memcontrol.c 157.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 301 302

	bool		oom_lock;
	atomic_t	under_oom;
303
	atomic_t	oom_wakeups;
304

305
	int	swappiness;
306 307
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
308

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
325
	unsigned long move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
345
#endif
346
#if defined(CONFIG_MEMCG_KMEM)
347 348
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
349 350 351 352
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
353 354 355 356 357 358 359

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
360

361 362 363 364
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370
/* internal only representation about the status of kmem accounting. */
enum {
371
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 373 374 375 376 377 378
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
379 380 381 382 383 384

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

385 386
#endif

387 388
/* Stuffs for move charges at task migration. */
/*
389 390
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 392
 */
enum move_type {
393
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
394
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
395 396 397
	NR_MOVE_TYPE,
};

398 399
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
400
	spinlock_t	  lock; /* for from, to */
401 402
	struct mem_cgroup *from;
	struct mem_cgroup *to;
403
	unsigned long immigrate_flags;
404
	unsigned long precharge;
405
	unsigned long moved_charge;
406
	unsigned long moved_swap;
407 408 409
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
410
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 412
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
413

D
Daisuke Nishimura 已提交
414 415
static bool move_anon(void)
{
416
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
417 418
}

419 420
static bool move_file(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 423
}

424 425 426 427
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
428
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
429
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
430

431 432
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
434
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
435
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
436 437 438
	NR_CHARGE_TYPE,
};

439
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
440 441 442 443
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
444
	_KMEM,
G
Glauber Costa 已提交
445 446
};

447 448
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
449
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
450 451
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
452

453 454 455 456 457 458 459
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

460 461
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
462
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

478 479 480 481 482
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

483 484 485 486 487 488
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
489 490
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
491
	return memcg->css.id;
L
Li Zefan 已提交
492 493 494 495 496 497
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

498
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
499 500 501
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
502
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
503
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
504 505 506

void sock_update_memcg(struct sock *sk)
{
507
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
508
		struct mem_cgroup *memcg;
509
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
510 511 512

		BUG_ON(!sk->sk_prot->proto_cgroup);

513 514 515 516 517 518 519 520 521 522
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523
			css_get(&sk->sk_cgrp->memcg->css);
524 525 526
			return;
		}

G
Glauber Costa 已提交
527 528
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
529
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
530
		if (!mem_cgroup_is_root(memcg) &&
531 532
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
533
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
542
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
543 544 545
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
546
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
547 548
	}
}
G
Glauber Costa 已提交
549 550 551 552 553 554

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

555
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
556 557
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
558

559 560
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
561
	if (!memcg_proto_activated(&memcg->tcp_mem))
562 563 564 565 566 567 568 569 570
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

571
#ifdef CONFIG_MEMCG_KMEM
572 573
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
574 575 576 577 578
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
579 580 581 582 583 584
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
585 586
int memcg_limited_groups_array_size;

587 588 589 590 591 592
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
593
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 595
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
596
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 598 599
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
600
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601

602 603 604 605 606 607
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
608
struct static_key memcg_kmem_enabled_key;
609
EXPORT_SYMBOL(memcg_kmem_enabled_key);
610

611 612
static void memcg_free_cache_id(int id);

613 614
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
615
	if (memcg_kmem_is_active(memcg)) {
616
		static_key_slow_dec(&memcg_kmem_enabled_key);
617
		memcg_free_cache_id(memcg->kmemcg_id);
618
	}
619 620 621 622
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
623
	WARN_ON(page_counter_read(&memcg->kmem));
624 625 626 627 628 629 630 631 632 633 634 635 636
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

637
static struct mem_cgroup_per_zone *
638
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639
{
640 641 642
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

643
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 645
}

646
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647
{
648
	return &memcg->css;
649 650
}

651
static struct mem_cgroup_per_zone *
652
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653
{
654 655
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
656

657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

675 676
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
677
					 unsigned long new_usage_in_excess)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

707 708
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
709 710 711 712 713 714 715
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

716 717
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
718
{
719 720 721
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
722
	__mem_cgroup_remove_exceeded(mz, mctz);
723
	spin_unlock_irqrestore(&mctz->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
737 738 739

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
740
	unsigned long excess;
741 742 743
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

744
	mctz = soft_limit_tree_from_page(page);
745 746 747 748 749
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750
		mz = mem_cgroup_page_zoneinfo(memcg, page);
751
		excess = soft_limit_excess(memcg);
752 753 754 755 756
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
757 758 759
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
760 761
			/* if on-tree, remove it */
			if (mz->on_tree)
762
				__mem_cgroup_remove_exceeded(mz, mctz);
763 764 765 766
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
767
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
768
			spin_unlock_irqrestore(&mctz->lock, flags);
769 770 771 772 773 774 775
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
776 777
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
778

779 780 781 782
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
783
			mem_cgroup_remove_exceeded(mz, mctz);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
806
	__mem_cgroup_remove_exceeded(mz, mctz);
807
	if (!soft_limit_excess(mz->memcg) ||
808
	    !css_tryget_online(&mz->memcg->css))
809 810 811 812 813 814 815 816 817 818
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

819
	spin_lock_irq(&mctz->lock);
820
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
821
	spin_unlock_irq(&mctz->lock);
822 823 824
	return mz;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
844
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845
				 enum mem_cgroup_stat_index idx)
846
{
847
	long val = 0;
848 849
	int cpu;

850 851
	get_online_cpus();
	for_each_online_cpu(cpu)
852
		val += per_cpu(memcg->stat->count[idx], cpu);
853
#ifdef CONFIG_HOTPLUG_CPU
854 855 856
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
857 858
#endif
	put_online_cpus();
859 860 861
	return val;
}

862
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 864 865 866 867
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

868
	get_online_cpus();
869
	for_each_online_cpu(cpu)
870
		val += per_cpu(memcg->stat->events[idx], cpu);
871
#ifdef CONFIG_HOTPLUG_CPU
872 873 874
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
875
#endif
876
	put_online_cpus();
877 878 879
	return val;
}

880
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881
					 struct page *page,
882
					 int nr_pages)
883
{
884 885 886 887
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
888
	if (PageAnon(page))
889
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890
				nr_pages);
891
	else
892
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893
				nr_pages);
894

895 896 897 898
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

899 900
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
901
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902
	else {
903
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 905
		nr_pages = -nr_pages; /* for event */
	}
906

907
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 909
}

910
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 912 913 914 915 916 917
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

918 919 920
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
921
{
922
	unsigned long nr = 0;
923 924
	int zid;

925
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
926

927 928 929 930 931 932 933 934 935 936 937 938
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
939
}
940

941
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942
			unsigned int lru_mask)
943
{
944
	unsigned long nr = 0;
945
	int nid;
946

947
	for_each_node_state(nid, N_MEMORY)
948 949
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
950 951
}

952 953
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
954 955 956
{
	unsigned long val, next;

957
	val = __this_cpu_read(memcg->stat->nr_page_events);
958
	next = __this_cpu_read(memcg->stat->targets[target]);
959
	/* from time_after() in jiffies.h */
960 961 962 963 964
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
965 966 967
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
968 969 970 971 972 973 974 975
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
976
	}
977
	return false;
978 979 980 981 982 983
}

/*
 * Check events in order.
 *
 */
984
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 986
{
	/* threshold event is triggered in finer grain than soft limit */
987 988
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
989
		bool do_softlimit;
990
		bool do_numainfo __maybe_unused;
991

992 993
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
994 995 996 997
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
998
		mem_cgroup_threshold(memcg);
999 1000
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1001
#if MAX_NUMNODES > 1
1002
		if (unlikely(do_numainfo))
1003
			atomic_inc(&memcg->numainfo_events);
1004
#endif
1005
	}
1006 1007
}

1008
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009
{
1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1018
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 1020
}

1021
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022
{
1023
	struct mem_cgroup *memcg = NULL;
1024

1025 1026
	rcu_read_lock();
	do {
1027 1028 1029 1030 1031 1032
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1033
			memcg = root_mem_cgroup;
1034 1035 1036 1037 1038
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1039
	} while (!css_tryget_online(&memcg->css));
1040
	rcu_read_unlock();
1041
	return memcg;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1061
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062
				   struct mem_cgroup *prev,
1063
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1064
{
1065 1066
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1067
	struct mem_cgroup *memcg = NULL;
1068
	struct mem_cgroup *pos = NULL;
1069

1070 1071
	if (mem_cgroup_disabled())
		return NULL;
1072

1073 1074
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1075

1076
	if (prev && !reclaim)
1077
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1078

1079 1080
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1081
			goto out;
1082
		return root;
1083
	}
K
KAMEZAWA Hiroyuki 已提交
1084

1085
	rcu_read_lock();
M
Michal Hocko 已提交
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1121
		}
K
KAMEZAWA Hiroyuki 已提交
1122

1123 1124 1125 1126 1127 1128
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131
		if (css == &root->css)
			break;
1132

1133
		if (css_tryget(css)) {
1134 1135 1136 1137 1138 1139 1140 1141 1142
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;

			css_put(css);
1143
		}
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		memcg = NULL;
	}

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1167
	}
1168

1169 1170
out_unlock:
	rcu_read_unlock();
1171
out:
1172 1173 1174
	if (prev && prev != root)
		css_put(&prev->css);

1175
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1176
}
K
KAMEZAWA Hiroyuki 已提交
1177

1178 1179 1180 1181 1182 1183 1184
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1185 1186 1187 1188 1189 1190
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193 1194 1195 1196 1197
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1198
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1199
	     iter != NULL;				\
1200
	     iter = mem_cgroup_iter(root, iter, NULL))
1201

1202
#define for_each_mem_cgroup(iter)			\
1203
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1204
	     iter != NULL;				\
1205
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1206

1207
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208
{
1209
	struct mem_cgroup *memcg;
1210 1211

	rcu_read_lock();
1212 1213
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1214 1215 1216 1217
		goto out;

	switch (idx) {
	case PGFAULT:
1218 1219 1220 1221
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 1223 1224 1225 1226 1227 1228
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1229
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230

1231 1232 1233
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1234
 * @memcg: memcg of the wanted lruvec
1235 1236 1237 1238 1239 1240 1241 1242 1243
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1244
	struct lruvec *lruvec;
1245

1246 1247 1248 1249
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1250

1251
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1262 1263 1264
}

/**
1265
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266
 * @page: the page
1267
 * @zone: zone of the page
1268 1269 1270 1271
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1272
 */
1273
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1274 1275
{
	struct mem_cgroup_per_zone *mz;
1276 1277
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1278
	struct lruvec *lruvec;
1279

1280 1281 1282 1283
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1284

K
KAMEZAWA Hiroyuki 已提交
1285
	pc = lookup_page_cgroup(page);
1286
	memcg = pc->mem_cgroup;
1287
	/*
1288
	 * Swapcache readahead pages are added to the LRU - and
1289
	 * possibly migrated - before they are charged.
1290
	 */
1291 1292
	if (!memcg)
		memcg = root_mem_cgroup;
1293

1294
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1305
}
1306

1307
/**
1308 1309 1310 1311
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1312
 *
1313 1314
 * This function must be called when a page is added to or removed from an
 * lru list.
1315
 */
1316 1317
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1318 1319
{
	struct mem_cgroup_per_zone *mz;
1320
	unsigned long *lru_size;
1321 1322 1323 1324

	if (mem_cgroup_disabled())
		return;

1325 1326 1327 1328
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1329
}
1330

1331
/*
1332
 * Checks whether given mem is same or in the root_mem_cgroup's
1333 1334
 * hierarchy subtree
 */
1335 1336
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1337
{
1338 1339
	if (root_memcg == memcg)
		return true;
1340
	if (!root_memcg->use_hierarchy || !memcg)
1341
		return false;
1342
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1343 1344 1345 1346 1347 1348 1349
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1350
	rcu_read_lock();
1351
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1352 1353
	rcu_read_unlock();
	return ret;
1354 1355
}

1356 1357
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1358
{
1359
	struct mem_cgroup *curr = NULL;
1360
	struct task_struct *p;
1361
	bool ret;
1362

1363
	p = find_lock_task_mm(task);
1364
	if (p) {
1365
		curr = get_mem_cgroup_from_mm(p->mm);
1366 1367 1368 1369 1370 1371 1372
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1373
		rcu_read_lock();
1374 1375 1376
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1377
		rcu_read_unlock();
1378
	}
1379
	/*
1380
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1381
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1382 1383
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1384
	 */
1385
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1386
	css_put(&curr->css);
1387 1388 1389
	return ret;
}

1390
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1391
{
1392
	unsigned long inactive_ratio;
1393
	unsigned long inactive;
1394
	unsigned long active;
1395
	unsigned long gb;
1396

1397 1398
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1399

1400 1401 1402 1403 1404 1405
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1406
	return inactive * inactive_ratio < active;
1407 1408
}

1409
#define mem_cgroup_from_counter(counter, member)	\
1410 1411
	container_of(counter, struct mem_cgroup, member)

1412
/**
1413
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1414
 * @memcg: the memory cgroup
1415
 *
1416
 * Returns the maximum amount of memory @mem can be charged with, in
1417
 * pages.
1418
 */
1419
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420
{
1421 1422 1423
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1438 1439
}

1440
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1441 1442
{
	/* root ? */
1443
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1444 1445
		return vm_swappiness;

1446
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1447 1448
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1463

1464
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1465
{
1466
	atomic_inc(&memcg->moving_account);
1467 1468 1469
	synchronize_rcu();
}

1470
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1471
{
1472
	atomic_dec(&memcg->moving_account);
1473
}
1474

1475
/*
Q
Qiang Huang 已提交
1476
 * A routine for checking "mem" is under move_account() or not.
1477
 *
Q
Qiang Huang 已提交
1478 1479 1480
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1481
 */
1482
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1483
{
1484 1485
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1486
	bool ret = false;
1487 1488 1489 1490 1491 1492 1493 1494 1495
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1496

1497 1498
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1499 1500
unlock:
	spin_unlock(&mc.lock);
1501 1502 1503
	return ret;
}

1504
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1505 1506
{
	if (mc.moving_task && current != mc.moving_task) {
1507
		if (mem_cgroup_under_move(memcg)) {
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1520
#define K(x) ((x) << (PAGE_SHIFT-10))
1521
/**
1522
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1523 1524 1525 1526 1527 1528 1529 1530
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1531
	/* oom_info_lock ensures that parallel ooms do not interleave */
1532
	static DEFINE_MUTEX(oom_info_lock);
1533 1534
	struct mem_cgroup *iter;
	unsigned int i;
1535

1536
	if (!p)
1537 1538
		return;

1539
	mutex_lock(&oom_info_lock);
1540 1541
	rcu_read_lock();

T
Tejun Heo 已提交
1542 1543 1544 1545 1546
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1547 1548 1549

	rcu_read_unlock();

1550 1551 1552 1553 1554 1555 1556 1557 1558
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1559 1560

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1561 1562
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1578
	mutex_unlock(&oom_info_lock);
1579 1580
}

1581 1582 1583 1584
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1585
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1586 1587
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1588 1589
	struct mem_cgroup *iter;

1590
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1591
		num++;
1592 1593 1594
	return num;
}

D
David Rientjes 已提交
1595 1596 1597
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1598
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1599
{
1600
	unsigned long limit;
D
David Rientjes 已提交
1601

1602
	limit = memcg->memory.limit;
1603
	if (mem_cgroup_swappiness(memcg)) {
1604
		unsigned long memsw_limit;
1605

1606 1607
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1608 1609
	}
	return limit;
D
David Rientjes 已提交
1610 1611
}

1612 1613
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1614 1615 1616 1617 1618 1619 1620
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1621
	/*
1622 1623 1624
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1625
	 */
1626
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1627 1628 1629 1630 1631
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1632
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1633
	for_each_mem_cgroup_tree(iter, memcg) {
1634
		struct css_task_iter it;
1635 1636
		struct task_struct *task;

1637 1638
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1651
				css_task_iter_end(&it);
1652 1653 1654 1655 1656 1657 1658 1659
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1672
		}
1673
		css_task_iter_end(&it);
1674 1675 1676 1677 1678 1679 1680 1681 1682
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1683 1684
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1685
 * @memcg: the target memcg
1686 1687 1688 1689 1690 1691 1692
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1693
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1694 1695
		int nid, bool noswap)
{
1696
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1697 1698 1699
		return true;
	if (noswap || !total_swap_pages)
		return false;
1700
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1701 1702 1703 1704
		return true;
	return false;

}
1705
#if MAX_NUMNODES > 1
1706 1707 1708 1709 1710 1711 1712

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1713
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1714 1715
{
	int nid;
1716 1717 1718 1719
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1720
	if (!atomic_read(&memcg->numainfo_events))
1721
		return;
1722
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1723 1724 1725
		return;

	/* make a nodemask where this memcg uses memory from */
1726
	memcg->scan_nodes = node_states[N_MEMORY];
1727

1728
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1729

1730 1731
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1732
	}
1733

1734 1735
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1750
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1751 1752 1753
{
	int node;

1754 1755
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1756

1757
	node = next_node(node, memcg->scan_nodes);
1758
	if (node == MAX_NUMNODES)
1759
		node = first_node(memcg->scan_nodes);
1760 1761 1762 1763 1764 1765 1766 1767 1768
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1769
	memcg->last_scanned_node = node;
1770 1771 1772
	return node;
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1808
#else
1809
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1810 1811 1812
{
	return 0;
}
1813

1814 1815 1816 1817
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1818 1819
#endif

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1835
	excess = soft_limit_excess(root_memcg);
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1866
		if (!soft_limit_excess(root_memcg))
1867
			break;
1868
	}
1869 1870
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1871 1872
}

1873 1874 1875 1876 1877 1878
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1879 1880
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1881 1882 1883 1884
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1885
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1886
{
1887
	struct mem_cgroup *iter, *failed = NULL;
1888

1889 1890
	spin_lock(&memcg_oom_lock);

1891
	for_each_mem_cgroup_tree(iter, memcg) {
1892
		if (iter->oom_lock) {
1893 1894 1895 1896 1897
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1898 1899
			mem_cgroup_iter_break(memcg, iter);
			break;
1900 1901
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1902
	}
K
KAMEZAWA Hiroyuki 已提交
1903

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1915
		}
1916 1917
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1918 1919 1920 1921

	spin_unlock(&memcg_oom_lock);

	return !failed;
1922
}
1923

1924
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1925
{
K
KAMEZAWA Hiroyuki 已提交
1926 1927
	struct mem_cgroup *iter;

1928
	spin_lock(&memcg_oom_lock);
1929
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1930
	for_each_mem_cgroup_tree(iter, memcg)
1931
		iter->oom_lock = false;
1932
	spin_unlock(&memcg_oom_lock);
1933 1934
}

1935
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1936 1937 1938
{
	struct mem_cgroup *iter;

1939
	for_each_mem_cgroup_tree(iter, memcg)
1940 1941 1942
		atomic_inc(&iter->under_oom);
}

1943
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1944 1945 1946
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1947 1948 1949 1950 1951
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1952
	for_each_mem_cgroup_tree(iter, memcg)
1953
		atomic_add_unless(&iter->under_oom, -1, 0);
1954 1955
}

K
KAMEZAWA Hiroyuki 已提交
1956 1957
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1958
struct oom_wait_info {
1959
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1960 1961 1962 1963 1964 1965
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1966 1967
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1968 1969 1970
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1971
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1972 1973

	/*
1974
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1975 1976
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1977 1978
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1979 1980 1981 1982
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1983
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1984
{
1985
	atomic_inc(&memcg->oom_wakeups);
1986 1987
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1988 1989
}

1990
static void memcg_oom_recover(struct mem_cgroup *memcg)
1991
{
1992 1993
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1994 1995
}

1996
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1997
{
1998 1999
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2000
	/*
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2013
	 */
2014 2015 2016 2017
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2018 2019 2020 2021
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2022
 * @handle: actually kill/wait or just clean up the OOM state
2023
 *
2024 2025
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2026
 *
2027
 * Memcg supports userspace OOM handling where failed allocations must
2028 2029 2030 2031
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2032
 * the end of the page fault to complete the OOM handling.
2033 2034
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2035
 * completed, %false otherwise.
2036
 */
2037
bool mem_cgroup_oom_synchronize(bool handle)
2038
{
2039
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2040
	struct oom_wait_info owait;
2041
	bool locked;
2042 2043 2044

	/* OOM is global, do not handle */
	if (!memcg)
2045
		return false;
2046

2047 2048
	if (!handle)
		goto cleanup;
2049 2050 2051 2052 2053 2054

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2055

2056
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2070
		schedule();
2071 2072 2073 2074 2075
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2076 2077 2078 2079 2080 2081 2082 2083
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2084 2085
cleanup:
	current->memcg_oom.memcg = NULL;
2086
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2087
	return true;
2088 2089
}

2090 2091 2092 2093 2094
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
2095
 *
2096 2097 2098
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2099
 *
2100 2101 2102 2103
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
2104
 *
2105 2106 2107
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
2108
 *
2109 2110 2111 2112 2113
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2114
 */
2115 2116 2117
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2118 2119 2120 2121
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

2122 2123 2124 2125 2126
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;

2127 2128 2129
	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
2130
	if (unlikely(!memcg))
2131 2132 2133
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2134
	if (atomic_read(&memcg->moving_account) <= 0)
2135
		return memcg;
2136

2137
	spin_lock_irqsave(&memcg->move_lock, *flags);
2138
	if (memcg != pc->mem_cgroup) {
2139
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2140 2141 2142
		goto again;
	}
	*locked = true;
2143 2144

	return memcg;
2145 2146
}

2147 2148 2149 2150 2151 2152 2153 2154
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
			      unsigned long flags)
2155
{
2156
	if (memcg && locked)
2157
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2158

2159
	rcu_read_unlock();
2160 2161
}

2162 2163 2164 2165 2166 2167 2168 2169 2170
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2171
				 enum mem_cgroup_stat_index idx, int val)
2172
{
2173
	VM_BUG_ON(!rcu_read_lock_held());
2174

2175 2176
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2177
}
2178

2179 2180 2181 2182
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2183
#define CHARGE_BATCH	32U
2184 2185
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2186
	unsigned int nr_pages;
2187
	struct work_struct work;
2188
	unsigned long flags;
2189
#define FLUSHING_CACHED_CHARGE	0
2190 2191
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2192
static DEFINE_MUTEX(percpu_charge_mutex);
2193

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2204
 */
2205
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2206 2207
{
	struct memcg_stock_pcp *stock;
2208
	bool ret = false;
2209

2210
	if (nr_pages > CHARGE_BATCH)
2211
		return ret;
2212

2213
	stock = &get_cpu_var(memcg_stock);
2214
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2215
		stock->nr_pages -= nr_pages;
2216 2217
		ret = true;
	}
2218 2219 2220 2221 2222
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2223
 * Returns stocks cached in percpu and reset cached information.
2224 2225 2226 2227 2228
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2229
	if (stock->nr_pages) {
2230
		page_counter_uncharge(&old->memory, stock->nr_pages);
2231
		if (do_swap_account)
2232
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2233
		css_put_many(&old->css, stock->nr_pages);
2234
		stock->nr_pages = 0;
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2245
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2246
	drain_stock(stock);
2247
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2248 2249
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2261
/*
2262
 * Cache charges(val) to local per_cpu area.
2263
 * This will be consumed by consume_stock() function, later.
2264
 */
2265
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2266 2267 2268
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2269
	if (stock->cached != memcg) { /* reset if necessary */
2270
		drain_stock(stock);
2271
		stock->cached = memcg;
2272
	}
2273
	stock->nr_pages += nr_pages;
2274 2275 2276 2277
	put_cpu_var(memcg_stock);
}

/*
2278
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2279
 * of the hierarchy under it.
2280
 */
2281
static void drain_all_stock(struct mem_cgroup *root_memcg)
2282
{
2283
	int cpu, curcpu;
2284

2285 2286 2287
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2288 2289
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2290
	curcpu = get_cpu();
2291 2292
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2293
		struct mem_cgroup *memcg;
2294

2295 2296
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2297
			continue;
2298
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2299
			continue;
2300 2301 2302 2303 2304 2305
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2306
	}
2307
	put_cpu();
A
Andrew Morton 已提交
2308
	put_online_cpus();
2309
	mutex_unlock(&percpu_charge_mutex);
2310 2311
}

2312 2313 2314 2315
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2316
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2317 2318 2319
{
	int i;

2320
	spin_lock(&memcg->pcp_counter_lock);
2321
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2322
		long x = per_cpu(memcg->stat->count[i], cpu);
2323

2324 2325
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2326
	}
2327
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2328
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2329

2330 2331
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2332
	}
2333
	spin_unlock(&memcg->pcp_counter_lock);
2334 2335
}

2336
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2337 2338 2339 2340 2341
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2342
	struct mem_cgroup *iter;
2343

2344
	if (action == CPU_ONLINE)
2345 2346
		return NOTIFY_OK;

2347
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2348
		return NOTIFY_OK;
2349

2350
	for_each_mem_cgroup(iter)
2351 2352
		mem_cgroup_drain_pcp_counter(iter, cpu);

2353 2354 2355 2356 2357
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2358 2359
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2360
{
2361
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2362
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2363
	struct mem_cgroup *mem_over_limit;
2364
	struct page_counter *counter;
2365
	unsigned long nr_reclaimed;
2366 2367
	bool may_swap = true;
	bool drained = false;
2368
	int ret = 0;
2369

2370 2371
	if (mem_cgroup_is_root(memcg))
		goto done;
2372
retry:
2373 2374
	if (consume_stock(memcg, nr_pages))
		goto done;
2375

2376
	if (!do_swap_account ||
2377 2378
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2379
			goto done_restock;
2380
		if (do_swap_account)
2381 2382
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2383
	} else {
2384
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2385
		may_swap = false;
2386
	}
2387

2388 2389 2390 2391
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2407 2408
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2409

2410 2411
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2412

2413
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2414
		goto retry;
2415

2416
	if (!drained) {
2417
		drain_all_stock(mem_over_limit);
2418 2419 2420 2421
		drained = true;
		goto retry;
	}

2422 2423
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2424 2425 2426 2427 2428 2429 2430 2431 2432
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2433
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2434 2435 2436 2437 2438 2439 2440 2441
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2442 2443 2444
	if (nr_retries--)
		goto retry;

2445 2446 2447
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2448 2449 2450
	if (fatal_signal_pending(current))
		goto bypass;

2451
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2452
nomem:
2453
	if (!(gfp_mask & __GFP_NOFAIL))
2454
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2455
bypass:
2456
	return -EINTR;
2457 2458

done_restock:
2459
	css_get_many(&memcg->css, batch);
2460 2461 2462
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2463
	return ret;
2464
}
2465

2466
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2467
{
2468 2469 2470
	if (mem_cgroup_is_root(memcg))
		return;

2471
	page_counter_uncharge(&memcg->memory, nr_pages);
2472
	if (do_swap_account)
2473
		page_counter_uncharge(&memcg->memsw, nr_pages);
2474 2475

	css_put_many(&memcg->css, nr_pages);
2476 2477
}

2478 2479
/*
 * A helper function to get mem_cgroup from ID. must be called under
2480 2481 2482
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2483 2484 2485 2486 2487 2488
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2489
	return mem_cgroup_from_id(id);
2490 2491
}

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2502
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2503
{
2504
	struct mem_cgroup *memcg;
2505
	struct page_cgroup *pc;
2506
	unsigned short id;
2507 2508
	swp_entry_t ent;

2509
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2510 2511

	pc = lookup_page_cgroup(page);
2512 2513 2514 2515
	memcg = pc->mem_cgroup;

	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2516
			memcg = NULL;
2517
	} else if (PageSwapCache(page)) {
2518
		ent.val = page_private(page);
2519
		id = lookup_swap_cgroup_id(ent);
2520
		rcu_read_lock();
2521
		memcg = mem_cgroup_lookup(id);
2522
		if (memcg && !css_tryget_online(&memcg->css))
2523
			memcg = NULL;
2524
		rcu_read_unlock();
2525
	}
2526
	return memcg;
2527 2528
}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2560
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2561
			  bool lrucare)
2562
{
2563
	struct page_cgroup *pc = lookup_page_cgroup(page);
2564
	int isolated;
2565

2566
	VM_BUG_ON_PAGE(pc->mem_cgroup, page);
2567 2568 2569 2570
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2571 2572 2573 2574 2575

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2576 2577
	if (lrucare)
		lock_page_lru(page, &isolated);
2578

2579 2580
	/*
	 * Nobody should be changing or seriously looking at
2581
	 * pc->mem_cgroup at this point:
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2593
	pc->mem_cgroup = memcg;
2594

2595 2596
	if (lrucare)
		unlock_page_lru(page, isolated);
2597
}
2598

2599
#ifdef CONFIG_MEMCG_KMEM
2600 2601 2602 2603 2604 2605
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

G
Glauber Costa 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2616
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2617 2618
}

2619
#ifdef CONFIG_SLABINFO
2620
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2621
{
2622
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2623 2624
	struct memcg_cache_params *params;

2625
	if (!memcg_kmem_is_active(memcg))
2626 2627 2628 2629
		return -EIO;

	print_slabinfo_header(m);

2630
	mutex_lock(&memcg_slab_mutex);
2631 2632
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2633
	mutex_unlock(&memcg_slab_mutex);
2634 2635 2636 2637 2638

	return 0;
}
#endif

2639 2640
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
			     unsigned long nr_pages)
2641
{
2642
	struct page_counter *counter;
2643 2644
	int ret = 0;

2645 2646
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2647 2648
		return ret;

2649
	ret = try_charge(memcg, gfp, nr_pages);
2650 2651
	if (ret == -EINTR)  {
		/*
2652 2653 2654 2655 2656 2657
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2658 2659 2660
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2661 2662 2663
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2664 2665
		 * directed to the root cgroup in memcontrol.h
		 */
2666
		page_counter_charge(&memcg->memory, nr_pages);
2667
		if (do_swap_account)
2668
			page_counter_charge(&memcg->memsw, nr_pages);
2669
		css_get_many(&memcg->css, nr_pages);
2670 2671
		ret = 0;
	} else if (ret)
2672
		page_counter_uncharge(&memcg->kmem, nr_pages);
2673 2674 2675 2676

	return ret;
}

2677 2678
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
				unsigned long nr_pages)
2679
{
2680
	page_counter_uncharge(&memcg->memory, nr_pages);
2681
	if (do_swap_account)
2682
		page_counter_uncharge(&memcg->memsw, nr_pages);
2683

2684
	page_counter_uncharge(&memcg->kmem, nr_pages);
2685 2686

	css_put_many(&memcg->css, nr_pages);
2687 2688
}

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2699
static int memcg_alloc_cache_id(void)
2700
{
2701 2702 2703 2704 2705 2706 2707
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2708

2709 2710 2711 2712 2713 2714 2715 2716 2717
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2718 2719 2720 2721 2722
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2737 2738 2739 2740 2741 2742 2743 2744 2745
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2746
	memcg_limited_groups_array_size = num;
2747 2748
}

2749 2750
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2751
{
2752 2753
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2754
	struct kmem_cache *cachep;
2755 2756
	int id;

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2767 2768
		return;

2769
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2770
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2771
	/*
2772 2773 2774
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2775
	 */
2776 2777
	if (!cachep)
		return;
2778

2779
	css_get(&memcg->css);
2780
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2781

2782
	/*
2783 2784 2785
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2786
	 */
2787 2788
	smp_wmb();

2789 2790
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2791
}
2792

2793
static void memcg_unregister_cache(struct kmem_cache *cachep)
2794
{
2795
	struct kmem_cache *root_cache;
2796 2797 2798
	struct mem_cgroup *memcg;
	int id;

2799
	lockdep_assert_held(&memcg_slab_mutex);
2800

2801
	BUG_ON(is_root_cache(cachep));
2802

2803 2804
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
2805
	id = memcg_cache_id(memcg);
2806

2807 2808
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
2809

2810 2811 2812
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
2813 2814 2815

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
2816 2817
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

2849
int __memcg_cleanup_cache_params(struct kmem_cache *s)
2850 2851
{
	struct kmem_cache *c;
2852
	int i, failed = 0;
2853

2854
	mutex_lock(&memcg_slab_mutex);
2855 2856
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
2857 2858 2859
		if (!c)
			continue;

2860
		memcg_unregister_cache(c);
2861 2862 2863

		if (cache_from_memcg_idx(s, i))
			failed++;
2864
	}
2865
	mutex_unlock(&memcg_slab_mutex);
2866
	return failed;
2867 2868
}

2869
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2870 2871
{
	struct kmem_cache *cachep;
2872
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
2873 2874 2875 2876

	if (!memcg_kmem_is_active(memcg))
		return;

2877 2878
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
2879
		cachep = memcg_params_to_cache(params);
2880 2881
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2882
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
2883
	}
2884
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
2885 2886
}

2887
struct memcg_register_cache_work {
2888 2889 2890 2891 2892
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2893
static void memcg_register_cache_func(struct work_struct *w)
2894
{
2895 2896
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
2897 2898
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2899

2900
	mutex_lock(&memcg_slab_mutex);
2901
	memcg_register_cache(memcg, cachep);
2902 2903
	mutex_unlock(&memcg_slab_mutex);

2904
	css_put(&memcg->css);
2905 2906 2907 2908 2909 2910
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2911 2912
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
2913
{
2914
	struct memcg_register_cache_work *cw;
2915

2916
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2917 2918
	if (cw == NULL) {
		css_put(&memcg->css);
2919 2920 2921 2922 2923 2924
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

2925
	INIT_WORK(&cw->work, memcg_register_cache_func);
2926 2927 2928
	schedule_work(&cw->work);
}

2929 2930
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
2931 2932 2933 2934
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2935
	 * in __memcg_schedule_register_cache will recurse.
2936 2937 2938 2939 2940 2941 2942 2943
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
2944
	__memcg_schedule_register_cache(memcg, cachep);
2945 2946
	memcg_resume_kmem_account();
}
2947 2948 2949

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
2950
	unsigned int nr_pages = 1 << order;
2951 2952
	int res;

2953
	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2954
	if (!res)
2955
		atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2956 2957 2958 2959 2960
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
2961 2962 2963 2964
	unsigned int nr_pages = 1 << order;

	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
	atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2965 2966
}

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
2984
	struct kmem_cache *memcg_cachep;
2985 2986 2987 2988

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2989 2990 2991
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

2992 2993 2994
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

2995
	if (!memcg_kmem_is_active(memcg))
2996
		goto out;
2997

2998 2999 3000
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3001
		goto out;
3002 3003
	}

3004
	/* The corresponding put will be done in the workqueue. */
3005
	if (!css_tryget_online(&memcg->css))
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3017 3018 3019
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3020
	 */
3021
	memcg_schedule_register_cache(memcg, cachep);
3022 3023 3024 3025
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3026 3027
}

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3049 3050 3051 3052

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3053 3054 3055 3056 3057 3058
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3059 3060 3061 3062 3063 3064
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3065 3066 3067
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3078
	memcg = get_mem_cgroup_from_mm(current->mm);
3079

3080
	if (!memcg_kmem_is_active(memcg)) {
3081 3082 3083 3084
		css_put(&memcg->css);
		return true;
	}

3085
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
3102
		memcg_uncharge_kmem(memcg, 1 << order);
3103 3104 3105 3106 3107 3108 3109 3110
		return;
	}
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
3111 3112
	struct page_cgroup *pc = lookup_page_cgroup(page);
	struct mem_cgroup *memcg = pc->mem_cgroup;
3113 3114 3115 3116

	if (!memcg)
		return;

3117
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3118

3119
	memcg_uncharge_kmem(memcg, 1 << order);
3120
	pc->mem_cgroup = NULL;
3121
}
G
Glauber Costa 已提交
3122
#else
3123
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3124 3125
{
}
3126 3127
#endif /* CONFIG_MEMCG_KMEM */

3128 3129 3130 3131
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3132 3133 3134
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3135
 */
3136
void mem_cgroup_split_huge_fixup(struct page *head)
3137
{
3138
	struct page_cgroup *pc = lookup_page_cgroup(head);
3139
	int i;
3140

3141 3142
	if (mem_cgroup_disabled())
		return;
3143

3144 3145
	for (i = 1; i < HPAGE_PMD_NR; i++)
		pc[i].mem_cgroup = pc[0].mem_cgroup;
3146

3147
	__this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3148
		       HPAGE_PMD_NR);
3149
}
3150
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3151

3152
/**
3153
 * mem_cgroup_move_account - move account of the page
3154
 * @page: the page
3155
 * @nr_pages: number of regular pages (>1 for huge pages)
3156 3157 3158 3159 3160
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3161
 * - page is not on LRU (isolate_page() is useful.)
3162
 * - compound_lock is held when nr_pages > 1
3163
 *
3164 3165
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3166
 */
3167 3168 3169 3170
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3171
				   struct mem_cgroup *to)
3172
{
3173 3174
	unsigned long flags;
	int ret;
3175

3176
	VM_BUG_ON(from == to);
3177
	VM_BUG_ON_PAGE(PageLRU(page), page);
3178 3179 3180 3181 3182 3183 3184
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3185
	if (nr_pages > 1 && !PageTransHuge(page))
3186 3187
		goto out;

3188 3189 3190 3191 3192 3193 3194
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3195 3196

	ret = -EINVAL;
3197
	if (pc->mem_cgroup != from)
3198
		goto out_unlock;
3199

3200
	spin_lock_irqsave(&from->move_lock, flags);
3201

3202
	if (!PageAnon(page) && page_mapped(page)) {
3203 3204 3205 3206 3207
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3208

3209 3210 3211 3212 3213 3214
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3215

3216 3217 3218 3219 3220
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3221

3222
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3223
	pc->mem_cgroup = to;
3224 3225
	spin_unlock_irqrestore(&from->move_lock, flags);

3226
	ret = 0;
3227 3228 3229

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3230
	memcg_check_events(to, page);
3231
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3232
	memcg_check_events(from, page);
3233 3234 3235
	local_irq_enable();
out_unlock:
	unlock_page(page);
3236
out:
3237 3238 3239
	return ret;
}

A
Andrew Morton 已提交
3240
#ifdef CONFIG_MEMCG_SWAP
3241 3242
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3243
{
3244 3245
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3246
}
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3259
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3260 3261 3262
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3263
				struct mem_cgroup *from, struct mem_cgroup *to)
3264 3265 3266
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3267 3268
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3269 3270 3271

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3272
		mem_cgroup_swap_statistics(to, true);
3273
		/*
3274
		 * This function is only called from task migration context now.
3275
		 * It postpones page_counter and refcount handling till the end
3276
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3277 3278 3279 3280 3281 3282
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3283
		 */
L
Li Zefan 已提交
3284
		css_get(&to->css);
3285 3286 3287 3288 3289 3290
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3291
				struct mem_cgroup *from, struct mem_cgroup *to)
3292 3293 3294
{
	return -EINVAL;
}
3295
#endif
K
KAMEZAWA Hiroyuki 已提交
3296

3297 3298 3299 3300 3301 3302
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3303 3304 3305 3306 3307
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3308
	if (likely(pc) && pc->mem_cgroup)
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
3326 3327
	if (pc)
		pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
3328 3329 3330
}
#endif

3331 3332
static DEFINE_MUTEX(memcg_limit_mutex);

3333
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3334
				   unsigned long limit)
3335
{
3336 3337 3338
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3339
	int retry_count;
3340
	int ret;
3341 3342 3343 3344 3345 3346

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
3347 3348
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
3349

3350
	oldusage = page_counter_read(&memcg->memory);
3351

3352
	do {
3353 3354 3355 3356
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3357 3358 3359 3360

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
3361
			ret = -EINVAL;
3362 3363
			break;
		}
3364 3365 3366 3367
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
3368 3369 3370 3371

		if (!ret)
			break;

3372 3373
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

3374
		curusage = page_counter_read(&memcg->memory);
3375
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3376
		if (curusage >= oldusage)
3377 3378 3379
			retry_count--;
		else
			oldusage = curusage;
3380 3381
	} while (retry_count);

3382 3383
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3384

3385 3386 3387
	return ret;
}

L
Li Zefan 已提交
3388
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3389
					 unsigned long limit)
3390
{
3391 3392 3393
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3394
	int retry_count;
3395
	int ret;
3396

3397
	/* see mem_cgroup_resize_res_limit */
3398 3399 3400 3401 3402 3403
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3404 3405 3406 3407
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3408 3409 3410 3411

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3412 3413 3414
			ret = -EINVAL;
			break;
		}
3415 3416 3417 3418
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3419 3420 3421 3422

		if (!ret)
			break;

3423 3424
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3425
		curusage = page_counter_read(&memcg->memsw);
3426
		/* Usage is reduced ? */
3427
		if (curusage >= oldusage)
3428
			retry_count--;
3429 3430
		else
			oldusage = curusage;
3431 3432
	} while (retry_count);

3433 3434
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3435

3436 3437 3438
	return ret;
}

3439 3440 3441 3442 3443 3444 3445 3446 3447
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3448
	unsigned long excess;
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3473
		spin_lock_irq(&mctz->lock);
3474
		__mem_cgroup_remove_exceeded(mz, mctz);
3475 3476 3477 3478 3479 3480

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3481 3482 3483
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3484
		excess = soft_limit_excess(mz->memcg);
3485 3486 3487 3488 3489 3490 3491 3492 3493
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3494
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3495
		spin_unlock_irq(&mctz->lock);
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3513 3514 3515 3516 3517 3518
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3519 3520
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3521 3522
	bool ret;

3523
	/*
3524 3525 3526 3527
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3528
	 */
3529 3530 3531 3532 3533 3534
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3535 3536
}

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3547 3548
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3549
	/* try to free all pages in this cgroup */
3550
	while (nr_retries && page_counter_read(&memcg->memory)) {
3551
		int progress;
3552

3553 3554 3555
		if (signal_pending(current))
			return -EINTR;

3556 3557
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3558
		if (!progress) {
3559
			nr_retries--;
3560
			/* maybe some writeback is necessary */
3561
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3562
		}
3563 3564

	}
3565 3566

	return 0;
3567 3568
}

3569 3570 3571
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3572
{
3573
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3574

3575 3576
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3577
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3578 3579
}

3580 3581
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3582
{
3583
	return mem_cgroup_from_css(css)->use_hierarchy;
3584 3585
}

3586 3587
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3588 3589
{
	int retval = 0;
3590
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3591
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3592

3593
	mutex_lock(&memcg_create_mutex);
3594 3595 3596 3597

	if (memcg->use_hierarchy == val)
		goto out;

3598
	/*
3599
	 * If parent's use_hierarchy is set, we can't make any modifications
3600 3601 3602 3603 3604 3605
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3606
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3607
				(val == 1 || val == 0)) {
3608
		if (!memcg_has_children(memcg))
3609
			memcg->use_hierarchy = val;
3610 3611 3612 3613
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3614 3615

out:
3616
	mutex_unlock(&memcg_create_mutex);
3617 3618 3619 3620

	return retval;
}

3621 3622
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3640 3641 3642 3643 3644 3645
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3646
		if (!swap)
3647
			val = page_counter_read(&memcg->memory);
3648
		else
3649
			val = page_counter_read(&memcg->memsw);
3650 3651 3652 3653
	}
	return val << PAGE_SHIFT;
}

3654 3655 3656 3657 3658 3659 3660
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3661

3662
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3663
			       struct cftype *cft)
B
Balbir Singh 已提交
3664
{
3665
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3666
	struct page_counter *counter;
3667

3668
	switch (MEMFILE_TYPE(cft->private)) {
3669
	case _MEM:
3670 3671
		counter = &memcg->memory;
		break;
3672
	case _MEMSWAP:
3673 3674
		counter = &memcg->memsw;
		break;
3675
	case _KMEM:
3676
		counter = &memcg->kmem;
3677
		break;
3678 3679 3680
	default:
		BUG();
	}
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3700
}
3701 3702

#ifdef CONFIG_MEMCG_KMEM
3703 3704
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3730
	mutex_lock(&memcg_create_mutex);
3731 3732
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3733 3734 3735 3736
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3737

3738
	memcg_id = memcg_alloc_cache_id();
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
3751
	err = page_counter_limit(&memcg->kmem, nr_pages);
3752 3753 3754 3755 3756 3757 3758 3759 3760
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
3761
out:
3762 3763 3764 3765 3766
	memcg_resume_kmem_account();
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3767
				   unsigned long limit)
3768 3769 3770
{
	int ret;

3771
	mutex_lock(&memcg_limit_mutex);
3772
	if (!memcg_kmem_is_active(memcg))
3773
		ret = memcg_activate_kmem(memcg, limit);
3774
	else
3775 3776
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3777 3778 3779
	return ret;
}

3780
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3781
{
3782
	int ret = 0;
3783
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3784

3785 3786
	if (!parent)
		return 0;
3787

3788
	mutex_lock(&memcg_limit_mutex);
3789
	/*
3790 3791
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3792
	 */
3793
	if (memcg_kmem_is_active(parent))
3794 3795
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3796
	return ret;
3797
}
3798 3799
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3800
				   unsigned long limit)
3801 3802 3803
{
	return -EINVAL;
}
3804
#endif /* CONFIG_MEMCG_KMEM */
3805

3806 3807 3808 3809
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3810 3811
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3812
{
3813
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3814
	unsigned long nr_pages;
3815 3816
	int ret;

3817
	buf = strstrip(buf);
3818 3819 3820
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3821

3822
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3823
	case RES_LIMIT:
3824 3825 3826 3827
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3828 3829 3830
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3831
			break;
3832 3833
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3834
			break;
3835 3836 3837 3838
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3839
		break;
3840 3841 3842
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3843 3844
		break;
	}
3845
	return ret ?: nbytes;
B
Balbir Singh 已提交
3846 3847
}

3848 3849
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3850
{
3851
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3852
	struct page_counter *counter;
3853

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3867

3868
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3869
	case RES_MAX_USAGE:
3870
		page_counter_reset_watermark(counter);
3871 3872
		break;
	case RES_FAILCNT:
3873
		counter->failcnt = 0;
3874
		break;
3875 3876
	default:
		BUG();
3877
	}
3878

3879
	return nbytes;
3880 3881
}

3882
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3883 3884
					struct cftype *cft)
{
3885
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3886 3887
}

3888
#ifdef CONFIG_MMU
3889
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3890 3891
					struct cftype *cft, u64 val)
{
3892
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3893 3894 3895

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3896

3897
	/*
3898 3899 3900 3901
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3902
	 */
3903
	memcg->move_charge_at_immigrate = val;
3904 3905
	return 0;
}
3906
#else
3907
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3908 3909 3910 3911 3912
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3913

3914
#ifdef CONFIG_NUMA
3915
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3916
{
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3929
	int nid;
3930
	unsigned long nr;
3931
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3932

3933 3934 3935 3936 3937 3938 3939 3940 3941
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3942 3943
	}

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3959 3960 3961 3962 3963 3964
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3965 3966 3967 3968 3969
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

3970
static int memcg_stat_show(struct seq_file *m, void *v)
3971
{
3972
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3973
	unsigned long memory, memsw;
3974 3975
	struct mem_cgroup *mi;
	unsigned int i;
3976

3977
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3978
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3979
			continue;
3980 3981
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3982
	}
L
Lee Schermerhorn 已提交
3983

3984 3985 3986 3987 3988 3989 3990 3991
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3992
	/* Hierarchical information */
3993 3994 3995 3996
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3997
	}
3998 3999 4000 4001 4002
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4003

4004 4005 4006
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4007
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4008
			continue;
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4029
	}
K
KAMEZAWA Hiroyuki 已提交
4030

K
KOSAKI Motohiro 已提交
4031 4032 4033 4034
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4035
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4036 4037 4038 4039 4040
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4041
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4042
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4043

4044 4045 4046 4047
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4048
			}
4049 4050 4051 4052
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4053 4054 4055
	}
#endif

4056 4057 4058
	return 0;
}

4059 4060
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4061
{
4062
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4063

4064
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4065 4066
}

4067 4068
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4069
{
4070
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4071

4072
	if (val > 100)
K
KOSAKI Motohiro 已提交
4073 4074
		return -EINVAL;

4075
	if (css->parent)
4076 4077 4078
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4079

K
KOSAKI Motohiro 已提交
4080 4081 4082
	return 0;
}

4083 4084 4085
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4086
	unsigned long usage;
4087 4088 4089 4090
	int i;

	rcu_read_lock();
	if (!swap)
4091
		t = rcu_dereference(memcg->thresholds.primary);
4092
	else
4093
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4094 4095 4096 4097

	if (!t)
		goto unlock;

4098
	usage = mem_cgroup_usage(memcg, swap);
4099 4100

	/*
4101
	 * current_threshold points to threshold just below or equal to usage.
4102 4103 4104
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4105
	i = t->current_threshold;
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4129
	t->current_threshold = i - 1;
4130 4131 4132 4133 4134 4135
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4136 4137 4138 4139 4140 4141 4142
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4143 4144 4145 4146 4147 4148 4149
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4150 4151 4152 4153 4154 4155 4156
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4157 4158
}

4159
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4160 4161 4162
{
	struct mem_cgroup_eventfd_list *ev;

4163 4164
	spin_lock(&memcg_oom_lock);

4165
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4166
		eventfd_signal(ev->eventfd, 1);
4167 4168

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4169 4170 4171
	return 0;
}

4172
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4173
{
K
KAMEZAWA Hiroyuki 已提交
4174 4175
	struct mem_cgroup *iter;

4176
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4177
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4178 4179
}

4180
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4181
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4182
{
4183 4184
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4185 4186
	unsigned long threshold;
	unsigned long usage;
4187
	int i, size, ret;
4188

4189
	ret = page_counter_memparse(args, &threshold);
4190 4191 4192 4193
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4194

4195
	if (type == _MEM) {
4196
		thresholds = &memcg->thresholds;
4197
		usage = mem_cgroup_usage(memcg, false);
4198
	} else if (type == _MEMSWAP) {
4199
		thresholds = &memcg->memsw_thresholds;
4200
		usage = mem_cgroup_usage(memcg, true);
4201
	} else
4202 4203 4204
		BUG();

	/* Check if a threshold crossed before adding a new one */
4205
	if (thresholds->primary)
4206 4207
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4208
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4209 4210

	/* Allocate memory for new array of thresholds */
4211
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4212
			GFP_KERNEL);
4213
	if (!new) {
4214 4215 4216
		ret = -ENOMEM;
		goto unlock;
	}
4217
	new->size = size;
4218 4219

	/* Copy thresholds (if any) to new array */
4220 4221
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4222
				sizeof(struct mem_cgroup_threshold));
4223 4224
	}

4225
	/* Add new threshold */
4226 4227
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4228 4229

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4230
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4231 4232 4233
			compare_thresholds, NULL);

	/* Find current threshold */
4234
	new->current_threshold = -1;
4235
	for (i = 0; i < size; i++) {
4236
		if (new->entries[i].threshold <= usage) {
4237
			/*
4238 4239
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4240 4241
			 * it here.
			 */
4242
			++new->current_threshold;
4243 4244
		} else
			break;
4245 4246
	}

4247 4248 4249 4250 4251
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4252

4253
	/* To be sure that nobody uses thresholds */
4254 4255 4256 4257 4258 4259 4260 4261
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4262
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4263 4264
	struct eventfd_ctx *eventfd, const char *args)
{
4265
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4266 4267
}

4268
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4269 4270
	struct eventfd_ctx *eventfd, const char *args)
{
4271
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4272 4273
}

4274
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4275
	struct eventfd_ctx *eventfd, enum res_type type)
4276
{
4277 4278
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4279
	unsigned long usage;
4280
	int i, j, size;
4281 4282

	mutex_lock(&memcg->thresholds_lock);
4283 4284

	if (type == _MEM) {
4285
		thresholds = &memcg->thresholds;
4286
		usage = mem_cgroup_usage(memcg, false);
4287
	} else if (type == _MEMSWAP) {
4288
		thresholds = &memcg->memsw_thresholds;
4289
		usage = mem_cgroup_usage(memcg, true);
4290
	} else
4291 4292
		BUG();

4293 4294 4295
	if (!thresholds->primary)
		goto unlock;

4296 4297 4298 4299
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4300 4301 4302
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4303 4304 4305
			size++;
	}

4306
	new = thresholds->spare;
4307

4308 4309
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4310 4311
		kfree(new);
		new = NULL;
4312
		goto swap_buffers;
4313 4314
	}

4315
	new->size = size;
4316 4317

	/* Copy thresholds and find current threshold */
4318 4319 4320
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4321 4322
			continue;

4323
		new->entries[j] = thresholds->primary->entries[i];
4324
		if (new->entries[j].threshold <= usage) {
4325
			/*
4326
			 * new->current_threshold will not be used
4327 4328 4329
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4330
			++new->current_threshold;
4331 4332 4333 4334
		}
		j++;
	}

4335
swap_buffers:
4336 4337
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4338 4339 4340 4341 4342 4343
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4344
	rcu_assign_pointer(thresholds->primary, new);
4345

4346
	/* To be sure that nobody uses thresholds */
4347
	synchronize_rcu();
4348
unlock:
4349 4350
	mutex_unlock(&memcg->thresholds_lock);
}
4351

4352
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4353 4354
	struct eventfd_ctx *eventfd)
{
4355
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4356 4357
}

4358
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4359 4360
	struct eventfd_ctx *eventfd)
{
4361
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4362 4363
}

4364
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4365
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4366 4367 4368 4369 4370 4371 4372
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4373
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4374 4375 4376 4377 4378

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4379
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4380
		eventfd_signal(eventfd, 1);
4381
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4382 4383 4384 4385

	return 0;
}

4386
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4387
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4388 4389 4390
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4391
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4392

4393
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4394 4395 4396 4397 4398 4399
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4400
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4401 4402
}

4403
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4404
{
4405
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4406

4407 4408
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4409 4410 4411
	return 0;
}

4412
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4413 4414
	struct cftype *cft, u64 val)
{
4415
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4416 4417

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4418
	if (!css->parent || !((val == 0) || (val == 1)))
4419 4420
		return -EINVAL;

4421
	memcg->oom_kill_disable = val;
4422
	if (!val)
4423
		memcg_oom_recover(memcg);
4424

4425 4426 4427
	return 0;
}

A
Andrew Morton 已提交
4428
#ifdef CONFIG_MEMCG_KMEM
4429
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4430
{
4431 4432
	int ret;

4433
	memcg->kmemcg_id = -1;
4434 4435 4436
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4437

4438
	return mem_cgroup_sockets_init(memcg, ss);
4439
}
4440

4441
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4442
{
4443
	mem_cgroup_sockets_destroy(memcg);
4444
}
4445
#else
4446
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4447 4448 4449
{
	return 0;
}
G
Glauber Costa 已提交
4450

4451 4452 4453
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4454 4455
#endif

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4469 4470 4471 4472 4473
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4474
static void memcg_event_remove(struct work_struct *work)
4475
{
4476 4477
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4478
	struct mem_cgroup *memcg = event->memcg;
4479 4480 4481

	remove_wait_queue(event->wqh, &event->wait);

4482
	event->unregister_event(memcg, event->eventfd);
4483 4484 4485 4486 4487 4488

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4489
	css_put(&memcg->css);
4490 4491 4492 4493 4494 4495 4496
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4497 4498
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4499
{
4500 4501
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4502
	struct mem_cgroup *memcg = event->memcg;
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4515
		spin_lock(&memcg->event_list_lock);
4516 4517 4518 4519 4520 4521 4522 4523
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4524
		spin_unlock(&memcg->event_list_lock);
4525 4526 4527 4528 4529
	}

	return 0;
}

4530
static void memcg_event_ptable_queue_proc(struct file *file,
4531 4532
		wait_queue_head_t *wqh, poll_table *pt)
{
4533 4534
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4535 4536 4537 4538 4539 4540

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4541 4542
 * DO NOT USE IN NEW FILES.
 *
4543 4544 4545 4546 4547
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4548 4549
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4550
{
4551
	struct cgroup_subsys_state *css = of_css(of);
4552
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4553
	struct mem_cgroup_event *event;
4554 4555 4556 4557
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4558
	const char *name;
4559 4560 4561
	char *endp;
	int ret;

4562 4563 4564
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4565 4566
	if (*endp != ' ')
		return -EINVAL;
4567
	buf = endp + 1;
4568

4569
	cfd = simple_strtoul(buf, &endp, 10);
4570 4571
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4572
	buf = endp + 1;
4573 4574 4575 4576 4577

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4578
	event->memcg = memcg;
4579
	INIT_LIST_HEAD(&event->list);
4580 4581 4582
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4608 4609 4610 4611 4612
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4613 4614
	 *
	 * DO NOT ADD NEW FILES.
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4628 4629
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4630 4631 4632 4633 4634
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4635
	/*
4636 4637 4638
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4639
	 */
4640 4641
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
4642
	ret = -EINVAL;
4643
	if (IS_ERR(cfile_css))
4644
		goto out_put_cfile;
4645 4646
	if (cfile_css != css) {
		css_put(cfile_css);
4647
		goto out_put_cfile;
4648
	}
4649

4650
	ret = event->register_event(memcg, event->eventfd, buf);
4651 4652 4653 4654 4655
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4656 4657 4658
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4659 4660 4661 4662

	fdput(cfile);
	fdput(efile);

4663
	return nbytes;
4664 4665

out_put_css:
4666
	css_put(css);
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4679 4680
static struct cftype mem_cgroup_files[] = {
	{
4681
		.name = "usage_in_bytes",
4682
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4683
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4684
	},
4685 4686
	{
		.name = "max_usage_in_bytes",
4687
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4688
		.write = mem_cgroup_reset,
4689
		.read_u64 = mem_cgroup_read_u64,
4690
	},
B
Balbir Singh 已提交
4691
	{
4692
		.name = "limit_in_bytes",
4693
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4694
		.write = mem_cgroup_write,
4695
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4696
	},
4697 4698 4699
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4700
		.write = mem_cgroup_write,
4701
		.read_u64 = mem_cgroup_read_u64,
4702
	},
B
Balbir Singh 已提交
4703 4704
	{
		.name = "failcnt",
4705
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4706
		.write = mem_cgroup_reset,
4707
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4708
	},
4709 4710
	{
		.name = "stat",
4711
		.seq_show = memcg_stat_show,
4712
	},
4713 4714
	{
		.name = "force_empty",
4715
		.write = mem_cgroup_force_empty_write,
4716
	},
4717 4718 4719 4720 4721
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4722
	{
4723
		.name = "cgroup.event_control",		/* XXX: for compat */
4724
		.write = memcg_write_event_control,
4725 4726 4727
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4728 4729 4730 4731 4732
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4733 4734 4735 4736 4737
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4738 4739
	{
		.name = "oom_control",
4740
		.seq_show = mem_cgroup_oom_control_read,
4741
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4742 4743
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4744 4745 4746
	{
		.name = "pressure_level",
	},
4747 4748 4749
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4750
		.seq_show = memcg_numa_stat_show,
4751 4752
	},
#endif
4753 4754 4755 4756
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4757
		.write = mem_cgroup_write,
4758
		.read_u64 = mem_cgroup_read_u64,
4759 4760 4761 4762
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4763
		.read_u64 = mem_cgroup_read_u64,
4764 4765 4766 4767
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4768
		.write = mem_cgroup_reset,
4769
		.read_u64 = mem_cgroup_read_u64,
4770 4771 4772 4773
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4774
		.write = mem_cgroup_reset,
4775
		.read_u64 = mem_cgroup_read_u64,
4776
	},
4777 4778 4779
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4780
		.seq_show = mem_cgroup_slabinfo_read,
4781 4782
	},
#endif
4783
#endif
4784
	{ },	/* terminate */
4785
};
4786

4787 4788 4789 4790 4791
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4792
		.read_u64 = mem_cgroup_read_u64,
4793 4794 4795 4796
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4797
		.write = mem_cgroup_reset,
4798
		.read_u64 = mem_cgroup_read_u64,
4799 4800 4801 4802
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4803
		.write = mem_cgroup_write,
4804
		.read_u64 = mem_cgroup_read_u64,
4805 4806 4807 4808
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4809
		.write = mem_cgroup_reset,
4810
		.read_u64 = mem_cgroup_read_u64,
4811 4812 4813 4814
	},
	{ },	/* terminate */
};
#endif
4815
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4816 4817
{
	struct mem_cgroup_per_node *pn;
4818
	struct mem_cgroup_per_zone *mz;
4819
	int zone, tmp = node;
4820 4821 4822 4823 4824 4825 4826 4827
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4828 4829
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4830
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4831 4832
	if (!pn)
		return 1;
4833 4834 4835

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4836
		lruvec_init(&mz->lruvec);
4837 4838
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4839
		mz->memcg = memcg;
4840
	}
4841
	memcg->nodeinfo[node] = pn;
4842 4843 4844
	return 0;
}

4845
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4846
{
4847
	kfree(memcg->nodeinfo[node]);
4848 4849
}

4850 4851
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4852
	struct mem_cgroup *memcg;
4853
	size_t size;
4854

4855 4856
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4857

4858
	memcg = kzalloc(size, GFP_KERNEL);
4859
	if (!memcg)
4860 4861
		return NULL;

4862 4863
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4864
		goto out_free;
4865 4866
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4867 4868

out_free:
4869
	kfree(memcg);
4870
	return NULL;
4871 4872
}

4873
/*
4874 4875 4876 4877 4878 4879 4880 4881
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4882
 */
4883 4884

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4885
{
4886
	int node;
4887

4888
	mem_cgroup_remove_from_trees(memcg);
4889 4890 4891 4892 4893 4894

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
4906
	disarm_static_keys(memcg);
4907
	kfree(memcg);
4908
}
4909

4910 4911 4912
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4913
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4914
{
4915
	if (!memcg->memory.parent)
4916
		return NULL;
4917
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4918
}
G
Glauber Costa 已提交
4919
EXPORT_SYMBOL(parent_mem_cgroup);
4920

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4944
static struct cgroup_subsys_state * __ref
4945
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4946
{
4947
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4948
	long error = -ENOMEM;
4949
	int node;
B
Balbir Singh 已提交
4950

4951 4952
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4953
		return ERR_PTR(error);
4954

B
Bob Liu 已提交
4955
	for_each_node(node)
4956
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4957
			goto free_out;
4958

4959
	/* root ? */
4960
	if (parent_css == NULL) {
4961
		root_mem_cgroup = memcg;
4962 4963 4964
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4965
	}
4966

4967 4968 4969 4970 4971
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4972
	vmpressure_init(&memcg->vmpressure);
4973 4974
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4975 4976 4977 4978 4979 4980 4981 4982 4983

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4984
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4985
{
4986
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4987
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4988
	int ret;
4989

4990
	if (css->id > MEM_CGROUP_ID_MAX)
4991 4992
		return -ENOSPC;

T
Tejun Heo 已提交
4993
	if (!parent)
4994 4995
		return 0;

4996
	mutex_lock(&memcg_create_mutex);
4997 4998 4999 5000 5001 5002

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5003 5004 5005
		page_counter_init(&memcg->memory, &parent->memory);
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5006

5007
		/*
5008 5009
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5010
		 */
5011
	} else {
5012 5013 5014
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5015 5016 5017 5018 5019
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5020
		if (parent != root_mem_cgroup)
5021
			memory_cgrp_subsys.broken_hierarchy = true;
5022
	}
5023
	mutex_unlock(&memcg_create_mutex);
5024

5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
5037 5038
}

5039
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5040
{
5041
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5042
	struct mem_cgroup_event *event, *tmp;
5043 5044 5045 5046 5047 5048

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5049 5050
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5051 5052 5053
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5054
	spin_unlock(&memcg->event_list_lock);
5055

5056
	memcg_unregister_all_caches(memcg);
5057
	vmpressure_cleanup(&memcg->vmpressure);
5058 5059
}

5060
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5061
{
5062
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5063

5064
	memcg_destroy_kmem(memcg);
5065
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5066 5067
}

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5085 5086 5087 5088
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
	memcg->soft_limit = 0;
5089 5090
}

5091
#ifdef CONFIG_MMU
5092
/* Handlers for move charge at task migration. */
5093
static int mem_cgroup_do_precharge(unsigned long count)
5094
{
5095
	int ret;
5096 5097

	/* Try a single bulk charge without reclaim first */
5098
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5099
	if (!ret) {
5100 5101 5102
		mc.precharge += count;
		return ret;
	}
5103
	if (ret == -EINTR) {
5104
		cancel_charge(root_mem_cgroup, count);
5105 5106
		return ret;
	}
5107 5108

	/* Try charges one by one with reclaim */
5109
	while (count--) {
5110
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5111 5112 5113
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5114 5115
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5116
		 */
5117
		if (ret == -EINTR)
5118
			cancel_charge(root_mem_cgroup, 1);
5119 5120
		if (ret)
			return ret;
5121
		mc.precharge++;
5122
		cond_resched();
5123
	}
5124
	return 0;
5125 5126 5127
}

/**
5128
 * get_mctgt_type - get target type of moving charge
5129 5130 5131
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5132
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5133 5134 5135 5136 5137 5138
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5139 5140 5141
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5142 5143 5144 5145 5146
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5147
	swp_entry_t	ent;
5148 5149 5150
};

enum mc_target_type {
5151
	MC_TARGET_NONE = 0,
5152
	MC_TARGET_PAGE,
5153
	MC_TARGET_SWAP,
5154 5155
};

D
Daisuke Nishimura 已提交
5156 5157
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5158
{
D
Daisuke Nishimura 已提交
5159
	struct page *page = vm_normal_page(vma, addr, ptent);
5160

D
Daisuke Nishimura 已提交
5161 5162 5163 5164
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5165
		if (!move_anon())
D
Daisuke Nishimura 已提交
5166
			return NULL;
5167 5168
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5169 5170 5171 5172 5173 5174 5175
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5176
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5177 5178 5179 5180 5181 5182 5183 5184
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5185 5186 5187 5188
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5189
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5190 5191 5192 5193 5194
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5195 5196 5197 5198 5199 5200 5201
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5202

5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5222 5223
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5236
#endif
5237 5238 5239
	return page;
}

5240
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5241 5242 5243 5244
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5245
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5246 5247 5248 5249 5250 5251
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5252 5253
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5254 5255

	if (!page && !ent.val)
5256
		return ret;
5257 5258 5259
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5260 5261 5262
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5263
		 */
5264
		if (pc->mem_cgroup == mc.from) {
5265 5266 5267 5268 5269 5270 5271
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5272 5273
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5274
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5275 5276 5277
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5278 5279 5280 5281
	}
	return ret;
}

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5296
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5297 5298 5299
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
5300
	if (pc->mem_cgroup == mc.from) {
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5317 5318 5319 5320 5321 5322 5323 5324
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5325
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5326 5327
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5328
		spin_unlock(ptl);
5329
		return 0;
5330
	}
5331

5332 5333
	if (pmd_trans_unstable(pmd))
		return 0;
5334 5335
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5336
		if (get_mctgt_type(vma, addr, *pte, NULL))
5337 5338 5339 5340
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5341 5342 5343
	return 0;
}

5344 5345 5346 5347 5348
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5349
	down_read(&mm->mmap_sem);
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5361
	up_read(&mm->mmap_sem);
5362 5363 5364 5365 5366 5367 5368 5369 5370

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5371 5372 5373 5374 5375
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5376 5377
}

5378 5379
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5380
{
5381 5382 5383
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5384
	/* we must uncharge all the leftover precharges from mc.to */
5385
	if (mc.precharge) {
5386
		cancel_charge(mc.to, mc.precharge);
5387 5388 5389 5390 5391 5392 5393
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5394
		cancel_charge(mc.from, mc.moved_charge);
5395
		mc.moved_charge = 0;
5396
	}
5397 5398 5399
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5400
		if (!mem_cgroup_is_root(mc.from))
5401
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5402

5403
		/*
5404 5405
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5406
		 */
5407
		if (!mem_cgroup_is_root(mc.to))
5408 5409
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5410
		css_put_many(&mc.from->css, mc.moved_swap);
5411

L
Li Zefan 已提交
5412
		/* we've already done css_get(mc.to) */
5413 5414
		mc.moved_swap = 0;
	}
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5430
	spin_lock(&mc.lock);
5431 5432
	mc.from = NULL;
	mc.to = NULL;
5433
	spin_unlock(&mc.lock);
5434
	mem_cgroup_end_move(from);
5435 5436
}

5437
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5438
				 struct cgroup_taskset *tset)
5439
{
5440
	struct task_struct *p = cgroup_taskset_first(tset);
5441
	int ret = 0;
5442
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5443
	unsigned long move_charge_at_immigrate;
5444

5445 5446 5447 5448 5449 5450 5451
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5452 5453 5454
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5455
		VM_BUG_ON(from == memcg);
5456 5457 5458 5459 5460

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5461 5462 5463 5464
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5465
			VM_BUG_ON(mc.moved_charge);
5466
			VM_BUG_ON(mc.moved_swap);
5467
			mem_cgroup_start_move(from);
5468
			spin_lock(&mc.lock);
5469
			mc.from = from;
5470
			mc.to = memcg;
5471
			mc.immigrate_flags = move_charge_at_immigrate;
5472
			spin_unlock(&mc.lock);
5473
			/* We set mc.moving_task later */
5474 5475 5476 5477

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5478 5479
		}
		mmput(mm);
5480 5481 5482 5483
	}
	return ret;
}

5484
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5485
				     struct cgroup_taskset *tset)
5486
{
5487 5488
	if (mc.to)
		mem_cgroup_clear_mc();
5489 5490
}

5491 5492 5493
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5494
{
5495 5496 5497 5498
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5499 5500 5501 5502
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5503

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5514
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5515
		if (mc.precharge < HPAGE_PMD_NR) {
5516
			spin_unlock(ptl);
5517 5518 5519 5520 5521 5522 5523 5524
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5525
							pc, mc.from, mc.to)) {
5526 5527 5528 5529 5530 5531 5532
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5533
		spin_unlock(ptl);
5534
		return 0;
5535 5536
	}

5537 5538
	if (pmd_trans_unstable(pmd))
		return 0;
5539 5540 5541 5542
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5543
		swp_entry_t ent;
5544 5545 5546 5547

		if (!mc.precharge)
			break;

5548
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5549 5550 5551 5552 5553
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5554
			if (!mem_cgroup_move_account(page, 1, pc,
5555
						     mc.from, mc.to)) {
5556
				mc.precharge--;
5557 5558
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5559 5560
			}
			putback_lru_page(page);
5561
put:			/* get_mctgt_type() gets the page */
5562 5563
			put_page(page);
			break;
5564 5565
		case MC_TARGET_SWAP:
			ent = target.ent;
5566
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5567
				mc.precharge--;
5568 5569 5570
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5571
			break;
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5586
		ret = mem_cgroup_do_precharge(1);
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5630
	up_read(&mm->mmap_sem);
5631 5632
}

5633
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5634
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5635
{
5636
	struct task_struct *p = cgroup_taskset_first(tset);
5637
	struct mm_struct *mm = get_task_mm(p);
5638 5639

	if (mm) {
5640 5641
		if (mc.to)
			mem_cgroup_move_charge(mm);
5642 5643
		mmput(mm);
	}
5644 5645
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5646
}
5647
#else	/* !CONFIG_MMU */
5648
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5649
				 struct cgroup_taskset *tset)
5650 5651 5652
{
	return 0;
}
5653
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5654
				     struct cgroup_taskset *tset)
5655 5656
{
}
5657
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5658
				 struct cgroup_taskset *tset)
5659 5660 5661
{
}
#endif
B
Balbir Singh 已提交
5662

5663 5664
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5665 5666
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5667
 */
5668
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5669 5670
{
	/*
5671
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5672 5673 5674
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5675
	if (cgroup_on_dfl(root_css->cgroup))
5676
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5677 5678
}

5679
struct cgroup_subsys memory_cgrp_subsys = {
5680
	.css_alloc = mem_cgroup_css_alloc,
5681
	.css_online = mem_cgroup_css_online,
5682 5683
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5684
	.css_reset = mem_cgroup_css_reset,
5685 5686
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5687
	.attach = mem_cgroup_move_task,
5688
	.bind = mem_cgroup_bind,
5689
	.legacy_cftypes = mem_cgroup_files,
5690
	.early_init = 0,
B
Balbir Singh 已提交
5691
};
5692

A
Andrew Morton 已提交
5693
#ifdef CONFIG_MEMCG_SWAP
5694 5695
static int __init enable_swap_account(char *s)
{
5696
	if (!strcmp(s, "1"))
5697
		really_do_swap_account = 1;
5698
	else if (!strcmp(s, "0"))
5699 5700 5701
		really_do_swap_account = 0;
	return 1;
}
5702
__setup("swapaccount=", enable_swap_account);
5703

5704 5705
static void __init memsw_file_init(void)
{
5706 5707
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5708 5709 5710 5711 5712 5713 5714 5715
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5716
}
5717

5718
#else
5719
static void __init enable_swap_cgroup(void)
5720 5721
{
}
5722
#endif
5723

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5734
	struct mem_cgroup *memcg;
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);
5745
	memcg = pc->mem_cgroup;
5746 5747

	/* Readahead page, never charged */
5748
	if (!memcg)
5749 5750
		return;

5751
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5752
	VM_BUG_ON_PAGE(oldid, page);
5753 5754
	mem_cgroup_swap_statistics(memcg, true);

5755
	pc->mem_cgroup = NULL;
5756 5757 5758 5759 5760 5761

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5762

5763 5764
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5785
		if (!mem_cgroup_is_root(memcg))
5786
			page_counter_uncharge(&memcg->memsw, 1);
5787 5788 5789 5790 5791 5792 5793
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5830
		if (pc->mem_cgroup)
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5891 5892
	commit_charge(page, memcg, lrucare);

5893 5894 5895 5896 5897
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5898 5899 5900 5901
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5943 5944 5945 5946
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5947
	unsigned long nr_pages = nr_anon + nr_file;
5948 5949
	unsigned long flags;

5950
	if (!mem_cgroup_is_root(memcg)) {
5951 5952 5953
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5954 5955
		memcg_oom_recover(memcg);
	}
5956 5957 5958 5959 5960 5961

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5962
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5963 5964
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5965 5966

	if (!mem_cgroup_is_root(memcg))
5967
		css_put_many(&memcg->css, nr_pages);
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
5992
		if (!pc->mem_cgroup)
5993 5994 5995 5996
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5997 5998
		 * pc->mem_cgroup at this point, we have fully
		 * exclusive access to the page.
5999 6000 6001 6002
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
6003 6004 6005
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

6021
		pc->mem_cgroup = NULL;
6022 6023 6024 6025 6026

		pgpgout++;
	} while (next != page_list);

	if (memcg)
6027 6028
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
6029 6030
}

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

6045
	/* Don't touch page->lru of any random page, pre-check: */
6046
	pc = lookup_page_cgroup(page);
6047
	if (!pc->mem_cgroup)
6048 6049
		return;

6050 6051 6052
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
6053

6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6065

6066 6067
	if (!list_empty(page_list))
		uncharge_list(page_list);
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
6083
	struct mem_cgroup *memcg;
6084 6085 6086 6087 6088 6089 6090 6091
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6092 6093
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6094 6095 6096 6097 6098 6099

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
6100
	if (pc->mem_cgroup)
6101 6102
		return;

6103 6104 6105 6106 6107 6108
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
6109
	pc = lookup_page_cgroup(oldpage);
6110 6111
	memcg = pc->mem_cgroup;
	if (!memcg)
6112 6113 6114 6115 6116
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

6117
	pc->mem_cgroup = NULL;
6118 6119 6120 6121

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6122
	commit_charge(newpage, memcg, lrucare);
6123 6124
}

6125
/*
6126 6127 6128 6129 6130 6131
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6132 6133 6134 6135
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6136
	enable_swap_cgroup();
6137
	mem_cgroup_soft_limit_tree_init();
6138
	memcg_stock_init();
6139 6140 6141
	return 0;
}
subsys_initcall(mem_cgroup_init);