memcontrol.c 149.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
80

81
/* Whether the swap controller is active */
A
Andrew Morton 已提交
82
#ifdef CONFIG_MEMCG_SWAP
83 84
int do_swap_account __read_mostly;
#else
85
#define do_swap_account		0
86 87
#endif

88 89 90
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
91
	"rss_huge",
92
	"mapped_file",
93
	"writeback",
94 95 96 97 98 99 100 101 102 103
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

104 105 106 107 108 109 110 111
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

112 113 114 115 116 117 118 119
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
120
	MEM_CGROUP_TARGET_SOFTLIMIT,
121
	MEM_CGROUP_TARGET_NUMAINFO,
122 123
	MEM_CGROUP_NTARGETS,
};
124 125 126
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
127

128
struct mem_cgroup_stat_cpu {
129
	long count[MEM_CGROUP_STAT_NSTATS];
130
	unsigned long events[MEMCG_NR_EVENTS];
131
	unsigned long nr_page_events;
132
	unsigned long targets[MEM_CGROUP_NTARGETS];
133 134
};

135 136
struct reclaim_iter {
	struct mem_cgroup *position;
137 138 139 140
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

141 142 143 144
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
145
	struct lruvec		lruvec;
146
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
147

148
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
149

150
	struct rb_node		tree_node;	/* RB tree node */
151
	unsigned long		usage_in_excess;/* Set to the value by which */
152 153
						/* the soft limit is exceeded*/
	bool			on_tree;
154
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
155
						/* use container_of	   */
156 157 158 159 160 161
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

182 183
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
184
	unsigned long threshold;
185 186
};

K
KAMEZAWA Hiroyuki 已提交
187
/* For threshold */
188
struct mem_cgroup_threshold_ary {
189
	/* An array index points to threshold just below or equal to usage. */
190
	int current_threshold;
191 192 193 194 195
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
196 197 198 199 200 201 202 203 204 205 206 207

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
208 209 210 211 212
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
213

214 215 216
/*
 * cgroup_event represents events which userspace want to receive.
 */
217
struct mem_cgroup_event {
218
	/*
219
	 * memcg which the event belongs to.
220
	 */
221
	struct mem_cgroup *memcg;
222 223 224 225 226 227 228 229
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
230 231 232 233 234
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
235
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
236
			      struct eventfd_ctx *eventfd, const char *args);
237 238 239 240 241
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
242
	void (*unregister_event)(struct mem_cgroup *memcg,
243
				 struct eventfd_ctx *eventfd);
244 245 246 247 248 249 250 251 252 253
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

254 255
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256

B
Balbir Singh 已提交
257 258 259 260 261 262 263
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
264 265 266
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
267 268 269
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
270 271 272 273 274 275

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

276 277 278 279
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

280
	unsigned long soft_limit;
281

282 283 284
	/* vmpressure notifications */
	struct vmpressure vmpressure;

285 286 287
	/* css_online() has been completed */
	int initialized;

288 289 290 291
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
292 293 294

	bool		oom_lock;
	atomic_t	under_oom;
295
	atomic_t	oom_wakeups;
296

297
	int	swappiness;
298 299
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
300

301 302 303 304
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
305
	struct mem_cgroup_thresholds thresholds;
306

307
	/* thresholds for mem+swap usage. RCU-protected */
308
	struct mem_cgroup_thresholds memsw_thresholds;
309

K
KAMEZAWA Hiroyuki 已提交
310 311
	/* For oom notifier event fd */
	struct list_head oom_notify;
312

313 314 315 316
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
317
	unsigned long move_charge_at_immigrate;
318 319 320
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
321
	atomic_t		moving_account;
322
	/* taken only while moving_account > 0 */
323 324 325
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
326
	/*
327
	 * percpu counter.
328
	 */
329
	struct mem_cgroup_stat_cpu __percpu *stat;
330 331 332 333 334 335
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
336

M
Michal Hocko 已提交
337
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
338
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
339
#endif
340
#if defined(CONFIG_MEMCG_KMEM)
341
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
342
	int kmemcg_id;
343
	bool kmem_acct_activated;
344
	bool kmem_acct_active;
345
#endif
346 347 348 349 350 351 352

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
353

354 355 356 357
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

358 359
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
360 361
};

362
#ifdef CONFIG_MEMCG_KMEM
363
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
364
{
365
	return memcg->kmem_acct_active;
366
}
367 368
#endif

369 370
/* Stuffs for move charges at task migration. */
/*
371
 * Types of charges to be moved.
372
 */
373 374 375
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
376

377 378
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
379
	spinlock_t	  lock; /* for from, to */
380 381
	struct mem_cgroup *from;
	struct mem_cgroup *to;
382
	unsigned long flags;
383
	unsigned long precharge;
384
	unsigned long moved_charge;
385
	unsigned long moved_swap;
386 387 388
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
389
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
390 391
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
392

393 394 395 396
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
397
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
398
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
399

400 401
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
402
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
403
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
404
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
405 406 407
	NR_CHARGE_TYPE,
};

408
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
409 410 411 412
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
413
	_KMEM,
G
Glauber Costa 已提交
414 415
};

416 417
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
418
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
419 420
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
421

422 423 424 425 426 427 428
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

429 430
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
431
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
432 433
}

434 435 436 437 438 439 440 441 442 443 444 445 446
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

447 448 449 450 451
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

452 453 454 455 456 457
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
458 459
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
460
	return memcg->css.id;
L
Li Zefan 已提交
461 462 463 464 465 466
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

467
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
468 469 470
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
471
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
472
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
473 474 475

void sock_update_memcg(struct sock *sk)
{
476
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
477
		struct mem_cgroup *memcg;
478
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
479 480 481

		BUG_ON(!sk->sk_prot->proto_cgroup);

482 483 484 485 486 487 488 489 490 491
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
492
			css_get(&sk->sk_cgrp->memcg->css);
493 494 495
			return;
		}

G
Glauber Costa 已提交
496 497
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
498
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
499
		if (!mem_cgroup_is_root(memcg) &&
500 501
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
502
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
503 504 505 506 507 508 509 510
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
511
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
512 513 514
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
515
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
516 517
	}
}
G
Glauber Costa 已提交
518 519 520 521 522 523

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

524
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
525 526
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
527

528 529
#endif

530
#ifdef CONFIG_MEMCG_KMEM
531
/*
532
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
533 534 535 536 537
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
538
 *
539 540
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
541
 */
542 543
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
544

545 546 547 548 549 550 551 552 553 554 555 556 557
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

558 559 560 561 562 563
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
564
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
565 566
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
567
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
568 569 570
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
571
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
572

573 574 575 576 577 578
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
579
struct static_key memcg_kmem_enabled_key;
580
EXPORT_SYMBOL(memcg_kmem_enabled_key);
581 582 583

#endif /* CONFIG_MEMCG_KMEM */

584
static struct mem_cgroup_per_zone *
585
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
586
{
587 588 589
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

590
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
591 592
}

593
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
594
{
595
	return &memcg->css;
596 597
}

598
static struct mem_cgroup_per_zone *
599
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
600
{
601 602
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
603

604
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
605 606
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

622 623
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
624
					 unsigned long new_usage_in_excess)
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

654 655
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
656 657 658 659 660 661 662
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

663 664
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
665
{
666 667 668
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
669
	__mem_cgroup_remove_exceeded(mz, mctz);
670
	spin_unlock_irqrestore(&mctz->lock, flags);
671 672
}

673 674 675 676 677 678 679 680 681 682 683
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
684 685 686

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
687
	unsigned long excess;
688 689 690
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

691
	mctz = soft_limit_tree_from_page(page);
692 693 694 695 696
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
697
		mz = mem_cgroup_page_zoneinfo(memcg, page);
698
		excess = soft_limit_excess(memcg);
699 700 701 702 703
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
704 705 706
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
707 708
			/* if on-tree, remove it */
			if (mz->on_tree)
709
				__mem_cgroup_remove_exceeded(mz, mctz);
710 711 712 713
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
714
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
715
			spin_unlock_irqrestore(&mctz->lock, flags);
716 717 718 719 720 721 722
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
723 724
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
725

726 727 728 729
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
730
			mem_cgroup_remove_exceeded(mz, mctz);
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
753
	__mem_cgroup_remove_exceeded(mz, mctz);
754
	if (!soft_limit_excess(mz->memcg) ||
755
	    !css_tryget_online(&mz->memcg->css))
756 757 758 759 760 761 762 763 764 765
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

766
	spin_lock_irq(&mctz->lock);
767
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
768
	spin_unlock_irq(&mctz->lock);
769 770 771
	return mz;
}

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
791
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
792
				 enum mem_cgroup_stat_index idx)
793
{
794
	long val = 0;
795 796
	int cpu;

797 798
	get_online_cpus();
	for_each_online_cpu(cpu)
799
		val += per_cpu(memcg->stat->count[idx], cpu);
800
#ifdef CONFIG_HOTPLUG_CPU
801 802 803
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
804 805
#endif
	put_online_cpus();
806 807 808
	return val;
}

809
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
810 811 812 813 814
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

815
	get_online_cpus();
816
	for_each_online_cpu(cpu)
817
		val += per_cpu(memcg->stat->events[idx], cpu);
818
#ifdef CONFIG_HOTPLUG_CPU
819 820 821
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
822
#endif
823
	put_online_cpus();
824 825 826
	return val;
}

827
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
828
					 struct page *page,
829
					 int nr_pages)
830
{
831 832 833 834
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
835
	if (PageAnon(page))
836
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
837
				nr_pages);
838
	else
839
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
840
				nr_pages);
841

842 843 844 845
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

846 847
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
848
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
849
	else {
850
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
851 852
		nr_pages = -nr_pages; /* for event */
	}
853

854
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
855 856
}

857
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
858 859 860 861 862 863 864
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

865 866 867
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
868
{
869
	unsigned long nr = 0;
870 871
	int zid;

872
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
873

874 875 876 877 878 879 880 881 882 883 884 885
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
886
}
887

888
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
889
			unsigned int lru_mask)
890
{
891
	unsigned long nr = 0;
892
	int nid;
893

894
	for_each_node_state(nid, N_MEMORY)
895 896
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
897 898
}

899 900
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
901 902 903
{
	unsigned long val, next;

904
	val = __this_cpu_read(memcg->stat->nr_page_events);
905
	next = __this_cpu_read(memcg->stat->targets[target]);
906
	/* from time_after() in jiffies.h */
907 908 909 910 911
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
912 913 914
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
915 916 917 918 919 920 921 922
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
923
	}
924
	return false;
925 926 927 928 929 930
}

/*
 * Check events in order.
 *
 */
931
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
932 933
{
	/* threshold event is triggered in finer grain than soft limit */
934 935
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
936
		bool do_softlimit;
937
		bool do_numainfo __maybe_unused;
938

939 940
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
941 942 943 944
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
945
		mem_cgroup_threshold(memcg);
946 947
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
948
#if MAX_NUMNODES > 1
949
		if (unlikely(do_numainfo))
950
			atomic_inc(&memcg->numainfo_events);
951
#endif
952
	}
953 954
}

955
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
956
{
957 958 959 960 961 962 963 964
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

965
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
966 967
}

968
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
969
{
970
	struct mem_cgroup *memcg = NULL;
971

972 973
	rcu_read_lock();
	do {
974 975 976 977 978 979
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
980
			memcg = root_mem_cgroup;
981 982 983 984 985
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
986
	} while (!css_tryget_online(&memcg->css));
987
	rcu_read_unlock();
988
	return memcg;
989 990
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1008
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1009
				   struct mem_cgroup *prev,
1010
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1011
{
1012 1013
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1014
	struct mem_cgroup *memcg = NULL;
1015
	struct mem_cgroup *pos = NULL;
1016

1017 1018
	if (mem_cgroup_disabled())
		return NULL;
1019

1020 1021
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1022

1023
	if (prev && !reclaim)
1024
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1025

1026 1027
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1028
			goto out;
1029
		return root;
1030
	}
K
KAMEZAWA Hiroyuki 已提交
1031

1032
	rcu_read_lock();
M
Michal Hocko 已提交
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1068
		}
K
KAMEZAWA Hiroyuki 已提交
1069

1070 1071 1072 1073 1074 1075
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1076

1077 1078
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1079

1080
		if (css_tryget(css)) {
1081 1082 1083 1084 1085 1086 1087
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1088

1089
			css_put(css);
1090
		}
1091

1092
		memcg = NULL;
1093
	}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1114
	}
1115

1116 1117
out_unlock:
	rcu_read_unlock();
1118
out:
1119 1120 1121
	if (prev && prev != root)
		css_put(&prev->css);

1122
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1123
}
K
KAMEZAWA Hiroyuki 已提交
1124

1125 1126 1127 1128 1129 1130 1131
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1132 1133 1134 1135 1136 1137
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1138

1139 1140 1141 1142 1143 1144
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1145
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1146
	     iter != NULL;				\
1147
	     iter = mem_cgroup_iter(root, iter, NULL))
1148

1149
#define for_each_mem_cgroup(iter)			\
1150
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1151
	     iter != NULL;				\
1152
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1153

1154
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1155
{
1156
	struct mem_cgroup *memcg;
1157 1158

	rcu_read_lock();
1159 1160
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1161 1162 1163 1164
		goto out;

	switch (idx) {
	case PGFAULT:
1165 1166 1167 1168
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1169 1170 1171 1172 1173 1174 1175
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1176
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1177

1178 1179 1180
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1181
 * @memcg: memcg of the wanted lruvec
1182 1183 1184 1185 1186 1187 1188 1189 1190
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1191
	struct lruvec *lruvec;
1192

1193 1194 1195 1196
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1197

1198
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1209 1210 1211
}

/**
1212
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1213
 * @page: the page
1214
 * @zone: zone of the page
1215 1216 1217 1218
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1219
 */
1220
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1221 1222
{
	struct mem_cgroup_per_zone *mz;
1223
	struct mem_cgroup *memcg;
1224
	struct lruvec *lruvec;
1225

1226 1227 1228 1229
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1230

1231
	memcg = page->mem_cgroup;
1232
	/*
1233
	 * Swapcache readahead pages are added to the LRU - and
1234
	 * possibly migrated - before they are charged.
1235
	 */
1236 1237
	if (!memcg)
		memcg = root_mem_cgroup;
1238

1239
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1250
}
1251

1252
/**
1253 1254 1255 1256
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1257
 *
1258 1259
 * This function must be called when a page is added to or removed from an
 * lru list.
1260
 */
1261 1262
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1263 1264
{
	struct mem_cgroup_per_zone *mz;
1265
	unsigned long *lru_size;
1266 1267 1268 1269

	if (mem_cgroup_disabled())
		return;

1270 1271 1272 1273
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1274
}
1275

1276
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1277
{
1278
	if (root == memcg)
1279
		return true;
1280
	if (!root->use_hierarchy)
1281
		return false;
1282
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1283 1284
}

1285
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1286
{
1287
	struct mem_cgroup *task_memcg;
1288
	struct task_struct *p;
1289
	bool ret;
1290

1291
	p = find_lock_task_mm(task);
1292
	if (p) {
1293
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1294 1295 1296 1297 1298 1299 1300
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1301
		rcu_read_lock();
1302 1303
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1304
		rcu_read_unlock();
1305
	}
1306 1307
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1308 1309 1310
	return ret;
}

1311
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1312
{
1313
	unsigned long inactive_ratio;
1314
	unsigned long inactive;
1315
	unsigned long active;
1316
	unsigned long gb;
1317

1318 1319
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1320

1321 1322 1323 1324 1325 1326
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1327
	return inactive * inactive_ratio < active;
1328 1329
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1344
#define mem_cgroup_from_counter(counter, member)	\
1345 1346
	container_of(counter, struct mem_cgroup, member)

1347
/**
1348
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1349
 * @memcg: the memory cgroup
1350
 *
1351
 * Returns the maximum amount of memory @mem can be charged with, in
1352
 * pages.
1353
 */
1354
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1355
{
1356 1357 1358
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1359

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1373 1374
}

1375
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1376 1377
{
	/* root ? */
1378
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1379 1380
		return vm_swappiness;

1381
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1382 1383
}

1384
/*
Q
Qiang Huang 已提交
1385
 * A routine for checking "mem" is under move_account() or not.
1386
 *
Q
Qiang Huang 已提交
1387 1388 1389
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1390
 */
1391
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1392
{
1393 1394
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1395
	bool ret = false;
1396 1397 1398 1399 1400 1401 1402 1403 1404
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1405

1406 1407
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1408 1409
unlock:
	spin_unlock(&mc.lock);
1410 1411 1412
	return ret;
}

1413
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1414 1415
{
	if (mc.moving_task && current != mc.moving_task) {
1416
		if (mem_cgroup_under_move(memcg)) {
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1429
#define K(x) ((x) << (PAGE_SHIFT-10))
1430
/**
1431
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1432 1433 1434 1435 1436 1437 1438 1439
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1440
	/* oom_info_lock ensures that parallel ooms do not interleave */
1441
	static DEFINE_MUTEX(oom_info_lock);
1442 1443
	struct mem_cgroup *iter;
	unsigned int i;
1444

1445
	if (!p)
1446 1447
		return;

1448
	mutex_lock(&oom_info_lock);
1449 1450
	rcu_read_lock();

T
Tejun Heo 已提交
1451 1452
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1453
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1454
	pr_cont_cgroup_path(memcg->css.cgroup);
1455
	pr_cont("\n");
1456 1457 1458

	rcu_read_unlock();

1459 1460 1461 1462 1463 1464 1465 1466 1467
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1468 1469

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1470 1471
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1487
	mutex_unlock(&oom_info_lock);
1488 1489
}

1490 1491 1492 1493
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1494
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1495 1496
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1497 1498
	struct mem_cgroup *iter;

1499
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1500
		num++;
1501 1502 1503
	return num;
}

D
David Rientjes 已提交
1504 1505 1506
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1507
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1508
{
1509
	unsigned long limit;
1510

1511
	limit = memcg->memory.limit;
1512
	if (mem_cgroup_swappiness(memcg)) {
1513
		unsigned long memsw_limit;
1514

1515 1516
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1517 1518
	}
	return limit;
D
David Rientjes 已提交
1519 1520
}

1521 1522
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1523 1524 1525 1526 1527 1528 1529
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1530
	/*
1531 1532 1533
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1534
	 */
1535
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1536
		mark_tsk_oom_victim(current);
1537 1538 1539 1540
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1541
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1542
	for_each_mem_cgroup_tree(iter, memcg) {
1543
		struct css_task_iter it;
1544 1545
		struct task_struct *task;

1546 1547
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1560
				css_task_iter_end(&it);
1561 1562 1563 1564 1565 1566 1567 1568
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1581
		}
1582
		css_task_iter_end(&it);
1583 1584 1585 1586 1587 1588 1589 1590 1591
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1592 1593
#if MAX_NUMNODES > 1

1594 1595
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1596
 * @memcg: the target memcg
1597 1598 1599 1600 1601 1602 1603
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1604
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1605 1606
		int nid, bool noswap)
{
1607
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1608 1609 1610
		return true;
	if (noswap || !total_swap_pages)
		return false;
1611
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1612 1613 1614 1615
		return true;
	return false;

}
1616 1617 1618 1619 1620 1621 1622

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1623
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1624 1625
{
	int nid;
1626 1627 1628 1629
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1630
	if (!atomic_read(&memcg->numainfo_events))
1631
		return;
1632
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1633 1634 1635
		return;

	/* make a nodemask where this memcg uses memory from */
1636
	memcg->scan_nodes = node_states[N_MEMORY];
1637

1638
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1639

1640 1641
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1642
	}
1643

1644 1645
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1660
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1661 1662 1663
{
	int node;

1664 1665
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1666

1667
	node = next_node(node, memcg->scan_nodes);
1668
	if (node == MAX_NUMNODES)
1669
		node = first_node(memcg->scan_nodes);
1670 1671 1672 1673 1674 1675 1676 1677 1678
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1679
	memcg->last_scanned_node = node;
1680 1681 1682
	return node;
}
#else
1683
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1684 1685 1686 1687 1688
{
	return 0;
}
#endif

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1704
	excess = soft_limit_excess(root_memcg);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1733
		if (!soft_limit_excess(root_memcg))
1734
			break;
1735
	}
1736 1737
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1738 1739
}

1740 1741 1742 1743 1744 1745
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1746 1747
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1748 1749 1750 1751
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1752
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1753
{
1754
	struct mem_cgroup *iter, *failed = NULL;
1755

1756 1757
	spin_lock(&memcg_oom_lock);

1758
	for_each_mem_cgroup_tree(iter, memcg) {
1759
		if (iter->oom_lock) {
1760 1761 1762 1763 1764
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1765 1766
			mem_cgroup_iter_break(memcg, iter);
			break;
1767 1768
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1769
	}
K
KAMEZAWA Hiroyuki 已提交
1770

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1782
		}
1783 1784
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1785 1786 1787 1788

	spin_unlock(&memcg_oom_lock);

	return !failed;
1789
}
1790

1791
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1792
{
K
KAMEZAWA Hiroyuki 已提交
1793 1794
	struct mem_cgroup *iter;

1795
	spin_lock(&memcg_oom_lock);
1796
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1797
	for_each_mem_cgroup_tree(iter, memcg)
1798
		iter->oom_lock = false;
1799
	spin_unlock(&memcg_oom_lock);
1800 1801
}

1802
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1803 1804 1805
{
	struct mem_cgroup *iter;

1806
	for_each_mem_cgroup_tree(iter, memcg)
1807 1808 1809
		atomic_inc(&iter->under_oom);
}

1810
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1811 1812 1813
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1814 1815 1816 1817 1818
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1819
	for_each_mem_cgroup_tree(iter, memcg)
1820
		atomic_add_unless(&iter->under_oom, -1, 0);
1821 1822
}

K
KAMEZAWA Hiroyuki 已提交
1823 1824
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1825
struct oom_wait_info {
1826
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1827 1828 1829 1830 1831 1832
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1833 1834
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1835 1836 1837
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1838
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1839

1840 1841
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1842 1843 1844 1845
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1846
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1847
{
1848
	atomic_inc(&memcg->oom_wakeups);
1849 1850
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1851 1852
}

1853
static void memcg_oom_recover(struct mem_cgroup *memcg)
1854
{
1855 1856
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1857 1858
}

1859
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1860
{
1861 1862
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1863
	/*
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1876
	 */
1877 1878 1879 1880
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1881 1882 1883 1884
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1885
 * @handle: actually kill/wait or just clean up the OOM state
1886
 *
1887 1888
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1889
 *
1890
 * Memcg supports userspace OOM handling where failed allocations must
1891 1892 1893 1894
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1895
 * the end of the page fault to complete the OOM handling.
1896 1897
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1898
 * completed, %false otherwise.
1899
 */
1900
bool mem_cgroup_oom_synchronize(bool handle)
1901
{
1902
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1903
	struct oom_wait_info owait;
1904
	bool locked;
1905 1906 1907

	/* OOM is global, do not handle */
	if (!memcg)
1908
		return false;
1909

1910
	if (!handle || oom_killer_disabled)
1911
		goto cleanup;
1912 1913 1914 1915 1916 1917

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1918

1919
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1933
		schedule();
1934 1935 1936 1937 1938
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1939 1940 1941 1942 1943 1944 1945 1946
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1947 1948
cleanup:
	current->memcg_oom.memcg = NULL;
1949
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1950
	return true;
1951 1952
}

1953 1954 1955
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1956
 *
1957 1958 1959
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1960
 *
1961
 *   memcg = mem_cgroup_begin_page_stat(page);
1962 1963
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1964
 *   mem_cgroup_end_page_stat(memcg);
1965
 */
1966
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1967 1968
{
	struct mem_cgroup *memcg;
1969
	unsigned long flags;
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1983 1984 1985 1986
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1987
again:
1988
	memcg = page->mem_cgroup;
1989
	if (unlikely(!memcg))
1990 1991
		return NULL;

Q
Qiang Huang 已提交
1992
	if (atomic_read(&memcg->moving_account) <= 0)
1993
		return memcg;
1994

1995
	spin_lock_irqsave(&memcg->move_lock, flags);
1996
	if (memcg != page->mem_cgroup) {
1997
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1998 1999
		goto again;
	}
2000 2001 2002 2003 2004 2005 2006 2007

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2008 2009

	return memcg;
2010 2011
}

2012 2013 2014 2015
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2016
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2017
{
2018 2019 2020 2021 2022 2023 2024 2025
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2026

2027
	rcu_read_unlock();
2028 2029
}

2030 2031 2032 2033 2034 2035 2036 2037 2038
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2039
				 enum mem_cgroup_stat_index idx, int val)
2040
{
2041
	VM_BUG_ON(!rcu_read_lock_held());
2042

2043 2044
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2045
}
2046

2047 2048 2049 2050
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2051
#define CHARGE_BATCH	32U
2052 2053
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2054
	unsigned int nr_pages;
2055
	struct work_struct work;
2056
	unsigned long flags;
2057
#define FLUSHING_CACHED_CHARGE	0
2058 2059
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2060
static DEFINE_MUTEX(percpu_charge_mutex);
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2072
 */
2073
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2074 2075
{
	struct memcg_stock_pcp *stock;
2076
	bool ret = false;
2077

2078
	if (nr_pages > CHARGE_BATCH)
2079
		return ret;
2080

2081
	stock = &get_cpu_var(memcg_stock);
2082
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2083
		stock->nr_pages -= nr_pages;
2084 2085
		ret = true;
	}
2086 2087 2088 2089 2090
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2091
 * Returns stocks cached in percpu and reset cached information.
2092 2093 2094 2095 2096
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2097
	if (stock->nr_pages) {
2098
		page_counter_uncharge(&old->memory, stock->nr_pages);
2099
		if (do_swap_account)
2100
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2101
		css_put_many(&old->css, stock->nr_pages);
2102
		stock->nr_pages = 0;
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2113
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2114
	drain_stock(stock);
2115
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2116 2117 2118
}

/*
2119
 * Cache charges(val) to local per_cpu area.
2120
 * This will be consumed by consume_stock() function, later.
2121
 */
2122
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2123 2124 2125
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2126
	if (stock->cached != memcg) { /* reset if necessary */
2127
		drain_stock(stock);
2128
		stock->cached = memcg;
2129
	}
2130
	stock->nr_pages += nr_pages;
2131 2132 2133 2134
	put_cpu_var(memcg_stock);
}

/*
2135
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2136
 * of the hierarchy under it.
2137
 */
2138
static void drain_all_stock(struct mem_cgroup *root_memcg)
2139
{
2140
	int cpu, curcpu;
2141

2142 2143 2144
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2145 2146
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2147
	curcpu = get_cpu();
2148 2149
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2150
		struct mem_cgroup *memcg;
2151

2152 2153
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2154
			continue;
2155
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2156
			continue;
2157 2158 2159 2160 2161 2162
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2163
	}
2164
	put_cpu();
A
Andrew Morton 已提交
2165
	put_online_cpus();
2166
	mutex_unlock(&percpu_charge_mutex);
2167 2168
}

2169 2170 2171 2172
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2173
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2174 2175 2176
{
	int i;

2177
	spin_lock(&memcg->pcp_counter_lock);
2178
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2179
		long x = per_cpu(memcg->stat->count[i], cpu);
2180

2181 2182
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2183
	}
2184
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2185
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2186

2187 2188
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2189
	}
2190
	spin_unlock(&memcg->pcp_counter_lock);
2191 2192
}

2193
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2194 2195 2196 2197 2198
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2199
	struct mem_cgroup *iter;
2200

2201
	if (action == CPU_ONLINE)
2202 2203
		return NOTIFY_OK;

2204
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2205
		return NOTIFY_OK;
2206

2207
	for_each_mem_cgroup(iter)
2208 2209
		mem_cgroup_drain_pcp_counter(iter, cpu);

2210 2211 2212 2213 2214
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2215 2216
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2217
{
2218
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2219
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2220
	struct mem_cgroup *mem_over_limit;
2221
	struct page_counter *counter;
2222
	unsigned long nr_reclaimed;
2223 2224
	bool may_swap = true;
	bool drained = false;
2225
	int ret = 0;
2226

2227 2228
	if (mem_cgroup_is_root(memcg))
		goto done;
2229
retry:
2230 2231
	if (consume_stock(memcg, nr_pages))
		goto done;
2232

2233
	if (!do_swap_account ||
2234 2235
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2236
			goto done_restock;
2237
		if (do_swap_account)
2238 2239
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2240
	} else {
2241
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2242
		may_swap = false;
2243
	}
2244

2245 2246 2247 2248
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2264 2265
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2266

2267 2268
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2269 2270
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2271

2272
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2273
		goto retry;
2274

2275
	if (!drained) {
2276
		drain_all_stock(mem_over_limit);
2277 2278 2279 2280
		drained = true;
		goto retry;
	}

2281 2282
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2283 2284 2285 2286 2287 2288 2289 2290 2291
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2292
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2293 2294 2295 2296 2297 2298 2299 2300
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2301 2302 2303
	if (nr_retries--)
		goto retry;

2304 2305 2306
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2307 2308 2309
	if (fatal_signal_pending(current))
		goto bypass;

2310 2311
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2312
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2313
nomem:
2314
	if (!(gfp_mask & __GFP_NOFAIL))
2315
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2316
bypass:
2317
	return -EINTR;
2318 2319

done_restock:
2320
	css_get_many(&memcg->css, batch);
2321 2322
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2333
done:
2334
	return ret;
2335
}
2336

2337
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2338
{
2339 2340 2341
	if (mem_cgroup_is_root(memcg))
		return;

2342
	page_counter_uncharge(&memcg->memory, nr_pages);
2343
	if (do_swap_account)
2344
		page_counter_uncharge(&memcg->memsw, nr_pages);
2345

2346
	css_put_many(&memcg->css, nr_pages);
2347 2348
}

2349 2350
/*
 * A helper function to get mem_cgroup from ID. must be called under
2351 2352 2353
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2354 2355 2356 2357 2358 2359
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2360
	return mem_cgroup_from_id(id);
2361 2362
}

2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2373
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2374
{
2375
	struct mem_cgroup *memcg;
2376
	unsigned short id;
2377 2378
	swp_entry_t ent;

2379
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2380

2381
	memcg = page->mem_cgroup;
2382 2383
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2384
			memcg = NULL;
2385
	} else if (PageSwapCache(page)) {
2386
		ent.val = page_private(page);
2387
		id = lookup_swap_cgroup_id(ent);
2388
		rcu_read_lock();
2389
		memcg = mem_cgroup_lookup(id);
2390
		if (memcg && !css_tryget_online(&memcg->css))
2391
			memcg = NULL;
2392
		rcu_read_unlock();
2393
	}
2394
	return memcg;
2395 2396
}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2428
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2429
			  bool lrucare)
2430
{
2431
	int isolated;
2432

2433
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2434 2435 2436 2437 2438

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2439 2440
	if (lrucare)
		lock_page_lru(page, &isolated);
2441

2442 2443
	/*
	 * Nobody should be changing or seriously looking at
2444
	 * page->mem_cgroup at this point:
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2456
	page->mem_cgroup = memcg;
2457

2458 2459
	if (lrucare)
		unlock_page_lru(page, isolated);
2460
}
2461

2462
#ifdef CONFIG_MEMCG_KMEM
2463 2464
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2465
{
2466
	struct page_counter *counter;
2467 2468
	int ret = 0;

2469 2470
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2471 2472
		return ret;

2473
	ret = try_charge(memcg, gfp, nr_pages);
2474 2475
	if (ret == -EINTR)  {
		/*
2476 2477 2478 2479 2480 2481
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2482 2483 2484
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2485 2486 2487
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2488 2489
		 * directed to the root cgroup in memcontrol.h
		 */
2490
		page_counter_charge(&memcg->memory, nr_pages);
2491
		if (do_swap_account)
2492
			page_counter_charge(&memcg->memsw, nr_pages);
2493
		css_get_many(&memcg->css, nr_pages);
2494 2495
		ret = 0;
	} else if (ret)
2496
		page_counter_uncharge(&memcg->kmem, nr_pages);
2497 2498 2499 2500

	return ret;
}

2501
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2502
{
2503
	page_counter_uncharge(&memcg->memory, nr_pages);
2504
	if (do_swap_account)
2505
		page_counter_uncharge(&memcg->memsw, nr_pages);
2506

2507
	page_counter_uncharge(&memcg->kmem, nr_pages);
2508

2509
	css_put_many(&memcg->css, nr_pages);
2510 2511
}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2522
static int memcg_alloc_cache_id(void)
2523
{
2524 2525 2526
	int id, size;
	int err;

2527
	id = ida_simple_get(&memcg_cache_ida,
2528 2529 2530
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2531

2532
	if (id < memcg_nr_cache_ids)
2533 2534 2535 2536 2537 2538
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2539
	down_write(&memcg_cache_ids_sem);
2540 2541

	size = 2 * (id + 1);
2542 2543 2544 2545 2546
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2547
	err = memcg_update_all_caches(size);
2548 2549
	if (!err)
		err = memcg_update_all_list_lrus(size);
2550 2551 2552 2553 2554
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2555
	if (err) {
2556
		ida_simple_remove(&memcg_cache_ida, id);
2557 2558 2559 2560 2561 2562 2563
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2564
	ida_simple_remove(&memcg_cache_ida, id);
2565 2566
}

2567
struct memcg_kmem_cache_create_work {
2568 2569 2570 2571 2572
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2573
static void memcg_kmem_cache_create_func(struct work_struct *w)
2574
{
2575 2576
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2577 2578
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2579

2580
	memcg_create_kmem_cache(memcg, cachep);
2581

2582
	css_put(&memcg->css);
2583 2584 2585 2586 2587 2588
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2589 2590
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2591
{
2592
	struct memcg_kmem_cache_create_work *cw;
2593

2594
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2595
	if (!cw)
2596
		return;
2597 2598

	css_get(&memcg->css);
2599 2600 2601

	cw->memcg = memcg;
	cw->cachep = cachep;
2602
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2603 2604 2605 2606

	schedule_work(&cw->work);
}

2607 2608
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2609 2610 2611 2612
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2613
	 * in __memcg_schedule_kmem_cache_create will recurse.
2614 2615 2616 2617 2618 2619 2620
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2621
	current->memcg_kmem_skip_account = 1;
2622
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2623
	current->memcg_kmem_skip_account = 0;
2624
}
2625

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2639
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2640 2641
{
	struct mem_cgroup *memcg;
2642
	struct kmem_cache *memcg_cachep;
2643
	int kmemcg_id;
2644

2645
	VM_BUG_ON(!is_root_cache(cachep));
2646

2647
	if (current->memcg_kmem_skip_account)
2648 2649
		return cachep;

2650
	memcg = get_mem_cgroup_from_mm(current->mm);
2651 2652
	kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
	if (kmemcg_id < 0)
2653
		goto out;
2654

2655
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2656 2657
	if (likely(memcg_cachep))
		return memcg_cachep;
2658 2659 2660 2661 2662 2663 2664 2665 2666

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2667 2668 2669
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2670
	 */
2671
	memcg_schedule_kmem_cache_create(memcg, cachep);
2672
out:
2673
	css_put(&memcg->css);
2674
	return cachep;
2675 2676
}

2677 2678 2679
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2680
		css_put(&cachep->memcg_params.memcg->css);
2681 2682
}

2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2704

2705
	memcg = get_mem_cgroup_from_mm(current->mm);
2706

2707
	if (!memcg_kmem_is_active(memcg)) {
2708 2709 2710 2711
		css_put(&memcg->css);
		return true;
	}

2712
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2727
		memcg_uncharge_kmem(memcg, 1 << order);
2728 2729
		return;
	}
2730
	page->mem_cgroup = memcg;
2731 2732 2733 2734
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2735
	struct mem_cgroup *memcg = page->mem_cgroup;
2736 2737 2738 2739

	if (!memcg)
		return;

2740
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2741

2742
	memcg_uncharge_kmem(memcg, 1 << order);
2743
	page->mem_cgroup = NULL;
2744
}
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2756
			memcg = cachep->memcg_params.memcg;
2757 2758 2759 2760 2761 2762
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2763 2764
#endif /* CONFIG_MEMCG_KMEM */

2765 2766 2767 2768
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2769 2770 2771
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2772
 */
2773
void mem_cgroup_split_huge_fixup(struct page *head)
2774
{
2775
	int i;
2776

2777 2778
	if (mem_cgroup_disabled())
		return;
2779

2780
	for (i = 1; i < HPAGE_PMD_NR; i++)
2781
		head[i].mem_cgroup = head->mem_cgroup;
2782

2783
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2784
		       HPAGE_PMD_NR);
2785
}
2786
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2787

A
Andrew Morton 已提交
2788
#ifdef CONFIG_MEMCG_SWAP
2789 2790
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2791
{
2792 2793
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2794
}
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2807
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2808 2809 2810
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2811
				struct mem_cgroup *from, struct mem_cgroup *to)
2812 2813 2814
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2815 2816
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2817 2818 2819

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2820
		mem_cgroup_swap_statistics(to, true);
2821 2822 2823 2824 2825 2826
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2827
				struct mem_cgroup *from, struct mem_cgroup *to)
2828 2829 2830
{
	return -EINVAL;
}
2831
#endif
K
KAMEZAWA Hiroyuki 已提交
2832

2833
static DEFINE_MUTEX(memcg_limit_mutex);
2834

2835
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2836
				   unsigned long limit)
2837
{
2838 2839 2840
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2841
	int retry_count;
2842
	int ret;
2843 2844 2845 2846 2847 2848

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2849 2850
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2851

2852
	oldusage = page_counter_read(&memcg->memory);
2853

2854
	do {
2855 2856 2857 2858
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2859 2860 2861 2862

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2863
			ret = -EINVAL;
2864 2865
			break;
		}
2866 2867 2868 2869
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2870 2871 2872 2873

		if (!ret)
			break;

2874 2875
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2876
		curusage = page_counter_read(&memcg->memory);
2877
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2878
		if (curusage >= oldusage)
2879 2880 2881
			retry_count--;
		else
			oldusage = curusage;
2882 2883
	} while (retry_count);

2884 2885
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2886

2887 2888 2889
	return ret;
}

L
Li Zefan 已提交
2890
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2891
					 unsigned long limit)
2892
{
2893 2894 2895
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2896
	int retry_count;
2897
	int ret;
2898

2899
	/* see mem_cgroup_resize_res_limit */
2900 2901 2902 2903 2904 2905
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2906 2907 2908 2909
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2910 2911 2912 2913

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2914 2915 2916
			ret = -EINVAL;
			break;
		}
2917 2918 2919 2920
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2921 2922 2923 2924

		if (!ret)
			break;

2925 2926
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2927
		curusage = page_counter_read(&memcg->memsw);
2928
		/* Usage is reduced ? */
2929
		if (curusage >= oldusage)
2930
			retry_count--;
2931 2932
		else
			oldusage = curusage;
2933 2934
	} while (retry_count);

2935 2936
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2937

2938 2939 2940
	return ret;
}

2941 2942 2943 2944 2945 2946 2947 2948 2949
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2950
	unsigned long excess;
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2975
		spin_lock_irq(&mctz->lock);
2976
		__mem_cgroup_remove_exceeded(mz, mctz);
2977 2978 2979 2980 2981 2982

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2983 2984 2985
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2986
		excess = soft_limit_excess(mz->memcg);
2987 2988 2989 2990 2991 2992 2993 2994 2995
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2996
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2997
		spin_unlock_irq(&mctz->lock);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3015 3016 3017 3018 3019 3020
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3021 3022
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3023 3024
	bool ret;

3025
	/*
3026 3027 3028 3029
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3030
	 */
3031 3032 3033 3034 3035 3036
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3037 3038
}

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3049 3050
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3051
	/* try to free all pages in this cgroup */
3052
	while (nr_retries && page_counter_read(&memcg->memory)) {
3053
		int progress;
3054

3055 3056 3057
		if (signal_pending(current))
			return -EINTR;

3058 3059
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3060
		if (!progress) {
3061
			nr_retries--;
3062
			/* maybe some writeback is necessary */
3063
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3064
		}
3065 3066

	}
3067 3068

	return 0;
3069 3070
}

3071 3072 3073
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3074
{
3075
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3076

3077 3078
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3079
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3080 3081
}

3082 3083
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3084
{
3085
	return mem_cgroup_from_css(css)->use_hierarchy;
3086 3087
}

3088 3089
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3090 3091
{
	int retval = 0;
3092
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3093
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3094

3095
	mutex_lock(&memcg_create_mutex);
3096 3097 3098 3099

	if (memcg->use_hierarchy == val)
		goto out;

3100
	/*
3101
	 * If parent's use_hierarchy is set, we can't make any modifications
3102 3103 3104 3105 3106 3107
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3108
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3109
				(val == 1 || val == 0)) {
3110
		if (!memcg_has_children(memcg))
3111
			memcg->use_hierarchy = val;
3112 3113 3114 3115
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3116 3117

out:
3118
	mutex_unlock(&memcg_create_mutex);
3119 3120 3121 3122

	return retval;
}

3123 3124
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3142 3143 3144 3145 3146 3147
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3148
		if (!swap)
3149
			val = page_counter_read(&memcg->memory);
3150
		else
3151
			val = page_counter_read(&memcg->memsw);
3152 3153 3154 3155
	}
	return val << PAGE_SHIFT;
}

3156 3157 3158 3159 3160 3161 3162
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3163

3164
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3165
			       struct cftype *cft)
B
Balbir Singh 已提交
3166
{
3167
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3168
	struct page_counter *counter;
3169

3170
	switch (MEMFILE_TYPE(cft->private)) {
3171
	case _MEM:
3172 3173
		counter = &memcg->memory;
		break;
3174
	case _MEMSWAP:
3175 3176
		counter = &memcg->memsw;
		break;
3177
	case _KMEM:
3178
		counter = &memcg->kmem;
3179
		break;
3180 3181 3182
	default:
		BUG();
	}
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3202
}
3203 3204

#ifdef CONFIG_MEMCG_KMEM
3205 3206
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3207 3208 3209 3210
{
	int err = 0;
	int memcg_id;

3211
	BUG_ON(memcg->kmemcg_id >= 0);
3212
	BUG_ON(memcg->kmem_acct_activated);
3213
	BUG_ON(memcg->kmem_acct_active);
3214

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3227
	mutex_lock(&memcg_create_mutex);
3228 3229
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3230 3231 3232 3233
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3234

3235
	memcg_id = memcg_alloc_cache_id();
3236 3237 3238 3239 3240 3241
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3242 3243
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3244
	 */
3245
	err = page_counter_limit(&memcg->kmem, nr_pages);
3246 3247 3248 3249
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3250 3251
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3252 3253 3254
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3255
	memcg->kmemcg_id = memcg_id;
3256
	memcg->kmem_acct_activated = true;
3257
	memcg->kmem_acct_active = true;
3258
out:
3259 3260 3261 3262
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3263
				   unsigned long limit)
3264 3265 3266
{
	int ret;

3267
	mutex_lock(&memcg_limit_mutex);
3268
	if (!memcg_kmem_is_active(memcg))
3269
		ret = memcg_activate_kmem(memcg, limit);
3270
	else
3271 3272
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3273 3274 3275
	return ret;
}

3276
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3277
{
3278
	int ret = 0;
3279
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3280

3281 3282
	if (!parent)
		return 0;
3283

3284
	mutex_lock(&memcg_limit_mutex);
3285
	/*
3286 3287
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3288
	 */
3289
	if (memcg_kmem_is_active(parent))
3290 3291
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3292
	return ret;
3293
}
3294 3295
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3296
				   unsigned long limit)
3297 3298 3299
{
	return -EINVAL;
}
3300
#endif /* CONFIG_MEMCG_KMEM */
3301

3302 3303 3304 3305
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3306 3307
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3308
{
3309
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3310
	unsigned long nr_pages;
3311 3312
	int ret;

3313
	buf = strstrip(buf);
3314
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3315 3316
	if (ret)
		return ret;
3317

3318
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3319
	case RES_LIMIT:
3320 3321 3322 3323
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3324 3325 3326
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3327
			break;
3328 3329
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3330
			break;
3331 3332 3333 3334
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3335
		break;
3336 3337 3338
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3339 3340
		break;
	}
3341
	return ret ?: nbytes;
B
Balbir Singh 已提交
3342 3343
}

3344 3345
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3346
{
3347
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3348
	struct page_counter *counter;
3349

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3363

3364
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3365
	case RES_MAX_USAGE:
3366
		page_counter_reset_watermark(counter);
3367 3368
		break;
	case RES_FAILCNT:
3369
		counter->failcnt = 0;
3370
		break;
3371 3372
	default:
		BUG();
3373
	}
3374

3375
	return nbytes;
3376 3377
}

3378
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3379 3380
					struct cftype *cft)
{
3381
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3382 3383
}

3384
#ifdef CONFIG_MMU
3385
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3386 3387
					struct cftype *cft, u64 val)
{
3388
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3389

3390
	if (val & ~MOVE_MASK)
3391
		return -EINVAL;
3392

3393
	/*
3394 3395 3396 3397
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3398
	 */
3399
	memcg->move_charge_at_immigrate = val;
3400 3401
	return 0;
}
3402
#else
3403
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3404 3405 3406 3407 3408
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3409

3410
#ifdef CONFIG_NUMA
3411
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3412
{
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3425
	int nid;
3426
	unsigned long nr;
3427
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3428

3429 3430 3431 3432 3433 3434 3435 3436 3437
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3438 3439
	}

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3455 3456 3457 3458 3459 3460
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3461
static int memcg_stat_show(struct seq_file *m, void *v)
3462
{
3463
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3464
	unsigned long memory, memsw;
3465 3466
	struct mem_cgroup *mi;
	unsigned int i;
3467

3468 3469 3470 3471
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3472 3473
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3474
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3475
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3476
			continue;
3477 3478
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3479
	}
L
Lee Schermerhorn 已提交
3480

3481 3482 3483 3484 3485 3486 3487 3488
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3489
	/* Hierarchical information */
3490 3491 3492 3493
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3494
	}
3495 3496 3497 3498 3499
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3500

3501 3502 3503
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3504
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3505
			continue;
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3526
	}
K
KAMEZAWA Hiroyuki 已提交
3527

K
KOSAKI Motohiro 已提交
3528 3529 3530 3531
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3532
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3533 3534 3535 3536 3537
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3538
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3539
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3540

3541 3542 3543 3544
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3545
			}
3546 3547 3548 3549
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3550 3551 3552
	}
#endif

3553 3554 3555
	return 0;
}

3556 3557
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3558
{
3559
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3560

3561
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3562 3563
}

3564 3565
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3566
{
3567
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3568

3569
	if (val > 100)
K
KOSAKI Motohiro 已提交
3570 3571
		return -EINVAL;

3572
	if (css->parent)
3573 3574 3575
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3576

K
KOSAKI Motohiro 已提交
3577 3578 3579
	return 0;
}

3580 3581 3582
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3583
	unsigned long usage;
3584 3585 3586 3587
	int i;

	rcu_read_lock();
	if (!swap)
3588
		t = rcu_dereference(memcg->thresholds.primary);
3589
	else
3590
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3591 3592 3593 3594

	if (!t)
		goto unlock;

3595
	usage = mem_cgroup_usage(memcg, swap);
3596 3597

	/*
3598
	 * current_threshold points to threshold just below or equal to usage.
3599 3600 3601
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3602
	i = t->current_threshold;
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3626
	t->current_threshold = i - 1;
3627 3628 3629 3630 3631 3632
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3633 3634 3635 3636 3637 3638 3639
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3640 3641 3642 3643 3644 3645 3646
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3647 3648 3649 3650 3651 3652 3653
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3654 3655
}

3656
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3657 3658 3659
{
	struct mem_cgroup_eventfd_list *ev;

3660 3661
	spin_lock(&memcg_oom_lock);

3662
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3663
		eventfd_signal(ev->eventfd, 1);
3664 3665

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3666 3667 3668
	return 0;
}

3669
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3670
{
K
KAMEZAWA Hiroyuki 已提交
3671 3672
	struct mem_cgroup *iter;

3673
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3674
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3675 3676
}

3677
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3678
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3679
{
3680 3681
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3682 3683
	unsigned long threshold;
	unsigned long usage;
3684
	int i, size, ret;
3685

3686
	ret = page_counter_memparse(args, "-1", &threshold);
3687 3688 3689 3690
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3691

3692
	if (type == _MEM) {
3693
		thresholds = &memcg->thresholds;
3694
		usage = mem_cgroup_usage(memcg, false);
3695
	} else if (type == _MEMSWAP) {
3696
		thresholds = &memcg->memsw_thresholds;
3697
		usage = mem_cgroup_usage(memcg, true);
3698
	} else
3699 3700 3701
		BUG();

	/* Check if a threshold crossed before adding a new one */
3702
	if (thresholds->primary)
3703 3704
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3705
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3706 3707

	/* Allocate memory for new array of thresholds */
3708
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3709
			GFP_KERNEL);
3710
	if (!new) {
3711 3712 3713
		ret = -ENOMEM;
		goto unlock;
	}
3714
	new->size = size;
3715 3716

	/* Copy thresholds (if any) to new array */
3717 3718
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3719
				sizeof(struct mem_cgroup_threshold));
3720 3721
	}

3722
	/* Add new threshold */
3723 3724
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3725 3726

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3727
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3728 3729 3730
			compare_thresholds, NULL);

	/* Find current threshold */
3731
	new->current_threshold = -1;
3732
	for (i = 0; i < size; i++) {
3733
		if (new->entries[i].threshold <= usage) {
3734
			/*
3735 3736
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3737 3738
			 * it here.
			 */
3739
			++new->current_threshold;
3740 3741
		} else
			break;
3742 3743
	}

3744 3745 3746 3747 3748
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3749

3750
	/* To be sure that nobody uses thresholds */
3751 3752 3753 3754 3755 3756 3757 3758
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3759
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3760 3761
	struct eventfd_ctx *eventfd, const char *args)
{
3762
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3763 3764
}

3765
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3766 3767
	struct eventfd_ctx *eventfd, const char *args)
{
3768
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3769 3770
}

3771
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3772
	struct eventfd_ctx *eventfd, enum res_type type)
3773
{
3774 3775
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3776
	unsigned long usage;
3777
	int i, j, size;
3778 3779

	mutex_lock(&memcg->thresholds_lock);
3780 3781

	if (type == _MEM) {
3782
		thresholds = &memcg->thresholds;
3783
		usage = mem_cgroup_usage(memcg, false);
3784
	} else if (type == _MEMSWAP) {
3785
		thresholds = &memcg->memsw_thresholds;
3786
		usage = mem_cgroup_usage(memcg, true);
3787
	} else
3788 3789
		BUG();

3790 3791 3792
	if (!thresholds->primary)
		goto unlock;

3793 3794 3795 3796
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3797 3798 3799
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3800 3801 3802
			size++;
	}

3803
	new = thresholds->spare;
3804

3805 3806
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3807 3808
		kfree(new);
		new = NULL;
3809
		goto swap_buffers;
3810 3811
	}

3812
	new->size = size;
3813 3814

	/* Copy thresholds and find current threshold */
3815 3816 3817
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3818 3819
			continue;

3820
		new->entries[j] = thresholds->primary->entries[i];
3821
		if (new->entries[j].threshold <= usage) {
3822
			/*
3823
			 * new->current_threshold will not be used
3824 3825 3826
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3827
			++new->current_threshold;
3828 3829 3830 3831
		}
		j++;
	}

3832
swap_buffers:
3833 3834
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3835 3836 3837 3838 3839 3840
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3841
	rcu_assign_pointer(thresholds->primary, new);
3842

3843
	/* To be sure that nobody uses thresholds */
3844
	synchronize_rcu();
3845
unlock:
3846 3847
	mutex_unlock(&memcg->thresholds_lock);
}
3848

3849
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3850 3851
	struct eventfd_ctx *eventfd)
{
3852
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3853 3854
}

3855
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3856 3857
	struct eventfd_ctx *eventfd)
{
3858
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3859 3860
}

3861
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3862
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3863 3864 3865 3866 3867 3868 3869
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3870
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3871 3872 3873 3874 3875

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3876
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3877
		eventfd_signal(eventfd, 1);
3878
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3879 3880 3881 3882

	return 0;
}

3883
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3884
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3885 3886 3887
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3888
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3889

3890
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3891 3892 3893 3894 3895 3896
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3897
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3898 3899
}

3900
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3901
{
3902
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3903

3904 3905
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3906 3907 3908
	return 0;
}

3909
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3910 3911
	struct cftype *cft, u64 val)
{
3912
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3913 3914

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3915
	if (!css->parent || !((val == 0) || (val == 1)))
3916 3917
		return -EINVAL;

3918
	memcg->oom_kill_disable = val;
3919
	if (!val)
3920
		memcg_oom_recover(memcg);
3921

3922 3923 3924
	return 0;
}

A
Andrew Morton 已提交
3925
#ifdef CONFIG_MEMCG_KMEM
3926
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3927
{
3928 3929 3930 3931 3932
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3933

3934
	return mem_cgroup_sockets_init(memcg, ss);
3935
}
3936

3937 3938
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3939 3940 3941 3942
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3981 3982
}

3983
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3984
{
3985 3986 3987 3988 3989
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3990
	mem_cgroup_sockets_destroy(memcg);
3991
}
3992
#else
3993
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3994 3995 3996
{
	return 0;
}
G
Glauber Costa 已提交
3997

3998 3999 4000 4001
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

4002 4003 4004
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4005 4006
#endif

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4020 4021 4022 4023 4024
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4025
static void memcg_event_remove(struct work_struct *work)
4026
{
4027 4028
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4029
	struct mem_cgroup *memcg = event->memcg;
4030 4031 4032

	remove_wait_queue(event->wqh, &event->wait);

4033
	event->unregister_event(memcg, event->eventfd);
4034 4035 4036 4037 4038 4039

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4040
	css_put(&memcg->css);
4041 4042 4043 4044 4045 4046 4047
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4048 4049
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4050
{
4051 4052
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4053
	struct mem_cgroup *memcg = event->memcg;
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4066
		spin_lock(&memcg->event_list_lock);
4067 4068 4069 4070 4071 4072 4073 4074
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4075
		spin_unlock(&memcg->event_list_lock);
4076 4077 4078 4079 4080
	}

	return 0;
}

4081
static void memcg_event_ptable_queue_proc(struct file *file,
4082 4083
		wait_queue_head_t *wqh, poll_table *pt)
{
4084 4085
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4086 4087 4088 4089 4090 4091

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4092 4093
 * DO NOT USE IN NEW FILES.
 *
4094 4095 4096 4097 4098
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4099 4100
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4101
{
4102
	struct cgroup_subsys_state *css = of_css(of);
4103
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4104
	struct mem_cgroup_event *event;
4105 4106 4107 4108
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4109
	const char *name;
4110 4111 4112
	char *endp;
	int ret;

4113 4114 4115
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4116 4117
	if (*endp != ' ')
		return -EINVAL;
4118
	buf = endp + 1;
4119

4120
	cfd = simple_strtoul(buf, &endp, 10);
4121 4122
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4123
	buf = endp + 1;
4124 4125 4126 4127 4128

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4129
	event->memcg = memcg;
4130
	INIT_LIST_HEAD(&event->list);
4131 4132 4133
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4159 4160 4161 4162 4163
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4164 4165
	 *
	 * DO NOT ADD NEW FILES.
4166
	 */
A
Al Viro 已提交
4167
	name = cfile.file->f_path.dentry->d_name.name;
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4179 4180
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4181 4182 4183 4184 4185
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4186
	/*
4187 4188 4189
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4190
	 */
A
Al Viro 已提交
4191
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4192
					       &memory_cgrp_subsys);
4193
	ret = -EINVAL;
4194
	if (IS_ERR(cfile_css))
4195
		goto out_put_cfile;
4196 4197
	if (cfile_css != css) {
		css_put(cfile_css);
4198
		goto out_put_cfile;
4199
	}
4200

4201
	ret = event->register_event(memcg, event->eventfd, buf);
4202 4203 4204 4205 4206
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4207 4208 4209
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4210 4211 4212 4213

	fdput(cfile);
	fdput(efile);

4214
	return nbytes;
4215 4216

out_put_css:
4217
	css_put(css);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4230
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4231
	{
4232
		.name = "usage_in_bytes",
4233
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4234
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4235
	},
4236 4237
	{
		.name = "max_usage_in_bytes",
4238
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4239
		.write = mem_cgroup_reset,
4240
		.read_u64 = mem_cgroup_read_u64,
4241
	},
B
Balbir Singh 已提交
4242
	{
4243
		.name = "limit_in_bytes",
4244
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4245
		.write = mem_cgroup_write,
4246
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4247
	},
4248 4249 4250
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4251
		.write = mem_cgroup_write,
4252
		.read_u64 = mem_cgroup_read_u64,
4253
	},
B
Balbir Singh 已提交
4254 4255
	{
		.name = "failcnt",
4256
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4257
		.write = mem_cgroup_reset,
4258
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4259
	},
4260 4261
	{
		.name = "stat",
4262
		.seq_show = memcg_stat_show,
4263
	},
4264 4265
	{
		.name = "force_empty",
4266
		.write = mem_cgroup_force_empty_write,
4267
	},
4268 4269 4270 4271 4272
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4273
	{
4274
		.name = "cgroup.event_control",		/* XXX: for compat */
4275
		.write = memcg_write_event_control,
4276 4277 4278
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4279 4280 4281 4282 4283
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4284 4285 4286 4287 4288
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4289 4290
	{
		.name = "oom_control",
4291
		.seq_show = mem_cgroup_oom_control_read,
4292
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4293 4294
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4295 4296 4297
	{
		.name = "pressure_level",
	},
4298 4299 4300
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4301
		.seq_show = memcg_numa_stat_show,
4302 4303
	},
#endif
4304 4305 4306 4307
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4308
		.write = mem_cgroup_write,
4309
		.read_u64 = mem_cgroup_read_u64,
4310 4311 4312 4313
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4314
		.read_u64 = mem_cgroup_read_u64,
4315 4316 4317 4318
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4319
		.write = mem_cgroup_reset,
4320
		.read_u64 = mem_cgroup_read_u64,
4321 4322 4323 4324
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4325
		.write = mem_cgroup_reset,
4326
		.read_u64 = mem_cgroup_read_u64,
4327
	},
4328 4329 4330
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4331 4332 4333 4334
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4335 4336
	},
#endif
4337
#endif
4338
	{ },	/* terminate */
4339
};
4340

4341
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4342 4343
{
	struct mem_cgroup_per_node *pn;
4344
	struct mem_cgroup_per_zone *mz;
4345
	int zone, tmp = node;
4346 4347 4348 4349 4350 4351 4352 4353
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4354 4355
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4356
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4357 4358
	if (!pn)
		return 1;
4359 4360 4361

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4362
		lruvec_init(&mz->lruvec);
4363 4364
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4365
		mz->memcg = memcg;
4366
	}
4367
	memcg->nodeinfo[node] = pn;
4368 4369 4370
	return 0;
}

4371
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4372
{
4373
	kfree(memcg->nodeinfo[node]);
4374 4375
}

4376 4377
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4378
	struct mem_cgroup *memcg;
4379
	size_t size;
4380

4381 4382
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4383

4384
	memcg = kzalloc(size, GFP_KERNEL);
4385
	if (!memcg)
4386 4387
		return NULL;

4388 4389
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4390
		goto out_free;
4391 4392
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4393 4394

out_free:
4395
	kfree(memcg);
4396
	return NULL;
4397 4398
}

4399
/*
4400 4401 4402 4403 4404 4405 4406 4407
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4408
 */
4409 4410

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4411
{
4412
	int node;
4413

4414
	mem_cgroup_remove_from_trees(memcg);
4415 4416 4417 4418 4419

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
4420
	kfree(memcg);
4421
}
4422

4423 4424 4425
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4426
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4427
{
4428
	if (!memcg->memory.parent)
4429
		return NULL;
4430
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4431
}
G
Glauber Costa 已提交
4432
EXPORT_SYMBOL(parent_mem_cgroup);
4433

L
Li Zefan 已提交
4434
static struct cgroup_subsys_state * __ref
4435
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4436
{
4437
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4438
	long error = -ENOMEM;
4439
	int node;
B
Balbir Singh 已提交
4440

4441 4442
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4443
		return ERR_PTR(error);
4444

B
Bob Liu 已提交
4445
	for_each_node(node)
4446
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4447
			goto free_out;
4448

4449
	/* root ? */
4450
	if (parent_css == NULL) {
4451
		root_mem_cgroup = memcg;
4452
		page_counter_init(&memcg->memory, NULL);
4453
		memcg->high = PAGE_COUNTER_MAX;
4454
		memcg->soft_limit = PAGE_COUNTER_MAX;
4455 4456
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4457
	}
4458

4459 4460 4461 4462 4463
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4464
	vmpressure_init(&memcg->vmpressure);
4465 4466
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4467 4468 4469
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4470 4471 4472 4473 4474 4475 4476 4477 4478

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4479
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4480
{
4481
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4482
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4483
	int ret;
4484

4485
	if (css->id > MEM_CGROUP_ID_MAX)
4486 4487
		return -ENOSPC;

T
Tejun Heo 已提交
4488
	if (!parent)
4489 4490
		return 0;

4491
	mutex_lock(&memcg_create_mutex);
4492 4493 4494 4495 4496 4497

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4498
		page_counter_init(&memcg->memory, &parent->memory);
4499
		memcg->high = PAGE_COUNTER_MAX;
4500
		memcg->soft_limit = PAGE_COUNTER_MAX;
4501 4502
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4503

4504
		/*
4505 4506
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4507
		 */
4508
	} else {
4509
		page_counter_init(&memcg->memory, NULL);
4510
		memcg->high = PAGE_COUNTER_MAX;
4511
		memcg->soft_limit = PAGE_COUNTER_MAX;
4512 4513
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4514 4515 4516 4517 4518
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4519
		if (parent != root_mem_cgroup)
4520
			memory_cgrp_subsys.broken_hierarchy = true;
4521
	}
4522
	mutex_unlock(&memcg_create_mutex);
4523

4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4536 4537
}

4538
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4539
{
4540
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4541
	struct mem_cgroup_event *event, *tmp;
4542 4543 4544 4545 4546 4547

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4548 4549
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4550 4551 4552
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4553
	spin_unlock(&memcg->event_list_lock);
4554

4555
	vmpressure_cleanup(&memcg->vmpressure);
4556 4557

	memcg_deactivate_kmem(memcg);
4558 4559
}

4560
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4561
{
4562
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4563

4564
	memcg_destroy_kmem(memcg);
4565
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4566 4567
}

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4585 4586 4587
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4588 4589
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4590
	memcg->soft_limit = PAGE_COUNTER_MAX;
4591 4592
}

4593
#ifdef CONFIG_MMU
4594
/* Handlers for move charge at task migration. */
4595
static int mem_cgroup_do_precharge(unsigned long count)
4596
{
4597
	int ret;
4598 4599

	/* Try a single bulk charge without reclaim first */
4600
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4601
	if (!ret) {
4602 4603 4604
		mc.precharge += count;
		return ret;
	}
4605
	if (ret == -EINTR) {
4606
		cancel_charge(root_mem_cgroup, count);
4607 4608
		return ret;
	}
4609 4610

	/* Try charges one by one with reclaim */
4611
	while (count--) {
4612
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4613 4614 4615
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4616 4617
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4618
		 */
4619
		if (ret == -EINTR)
4620
			cancel_charge(root_mem_cgroup, 1);
4621 4622
		if (ret)
			return ret;
4623
		mc.precharge++;
4624
		cond_resched();
4625
	}
4626
	return 0;
4627 4628 4629
}

/**
4630
 * get_mctgt_type - get target type of moving charge
4631 4632 4633
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4634
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4635 4636 4637 4638 4639 4640
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4641 4642 4643
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4644 4645 4646 4647 4648
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4649
	swp_entry_t	ent;
4650 4651 4652
};

enum mc_target_type {
4653
	MC_TARGET_NONE = 0,
4654
	MC_TARGET_PAGE,
4655
	MC_TARGET_SWAP,
4656 4657
};

D
Daisuke Nishimura 已提交
4658 4659
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4660
{
D
Daisuke Nishimura 已提交
4661
	struct page *page = vm_normal_page(vma, addr, ptent);
4662

D
Daisuke Nishimura 已提交
4663 4664 4665
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4666
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4667
			return NULL;
4668 4669 4670 4671
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4672 4673 4674 4675 4676 4677
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4678
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4679 4680 4681 4682 4683 4684
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4685
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4686
		return NULL;
4687 4688 4689 4690
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4691
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4692 4693 4694 4695 4696
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4697 4698 4699 4700 4701 4702 4703
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4704

4705 4706 4707 4708 4709 4710 4711 4712 4713
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4714
	if (!(mc.flags & MOVE_FILE))
4715 4716 4717
		return NULL;

	mapping = vma->vm_file->f_mapping;
4718
	pgoff = linear_page_index(vma, addr);
4719 4720

	/* page is moved even if it's not RSS of this task(page-faulted). */
4721 4722
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4735
#endif
4736 4737 4738
	return page;
}

4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

	spin_lock_irqsave(&from->move_lock, flags);

	if (!PageAnon(page) && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4825
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4826 4827 4828
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4829
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4830 4831 4832 4833 4834 4835
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4836
	else if (pte_none(ptent))
4837
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4838 4839

	if (!page && !ent.val)
4840
		return ret;
4841 4842
	if (page) {
		/*
4843
		 * Do only loose check w/o serialization.
4844
		 * mem_cgroup_move_account() checks the page is valid or
4845
		 * not under LRU exclusion.
4846
		 */
4847
		if (page->mem_cgroup == mc.from) {
4848 4849 4850 4851 4852 4853 4854
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4855 4856
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4857
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4858 4859 4860
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4861 4862 4863 4864
	}
	return ret;
}

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4878
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4879
	if (!(mc.flags & MOVE_ANON))
4880
		return ret;
4881
	if (page->mem_cgroup == mc.from) {
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4898 4899 4900 4901
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4902
	struct vm_area_struct *vma = walk->vma;
4903 4904 4905
	pte_t *pte;
	spinlock_t *ptl;

4906
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4907 4908
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4909
		spin_unlock(ptl);
4910
		return 0;
4911
	}
4912

4913 4914
	if (pmd_trans_unstable(pmd))
		return 0;
4915 4916
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4917
		if (get_mctgt_type(vma, addr, *pte, NULL))
4918 4919 4920 4921
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4922 4923 4924
	return 0;
}

4925 4926 4927 4928
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4929 4930 4931 4932
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4933
	down_read(&mm->mmap_sem);
4934
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4935
	up_read(&mm->mmap_sem);
4936 4937 4938 4939 4940 4941 4942 4943 4944

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4945 4946 4947 4948 4949
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4950 4951
}

4952 4953
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4954
{
4955 4956 4957
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4958
	/* we must uncharge all the leftover precharges from mc.to */
4959
	if (mc.precharge) {
4960
		cancel_charge(mc.to, mc.precharge);
4961 4962 4963 4964 4965 4966 4967
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4968
		cancel_charge(mc.from, mc.moved_charge);
4969
		mc.moved_charge = 0;
4970
	}
4971 4972 4973
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4974
		if (!mem_cgroup_is_root(mc.from))
4975
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4976

4977
		/*
4978 4979
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4980
		 */
4981
		if (!mem_cgroup_is_root(mc.to))
4982 4983
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4984
		css_put_many(&mc.from->css, mc.moved_swap);
4985

L
Li Zefan 已提交
4986
		/* we've already done css_get(mc.to) */
4987 4988
		mc.moved_swap = 0;
	}
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5002
	spin_lock(&mc.lock);
5003 5004
	mc.from = NULL;
	mc.to = NULL;
5005
	spin_unlock(&mc.lock);
5006 5007
}

5008
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5009
				 struct cgroup_taskset *tset)
5010
{
5011
	struct task_struct *p = cgroup_taskset_first(tset);
5012
	int ret = 0;
5013
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5014
	unsigned long move_flags;
5015

5016 5017 5018 5019 5020
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5021 5022
	move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
	if (move_flags) {
5023 5024 5025
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5026
		VM_BUG_ON(from == memcg);
5027 5028 5029 5030 5031

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5032 5033 5034 5035
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5036
			VM_BUG_ON(mc.moved_charge);
5037
			VM_BUG_ON(mc.moved_swap);
5038

5039
			spin_lock(&mc.lock);
5040
			mc.from = from;
5041
			mc.to = memcg;
5042
			mc.flags = move_flags;
5043
			spin_unlock(&mc.lock);
5044
			/* We set mc.moving_task later */
5045 5046 5047 5048

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5049 5050
		}
		mmput(mm);
5051 5052 5053 5054
	}
	return ret;
}

5055
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5056
				     struct cgroup_taskset *tset)
5057
{
5058 5059
	if (mc.to)
		mem_cgroup_clear_mc();
5060 5061
}

5062 5063 5064
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5065
{
5066
	int ret = 0;
5067
	struct vm_area_struct *vma = walk->vma;
5068 5069
	pte_t *pte;
	spinlock_t *ptl;
5070 5071 5072
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5073

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5084
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5085
		if (mc.precharge < HPAGE_PMD_NR) {
5086
			spin_unlock(ptl);
5087 5088 5089 5090 5091 5092 5093
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5094
							     mc.from, mc.to)) {
5095 5096 5097 5098 5099 5100 5101
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5102
		spin_unlock(ptl);
5103
		return 0;
5104 5105
	}

5106 5107
	if (pmd_trans_unstable(pmd))
		return 0;
5108 5109 5110 5111
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5112
		swp_entry_t ent;
5113 5114 5115 5116

		if (!mc.precharge)
			break;

5117
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5118 5119 5120 5121
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5122
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5123
				mc.precharge--;
5124 5125
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5126 5127
			}
			putback_lru_page(page);
5128
put:			/* get_mctgt_type() gets the page */
5129 5130
			put_page(page);
			break;
5131 5132
		case MC_TARGET_SWAP:
			ent = target.ent;
5133
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5134
				mc.precharge--;
5135 5136 5137
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5138
			break;
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5153
		ret = mem_cgroup_do_precharge(1);
5154 5155 5156 5157 5158 5159 5160 5161 5162
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5163 5164 5165 5166
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5167 5168

	lru_add_drain_all();
5169 5170 5171 5172 5173 5174 5175
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5189 5190 5191 5192 5193
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5194
	up_read(&mm->mmap_sem);
5195
	atomic_dec(&mc.from->moving_account);
5196 5197
}

5198
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5199
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5200
{
5201
	struct task_struct *p = cgroup_taskset_first(tset);
5202
	struct mm_struct *mm = get_task_mm(p);
5203 5204

	if (mm) {
5205 5206
		if (mc.to)
			mem_cgroup_move_charge(mm);
5207 5208
		mmput(mm);
	}
5209 5210
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5211
}
5212
#else	/* !CONFIG_MMU */
5213
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5214
				 struct cgroup_taskset *tset)
5215 5216 5217
{
	return 0;
}
5218
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5219
				     struct cgroup_taskset *tset)
5220 5221
{
}
5222
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5223
				 struct cgroup_taskset *tset)
5224 5225 5226
{
}
#endif
B
Balbir Singh 已提交
5227

5228 5229
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5230 5231
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5232
 */
5233
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5234 5235
{
	/*
5236
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5237 5238 5239
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5240
	if (cgroup_on_dfl(root_css->cgroup))
5241 5242 5243
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5244 5245
}

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
5258
		seq_puts(m, "max\n");
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5273
	err = page_counter_memparse(buf, "max", &low);
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
5288
		seq_puts(m, "max\n");
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5303
	err = page_counter_memparse(buf, "max", &high);
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
5318
		seq_puts(m, "max\n");
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5333
	err = page_counter_memparse(buf, "max", &max);
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5387
struct cgroup_subsys memory_cgrp_subsys = {
5388
	.css_alloc = mem_cgroup_css_alloc,
5389
	.css_online = mem_cgroup_css_online,
5390 5391
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5392
	.css_reset = mem_cgroup_css_reset,
5393 5394
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5395
	.attach = mem_cgroup_move_task,
5396
	.bind = mem_cgroup_bind,
5397 5398
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5399
	.early_init = 0,
B
Balbir Singh 已提交
5400
};
5401

5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5437
	if (page_counter_read(&memcg->memory) >= memcg->low)
5438 5439 5440 5441 5442 5443 5444 5445
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5446
		if (page_counter_read(&memcg->memory) >= memcg->low)
5447 5448 5449 5450 5451
			return false;
	}
	return true;
}

5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5487
		if (page->mem_cgroup)
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5548 5549
	commit_charge(page, memcg, lrucare);

5550 5551 5552 5553 5554
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5555 5556 5557 5558
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5600 5601 5602 5603
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5604
	unsigned long nr_pages = nr_anon + nr_file;
5605 5606
	unsigned long flags;

5607
	if (!mem_cgroup_is_root(memcg)) {
5608 5609 5610
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5611 5612
		memcg_oom_recover(memcg);
	}
5613 5614 5615 5616 5617 5618

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5619
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5620 5621
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5622 5623

	if (!mem_cgroup_is_root(memcg))
5624
		css_put_many(&memcg->css, nr_pages);
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5647
		if (!page->mem_cgroup)
5648 5649 5650 5651
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5652
		 * page->mem_cgroup at this point, we have fully
5653
		 * exclusive access to the page.
5654 5655
		 */

5656
		if (memcg != page->mem_cgroup) {
5657
			if (memcg) {
5658 5659 5660
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5661
			}
5662
			memcg = page->mem_cgroup;
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5676
		page->mem_cgroup = NULL;
5677 5678 5679 5680 5681

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5682 5683
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5684 5685
}

5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5698
	/* Don't touch page->lru of any random page, pre-check: */
5699
	if (!page->mem_cgroup)
5700 5701
		return;

5702 5703 5704
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5705

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5717

5718 5719
	if (!list_empty(page_list))
		uncharge_list(page_list);
5720 5721 5722 5723 5724 5725
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5726
 * @lrucare: either or both pages might be on the LRU already
5727 5728 5729 5730 5731 5732 5733 5734
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5735
	struct mem_cgroup *memcg;
5736 5737 5738 5739 5740 5741 5742
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5743 5744
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5745 5746 5747 5748 5749

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5750
	if (newpage->mem_cgroup)
5751 5752
		return;

5753 5754 5755 5756 5757 5758
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5759
	memcg = oldpage->mem_cgroup;
5760
	if (!memcg)
5761 5762 5763 5764 5765
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5766
	oldpage->mem_cgroup = NULL;
5767 5768 5769 5770

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5771
	commit_charge(newpage, memcg, lrucare);
5772 5773
}

5774
/*
5775 5776 5777 5778 5779 5780
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5781 5782 5783
 */
static int __init mem_cgroup_init(void)
{
5784 5785
	int cpu, node;

5786
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5809 5810 5811
	return 0;
}
subsys_initcall(mem_cgroup_init);
5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */