memcontrol.c 176.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359
#if defined(CONFIG_MEMCG_KMEM)
360 361
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
362 363 364 365
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
366 367 368 369 370 371 372

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
373

374 375 376 377
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

378 379
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
380 381
};

382 383
/* internal only representation about the status of kmem accounting. */
enum {
384
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 387 388 389 390 391 392
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
393 394 395 396 397 398 399 400

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
401 402 403 404 405
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
406 407 408 409 410 411 412 413 414
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
415 416
#endif

417 418
/* Stuffs for move charges at task migration. */
/*
419 420
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 422
 */
enum move_type {
423
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 426 427
	NR_MOVE_TYPE,
};

428 429
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
430
	spinlock_t	  lock; /* for from, to */
431 432
	struct mem_cgroup *from;
	struct mem_cgroup *to;
433
	unsigned long immigrate_flags;
434
	unsigned long precharge;
435
	unsigned long moved_charge;
436
	unsigned long moved_swap;
437 438 439
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
440
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 442
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
443

D
Daisuke Nishimura 已提交
444 445
static bool move_anon(void)
{
446
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
447 448
}

449 450
static bool move_file(void)
{
451
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 453
}

454 455 456 457
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
458
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460

461 462
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
464
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 467 468
	NR_CHARGE_TYPE,
};

469
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
470 471 472 473
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
474
	_KMEM,
G
Glauber Costa 已提交
475 476
};

477 478
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
480 481
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
482

483 484 485 486 487 488 489 490
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

491 492 493 494 495 496 497
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

498 499
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
500
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

516 517 518 519 520
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

521 522 523 524 525 526
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
527 528
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
529
	return memcg->css.id;
L
Li Zefan 已提交
530 531 532 533 534 535
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

536
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
537 538 539
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
540
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
541
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
542 543 544

void sock_update_memcg(struct sock *sk)
{
545
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
546
		struct mem_cgroup *memcg;
547
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
548 549 550

		BUG_ON(!sk->sk_prot->proto_cgroup);

551 552 553 554 555 556 557 558 559 560
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561
			css_get(&sk->sk_cgrp->memcg->css);
562 563 564
			return;
		}

G
Glauber Costa 已提交
565 566
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
567
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
568
		if (!mem_cgroup_is_root(memcg) &&
569 570
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
571
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
572 573 574 575 576 577 578 579
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
580
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
581 582 583
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
584
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
585 586
	}
}
G
Glauber Costa 已提交
587 588 589 590 591 592

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

593
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
594 595
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
596

597 598
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
599
	if (!memcg_proto_activated(&memcg->tcp_mem))
600 601 602 603 604 605 606 607 608
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

609
#ifdef CONFIG_MEMCG_KMEM
610 611
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
612 613 614 615 616
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
617 618 619 620 621 622
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
623 624
int memcg_limited_groups_array_size;

625 626 627 628 629 630
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
631
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 633
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
634
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 636 637
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
638
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639

640 641 642 643 644 645
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
646
struct static_key memcg_kmem_enabled_key;
647
EXPORT_SYMBOL(memcg_kmem_enabled_key);
648 649 650

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
651
	if (memcg_kmem_is_active(memcg)) {
652
		static_key_slow_dec(&memcg_kmem_enabled_key);
653 654
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
655 656 657 658 659
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 661 662 663 664 665 666 667 668 669 670 671 672
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

673
static void drain_all_stock_async(struct mem_cgroup *memcg);
674

675
static struct mem_cgroup_per_zone *
676
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677
{
678 679 680
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

681
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 683
}

684
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685
{
686
	return &memcg->css;
687 688
}

689
static struct mem_cgroup_per_zone *
690
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691
{
692 693
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
694

695
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 697
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

713 714 715
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
					 unsigned long long new_usage_in_excess)
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

745 746
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
747 748 749 750 751 752 753
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

754 755
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
756
{
757 758 759
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
760
	__mem_cgroup_remove_exceeded(mz, mctz);
761
	spin_unlock_irqrestore(&mctz->lock, flags);
762 763 764 765 766 767 768 769 770
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

771
	mctz = soft_limit_tree_from_page(page);
772 773 774 775 776
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
777
		mz = mem_cgroup_page_zoneinfo(memcg, page);
778 779 780 781 782 783
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
784 785 786
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
787 788
			/* if on-tree, remove it */
			if (mz->on_tree)
789
				__mem_cgroup_remove_exceeded(mz, mctz);
790 791 792 793
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
794
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
795
			spin_unlock_irqrestore(&mctz->lock, flags);
796 797 798 799 800 801 802
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
803 804
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
805

806 807 808 809
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
810
			mem_cgroup_remove_exceeded(mz, mctz);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
833
	__mem_cgroup_remove_exceeded(mz, mctz);
834
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
835
	    !css_tryget_online(&mz->memcg->css))
836 837 838 839 840 841 842 843 844 845
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

846
	spin_lock_irq(&mctz->lock);
847
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
848
	spin_unlock_irq(&mctz->lock);
849 850 851
	return mz;
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
871
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
872
				 enum mem_cgroup_stat_index idx)
873
{
874
	long val = 0;
875 876
	int cpu;

877 878
	get_online_cpus();
	for_each_online_cpu(cpu)
879
		val += per_cpu(memcg->stat->count[idx], cpu);
880
#ifdef CONFIG_HOTPLUG_CPU
881 882 883
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
884 885
#endif
	put_online_cpus();
886 887 888
	return val;
}

889
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
890 891 892 893 894
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

895
	get_online_cpus();
896
	for_each_online_cpu(cpu)
897
		val += per_cpu(memcg->stat->events[idx], cpu);
898
#ifdef CONFIG_HOTPLUG_CPU
899 900 901
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
902
#endif
903
	put_online_cpus();
904 905 906
	return val;
}

907
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
908
					 struct page *page,
909
					 int nr_pages)
910
{
911 912 913 914
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
915
	if (PageAnon(page))
916
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
917
				nr_pages);
918
	else
919
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
920
				nr_pages);
921

922 923 924 925
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

926 927
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
928
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
929
	else {
930
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
931 932
		nr_pages = -nr_pages; /* for event */
	}
933

934
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
935 936
}

937
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
938 939 940 941 942 943 944
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

945 946 947
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
948
{
949
	unsigned long nr = 0;
950 951
	int zid;

952
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
953

954 955 956 957 958 959 960 961 962 963 964 965
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
966
}
967

968
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
969
			unsigned int lru_mask)
970
{
971
	unsigned long nr = 0;
972
	int nid;
973

974
	for_each_node_state(nid, N_MEMORY)
975 976
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
977 978
}

979 980
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
981 982 983
{
	unsigned long val, next;

984
	val = __this_cpu_read(memcg->stat->nr_page_events);
985
	next = __this_cpu_read(memcg->stat->targets[target]);
986
	/* from time_after() in jiffies.h */
987 988 989 990 991
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
992 993 994
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
995 996 997 998 999 1000 1001 1002
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1003
	}
1004
	return false;
1005 1006 1007 1008 1009 1010
}

/*
 * Check events in order.
 *
 */
1011
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1012 1013
{
	/* threshold event is triggered in finer grain than soft limit */
1014 1015
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1016
		bool do_softlimit;
1017
		bool do_numainfo __maybe_unused;
1018

1019 1020
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1021 1022 1023 1024
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
1025
		mem_cgroup_threshold(memcg);
1026 1027
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1028
#if MAX_NUMNODES > 1
1029
		if (unlikely(do_numainfo))
1030
			atomic_inc(&memcg->numainfo_events);
1031
#endif
1032
	}
1033 1034
}

1035
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1036
{
1037 1038 1039 1040 1041 1042 1043 1044
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1045
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1046 1047
}

1048
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1049
{
1050
	struct mem_cgroup *memcg = NULL;
1051

1052 1053
	rcu_read_lock();
	do {
1054 1055 1056 1057 1058 1059
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1060
			memcg = root_mem_cgroup;
1061 1062 1063 1064 1065
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1066
	} while (!css_tryget_online(&memcg->css));
1067
	rcu_read_unlock();
1068
	return memcg;
1069 1070
}

1071 1072 1073 1074 1075 1076 1077
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1078
		struct mem_cgroup *last_visited)
1079
{
1080
	struct cgroup_subsys_state *prev_css, *next_css;
1081

1082
	prev_css = last_visited ? &last_visited->css : NULL;
1083
skip_node:
1084
	next_css = css_next_descendant_pre(prev_css, &root->css);
1085 1086 1087 1088 1089 1090 1091

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1092 1093 1094 1095 1096 1097 1098 1099
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1100
	 */
1101
	if (next_css) {
1102
		if ((next_css == &root->css) ||
1103 1104
		    ((next_css->flags & CSS_ONLINE) &&
		     css_tryget_online(next_css)))
1105
			return mem_cgroup_from_css(next_css);
1106 1107 1108

		prev_css = next_css;
		goto skip_node;
1109 1110 1111 1112 1113
	}

	return NULL;
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1142 1143 1144 1145 1146 1147 1148 1149

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
1150
		    !css_tryget_online(&position->css))
1151 1152 1153 1154 1155 1156 1157 1158
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1159
				   struct mem_cgroup *root,
1160 1161
				   int sequence)
{
1162 1163
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1193
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1194
				   struct mem_cgroup *prev,
1195
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1196
{
1197
	struct mem_cgroup *memcg = NULL;
1198
	struct mem_cgroup *last_visited = NULL;
1199

1200 1201
	if (mem_cgroup_disabled())
		return NULL;
1202

1203 1204
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1205

1206
	if (prev && !reclaim)
1207
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1208

1209 1210
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1211
			goto out_css_put;
1212
		return root;
1213
	}
K
KAMEZAWA Hiroyuki 已提交
1214

1215
	rcu_read_lock();
1216
	while (!memcg) {
1217
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1218
		int uninitialized_var(seq);
1219

1220 1221 1222
		if (reclaim) {
			struct mem_cgroup_per_zone *mz;

1223
			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1224
			iter = &mz->reclaim_iter[reclaim->priority];
1225
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1226
				iter->last_visited = NULL;
1227 1228
				goto out_unlock;
			}
M
Michal Hocko 已提交
1229

1230
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1231
		}
K
KAMEZAWA Hiroyuki 已提交
1232

1233
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1234

1235
		if (reclaim) {
1236 1237
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1238

M
Michal Hocko 已提交
1239
			if (!memcg)
1240 1241 1242 1243
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1244

1245
		if (prev && !memcg)
1246
			goto out_unlock;
1247
	}
1248 1249
out_unlock:
	rcu_read_unlock();
1250 1251 1252 1253
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1254
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1255
}
K
KAMEZAWA Hiroyuki 已提交
1256

1257 1258 1259 1260 1261 1262 1263
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1264 1265 1266 1267 1268 1269
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1270

1271 1272 1273 1274 1275 1276
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1277
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1278
	     iter != NULL;				\
1279
	     iter = mem_cgroup_iter(root, iter, NULL))
1280

1281
#define for_each_mem_cgroup(iter)			\
1282
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1283
	     iter != NULL;				\
1284
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1285

1286
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1287
{
1288
	struct mem_cgroup *memcg;
1289 1290

	rcu_read_lock();
1291 1292
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1293 1294 1295 1296
		goto out;

	switch (idx) {
	case PGFAULT:
1297 1298 1299 1300
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1301 1302 1303 1304 1305 1306 1307
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1308
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1309

1310 1311 1312
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1313
 * @memcg: memcg of the wanted lruvec
1314 1315 1316 1317 1318 1319 1320 1321 1322
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1323
	struct lruvec *lruvec;
1324

1325 1326 1327 1328
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1329

1330
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1341 1342 1343
}

/**
1344
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1345
 * @page: the page
1346
 * @zone: zone of the page
1347
 */
1348
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1349 1350
{
	struct mem_cgroup_per_zone *mz;
1351 1352
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1353
	struct lruvec *lruvec;
1354

1355 1356 1357 1358
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1359

K
KAMEZAWA Hiroyuki 已提交
1360
	pc = lookup_page_cgroup(page);
1361
	memcg = pc->mem_cgroup;
1362 1363

	/*
1364
	 * Surreptitiously switch any uncharged offlist page to root:
1365 1366 1367 1368 1369 1370 1371
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1372
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1373 1374
		pc->mem_cgroup = memcg = root_mem_cgroup;

1375
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1386
}
1387

1388
/**
1389 1390 1391 1392
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1393
 *
1394 1395
 * This function must be called when a page is added to or removed from an
 * lru list.
1396
 */
1397 1398
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1399 1400
{
	struct mem_cgroup_per_zone *mz;
1401
	unsigned long *lru_size;
1402 1403 1404 1405

	if (mem_cgroup_disabled())
		return;

1406 1407 1408 1409
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1410
}
1411

1412
/*
1413
 * Checks whether given mem is same or in the root_mem_cgroup's
1414 1415
 * hierarchy subtree
 */
1416 1417
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1418
{
1419 1420
	if (root_memcg == memcg)
		return true;
1421
	if (!root_memcg->use_hierarchy || !memcg)
1422
		return false;
1423
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1424 1425 1426 1427 1428 1429 1430
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1431
	rcu_read_lock();
1432
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1433 1434
	rcu_read_unlock();
	return ret;
1435 1436
}

1437 1438
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1439
{
1440
	struct mem_cgroup *curr = NULL;
1441
	struct task_struct *p;
1442
	bool ret;
1443

1444
	p = find_lock_task_mm(task);
1445
	if (p) {
1446
		curr = get_mem_cgroup_from_mm(p->mm);
1447 1448 1449 1450 1451 1452 1453
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1454
		rcu_read_lock();
1455 1456 1457
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1458
		rcu_read_unlock();
1459
	}
1460
	/*
1461
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1462
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1463 1464
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1465
	 */
1466
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1467
	css_put(&curr->css);
1468 1469 1470
	return ret;
}

1471
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1472
{
1473
	unsigned long inactive_ratio;
1474
	unsigned long inactive;
1475
	unsigned long active;
1476
	unsigned long gb;
1477

1478 1479
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1480

1481 1482 1483 1484 1485 1486
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1487
	return inactive * inactive_ratio < active;
1488 1489
}

1490 1491 1492
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1493
/**
1494
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1495
 * @memcg: the memory cgroup
1496
 *
1497
 * Returns the maximum amount of memory @mem can be charged with, in
1498
 * pages.
1499
 */
1500
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1501
{
1502 1503
	unsigned long long margin;

1504
	margin = res_counter_margin(&memcg->res);
1505
	if (do_swap_account)
1506
		margin = min(margin, res_counter_margin(&memcg->memsw));
1507
	return margin >> PAGE_SHIFT;
1508 1509
}

1510
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1511 1512
{
	/* root ? */
1513
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1514 1515
		return vm_swappiness;

1516
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1533 1534 1535 1536

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1537
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1538
{
1539
	atomic_inc(&memcg_moving);
1540
	atomic_inc(&memcg->moving_account);
1541 1542 1543
	synchronize_rcu();
}

1544
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1545
{
1546 1547 1548 1549
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1550 1551
	if (memcg) {
		atomic_dec(&memcg_moving);
1552
		atomic_dec(&memcg->moving_account);
1553
	}
1554
}
1555

1556
/*
Q
Qiang Huang 已提交
1557
 * A routine for checking "mem" is under move_account() or not.
1558
 *
Q
Qiang Huang 已提交
1559 1560 1561
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1562
 */
1563
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1564
{
1565 1566
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1567
	bool ret = false;
1568 1569 1570 1571 1572 1573 1574 1575 1576
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1577

1578 1579
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1580 1581
unlock:
	spin_unlock(&mc.lock);
1582 1583 1584
	return ret;
}

1585
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1586 1587
{
	if (mc.moving_task && current != mc.moving_task) {
1588
		if (mem_cgroup_under_move(memcg)) {
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1618
#define K(x) ((x) << (PAGE_SHIFT-10))
1619
/**
1620
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1621 1622 1623 1624 1625 1626 1627 1628
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1629
	/* oom_info_lock ensures that parallel ooms do not interleave */
1630
	static DEFINE_MUTEX(oom_info_lock);
1631 1632
	struct mem_cgroup *iter;
	unsigned int i;
1633

1634
	if (!p)
1635 1636
		return;

1637
	mutex_lock(&oom_info_lock);
1638 1639
	rcu_read_lock();

T
Tejun Heo 已提交
1640 1641 1642 1643 1644
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1645 1646 1647

	rcu_read_unlock();

1648
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1649 1650 1651
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1652
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1653 1654 1655
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1656
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1657 1658 1659
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1660 1661

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1662 1663
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1679
	mutex_unlock(&oom_info_lock);
1680 1681
}

1682 1683 1684 1685
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1686
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1687 1688
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1689 1690
	struct mem_cgroup *iter;

1691
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1692
		num++;
1693 1694 1695
	return num;
}

D
David Rientjes 已提交
1696 1697 1698
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1699
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1700 1701 1702
{
	u64 limit;

1703 1704
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1705
	/*
1706
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1707
	 */
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1722 1723
}

1724 1725
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1726 1727 1728 1729 1730 1731 1732
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1733
	/*
1734 1735 1736
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1737
	 */
1738
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1739 1740 1741 1742 1743
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1744 1745
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1746
		struct css_task_iter it;
1747 1748
		struct task_struct *task;

1749 1750
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1763
				css_task_iter_end(&it);
1764 1765 1766 1767 1768 1769 1770 1771
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1784
		}
1785
		css_task_iter_end(&it);
1786 1787 1788 1789 1790 1791 1792 1793 1794
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1831 1832
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1833
 * @memcg: the target memcg
1834 1835 1836 1837 1838 1839 1840
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1841
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1842 1843
		int nid, bool noswap)
{
1844
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1845 1846 1847
		return true;
	if (noswap || !total_swap_pages)
		return false;
1848
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1849 1850 1851 1852
		return true;
	return false;

}
1853
#if MAX_NUMNODES > 1
1854 1855 1856 1857 1858 1859 1860

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1861
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1862 1863
{
	int nid;
1864 1865 1866 1867
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1868
	if (!atomic_read(&memcg->numainfo_events))
1869
		return;
1870
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1871 1872 1873
		return;

	/* make a nodemask where this memcg uses memory from */
1874
	memcg->scan_nodes = node_states[N_MEMORY];
1875

1876
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1877

1878 1879
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1880
	}
1881

1882 1883
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1898
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1899 1900 1901
{
	int node;

1902 1903
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1904

1905
	node = next_node(node, memcg->scan_nodes);
1906
	if (node == MAX_NUMNODES)
1907
		node = first_node(memcg->scan_nodes);
1908 1909 1910 1911 1912 1913 1914 1915 1916
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1917
	memcg->last_scanned_node = node;
1918 1919 1920
	return node;
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1956
#else
1957
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1958 1959 1960
{
	return 0;
}
1961

1962 1963 1964 1965
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1966 1967
#endif

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2016
	}
2017 2018
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2019 2020
}

2021 2022 2023 2024 2025 2026
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2027 2028
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2029 2030 2031 2032
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2033
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2034
{
2035
	struct mem_cgroup *iter, *failed = NULL;
2036

2037 2038
	spin_lock(&memcg_oom_lock);

2039
	for_each_mem_cgroup_tree(iter, memcg) {
2040
		if (iter->oom_lock) {
2041 2042 2043 2044 2045
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2046 2047
			mem_cgroup_iter_break(memcg, iter);
			break;
2048 2049
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2050
	}
K
KAMEZAWA Hiroyuki 已提交
2051

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2063
		}
2064 2065
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2066 2067 2068 2069

	spin_unlock(&memcg_oom_lock);

	return !failed;
2070
}
2071

2072
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2073
{
K
KAMEZAWA Hiroyuki 已提交
2074 2075
	struct mem_cgroup *iter;

2076
	spin_lock(&memcg_oom_lock);
2077
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2078
	for_each_mem_cgroup_tree(iter, memcg)
2079
		iter->oom_lock = false;
2080
	spin_unlock(&memcg_oom_lock);
2081 2082
}

2083
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2084 2085 2086
{
	struct mem_cgroup *iter;

2087
	for_each_mem_cgroup_tree(iter, memcg)
2088 2089 2090
		atomic_inc(&iter->under_oom);
}

2091
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2092 2093 2094
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2095 2096 2097 2098 2099
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2100
	for_each_mem_cgroup_tree(iter, memcg)
2101
		atomic_add_unless(&iter->under_oom, -1, 0);
2102 2103
}

K
KAMEZAWA Hiroyuki 已提交
2104 2105
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2106
struct oom_wait_info {
2107
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2108 2109 2110 2111 2112 2113
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2114 2115
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2116 2117 2118
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2119
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2120 2121

	/*
2122
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2123 2124
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2125 2126
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2127 2128 2129 2130
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2131
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2132
{
2133
	atomic_inc(&memcg->oom_wakeups);
2134 2135
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2136 2137
}

2138
static void memcg_oom_recover(struct mem_cgroup *memcg)
2139
{
2140 2141
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2142 2143
}

2144
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2145
{
2146 2147
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2148
	/*
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2161
	 */
2162 2163 2164 2165
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2166 2167 2168 2169
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2170
 * @handle: actually kill/wait or just clean up the OOM state
2171
 *
2172 2173
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2174
 *
2175
 * Memcg supports userspace OOM handling where failed allocations must
2176 2177 2178 2179
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2180
 * the end of the page fault to complete the OOM handling.
2181 2182
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2183
 * completed, %false otherwise.
2184
 */
2185
bool mem_cgroup_oom_synchronize(bool handle)
2186
{
2187
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2188
	struct oom_wait_info owait;
2189
	bool locked;
2190 2191 2192

	/* OOM is global, do not handle */
	if (!memcg)
2193
		return false;
2194

2195 2196
	if (!handle)
		goto cleanup;
2197 2198 2199 2200 2201 2202

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2203

2204
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2218
		schedule();
2219 2220 2221 2222 2223
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2224 2225 2226 2227 2228 2229 2230 2231
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2232 2233
cleanup:
	current->memcg_oom.memcg = NULL;
2234
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2235
	return true;
2236 2237
}

2238
/*
2239
 * Used to update mapped file or writeback or other statistics.
2240 2241 2242
 *
 * Notes: Race condition
 *
2243 2244 2245
 * Charging occurs during page instantiation, while the page is
 * unmapped and locked in page migration, or while the page table is
 * locked in THP migration.  No race is possible.
2246
 *
2247
 * Uncharge happens to pages with zero references, no race possible.
2248
 *
2249 2250
 * Charge moving between groups is protected by checking mm->moving
 * account and taking the move_lock in the slowpath.
2251
 */
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2266
	 * need to take move_lock_mem_cgroup(). Because we already hold
2267
	 * rcu_read_lock(), any calls to move_account will be delayed until
Q
Qiang Huang 已提交
2268
	 * rcu_read_unlock().
2269
	 */
Q
Qiang Huang 已提交
2270 2271
	VM_BUG_ON(!rcu_read_lock_held());
	if (atomic_read(&memcg->moving_account) <= 0)
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2289
	 * should take move_lock_mem_cgroup().
2290 2291 2292 2293
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2294
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2295
				 enum mem_cgroup_stat_index idx, int val)
2296
{
2297
	struct mem_cgroup *memcg;
2298
	struct page_cgroup *pc = lookup_page_cgroup(page);
2299
	unsigned long uninitialized_var(flags);
2300

2301
	if (mem_cgroup_disabled())
2302
		return;
2303

2304
	VM_BUG_ON(!rcu_read_lock_held());
2305 2306
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2307
		return;
2308

2309
	this_cpu_add(memcg->stat->count[idx], val);
2310
}
2311

2312 2313 2314 2315
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2316
#define CHARGE_BATCH	32U
2317 2318
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2319
	unsigned int nr_pages;
2320
	struct work_struct work;
2321
	unsigned long flags;
2322
#define FLUSHING_CACHED_CHARGE	0
2323 2324
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2325
static DEFINE_MUTEX(percpu_charge_mutex);
2326

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2337
 */
2338
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2339 2340 2341 2342
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2343 2344 2345
	if (nr_pages > CHARGE_BATCH)
		return false;

2346
	stock = &get_cpu_var(memcg_stock);
2347 2348
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2362 2363 2364 2365
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2366
		if (do_swap_account)
2367 2368
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2379
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2380
	drain_stock(stock);
2381
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2382 2383
}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2395 2396
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2397
 * This will be consumed by consume_stock() function, later.
2398
 */
2399
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2400 2401 2402
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2403
	if (stock->cached != memcg) { /* reset if necessary */
2404
		drain_stock(stock);
2405
		stock->cached = memcg;
2406
	}
2407
	stock->nr_pages += nr_pages;
2408 2409 2410 2411
	put_cpu_var(memcg_stock);
}

/*
2412
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2413 2414
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2415
 */
2416
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2417
{
2418
	int cpu, curcpu;
2419

2420 2421
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2422
	curcpu = get_cpu();
2423 2424
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2425
		struct mem_cgroup *memcg;
2426

2427 2428
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2429
			continue;
2430
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2431
			continue;
2432 2433 2434 2435 2436 2437
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2438
	}
2439
	put_cpu();
2440 2441 2442 2443 2444 2445

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2446
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2447 2448 2449
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2450
	put_online_cpus();
2451 2452 2453 2454 2455 2456 2457 2458
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2459
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2460
{
2461 2462 2463 2464 2465
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2466
	drain_all_stock(root_memcg, false);
2467
	mutex_unlock(&percpu_charge_mutex);
2468 2469 2470
}

/* This is a synchronous drain interface. */
2471
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2472 2473
{
	/* called when force_empty is called */
2474
	mutex_lock(&percpu_charge_mutex);
2475
	drain_all_stock(root_memcg, true);
2476
	mutex_unlock(&percpu_charge_mutex);
2477 2478
}

2479 2480 2481 2482
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2483
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2484 2485 2486
{
	int i;

2487
	spin_lock(&memcg->pcp_counter_lock);
2488
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2489
		long x = per_cpu(memcg->stat->count[i], cpu);
2490

2491 2492
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2493
	}
2494
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2495
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2496

2497 2498
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2499
	}
2500
	spin_unlock(&memcg->pcp_counter_lock);
2501 2502
}

2503
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2504 2505 2506 2507 2508
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2509
	struct mem_cgroup *iter;
2510

2511
	if (action == CPU_ONLINE)
2512 2513
		return NOTIFY_OK;

2514
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2515
		return NOTIFY_OK;
2516

2517
	for_each_mem_cgroup(iter)
2518 2519
		mem_cgroup_drain_pcp_counter(iter, cpu);

2520 2521 2522 2523 2524
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2525 2526
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2527
{
2528
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2529
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2530 2531 2532 2533 2534
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long nr_reclaimed;
	unsigned long flags = 0;
	unsigned long long size;
2535
	int ret = 0;
2536

2537
retry:
2538 2539
	if (consume_stock(memcg, nr_pages))
		goto done;
2540

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	size = batch * PAGE_SIZE;
	if (!res_counter_charge(&memcg->res, size, &fail_res)) {
		if (!do_swap_account)
			goto done_restock;
		if (!res_counter_charge(&memcg->memsw, size, &fail_res))
			goto done_restock;
		res_counter_uncharge(&memcg->res, size);
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2552

2553 2554 2555 2556
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2557

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2572 2573
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2574

2575 2576
	nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);

2577
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2578
		goto retry;
2579 2580 2581

	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2582 2583 2584 2585 2586 2587 2588 2589 2590
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2591
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2592 2593 2594 2595 2596 2597 2598 2599
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2600 2601 2602
	if (nr_retries--)
		goto retry;

2603 2604 2605
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2606 2607 2608
	if (fatal_signal_pending(current))
		goto bypass;

2609
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2610
nomem:
2611
	if (!(gfp_mask & __GFP_NOFAIL))
2612
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2613
bypass:
2614 2615 2616
	memcg = root_mem_cgroup;
	ret = -EINTR;
	goto retry;
2617 2618 2619 2620 2621

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2622
	return ret;
2623
}
2624

2625
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2626
{
2627
	unsigned long bytes = nr_pages * PAGE_SIZE;
2628

2629 2630 2631
	res_counter_uncharge(&memcg->res, bytes);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, bytes);
2632 2633
}

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2649 2650
/*
 * A helper function to get mem_cgroup from ID. must be called under
2651 2652 2653
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2654 2655 2656 2657 2658 2659
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2660
	return mem_cgroup_from_id(id);
2661 2662
}

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2673
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2674
{
2675
	struct mem_cgroup *memcg = NULL;
2676
	struct page_cgroup *pc;
2677
	unsigned short id;
2678 2679
	swp_entry_t ent;

2680
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2681 2682

	pc = lookup_page_cgroup(page);
2683
	if (PageCgroupUsed(pc)) {
2684
		memcg = pc->mem_cgroup;
2685
		if (memcg && !css_tryget_online(&memcg->css))
2686
			memcg = NULL;
2687
	} else if (PageSwapCache(page)) {
2688
		ent.val = page_private(page);
2689
		id = lookup_swap_cgroup_id(ent);
2690
		rcu_read_lock();
2691
		memcg = mem_cgroup_lookup(id);
2692
		if (memcg && !css_tryget_online(&memcg->css))
2693
			memcg = NULL;
2694
		rcu_read_unlock();
2695
	}
2696
	return memcg;
2697 2698
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2730
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2731
			  unsigned int nr_pages, bool lrucare)
2732
{
2733
	struct page_cgroup *pc = lookup_page_cgroup(page);
2734
	int isolated;
2735

2736
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2737 2738 2739 2740
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2741 2742 2743 2744 2745

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2746 2747
	if (lrucare)
		lock_page_lru(page, &isolated);
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	/*
	 * Nobody should be changing or seriously looking at
	 * pc->mem_cgroup and pc->flags at this point:
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2763
	pc->mem_cgroup = memcg;
2764
	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2765

2766 2767
	if (lrucare)
		unlock_page_lru(page, isolated);
2768

2769 2770
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
2771
	/*
2772 2773 2774
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2775
	 */
2776
	memcg_check_events(memcg, page);
2777
	local_irq_enable();
2778
}
2779

2780 2781
static DEFINE_MUTEX(set_limit_mutex);

2782
#ifdef CONFIG_MEMCG_KMEM
2783 2784 2785 2786 2787 2788
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2789 2790
static DEFINE_MUTEX(activate_kmem_mutex);

2791 2792 2793
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2794
		memcg_kmem_is_active(memcg);
2795 2796
}

G
Glauber Costa 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2807
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2808 2809
}

2810
#ifdef CONFIG_SLABINFO
2811
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2812
{
2813
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2814 2815 2816 2817 2818 2819 2820
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

2821
	mutex_lock(&memcg_slab_mutex);
2822 2823
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2824
	mutex_unlock(&memcg_slab_mutex);
2825 2826 2827 2828 2829

	return 0;
}
#endif

2830
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2831 2832 2833 2834 2835 2836 2837 2838
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2839
	ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2840 2841
	if (ret == -EINTR)  {
		/*
2842 2843 2844 2845 2846 2847
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2848 2849 2850
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2851 2852 2853
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

2867
static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2868 2869 2870 2871
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2872 2873 2874 2875 2876

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2877 2878 2879 2880 2881 2882 2883 2884
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2885
	if (memcg_kmem_test_and_clear_dead(memcg))
2886
		css_put(&memcg->css);
2887 2888
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

2929
	VM_BUG_ON(!is_root_cache(s));
2930 2931 2932

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
2933
		struct memcg_cache_params *new_params;
2934 2935 2936
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
2937
		size += offsetof(struct memcg_cache_params, memcg_caches);
2938

2939 2940
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
2941 2942
			return -ENOMEM;

2943
		new_params->is_root_cache = true;
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
2957
			new_params->memcg_caches[i] =
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
2970 2971 2972
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
2973 2974 2975 2976
	}
	return 0;
}

2977 2978
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
2979
{
2980
	size_t size;
2981 2982 2983 2984

	if (!memcg_kmem_enabled())
		return 0;

2985 2986
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
2987
		size += memcg_limited_groups_array_size * sizeof(void *);
2988 2989
	} else
		size = sizeof(struct memcg_cache_params);
2990

2991 2992 2993 2994
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
2995
	if (memcg) {
2996
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
2997
		s->memcg_params->root_cache = root_cache;
2998
		css_get(&memcg->css);
2999 3000 3001
	} else
		s->memcg_params->is_root_cache = true;

3002 3003 3004
	return 0;
}

3005 3006
void memcg_free_cache_params(struct kmem_cache *s)
{
3007 3008 3009 3010
	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		css_put(&s->memcg_params->memcg->css);
3011 3012 3013
	kfree(s->memcg_params);
}

3014 3015
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
3016
{
3017 3018
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
3019
	struct kmem_cache *cachep;
3020 3021
	int id;

3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
3032 3033
		return;

3034
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3035
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3036
	/*
3037 3038 3039
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
3040
	 */
3041 3042
	if (!cachep)
		return;
3043

3044
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3045

3046
	/*
3047 3048 3049
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3050
	 */
3051 3052
	smp_wmb();

3053 3054
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
3055
}
3056

3057
static void memcg_unregister_cache(struct kmem_cache *cachep)
3058
{
3059
	struct kmem_cache *root_cache;
3060 3061 3062
	struct mem_cgroup *memcg;
	int id;

3063
	lockdep_assert_held(&memcg_slab_mutex);
3064

3065
	BUG_ON(is_root_cache(cachep));
3066

3067 3068
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
3069
	id = memcg_cache_id(memcg);
3070

3071 3072
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
3073

3074 3075 3076
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
3077 3078
}

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

3110
int __memcg_cleanup_cache_params(struct kmem_cache *s)
3111 3112
{
	struct kmem_cache *c;
3113
	int i, failed = 0;
3114

3115
	mutex_lock(&memcg_slab_mutex);
3116 3117
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3118 3119 3120
		if (!c)
			continue;

3121
		memcg_unregister_cache(c);
3122 3123 3124

		if (cache_from_memcg_idx(s, i))
			failed++;
3125
	}
3126
	mutex_unlock(&memcg_slab_mutex);
3127
	return failed;
3128 3129
}

3130
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3131 3132
{
	struct kmem_cache *cachep;
3133
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
3134 3135 3136 3137

	if (!memcg_kmem_is_active(memcg))
		return;

3138 3139
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
3140
		cachep = memcg_params_to_cache(params);
3141 3142
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3143
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
3144
	}
3145
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
3146 3147
}

3148
struct memcg_register_cache_work {
3149 3150 3151 3152 3153
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3154
static void memcg_register_cache_func(struct work_struct *w)
3155
{
3156 3157
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
3158 3159
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3160

3161
	mutex_lock(&memcg_slab_mutex);
3162
	memcg_register_cache(memcg, cachep);
3163 3164
	mutex_unlock(&memcg_slab_mutex);

3165
	css_put(&memcg->css);
3166 3167 3168 3169 3170 3171
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3172 3173
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
3174
{
3175
	struct memcg_register_cache_work *cw;
3176

3177
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3178 3179
	if (cw == NULL) {
		css_put(&memcg->css);
3180 3181 3182 3183 3184 3185
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3186
	INIT_WORK(&cw->work, memcg_register_cache_func);
3187 3188 3189
	schedule_work(&cw->work);
}

3190 3191
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3192 3193 3194 3195
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3196
	 * in __memcg_schedule_register_cache will recurse.
3197 3198 3199 3200 3201 3202 3203 3204
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3205
	__memcg_schedule_register_cache(memcg, cachep);
3206 3207
	memcg_resume_kmem_account();
}
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
	int res;

	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
				PAGE_SIZE << order);
	if (!res)
		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
}

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3243
	struct kmem_cache *memcg_cachep;
3244 3245 3246 3247

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3248 3249 3250
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3251 3252 3253 3254
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3255
		goto out;
3256

3257 3258 3259
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3260
		goto out;
3261 3262
	}

3263
	/* The corresponding put will be done in the workqueue. */
3264
	if (!css_tryget_online(&memcg->css))
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3276 3277 3278
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3279
	 */
3280
	memcg_schedule_register_cache(memcg, cachep);
3281 3282 3283 3284
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3285 3286
}

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3308 3309 3310 3311

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3312 3313 3314 3315 3316 3317
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3318 3319 3320 3321 3322 3323
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3324 3325 3326
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3337
	memcg = get_mem_cgroup_from_mm(current->mm);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}
3364 3365 3366 3367
	/*
	 * The page is freshly allocated and not visible to any
	 * outside callers yet.  Set up pc non-atomically.
	 */
3368 3369
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
3370
	pc->flags = PCG_USED;
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

3383 3384
	memcg = pc->mem_cgroup;
	pc->flags = 0;
3385 3386 3387 3388 3389 3390 3391 3392

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3393
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3394 3395
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3396
#else
3397
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3398 3399
{
}
3400 3401
#endif /* CONFIG_MEMCG_KMEM */

3402 3403 3404 3405
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3406 3407 3408
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3409
 */
3410
void mem_cgroup_split_huge_fixup(struct page *head)
3411 3412
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3413
	struct page_cgroup *pc;
3414
	struct mem_cgroup *memcg;
3415
	int i;
3416

3417 3418
	if (mem_cgroup_disabled())
		return;
3419 3420

	memcg = head_pc->mem_cgroup;
3421 3422
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3423
		pc->mem_cgroup = memcg;
3424
		pc->flags = head_pc->flags;
3425
	}
3426 3427
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3428
}
3429
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3430

3431
/**
3432
 * mem_cgroup_move_account - move account of the page
3433
 * @page: the page
3434
 * @nr_pages: number of regular pages (>1 for huge pages)
3435 3436 3437 3438 3439
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3440
 * - page is not on LRU (isolate_page() is useful.)
3441
 * - compound_lock is held when nr_pages > 1
3442
 *
3443 3444
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3445
 */
3446 3447 3448 3449
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3450
				   struct mem_cgroup *to)
3451
{
3452 3453
	unsigned long flags;
	int ret;
3454

3455
	VM_BUG_ON(from == to);
3456
	VM_BUG_ON_PAGE(PageLRU(page), page);
3457 3458 3459 3460 3461 3462 3463
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3464
	if (nr_pages > 1 && !PageTransHuge(page))
3465 3466
		goto out;

3467 3468 3469 3470 3471 3472 3473
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3474 3475 3476

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3477
		goto out_unlock;
3478

3479
	move_lock_mem_cgroup(from, &flags);
3480

3481
	if (!PageAnon(page) && page_mapped(page)) {
3482 3483 3484 3485 3486
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3487

3488 3489 3490 3491 3492 3493
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3494

3495 3496 3497 3498 3499
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3500

3501
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3502
	pc->mem_cgroup = to;
3503
	move_unlock_mem_cgroup(from, &flags);
3504
	ret = 0;
3505 3506 3507

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3508
	memcg_check_events(to, page);
3509
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3510
	memcg_check_events(from, page);
3511 3512 3513
	local_irq_enable();
out_unlock:
	unlock_page(page);
3514
out:
3515 3516 3517
	return ret;
}

3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3538
 */
3539 3540
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3541
				  struct mem_cgroup *child)
3542 3543
{
	struct mem_cgroup *parent;
3544
	unsigned int nr_pages;
3545
	unsigned long uninitialized_var(flags);
3546 3547
	int ret;

3548
	VM_BUG_ON(mem_cgroup_is_root(child));
3549

3550 3551 3552 3553 3554
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3555

3556
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3557

3558 3559 3560 3561 3562 3563
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3564

3565
	if (nr_pages > 1) {
3566
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3567
		flags = compound_lock_irqsave(page);
3568
	}
3569

3570
	ret = mem_cgroup_move_account(page, nr_pages,
3571
				pc, child, parent);
3572 3573
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3574

3575
	if (nr_pages > 1)
3576
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3577
	putback_lru_page(page);
3578
put:
3579
	put_page(page);
3580
out:
3581 3582 3583
	return ret;
}

A
Andrew Morton 已提交
3584
#ifdef CONFIG_MEMCG_SWAP
3585 3586
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3587
{
3588 3589
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3590
}
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3607
				struct mem_cgroup *from, struct mem_cgroup *to)
3608 3609 3610
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3611 3612
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3613 3614 3615

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3616
		mem_cgroup_swap_statistics(to, true);
3617
		/*
3618 3619 3620
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3621 3622 3623 3624 3625 3626
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3627
		 */
L
Li Zefan 已提交
3628
		css_get(&to->css);
3629 3630 3631 3632 3633 3634
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3635
				struct mem_cgroup *from, struct mem_cgroup *to)
3636 3637 3638
{
	return -EINVAL;
}
3639
#endif
K
KAMEZAWA Hiroyuki 已提交
3640

3641 3642 3643 3644 3645 3646
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3647 3648 3649 3650 3651
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3671 3672
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
3673 3674 3675 3676
	}
}
#endif

3677
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3678
				unsigned long long val)
3679
{
3680
	int retry_count;
3681
	u64 memswlimit, memlimit;
3682
	int ret = 0;
3683 3684
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3685
	int enlarge;
3686 3687 3688 3689 3690 3691 3692 3693 3694

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3695

3696
	enlarge = 0;
3697
	while (retry_count) {
3698 3699 3700 3701
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3702 3703 3704
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3705
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3706 3707 3708 3709 3710 3711
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3712 3713
			break;
		}
3714 3715 3716 3717 3718

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3719
		ret = res_counter_set_limit(&memcg->res, val);
3720 3721 3722 3723 3724 3725
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3726 3727 3728 3729 3730
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3731 3732
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3733 3734
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3735
		if (curusage >= oldusage)
3736 3737 3738
			retry_count--;
		else
			oldusage = curusage;
3739
	}
3740 3741
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3742

3743 3744 3745
	return ret;
}

L
Li Zefan 已提交
3746 3747
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3748
{
3749
	int retry_count;
3750
	u64 memlimit, memswlimit, oldusage, curusage;
3751 3752
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3753
	int enlarge = 0;
3754

3755
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
3756
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3757
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3758 3759 3760 3761 3762 3763 3764 3765
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3766
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3767 3768 3769 3770 3771 3772 3773 3774
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3775 3776 3777
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3778
		ret = res_counter_set_limit(&memcg->memsw, val);
3779 3780 3781 3782 3783 3784
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3785 3786 3787 3788 3789
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3790 3791 3792
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3793
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3794
		/* Usage is reduced ? */
3795
		if (curusage >= oldusage)
3796
			retry_count--;
3797 3798
		else
			oldusage = curusage;
3799
	}
3800 3801
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3802 3803 3804
	return ret;
}

3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3839
		spin_lock_irq(&mctz->lock);
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
3867
		__mem_cgroup_remove_exceeded(mz, mctz);
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3878
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3879
		spin_unlock_irq(&mctz->lock);
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3897 3898 3899 3900 3901 3902 3903
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3904
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3905 3906
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3907
 */
3908
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3909
				int node, int zid, enum lru_list lru)
3910
{
3911
	struct lruvec *lruvec;
3912
	unsigned long flags;
3913
	struct list_head *list;
3914 3915
	struct page *busy;
	struct zone *zone;
3916

K
KAMEZAWA Hiroyuki 已提交
3917
	zone = &NODE_DATA(node)->node_zones[zid];
3918 3919
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3920

3921
	busy = NULL;
3922
	do {
3923
		struct page_cgroup *pc;
3924 3925
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3926
		spin_lock_irqsave(&zone->lru_lock, flags);
3927
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3928
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3929
			break;
3930
		}
3931 3932 3933
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3934
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3935
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3936 3937
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3938
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3939

3940
		pc = lookup_page_cgroup(page);
3941

3942
		if (mem_cgroup_move_parent(page, pc, memcg)) {
3943
			/* found lock contention or "pc" is obsolete. */
3944
			busy = page;
3945 3946
		} else
			busy = NULL;
3947
		cond_resched();
3948
	} while (!list_empty(list));
3949 3950 3951
}

/*
3952 3953
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
3954
 * This enables deleting this mem_cgroup.
3955 3956
 *
 * Caller is responsible for holding css reference on the memcg.
3957
 */
3958
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3959
{
3960
	int node, zid;
3961
	u64 usage;
3962

3963
	do {
3964 3965
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3966 3967
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
3968
		for_each_node_state(node, N_MEMORY) {
3969
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3970 3971
				enum lru_list lru;
				for_each_lru(lru) {
3972
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3973
							node, zid, lru);
3974
				}
3975
			}
3976
		}
3977 3978
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3979
		cond_resched();
3980

3981
		/*
3982 3983 3984 3985 3986
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
3987 3988 3989 3990 3991 3992
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
3993 3994 3995
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
3996 3997
}

3998 3999 4000 4001 4002 4003
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
4004 4005
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4006 4007
	bool ret;

4008
	/*
4009 4010 4011 4012
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
4013
	 */
4014 4015 4016 4017 4018 4019
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
4020 4021
}

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

4032 4033
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4034
	/* try to free all pages in this cgroup */
4035
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4036
		int progress;
4037

4038 4039 4040
		if (signal_pending(current))
			return -EINTR;

4041
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4042
						false);
4043
		if (!progress) {
4044
			nr_retries--;
4045
			/* maybe some writeback is necessary */
4046
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4047
		}
4048 4049

	}
4050 4051

	return 0;
4052 4053
}

4054 4055 4056
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
4057
{
4058
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4059

4060 4061
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4062
	return mem_cgroup_force_empty(memcg) ?: nbytes;
4063 4064
}

4065 4066
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4067
{
4068
	return mem_cgroup_from_css(css)->use_hierarchy;
4069 4070
}

4071 4072
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4073 4074
{
	int retval = 0;
4075
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4076
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4077

4078
	mutex_lock(&memcg_create_mutex);
4079 4080 4081 4082

	if (memcg->use_hierarchy == val)
		goto out;

4083
	/*
4084
	 * If parent's use_hierarchy is set, we can't make any modifications
4085 4086 4087 4088 4089 4090
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4091
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4092
				(val == 1 || val == 0)) {
4093
		if (!memcg_has_children(memcg))
4094
			memcg->use_hierarchy = val;
4095 4096 4097 4098
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4099 4100

out:
4101
	mutex_unlock(&memcg_create_mutex);
4102 4103 4104 4105

	return retval;
}

4106
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4107
			       struct cftype *cft)
B
Balbir Singh 已提交
4108
{
4109
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4110 4111
	enum res_type type = MEMFILE_TYPE(cft->private);
	int name = MEMFILE_ATTR(cft->private);
4112

4113 4114
	switch (type) {
	case _MEM:
4115
		return res_counter_read_u64(&memcg->res, name);
4116
	case _MEMSWAP:
4117
		return res_counter_read_u64(&memcg->memsw, name);
4118
	case _KMEM:
4119
		return res_counter_read_u64(&memcg->kmem, name);
4120
		break;
4121 4122 4123
	default:
		BUG();
	}
B
Balbir Singh 已提交
4124
}
4125 4126

#ifdef CONFIG_MEMCG_KMEM
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4155
	mutex_lock(&memcg_create_mutex);
4156 4157
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4158 4159 4160 4161
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4162

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
4174
	mutex_lock(&memcg_slab_mutex);
4175
	err = memcg_update_all_caches(memcg_id + 1);
4176
	mutex_unlock(&memcg_slab_mutex);
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4197
out:
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
4226 4227 4228
	return ret;
}

4229
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4230
{
4231
	int ret = 0;
4232
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4233

4234 4235
	if (!parent)
		return 0;
4236

4237
	mutex_lock(&activate_kmem_mutex);
4238
	/*
4239 4240
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
4241
	 */
4242 4243 4244
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
4245
	return ret;
4246
}
4247 4248 4249 4250 4251 4252
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
4253
#endif /* CONFIG_MEMCG_KMEM */
4254

4255 4256 4257 4258
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4259 4260
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
4261
{
4262
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
4263 4264
	enum res_type type;
	int name;
4265 4266 4267
	unsigned long long val;
	int ret;

4268 4269 4270
	buf = strstrip(buf);
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
4271

4272
	switch (name) {
4273
	case RES_LIMIT:
4274 4275 4276 4277
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4278
		/* This function does all necessary parse...reuse it */
4279
		ret = res_counter_memparse_write_strategy(buf, &val);
4280 4281 4282
		if (ret)
			break;
		if (type == _MEM)
4283
			ret = mem_cgroup_resize_limit(memcg, val);
4284
		else if (type == _MEMSWAP)
4285
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4286
		else if (type == _KMEM)
4287
			ret = memcg_update_kmem_limit(memcg, val);
4288 4289
		else
			return -EINVAL;
4290
		break;
4291
	case RES_SOFT_LIMIT:
4292
		ret = res_counter_memparse_write_strategy(buf, &val);
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4305 4306 4307 4308
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
4309
	return ret ?: nbytes;
B
Balbir Singh 已提交
4310 4311
}

4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
4322 4323
	while (memcg->css.parent) {
		memcg = mem_cgroup_from_css(memcg->css.parent);
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4336 4337
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
4338
{
4339
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
4340 4341
	int name;
	enum res_type type;
4342

4343 4344
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
4345

4346
	switch (name) {
4347
	case RES_MAX_USAGE:
4348
		if (type == _MEM)
4349
			res_counter_reset_max(&memcg->res);
4350
		else if (type == _MEMSWAP)
4351
			res_counter_reset_max(&memcg->memsw);
4352 4353 4354 4355
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4356 4357
		break;
	case RES_FAILCNT:
4358
		if (type == _MEM)
4359
			res_counter_reset_failcnt(&memcg->res);
4360
		else if (type == _MEMSWAP)
4361
			res_counter_reset_failcnt(&memcg->memsw);
4362 4363 4364 4365
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4366 4367
		break;
	}
4368

4369
	return nbytes;
4370 4371
}

4372
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4373 4374
					struct cftype *cft)
{
4375
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4376 4377
}

4378
#ifdef CONFIG_MMU
4379
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4380 4381
					struct cftype *cft, u64 val)
{
4382
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4383 4384 4385

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
4386

4387
	/*
4388 4389 4390 4391
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
4392
	 */
4393
	memcg->move_charge_at_immigrate = val;
4394 4395
	return 0;
}
4396
#else
4397
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4398 4399 4400 4401 4402
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4403

4404
#ifdef CONFIG_NUMA
4405
static int memcg_numa_stat_show(struct seq_file *m, void *v)
4406
{
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4419
	int nid;
4420
	unsigned long nr;
4421
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4422

4423 4424 4425 4426 4427 4428 4429 4430 4431
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4432 4433
	}

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
4449 4450 4451 4452 4453 4454
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4455 4456 4457 4458 4459
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4460
static int memcg_stat_show(struct seq_file *m, void *v)
4461
{
4462
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4463 4464
	struct mem_cgroup *mi;
	unsigned int i;
4465

4466
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4467
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4468
			continue;
4469 4470
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4471
	}
L
Lee Schermerhorn 已提交
4472

4473 4474 4475 4476 4477 4478 4479 4480
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4481
	/* Hierarchical information */
4482 4483
	{
		unsigned long long limit, memsw_limit;
4484
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4485
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4486
		if (do_swap_account)
4487 4488
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4489
	}
K
KOSAKI Motohiro 已提交
4490

4491 4492 4493
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4494
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4495
			continue;
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4516
	}
K
KAMEZAWA Hiroyuki 已提交
4517

K
KOSAKI Motohiro 已提交
4518 4519 4520 4521
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4522
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4523 4524 4525 4526 4527
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4528
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4529
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4530

4531 4532 4533 4534
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4535
			}
4536 4537 4538 4539
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4540 4541 4542
	}
#endif

4543 4544 4545
	return 0;
}

4546 4547
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4548
{
4549
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4550

4551
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4552 4553
}

4554 4555
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4556
{
4557
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4558

4559
	if (val > 100)
K
KOSAKI Motohiro 已提交
4560 4561
		return -EINVAL;

4562
	if (css->parent)
4563 4564 4565
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4566

K
KOSAKI Motohiro 已提交
4567 4568 4569
	return 0;
}

4570 4571 4572 4573 4574 4575 4576 4577
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4578
		t = rcu_dereference(memcg->thresholds.primary);
4579
	else
4580
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4581 4582 4583 4584

	if (!t)
		goto unlock;

4585 4586 4587 4588
	if (!swap)
		usage = res_counter_read_u64(&memcg->res, RES_USAGE);
	else
		usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4589 4590

	/*
4591
	 * current_threshold points to threshold just below or equal to usage.
4592 4593 4594
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4595
	i = t->current_threshold;
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4619
	t->current_threshold = i - 1;
4620 4621 4622 4623 4624 4625
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4626 4627 4628 4629 4630 4631 4632
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4633 4634 4635 4636 4637 4638 4639
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4640 4641 4642 4643 4644 4645 4646
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4647 4648
}

4649
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4650 4651 4652
{
	struct mem_cgroup_eventfd_list *ev;

4653 4654
	spin_lock(&memcg_oom_lock);

4655
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4656
		eventfd_signal(ev->eventfd, 1);
4657 4658

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4659 4660 4661
	return 0;
}

4662
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4663
{
K
KAMEZAWA Hiroyuki 已提交
4664 4665
	struct mem_cgroup *iter;

4666
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4667
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4668 4669
}

4670
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4671
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4672
{
4673 4674
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4675
	u64 threshold, usage;
4676
	int i, size, ret;
4677 4678 4679 4680 4681 4682

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4683

4684
	if (type == _MEM) {
4685
		thresholds = &memcg->thresholds;
4686 4687
		usage = res_counter_read_u64(&memcg->res, RES_USAGE);
	} else if (type == _MEMSWAP) {
4688
		thresholds = &memcg->memsw_thresholds;
4689 4690
		usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
	} else
4691 4692 4693
		BUG();

	/* Check if a threshold crossed before adding a new one */
4694
	if (thresholds->primary)
4695 4696
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4697
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4698 4699

	/* Allocate memory for new array of thresholds */
4700
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4701
			GFP_KERNEL);
4702
	if (!new) {
4703 4704 4705
		ret = -ENOMEM;
		goto unlock;
	}
4706
	new->size = size;
4707 4708

	/* Copy thresholds (if any) to new array */
4709 4710
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4711
				sizeof(struct mem_cgroup_threshold));
4712 4713
	}

4714
	/* Add new threshold */
4715 4716
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4717 4718

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4719
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4720 4721 4722
			compare_thresholds, NULL);

	/* Find current threshold */
4723
	new->current_threshold = -1;
4724
	for (i = 0; i < size; i++) {
4725
		if (new->entries[i].threshold <= usage) {
4726
			/*
4727 4728
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4729 4730
			 * it here.
			 */
4731
			++new->current_threshold;
4732 4733
		} else
			break;
4734 4735
	}

4736 4737 4738 4739 4740
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4741

4742
	/* To be sure that nobody uses thresholds */
4743 4744 4745 4746 4747 4748 4749 4750
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4751
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4752 4753
	struct eventfd_ctx *eventfd, const char *args)
{
4754
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4755 4756
}

4757
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4758 4759
	struct eventfd_ctx *eventfd, const char *args)
{
4760
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4761 4762
}

4763
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4764
	struct eventfd_ctx *eventfd, enum res_type type)
4765
{
4766 4767
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4768
	u64 usage;
4769
	int i, j, size;
4770 4771

	mutex_lock(&memcg->thresholds_lock);
4772 4773

	if (type == _MEM) {
4774
		thresholds = &memcg->thresholds;
4775 4776
		usage = res_counter_read_u64(&memcg->res, RES_USAGE);
	} else if (type == _MEMSWAP) {
4777
		thresholds = &memcg->memsw_thresholds;
4778 4779
		usage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
	} else
4780 4781
		BUG();

4782 4783 4784
	if (!thresholds->primary)
		goto unlock;

4785 4786 4787 4788
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4789 4790 4791
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4792 4793 4794
			size++;
	}

4795
	new = thresholds->spare;
4796

4797 4798
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4799 4800
		kfree(new);
		new = NULL;
4801
		goto swap_buffers;
4802 4803
	}

4804
	new->size = size;
4805 4806

	/* Copy thresholds and find current threshold */
4807 4808 4809
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4810 4811
			continue;

4812
		new->entries[j] = thresholds->primary->entries[i];
4813
		if (new->entries[j].threshold <= usage) {
4814
			/*
4815
			 * new->current_threshold will not be used
4816 4817 4818
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4819
			++new->current_threshold;
4820 4821 4822 4823
		}
		j++;
	}

4824
swap_buffers:
4825 4826
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4827 4828 4829 4830 4831 4832
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4833
	rcu_assign_pointer(thresholds->primary, new);
4834

4835
	/* To be sure that nobody uses thresholds */
4836
	synchronize_rcu();
4837
unlock:
4838 4839
	mutex_unlock(&memcg->thresholds_lock);
}
4840

4841
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4842 4843
	struct eventfd_ctx *eventfd)
{
4844
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4845 4846
}

4847
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4848 4849
	struct eventfd_ctx *eventfd)
{
4850
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4851 4852
}

4853
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4854
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4855 4856 4857 4858 4859 4860 4861
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4862
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4863 4864 4865 4866 4867

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4868
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4869
		eventfd_signal(eventfd, 1);
4870
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4871 4872 4873 4874

	return 0;
}

4875
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4876
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4877 4878 4879
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4880
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4881

4882
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4883 4884 4885 4886 4887 4888
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4889
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4890 4891
}

4892
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4893
{
4894
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4895

4896 4897
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4898 4899 4900
	return 0;
}

4901
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4902 4903
	struct cftype *cft, u64 val)
{
4904
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4905 4906

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4907
	if (!css->parent || !((val == 0) || (val == 1)))
4908 4909
		return -EINVAL;

4910
	memcg->oom_kill_disable = val;
4911
	if (!val)
4912
		memcg_oom_recover(memcg);
4913

4914 4915 4916
	return 0;
}

A
Andrew Morton 已提交
4917
#ifdef CONFIG_MEMCG_KMEM
4918
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4919
{
4920 4921
	int ret;

4922
	memcg->kmemcg_id = -1;
4923 4924 4925
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4926

4927
	return mem_cgroup_sockets_init(memcg, ss);
4928
}
4929

4930
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4931
{
4932
	mem_cgroup_sockets_destroy(memcg);
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
4953 4954 4955 4956
	 * css_offline() when the referencemight have dropped down to 0 and
	 * shouldn't be incremented anymore (css_tryget_online() would
	 * fail) we do not have other options because of the kmem
	 * allocations lifetime.
4957 4958
	 */
	css_get(&memcg->css);
4959 4960 4961 4962 4963 4964 4965

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
4966
		css_put(&memcg->css);
G
Glauber Costa 已提交
4967
}
4968
#else
4969
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4970 4971 4972
{
	return 0;
}
G
Glauber Costa 已提交
4973

4974 4975 4976 4977 4978
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4979 4980
{
}
4981 4982
#endif

4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4996 4997 4998 4999 5000
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5001
static void memcg_event_remove(struct work_struct *work)
5002
{
5003 5004
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5005
	struct mem_cgroup *memcg = event->memcg;
5006 5007 5008

	remove_wait_queue(event->wqh, &event->wait);

5009
	event->unregister_event(memcg, event->eventfd);
5010 5011 5012 5013 5014 5015

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
5016
	css_put(&memcg->css);
5017 5018 5019 5020 5021 5022 5023
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
5024 5025
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
5026
{
5027 5028
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
5029
	struct mem_cgroup *memcg = event->memcg;
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
5042
		spin_lock(&memcg->event_list_lock);
5043 5044 5045 5046 5047 5048 5049 5050
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5051
		spin_unlock(&memcg->event_list_lock);
5052 5053 5054 5055 5056
	}

	return 0;
}

5057
static void memcg_event_ptable_queue_proc(struct file *file,
5058 5059
		wait_queue_head_t *wqh, poll_table *pt)
{
5060 5061
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5062 5063 5064 5065 5066 5067

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5068 5069
 * DO NOT USE IN NEW FILES.
 *
5070 5071 5072 5073 5074
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5075 5076
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
5077
{
5078
	struct cgroup_subsys_state *css = of_css(of);
5079
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5080
	struct mem_cgroup_event *event;
5081 5082 5083 5084
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5085
	const char *name;
5086 5087 5088
	char *endp;
	int ret;

5089 5090 5091
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
5092 5093
	if (*endp != ' ')
		return -EINVAL;
5094
	buf = endp + 1;
5095

5096
	cfd = simple_strtoul(buf, &endp, 10);
5097 5098
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
5099
	buf = endp + 1;
5100 5101 5102 5103 5104

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5105
	event->memcg = memcg;
5106
	INIT_LIST_HEAD(&event->list);
5107 5108 5109
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

5135 5136 5137 5138 5139
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
5140 5141
	 *
	 * DO NOT ADD NEW FILES.
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
5155 5156
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
5157 5158 5159 5160 5161
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

5162
	/*
5163 5164 5165
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
5166
	 */
5167 5168
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
5169
	ret = -EINVAL;
5170
	if (IS_ERR(cfile_css))
5171
		goto out_put_cfile;
5172 5173
	if (cfile_css != css) {
		css_put(cfile_css);
5174
		goto out_put_cfile;
5175
	}
5176

5177
	ret = event->register_event(memcg, event->eventfd, buf);
5178 5179 5180 5181 5182
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

5183 5184 5185
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5186 5187 5188 5189

	fdput(cfile);
	fdput(efile);

5190
	return nbytes;
5191 5192

out_put_css:
5193
	css_put(css);
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5206 5207
static struct cftype mem_cgroup_files[] = {
	{
5208
		.name = "usage_in_bytes",
5209
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5210
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5211
	},
5212 5213
	{
		.name = "max_usage_in_bytes",
5214
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5215
		.write = mem_cgroup_reset,
5216
		.read_u64 = mem_cgroup_read_u64,
5217
	},
B
Balbir Singh 已提交
5218
	{
5219
		.name = "limit_in_bytes",
5220
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5221
		.write = mem_cgroup_write,
5222
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5223
	},
5224 5225 5226
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5227
		.write = mem_cgroup_write,
5228
		.read_u64 = mem_cgroup_read_u64,
5229
	},
B
Balbir Singh 已提交
5230 5231
	{
		.name = "failcnt",
5232
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5233
		.write = mem_cgroup_reset,
5234
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5235
	},
5236 5237
	{
		.name = "stat",
5238
		.seq_show = memcg_stat_show,
5239
	},
5240 5241
	{
		.name = "force_empty",
5242
		.write = mem_cgroup_force_empty_write,
5243
	},
5244 5245 5246 5247 5248
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5249
	{
5250
		.name = "cgroup.event_control",		/* XXX: for compat */
5251
		.write = memcg_write_event_control,
5252 5253 5254
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
5255 5256 5257 5258 5259
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5260 5261 5262 5263 5264
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5265 5266
	{
		.name = "oom_control",
5267
		.seq_show = mem_cgroup_oom_control_read,
5268
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5269 5270
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5271 5272 5273
	{
		.name = "pressure_level",
	},
5274 5275 5276
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5277
		.seq_show = memcg_numa_stat_show,
5278 5279
	},
#endif
5280 5281 5282 5283
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5284
		.write = mem_cgroup_write,
5285
		.read_u64 = mem_cgroup_read_u64,
5286 5287 5288 5289
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5290
		.read_u64 = mem_cgroup_read_u64,
5291 5292 5293 5294
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5295
		.write = mem_cgroup_reset,
5296
		.read_u64 = mem_cgroup_read_u64,
5297 5298 5299 5300
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5301
		.write = mem_cgroup_reset,
5302
		.read_u64 = mem_cgroup_read_u64,
5303
	},
5304 5305 5306
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
5307
		.seq_show = mem_cgroup_slabinfo_read,
5308 5309
	},
#endif
5310
#endif
5311
	{ },	/* terminate */
5312
};
5313

5314 5315 5316 5317 5318
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5319
		.read_u64 = mem_cgroup_read_u64,
5320 5321 5322 5323
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5324
		.write = mem_cgroup_reset,
5325
		.read_u64 = mem_cgroup_read_u64,
5326 5327 5328 5329
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5330
		.write = mem_cgroup_write,
5331
		.read_u64 = mem_cgroup_read_u64,
5332 5333 5334 5335
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5336
		.write = mem_cgroup_reset,
5337
		.read_u64 = mem_cgroup_read_u64,
5338 5339 5340 5341
	},
	{ },	/* terminate */
};
#endif
5342
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5343 5344
{
	struct mem_cgroup_per_node *pn;
5345
	struct mem_cgroup_per_zone *mz;
5346
	int zone, tmp = node;
5347 5348 5349 5350 5351 5352 5353 5354
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5355 5356
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5357
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5358 5359
	if (!pn)
		return 1;
5360 5361 5362

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5363
		lruvec_init(&mz->lruvec);
5364 5365
		mz->usage_in_excess = 0;
		mz->on_tree = false;
5366
		mz->memcg = memcg;
5367
	}
5368
	memcg->nodeinfo[node] = pn;
5369 5370 5371
	return 0;
}

5372
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5373
{
5374
	kfree(memcg->nodeinfo[node]);
5375 5376
}

5377 5378
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5379
	struct mem_cgroup *memcg;
5380
	size_t size;
5381

5382 5383
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5384

5385
	memcg = kzalloc(size, GFP_KERNEL);
5386
	if (!memcg)
5387 5388
		return NULL;

5389 5390
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5391
		goto out_free;
5392 5393
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5394 5395

out_free:
5396
	kfree(memcg);
5397
	return NULL;
5398 5399
}

5400
/*
5401 5402 5403 5404 5405 5406 5407 5408
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5409
 */
5410 5411

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5412
{
5413
	int node;
5414

5415
	mem_cgroup_remove_from_trees(memcg);
5416 5417 5418 5419 5420 5421

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5433
	disarm_static_keys(memcg);
5434
	kfree(memcg);
5435
}
5436

5437 5438 5439
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5440
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5441
{
5442
	if (!memcg->res.parent)
5443
		return NULL;
5444
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5445
}
G
Glauber Costa 已提交
5446
EXPORT_SYMBOL(parent_mem_cgroup);
5447

5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
5471
static struct cgroup_subsys_state * __ref
5472
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
5473
{
5474
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
5475
	long error = -ENOMEM;
5476
	int node;
B
Balbir Singh 已提交
5477

5478 5479
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5480
		return ERR_PTR(error);
5481

B
Bob Liu 已提交
5482
	for_each_node(node)
5483
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5484
			goto free_out;
5485

5486
	/* root ? */
5487
	if (parent_css == NULL) {
5488
		root_mem_cgroup = memcg;
5489 5490 5491
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
5492
	}
5493

5494 5495 5496 5497 5498
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5499
	vmpressure_init(&memcg->vmpressure);
5500 5501
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5502 5503 5504 5505 5506 5507 5508 5509 5510

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
5511
mem_cgroup_css_online(struct cgroup_subsys_state *css)
5512
{
5513
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5514
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5515

5516
	if (css->id > MEM_CGROUP_ID_MAX)
5517 5518
		return -ENOSPC;

T
Tejun Heo 已提交
5519
	if (!parent)
5520 5521
		return 0;

5522
	mutex_lock(&memcg_create_mutex);
5523 5524 5525 5526 5527 5528

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
5529 5530
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5531
		res_counter_init(&memcg->kmem, &parent->kmem);
5532

5533
		/*
5534 5535
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
5536
		 */
5537
	} else {
5538 5539 5540
		res_counter_init(&memcg->res, &root_mem_cgroup->res);
		res_counter_init(&memcg->memsw, &root_mem_cgroup->memsw);
		res_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5541 5542 5543 5544 5545
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5546
		if (parent != root_mem_cgroup)
5547
			memory_cgrp_subsys.broken_hierarchy = true;
5548
	}
5549
	mutex_unlock(&memcg_create_mutex);
5550

5551
	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
B
Balbir Singh 已提交
5552 5553
}

M
Michal Hocko 已提交
5554 5555 5556 5557 5558 5559 5560 5561
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
5562
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
5563 5564 5565 5566 5567 5568

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
5569
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
5570 5571
}

5572
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5573
{
5574
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5575
	struct mem_cgroup_event *event, *tmp;
5576
	struct cgroup_subsys_state *iter;
5577 5578 5579 5580 5581 5582

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5583 5584
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5585 5586 5587
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5588
	spin_unlock(&memcg->event_list_lock);
5589

5590 5591
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
5592
	mem_cgroup_invalidate_reclaim_iterators(memcg);
5593 5594 5595 5596 5597 5598 5599 5600

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

5601
	memcg_unregister_all_caches(memcg);
5602
	vmpressure_cleanup(&memcg->vmpressure);
5603 5604
}

5605
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5606
{
5607
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5608 5609 5610
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
5611
	 * memcg does not do css_tryget_online() and res_counter charging
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
5625
	 *                           css_tryget_online()
5626
	 *                           rcu_read_unlock()
5627
	 * disable css_tryget_online()
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
5644

5645
	memcg_destroy_kmem(memcg);
5646
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5647 5648
}

5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	mem_cgroup_resize_limit(memcg, ULLONG_MAX);
	mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
	memcg_update_kmem_limit(memcg, ULLONG_MAX);
	res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
}

5672
#ifdef CONFIG_MMU
5673
/* Handlers for move charge at task migration. */
5674
static int mem_cgroup_do_precharge(unsigned long count)
5675
{
5676
	int ret;
5677 5678

	/* Try a single bulk charge without reclaim first */
5679
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5680
	if (!ret) {
5681 5682 5683
		mc.precharge += count;
		return ret;
	}
5684
	if (ret == -EINTR) {
5685
		cancel_charge(root_mem_cgroup, count);
5686 5687
		return ret;
	}
5688 5689

	/* Try charges one by one with reclaim */
5690
	while (count--) {
5691
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5692 5693 5694
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5695 5696
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5697
		 */
5698
		if (ret == -EINTR)
5699
			cancel_charge(root_mem_cgroup, 1);
5700 5701
		if (ret)
			return ret;
5702
		mc.precharge++;
5703
		cond_resched();
5704
	}
5705
	return 0;
5706 5707 5708
}

/**
5709
 * get_mctgt_type - get target type of moving charge
5710 5711 5712
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5713
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5714 5715 5716 5717 5718 5719
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5720 5721 5722
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5723 5724 5725 5726 5727
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5728
	swp_entry_t	ent;
5729 5730 5731
};

enum mc_target_type {
5732
	MC_TARGET_NONE = 0,
5733
	MC_TARGET_PAGE,
5734
	MC_TARGET_SWAP,
5735 5736
};

D
Daisuke Nishimura 已提交
5737 5738
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5739
{
D
Daisuke Nishimura 已提交
5740
	struct page *page = vm_normal_page(vma, addr, ptent);
5741

D
Daisuke Nishimura 已提交
5742 5743 5744 5745
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5746
		if (!move_anon())
D
Daisuke Nishimura 已提交
5747
			return NULL;
5748 5749
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5750 5751 5752 5753 5754 5755 5756
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5757
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5758 5759 5760 5761 5762 5763 5764 5765
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5766 5767 5768 5769
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5770
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5771 5772 5773 5774 5775
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5776 5777 5778 5779 5780 5781 5782
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5783

5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5803 5804
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5817
#endif
5818 5819 5820
	return page;
}

5821
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5822 5823 5824 5825
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5826
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5827 5828 5829 5830 5831 5832
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5833 5834
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5835 5836

	if (!page && !ent.val)
5837
		return ret;
5838 5839 5840
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5841 5842 5843
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5844 5845 5846 5847 5848 5849 5850 5851 5852
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5853 5854
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5855
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5856 5857 5858
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5859 5860 5861 5862
	}
	return ret;
}

5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5877
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5898 5899 5900 5901 5902 5903 5904 5905
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5906
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5907 5908
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5909
		spin_unlock(ptl);
5910
		return 0;
5911
	}
5912

5913 5914
	if (pmd_trans_unstable(pmd))
		return 0;
5915 5916
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5917
		if (get_mctgt_type(vma, addr, *pte, NULL))
5918 5919 5920 5921
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5922 5923 5924
	return 0;
}

5925 5926 5927 5928 5929
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5930
	down_read(&mm->mmap_sem);
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5942
	up_read(&mm->mmap_sem);
5943 5944 5945 5946 5947 5948 5949 5950 5951

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5952 5953 5954 5955 5956
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5957 5958
}

5959 5960
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5961
{
5962 5963
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
5964
	int i;
5965

5966
	/* we must uncharge all the leftover precharges from mc.to */
5967
	if (mc.precharge) {
5968
		cancel_charge(mc.to, mc.precharge);
5969 5970 5971 5972 5973 5974 5975
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5976
		cancel_charge(mc.from, mc.moved_charge);
5977
		mc.moved_charge = 0;
5978
	}
5979 5980 5981
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5982 5983
		res_counter_uncharge(&mc.from->memsw,
				     PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
5984 5985 5986

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
5987

5988 5989 5990 5991 5992 5993
		/*
		 * we charged both to->res and to->memsw, so we should
		 * uncharge to->res.
		 */
		res_counter_uncharge(&mc.to->res,
				     PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
5994
		/* we've already done css_get(mc.to) */
5995 5996
		mc.moved_swap = 0;
	}
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6012
	spin_lock(&mc.lock);
6013 6014
	mc.from = NULL;
	mc.to = NULL;
6015
	spin_unlock(&mc.lock);
6016
	mem_cgroup_end_move(from);
6017 6018
}

6019
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6020
				 struct cgroup_taskset *tset)
6021
{
6022
	struct task_struct *p = cgroup_taskset_first(tset);
6023
	int ret = 0;
6024
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6025
	unsigned long move_charge_at_immigrate;
6026

6027 6028 6029 6030 6031 6032 6033
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6034 6035 6036
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6037
		VM_BUG_ON(from == memcg);
6038 6039 6040 6041 6042

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6043 6044 6045 6046
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6047
			VM_BUG_ON(mc.moved_charge);
6048
			VM_BUG_ON(mc.moved_swap);
6049
			mem_cgroup_start_move(from);
6050
			spin_lock(&mc.lock);
6051
			mc.from = from;
6052
			mc.to = memcg;
6053
			mc.immigrate_flags = move_charge_at_immigrate;
6054
			spin_unlock(&mc.lock);
6055
			/* We set mc.moving_task later */
6056 6057 6058 6059

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6060 6061
		}
		mmput(mm);
6062 6063 6064 6065
	}
	return ret;
}

6066
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6067
				     struct cgroup_taskset *tset)
6068
{
6069
	mem_cgroup_clear_mc();
6070 6071
}

6072 6073 6074
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6075
{
6076 6077 6078 6079
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6080 6081 6082 6083
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6084

6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6095
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6096
		if (mc.precharge < HPAGE_PMD_NR) {
6097
			spin_unlock(ptl);
6098 6099 6100 6101 6102 6103 6104 6105
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6106
							pc, mc.from, mc.to)) {
6107 6108 6109 6110 6111 6112 6113
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6114
		spin_unlock(ptl);
6115
		return 0;
6116 6117
	}

6118 6119
	if (pmd_trans_unstable(pmd))
		return 0;
6120 6121 6122 6123
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6124
		swp_entry_t ent;
6125 6126 6127 6128

		if (!mc.precharge)
			break;

6129
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6130 6131 6132 6133 6134
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6135
			if (!mem_cgroup_move_account(page, 1, pc,
6136
						     mc.from, mc.to)) {
6137
				mc.precharge--;
6138 6139
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6140 6141
			}
			putback_lru_page(page);
6142
put:			/* get_mctgt_type() gets the page */
6143 6144
			put_page(page);
			break;
6145 6146
		case MC_TARGET_SWAP:
			ent = target.ent;
6147
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6148
				mc.precharge--;
6149 6150 6151
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6152
			break;
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6167
		ret = mem_cgroup_do_precharge(1);
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6211
	up_read(&mm->mmap_sem);
6212 6213
}

6214
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6215
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6216
{
6217
	struct task_struct *p = cgroup_taskset_first(tset);
6218
	struct mm_struct *mm = get_task_mm(p);
6219 6220

	if (mm) {
6221 6222
		if (mc.to)
			mem_cgroup_move_charge(mm);
6223 6224
		mmput(mm);
	}
6225 6226
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6227
}
6228
#else	/* !CONFIG_MMU */
6229
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6230
				 struct cgroup_taskset *tset)
6231 6232 6233
{
	return 0;
}
6234
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6235
				     struct cgroup_taskset *tset)
6236 6237
{
}
6238
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6239
				 struct cgroup_taskset *tset)
6240 6241 6242
{
}
#endif
B
Balbir Singh 已提交
6243

6244 6245
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6246 6247
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6248
 */
6249
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6250 6251
{
	/*
6252
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6253 6254 6255
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6256
	if (cgroup_on_dfl(root_css->cgroup))
6257
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6258 6259
}

6260
struct cgroup_subsys memory_cgrp_subsys = {
6261
	.css_alloc = mem_cgroup_css_alloc,
6262
	.css_online = mem_cgroup_css_online,
6263 6264
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6265
	.css_reset = mem_cgroup_css_reset,
6266 6267
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6268
	.attach = mem_cgroup_move_task,
6269
	.bind = mem_cgroup_bind,
6270
	.legacy_cftypes = mem_cgroup_files,
6271
	.early_init = 0,
B
Balbir Singh 已提交
6272
};
6273

A
Andrew Morton 已提交
6274
#ifdef CONFIG_MEMCG_SWAP
6275 6276
static int __init enable_swap_account(char *s)
{
6277
	if (!strcmp(s, "1"))
6278
		really_do_swap_account = 1;
6279
	else if (!strcmp(s, "0"))
6280 6281 6282
		really_do_swap_account = 0;
	return 1;
}
6283
__setup("swapaccount=", enable_swap_account);
6284

6285 6286
static void __init memsw_file_init(void)
{
6287 6288
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
6289 6290 6291 6292 6293 6294 6295 6296
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6297
}
6298

6299
#else
6300
static void __init enable_swap_cgroup(void)
6301 6302
{
}
6303
#endif
6304

6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);

	/* Readahead page, never charged */
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);

	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
	VM_BUG_ON_PAGE(oldid, page);

	pc->flags &= ~PCG_MEMSW;
	css_get(&pc->mem_cgroup->css);
	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
		if (PageCgroupUsed(pc))
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

6468
	commit_charge(page, memcg, nr_pages, lrucare);
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_mem, unsigned long nr_memsw,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
	unsigned long flags;

	if (nr_mem)
		res_counter_uncharge(&memcg->res, nr_mem * PAGE_SIZE);
	if (nr_memsw)
		res_counter_uncharge(&memcg->memsw, nr_memsw * PAGE_SIZE);

	memcg_oom_recover(memcg);

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_memsw = 0;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	unsigned long nr_mem = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
		if (!PageCgroupUsed(pc))
			continue;

		/*
		 * Nobody should be changing or seriously looking at
		 * pc->mem_cgroup and pc->flags at this point, we have
		 * fully exclusive access to the page.
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
					       nr_anon, nr_file, nr_huge, page);
				pgpgout = nr_mem = nr_memsw = 0;
				nr_anon = nr_file = nr_huge = 0;
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

		if (pc->flags & PCG_MEM)
			nr_mem += nr_pages;
		if (pc->flags & PCG_MEMSW)
			nr_memsw += nr_pages;
		pc->flags = 0;

		pgpgout++;
	} while (next != page_list);

	if (memcg)
		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
			       nr_anon, nr_file, nr_huge, page);
}

6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

6616
	/* Don't touch page->lru of any random page, pre-check: */
6617 6618 6619 6620
	pc = lookup_page_cgroup(page);
	if (!PageCgroupUsed(pc))
		return;

6621 6622 6623
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
6624

6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6636

6637 6638
	if (!list_empty(page_list))
		uncharge_list(page_list);
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
	if (PageCgroupUsed(pc))
		return;

	/* Re-entrant migration: old page already uncharged? */
	pc = lookup_page_cgroup(oldpage);
	if (!PageCgroupUsed(pc))
		return;

	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);

	if (PageTransHuge(oldpage)) {
		nr_pages <<= compound_order(oldpage);
		VM_BUG_ON_PAGE(!PageTransHuge(oldpage), oldpage);
		VM_BUG_ON_PAGE(!PageTransHuge(newpage), newpage);
	}

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

	pc->flags = 0;

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

	local_irq_disable();
	mem_cgroup_charge_statistics(pc->mem_cgroup, oldpage, -nr_pages);
	memcg_check_events(pc->mem_cgroup, oldpage);
	local_irq_enable();

	commit_charge(newpage, pc->mem_cgroup, nr_pages, lrucare);
}

6702
/*
6703 6704 6705 6706 6707 6708
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6709 6710 6711 6712
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6713
	enable_swap_cgroup();
6714
	mem_cgroup_soft_limit_tree_init();
6715
	memcg_stock_init();
6716 6717 6718
	return 0;
}
subsys_initcall(mem_cgroup_init);