup_force_empty_write,
4306
	},
4307 4308 4309 4310 4311
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4312
	{
4313
		.name = "cgroup.event_control",		/* XXX: for compat */
4314
		.write = memcg_write_event_control,
4315 4316 4317
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4318 4319 4320 4321 4322
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4323 4324 4325 4326 4327
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4328 4329
	{
		.name = "oom_control",
4330
		.seq_show = mem_cgroup_oom_control_read,
4331
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4332 4333
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4334 4335 4336
	{
		.name = "pressure_level",
	},
4337 4338 4339
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4340
		.seq_show = memcg_numa_stat_show,
4341 4342
	},
#endif
4343 4344 4345 4346
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4347
		.write = mem_cgroup_write,
4348
		.read_u64 = mem_cgroup_read_u64,
4349 4350 4351 4352
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4353
		.read_u64 = mem_cgroup_read_u64,
4354 4355 4356 4357
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4358
		.write = mem_cgroup_reset,
4359
		.read_u64 = mem_cgroup_read_u64,
4360 4361 4362 4363
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4364
		.write = mem_cgroup_reset,
4365
		.read_u64 = mem_cgroup_read_u64,
4366
	},
4367 4368 4369
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4370 4371 4372 4373
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4374 4375
	},
#endif
4376
#endif
4377
	{ },	/* terminate */
4378
};
4379

4380
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4381 4382
{
	struct mem_cgroup_per_node *pn;
4383
	struct mem_cgroup_per_zone *mz;
4384
	int zone, tmp = node;
4385 4386 4387 4388 4389 4390 4391 4392
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4393 4394
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4395
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4396 4397
	if (!pn)
		return 1;
4398 4399 4400

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4401
		lruvec_init(&mz->lruvec);
4402 4403
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4404
		mz->memcg = memcg;
4405
	}
4406
	memcg->nodeinfo[node] = pn;
4407 4408 4409
	return 0;
}

4410
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4411
{
4412
	kfree(memcg->nodeinfo[node]);
4413 4414
}

4415 4416
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4417
	struct mem_cgroup *memcg;
4418
	size_t size;
4419

4420 4421
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4422

4423
	memcg = kzalloc(size, GFP_KERNEL);
4424
	if (!memcg)
4425 4426
		return NULL;

4427 4428
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4429
		goto out_free;
4430 4431
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4432 4433

out_free:
4434
	kfree(memcg);
4435
	return NULL;
4436 4437
}

4438
/*
4439 4440 4441 4442 4443 4444 4445 4446
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4447
 */
4448 4449

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4450
{
4451
	int node;
4452

4453
	mem_cgroup_remove_from_trees(memcg);
4454 4455 4456 4457 4458

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
4459
	kfree(memcg);
4460
}
4461

4462 4463 4464
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4465
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4466
{
4467
	if (!memcg->memory.parent)
4468
		return NULL;
4469
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4470
}
G
Glauber Costa 已提交
4471
EXPORT_SYMBOL(parent_mem_cgroup);
4472

L
Li Zefan 已提交
4473
static struct cgroup_subsys_state * __ref
4474
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4475
{
4476
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4477
	long error = -ENOMEM;
4478
	int node;
B
Balbir Singh 已提交
4479

4480 4481
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4482
		return ERR_PTR(error);
4483

B
Bob Liu 已提交
4484
	for_each_node(node)
4485
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4486
			goto free_out;
4487

4488
	/* root ? */
4489
	if (parent_css == NULL) {
4490
		root_mem_cgroup = memcg;
T
Tejun Heo 已提交
4491
		mem_cgroup_root_css = &memcg->css;
4492
		page_counter_init(&memcg->memory, NULL);
4493
		memcg->high = PAGE_COUNTER_MAX;
4494
		memcg->soft_limit = PAGE_COUNTER_MAX;
4495 4496
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4497
	}
4498

4499 4500 4501 4502 4503
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4504
	vmpressure_init(&memcg->vmpressure);
4505 4506
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4507 4508 4509
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4510 4511 4512
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4513 4514 4515 4516 4517 4518 4519 4520
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4521
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4522
{
4523
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4524
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4525
	int ret;
4526

4527
	if (css->id > MEM_CGROUP_ID_MAX)
4528 4529
		return -ENOSPC;

T
Tejun Heo 已提交
4530
	if (!parent)
4531 4532
		return 0;

4533
	mutex_lock(&memcg_create_mutex);
4534 4535 4536 4537 4538 4539

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4540
		page_counter_init(&memcg->memory, &parent->memory);
4541
		memcg->high = PAGE_COUNTER_MAX;
4542
		memcg->soft_limit = PAGE_COUNTER_MAX;
4543 4544
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4545

4546
		/*
4547 4548
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4549
		 */
4550
	} else {
4551
		page_counter_init(&memcg->memory, NULL);
4552
		memcg->high = PAGE_COUNTER_MAX;
4553
		memcg->soft_limit = PAGE_COUNTER_MAX;
4554 4555
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4556 4557 4558 4559 4560
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4561
		if (parent != root_mem_cgroup)
4562
			memory_cgrp_subsys.broken_hierarchy = true;
4563
	}
4564
	mutex_unlock(&memcg_create_mutex);
4565

4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4578 4579
}

4580
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4581
{
4582
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4583
	struct mem_cgroup_event *event, *tmp;
4584 4585 4586 4587 4588 4589

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4590 4591
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4592 4593 4594
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4595
	spin_unlock(&memcg->event_list_lock);
4596

4597
	vmpressure_cleanup(&memcg->vmpressure);
4598 4599

	memcg_deactivate_kmem(memcg);
4600 4601

	wb_memcg_offline(memcg);
4602 4603
}

4604
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4605
{
4606
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4607

4608
	memcg_destroy_kmem(memcg);
4609
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4610 4611
}

4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4629 4630 4631
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4632 4633
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4634
	memcg->soft_limit = PAGE_COUNTER_MAX;
4635 4636
}

4637
#ifdef CONFIG_MMU
4638
/* Handlers for move charge at task migration. */
4639
static int mem_cgroup_do_precharge(unsigned long count)
4640
{
4641
	int ret;
4642 4643

	/* Try a single bulk charge without reclaim first */
4644
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4645
	if (!ret) {
4646 4647 4648
		mc.precharge += count;
		return ret;
	}
4649
	if (ret == -EINTR) {
4650
		cancel_charge(root_mem_cgroup, count);
4651 4652
		return ret;
	}
4653 4654

	/* Try charges one by one with reclaim */
4655
	while (count--) {
4656
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4657 4658 4659
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4660 4661
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4662
		 */
4663
		if (ret == -EINTR)
4664
			cancel_charge(root_mem_cgroup, 1);
4665 4666
		if (ret)
			return ret;
4667
		mc.precharge++;
4668
		cond_resched();
4669
	}
4670
	return 0;
4671 4672 4673
}

/**
4674
 * get_mctgt_type - get target type of moving charge
4675 4676 4677
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4678
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4679 4680 4681 4682 4683 4684
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4685 4686 4687
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4688 4689 4690 4691 4692
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4693
	swp_entry_t	ent;
4694 4695 4696
};

enum mc_target_type {
4697
	MC_TARGET_NONE = 0,
4698
	MC_TARGET_PAGE,
4699
	MC_TARGET_SWAP,
4700 4701
};

D
Daisuke Nishimura 已提交
4702 4703
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4704
{
D
Daisuke Nishimura 已提交
4705
	struct page *page = vm_normal_page(vma, addr, ptent);
4706

D
Daisuke Nishimura 已提交
4707 4708 4709
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4710
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4711
			return NULL;
4712 4713 4714 4715
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4716 4717 4718 4719 4720 4721
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4722
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4723 4724 4725 4726 4727 4728
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4729
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4730
		return NULL;
4731 4732 4733 4734
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4735
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4736 4737 4738 4739 4740
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4741 4742 4743 4744 4745 4746 4747
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4748

4749 4750 4751 4752 4753 4754 4755 4756 4757
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4758
	if (!(mc.flags & MOVE_FILE))
4759 4760 4761
		return NULL;

	mapping = vma->vm_file->f_mapping;
4762
	pgoff = linear_page_index(vma, addr);
4763 4764

	/* page is moved even if it's not RSS of this task(page-faulted). */
4765 4766
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4779
#endif
4780 4781 4782
	return page;
}

4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4804
	bool anon;
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4830 4831
	anon = PageAnon(page);

4832 4833
	spin_lock_irqsave(&from->move_lock, flags);

4834
	if (!anon && page_mapped(page)) {
4835 4836 4837 4838 4839 4840
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4888
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4889 4890 4891
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4892
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4893 4894 4895 4896 4897 4898
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4899
	else if (pte_none(ptent))
4900
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4901 4902

	if (!page && !ent.val)
4903
		return ret;
4904 4905
	if (page) {
		/*
4906
		 * Do only loose check w/o serialization.
4907
		 * mem_cgroup_move_account() checks the page is valid or
4908
		 * not under LRU exclusion.
4909
		 */
4910
		if (page->mem_cgroup == mc.from) {
4911 4912 4913 4914 4915 4916 4917
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4918 4919
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4920
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4921 4922 4923
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4924 4925 4926 4927
	}
	return ret;
}

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4941
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4942
	if (!(mc.flags & MOVE_ANON))
4943
		return ret;
4944
	if (page->mem_cgroup == mc.from) {
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4961 4962 4963 4964
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4965
	struct vm_area_struct *vma = walk->vma;
4966 4967 4968
	pte_t *pte;
	spinlock_t *ptl;

4969
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4970 4971
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4972
		spin_unlock(ptl);
4973
		return 0;
4974
	}
4975

4976 4977
	if (pmd_trans_unstable(pmd))
		return 0;
4978 4979
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4980
		if (get_mctgt_type(vma, addr, *pte, NULL))
4981 4982 4983 4984
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4985 4986 4987
	return 0;
}

4988 4989 4990 4991
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4992 4993 4994 4995
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4996
	down_read(&mm->mmap_sem);
4997
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4998
	up_read(&mm->mmap_sem);
4999 5000 5001 5002 5003 5004 5005 5006 5007

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5008 5009 5010 5011 5012
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5013 5014
}

5015 5016
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5017
{
5018 5019 5020
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5021
	/* we must uncharge all the leftover precharges from mc.to */
5022
	if (mc.precharge) {
5023
		cancel_charge(mc.to, mc.precharge);
5024 5025 5026 5027 5028 5029 5030
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5031
		cancel_charge(mc.from, mc.moved_charge);
5032
		mc.moved_charge = 0;
5033
	}
5034 5035 5036
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5037
		if (!mem_cgroup_is_root(mc.from))
5038
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5039

5040
		/*
5041 5042
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5043
		 */
5044
		if (!mem_cgroup_is_root(mc.to))
5045 5046
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5047
		css_put_many(&mc.from->css, mc.moved_swap);
5048

L
Li Zefan 已提交
5049
		/* we've already done css_get(mc.to) */
5050 5051
		mc.moved_swap = 0;
	}
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5065
	spin_lock(&mc.lock);
5066 5067
	mc.from = NULL;
	mc.to = NULL;
5068
	spin_unlock(&mc.lock);
5069 5070
}

5071
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5072
				 struct cgroup_taskset *tset)
5073
{
5074
	struct task_struct *p = cgroup_taskset_first(tset);
5075
	int ret = 0;
5076
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5077
	unsigned long move_flags;
5078

5079 5080 5081 5082 5083
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5084
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5085
	if (move_flags) {
5086 5087 5088
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5089
		VM_BUG_ON(from == memcg);
5090 5091 5092 5093 5094

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5095 5096 5097 5098
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5099
			VM_BUG_ON(mc.moved_charge);
5100
			VM_BUG_ON(mc.moved_swap);
5101

5102
			spin_lock(&mc.lock);
5103
			mc.from = from;
5104
			mc.to = memcg;
5105
			mc.flags = move_flags;
5106
			spin_unlock(&mc.lock);
5107
			/* We set mc.moving_task later */
5108 5109 5110 5111

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5112 5113
		}
		mmput(mm);
5114 5115 5116 5117
	}
	return ret;
}

5118
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5119
				     struct cgroup_taskset *tset)
5120
{
5121 5122
	if (mc.to)
		mem_cgroup_clear_mc();
5123 5124
}

5125 5126 5127
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5128
{
5129
	int ret = 0;
5130
	struct vm_area_struct *vma = walk->vma;
5131 5132
	pte_t *pte;
	spinlock_t *ptl;
5133 5134 5135
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5136

5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5147
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5148
		if (mc.precharge < HPAGE_PMD_NR) {
5149
			spin_unlock(ptl);
5150 5151 5152 5153 5154 5155 5156
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5157
							     mc.from, mc.to)) {
5158 5159 5160 5161 5162 5163 5164
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5165
		spin_unlock(ptl);
5166
		return 0;
5167 5168
	}

5169 5170
	if (pmd_trans_unstable(pmd))
		return 0;
5171 5172 5173 5174
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5175
		swp_entry_t ent;
5176 5177 5178 5179

		if (!mc.precharge)
			break;

5180
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5181 5182 5183 5184
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5185
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5186
				mc.precharge--;
5187 5188
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5189 5190
			}
			putback_lru_page(page);
5191
put:			/* get_mctgt_type() gets the page */
5192 5193
			put_page(page);
			break;
5194 5195
		case MC_TARGET_SWAP:
			ent = target.ent;
5196
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5197
				mc.precharge--;
5198 5199 5200
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5201
			break;
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5216
		ret = mem_cgroup_do_precharge(1);
5217 5218 5219 5220 5221 5222 5223 5224 5225
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5226 5227 5228 5229
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5230 5231

	lru_add_drain_all();
5232 5233 5234 5235 5236 5237 5238
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5252 5253 5254 5255 5256
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5257
	up_read(&mm->mmap_sem);
5258
	atomic_dec(&mc.from->moving_account);
5259 5260
}

5261
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5262
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5263
{
5264
	struct task_struct *p = cgroup_taskset_first(tset);
5265
	struct mm_struct *mm = get_task_mm(p);
5266 5267

	if (mm) {
5268 5269
		if (mc.to)
			mem_cgroup_move_charge(mm);
5270 5271
		mmput(mm);
	}
5272 5273
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5274
}
5275
#else	/* !CONFIG_MMU */
5276
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5277
				 struct cgroup_taskset *tset)
5278 5279 5280
{
	return 0;
}
5281
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5282
				     struct cgroup_taskset *tset)
5283 5284
{
}
5285
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5286
				 struct cgroup_taskset *tset)
5287 5288 5289
{
}
#endif
B
Balbir Singh 已提交
5290

5291 5292
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5293 5294
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5295
 */
5296
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5297 5298
{
	/*
5299
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5300 5301 5302
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5303
	if (cgroup_on_dfl(root_css->cgroup))
5304 5305 5306
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5307 5308
}

5309 5310 5311 5312 5313 5314 5315 5316 5317
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5318
	unsigned long low = READ_ONCE(memcg->low);
5319 5320

	if (low == PAGE_COUNTER_MAX)
5321
		seq_puts(m, "max\n");
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5336
	err = page_counter_memparse(buf, "max", &low);
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5348
	unsigned long high = READ_ONCE(memcg->high);
5349 5350

	if (high == PAGE_COUNTER_MAX)
5351
		seq_puts(m, "max\n");
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5366
	err = page_counter_memparse(buf, "max", &high);
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5378
	unsigned long max = READ_ONCE(memcg->memory.limit);
5379 5380

	if (max == PAGE_COUNTER_MAX)
5381
		seq_puts(m, "max\n");
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5396
	err = page_counter_memparse(buf, "max", &max);
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5450
struct cgroup_subsys memory_cgrp_subsys = {
5451
	.css_alloc = mem_cgroup_css_alloc,
5452
	.css_online = mem_cgroup_css_online,
5453 5454
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5455
	.css_reset = mem_cgroup_css_reset,
5456 5457
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5458
	.attach = mem_cgroup_move_task,
5459
	.bind = mem_cgroup_bind,
5460 5461
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5462
	.early_init = 0,
B
Balbir Singh 已提交
5463
};
5464

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5500
	if (page_counter_read(&memcg->memory) >= memcg->low)
5501 5502 5503 5504 5505 5506 5507 5508
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5509
		if (page_counter_read(&memcg->memory) >= memcg->low)
5510 5511 5512 5513 5514
			return false;
	}
	return true;
}

5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5550
		if (page->mem_cgroup)
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5611 5612
	commit_charge(page, memcg, lrucare);

5613 5614 5615 5616 5617
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5618 5619 5620 5621
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5663 5664 5665 5666
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5667
	unsigned long nr_pages = nr_anon + nr_file;
5668 5669
	unsigned long flags;

5670
	if (!mem_cgroup_is_root(memcg)) {
5671 5672 5673
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5674 5675
		memcg_oom_recover(memcg);
	}
5676 5677 5678 5679 5680 5681

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5682
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5683 5684
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5685 5686

	if (!mem_cgroup_is_root(memcg))
5687
		css_put_many(&memcg->css, nr_pages);
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5710
		if (!page->mem_cgroup)
5711 5712 5713 5714
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5715
		 * page->mem_cgroup at this point, we have fully
5716
		 * exclusive access to the page.
5717 5718
		 */

5719
		if (memcg != page->mem_cgroup) {
5720
			if (memcg) {
5721 5722 5723
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5724
			}
5725
			memcg = page->mem_cgroup;
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5739
		page->mem_cgroup = NULL;
5740 5741 5742 5743 5744

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5745 5746
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5747 5748
}

5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5761
	/* Don't touch page->lru of any random page, pre-check: */
5762
	if (!page->mem_cgroup)
5763 5764
		return;

5765 5766 5767
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5768

5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5780

5781 5782
	if (!list_empty(page_list))
		uncharge_list(page_list);
5783 5784 5785 5786 5787 5788
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5789
 * @lrucare: either or both pages might be on the LRU already
5790 5791 5792 5793 5794 5795 5796 5797
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5798
	struct mem_cgroup *memcg;
5799 5800 5801 5802 5803 5804 5805
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5806 5807
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5808 5809 5810 5811 5812

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5813
	if (newpage->mem_cgroup)
5814 5815
		return;

5816 5817 5818 5819 5820 5821
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5822
	memcg = oldpage->mem_cgroup;
5823
	if (!memcg)
5824 5825 5826 5827 5828
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5829
	oldpage->mem_cgroup = NULL;
5830 5831 5832 5833

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5834
	commit_charge(newpage, memcg, lrucare);
5835 5836
}

5837
/*
5838 5839 5840 5841 5842 5843
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5844 5845 5846
 */
static int __init mem_cgroup_init(void)
{
5847 5848
	int cpu, node;

5849
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5872 5873 5874
	return 0;
}
subsys_initcall(mem_cgroup_init);
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5933
	memcg = mem_cgroup_from_id(id);
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */