memcontrol.c 150.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

75
/* Whether the swap controller is active */
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP
77 78
int do_swap_account __read_mostly;
#else
79
#define do_swap_account		0
80 81
#endif

82 83 84
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
85
	"rss_huge",
86
	"mapped_file",
87
	"writeback",
88 89 90 91 92 93 94 95 96 97
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

98 99 100 101 102 103 104 105
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

106 107 108 109 110 111 112 113
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
114
	MEM_CGROUP_TARGET_SOFTLIMIT,
115
	MEM_CGROUP_TARGET_NUMAINFO,
116 117
	MEM_CGROUP_NTARGETS,
};
118 119 120
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
121

122
struct mem_cgroup_stat_cpu {
123
	long count[MEM_CGROUP_STAT_NSTATS];
124
	unsigned long events[MEMCG_NR_EVENTS];
125
	unsigned long nr_page_events;
126
	unsigned long targets[MEM_CGROUP_NTARGETS];
127 128
};

129 130
struct reclaim_iter {
	struct mem_cgroup *position;
131 132 133 134
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

135 136 137 138
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
139
	struct lruvec		lruvec;
140
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
141

142
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
143

144
	struct rb_node		tree_node;	/* RB tree node */
145
	unsigned long		usage_in_excess;/* Set to the value by which */
146 147
						/* the soft limit is exceeded*/
	bool			on_tree;
148
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
149
						/* use container_of	   */
150 151 152 153 154 155
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
178
	unsigned long threshold;
179 180
};

K
KAMEZAWA Hiroyuki 已提交
181
/* For threshold */
182
struct mem_cgroup_threshold_ary {
183
	/* An array index points to threshold just below or equal to usage. */
184
	int current_threshold;
185 186 187 188 189
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
190 191 192 193 194 195 196 197 198 199 200 201

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
202 203 204 205 206
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
207

208 209 210
/*
 * cgroup_event represents events which userspace want to receive.
 */
211
struct mem_cgroup_event {
212
	/*
213
	 * memcg which the event belongs to.
214
	 */
215
	struct mem_cgroup *memcg;
216 217 218 219 220 221 222 223
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
224 225 226 227 228
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
229
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
230
			      struct eventfd_ctx *eventfd, const char *args);
231 232 233 234 235
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
236
	void (*unregister_event)(struct mem_cgroup *memcg,
237
				 struct eventfd_ctx *eventfd);
238 239 240 241 242 243 244 245 246 247
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

248 249
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
250

B
Balbir Singh 已提交
251 252 253 254 255 256 257
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
258 259 260
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
261 262 263
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
264 265 266 267 268 269

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

270 271 272 273
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

274
	unsigned long soft_limit;
275

276 277 278
	/* vmpressure notifications */
	struct vmpressure vmpressure;

279 280 281
	/* css_online() has been completed */
	int initialized;

282 283 284 285
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
286 287 288

	bool		oom_lock;
	atomic_t	under_oom;
289
	atomic_t	oom_wakeups;
290

291
	int	swappiness;
292 293
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
294

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
311
	unsigned long move_charge_at_immigrate;
312 313 314
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
315
	atomic_t		moving_account;
316
	/* taken only while moving_account > 0 */
317 318 319
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
320
	/*
321
	 * percpu counter.
322
	 */
323
	struct mem_cgroup_stat_cpu __percpu *stat;
324 325 326 327 328 329
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
330

M
Michal Hocko 已提交
331
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
332
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
333
#endif
334
#if defined(CONFIG_MEMCG_KMEM)
335
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
336
	int kmemcg_id;
337
	bool kmem_acct_activated;
338
	bool kmem_acct_active;
339
#endif
340 341 342 343 344 345 346

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
347

348 349 350 351
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

352 353
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
354 355
};

356
#ifdef CONFIG_MEMCG_KMEM
357
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
358
{
359
	return memcg->kmem_acct_active;
360
}
361 362
#endif

363 364
/* Stuffs for move charges at task migration. */
/*
365
 * Types of charges to be moved.
366
 */
367 368 369
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
370

371 372
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
373
	spinlock_t	  lock; /* for from, to */
374 375
	struct mem_cgroup *from;
	struct mem_cgroup *to;
376
	unsigned long flags;
377
	unsigned long precharge;
378
	unsigned long moved_charge;
379
	unsigned long moved_swap;
380 381 382
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
383
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
384 385
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
386

387 388 389 390
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
391
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
392
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
393

394 395
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
396
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
397
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
398
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
399 400 401
	NR_CHARGE_TYPE,
};

402
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
403 404 405 406
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
407
	_KMEM,
G
Glauber Costa 已提交
408 409
};

410 411
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
412
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
413 414
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
415

416 417 418 419 420 421 422
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

423 424
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
425
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

441 442 443 444 445
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

446 447 448 449 450 451
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
452 453
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
454
	return memcg->css.id;
L
Li Zefan 已提交
455 456 457 458 459 460
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

461
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
462 463 464
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
465
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
466
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
467 468 469

void sock_update_memcg(struct sock *sk)
{
470
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
471
		struct mem_cgroup *memcg;
472
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
473 474 475

		BUG_ON(!sk->sk_prot->proto_cgroup);

476 477 478 479 480 481 482 483 484 485
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
486
			css_get(&sk->sk_cgrp->memcg->css);
487 488 489
			return;
		}

G
Glauber Costa 已提交
490 491
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
492
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
493
		if (!mem_cgroup_is_root(memcg) &&
494 495
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
496
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
497 498 499 500 501 502 503 504
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
505
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
506 507 508
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
509
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
510 511
	}
}
G
Glauber Costa 已提交
512 513 514 515 516 517

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

518
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
519 520
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
521

522 523
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
524
	if (!memcg_proto_activated(&memcg->tcp_mem))
525 526 527 528 529 530 531 532 533
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

534
#ifdef CONFIG_MEMCG_KMEM
535
/*
536
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
537 538 539 540 541
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
542
 *
543 544
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
545
 */
546 547
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
548

549 550 551 552 553 554 555 556 557 558 559 560 561
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

562 563 564 565 566 567
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
568
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
569 570
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
571
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
572 573 574
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
575
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
576

577 578 579 580 581 582
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
583
struct static_key memcg_kmem_enabled_key;
584
EXPORT_SYMBOL(memcg_kmem_enabled_key);
585 586 587

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
588
	if (memcg->kmem_acct_activated)
589
		static_key_slow_dec(&memcg_kmem_enabled_key);
590 591 592 593
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
594
	WARN_ON(page_counter_read(&memcg->kmem));
595 596 597 598 599 600 601 602 603 604 605 606 607
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

608
static struct mem_cgroup_per_zone *
609
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
610
{
611 612 613
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

614
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
615 616
}

617
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
618
{
619
	return &memcg->css;
620 621
}

622
static struct mem_cgroup_per_zone *
623
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
624
{
625 626
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
627

628
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
629 630
}

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

646 647
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
648
					 unsigned long new_usage_in_excess)
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

678 679
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
680 681 682 683 684 685 686
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

687 688
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
689
{
690 691 692
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
693
	__mem_cgroup_remove_exceeded(mz, mctz);
694
	spin_unlock_irqrestore(&mctz->lock, flags);
695 696
}

697 698 699 700 701 702 703 704 705 706 707
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
708 709 710

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
711
	unsigned long excess;
712 713 714
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

715
	mctz = soft_limit_tree_from_page(page);
716 717 718 719 720
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
721
		mz = mem_cgroup_page_zoneinfo(memcg, page);
722
		excess = soft_limit_excess(memcg);
723 724 725 726 727
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
728 729 730
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
731 732
			/* if on-tree, remove it */
			if (mz->on_tree)
733
				__mem_cgroup_remove_exceeded(mz, mctz);
734 735 736 737
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
738
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
739
			spin_unlock_irqrestore(&mctz->lock, flags);
740 741 742 743 744 745 746
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
747 748
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
749

750 751 752 753
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
754
			mem_cgroup_remove_exceeded(mz, mctz);
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
777
	__mem_cgroup_remove_exceeded(mz, mctz);
778
	if (!soft_limit_excess(mz->memcg) ||
779
	    !css_tryget_online(&mz->memcg->css))
780 781 782 783 784 785 786 787 788 789
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

790
	spin_lock_irq(&mctz->lock);
791
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
792
	spin_unlock_irq(&mctz->lock);
793 794 795
	return mz;
}

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
815
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
816
				 enum mem_cgroup_stat_index idx)
817
{
818
	long val = 0;
819 820
	int cpu;

821 822
	get_online_cpus();
	for_each_online_cpu(cpu)
823
		val += per_cpu(memcg->stat->count[idx], cpu);
824
#ifdef CONFIG_HOTPLUG_CPU
825 826 827
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
828 829
#endif
	put_online_cpus();
830 831 832
	return val;
}

833
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
834 835 836 837 838
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

839
	get_online_cpus();
840
	for_each_online_cpu(cpu)
841
		val += per_cpu(memcg->stat->events[idx], cpu);
842
#ifdef CONFIG_HOTPLUG_CPU
843 844 845
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
846
#endif
847
	put_online_cpus();
848 849 850
	return val;
}

851
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
852
					 struct page *page,
853
					 int nr_pages)
854
{
855 856 857 858
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
859
	if (PageAnon(page))
860
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
861
				nr_pages);
862
	else
863
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
864
				nr_pages);
865

866 867 868 869
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

870 871
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
872
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
873
	else {
874
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
875 876
		nr_pages = -nr_pages; /* for event */
	}
877

878
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
879 880
}

881
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
882 883 884 885 886 887 888
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

889 890 891
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
892
{
893
	unsigned long nr = 0;
894 895
	int zid;

896
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
897

898 899 900 901 902 903 904 905 906 907 908 909
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
910
}
911

912
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
913
			unsigned int lru_mask)
914
{
915
	unsigned long nr = 0;
916
	int nid;
917

918
	for_each_node_state(nid, N_MEMORY)
919 920
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
921 922
}

923 924
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
925 926 927
{
	unsigned long val, next;

928
	val = __this_cpu_read(memcg->stat->nr_page_events);
929
	next = __this_cpu_read(memcg->stat->targets[target]);
930
	/* from time_after() in jiffies.h */
931 932 933 934 935
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
936 937 938
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
939 940 941 942 943 944 945 946
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
947
	}
948
	return false;
949 950 951 952 953 954
}

/*
 * Check events in order.
 *
 */
955
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
956 957
{
	/* threshold event is triggered in finer grain than soft limit */
958 959
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
960
		bool do_softlimit;
961
		bool do_numainfo __maybe_unused;
962

963 964
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
965 966 967 968
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
969
		mem_cgroup_threshold(memcg);
970 971
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
972
#if MAX_NUMNODES > 1
973
		if (unlikely(do_numainfo))
974
			atomic_inc(&memcg->numainfo_events);
975
#endif
976
	}
977 978
}

979
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
980
{
981 982 983 984 985 986 987 988
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

989
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
990 991
}

992
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
993
{
994
	struct mem_cgroup *memcg = NULL;
995

996 997
	rcu_read_lock();
	do {
998 999 1000 1001 1002 1003
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1004
			memcg = root_mem_cgroup;
1005 1006 1007 1008 1009
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1010
	} while (!css_tryget_online(&memcg->css));
1011
	rcu_read_unlock();
1012
	return memcg;
1013 1014
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1032
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1033
				   struct mem_cgroup *prev,
1034
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1035
{
1036 1037
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1038
	struct mem_cgroup *memcg = NULL;
1039
	struct mem_cgroup *pos = NULL;
1040

1041 1042
	if (mem_cgroup_disabled())
		return NULL;
1043

1044 1045
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1046

1047
	if (prev && !reclaim)
1048
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1049

1050 1051
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1052
			goto out;
1053
		return root;
1054
	}
K
KAMEZAWA Hiroyuki 已提交
1055

1056
	rcu_read_lock();
M
Michal Hocko 已提交
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1092
		}
K
KAMEZAWA Hiroyuki 已提交
1093

1094 1095 1096 1097 1098 1099
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1100

1101 1102
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1103

1104
		if (css_tryget(css)) {
1105 1106 1107 1108 1109 1110 1111
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1112

1113
			css_put(css);
1114
		}
1115

1116
		memcg = NULL;
1117
	}
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1138
	}
1139

1140 1141
out_unlock:
	rcu_read_unlock();
1142
out:
1143 1144 1145
	if (prev && prev != root)
		css_put(&prev->css);

1146
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1147
}
K
KAMEZAWA Hiroyuki 已提交
1148

1149 1150 1151 1152 1153 1154 1155
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1156 1157 1158 1159 1160 1161
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1162

1163 1164 1165 1166 1167 1168
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1169
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1170
	     iter != NULL;				\
1171
	     iter = mem_cgroup_iter(root, iter, NULL))
1172

1173
#define for_each_mem_cgroup(iter)			\
1174
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1175
	     iter != NULL;				\
1176
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1177

1178
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1179
{
1180
	struct mem_cgroup *memcg;
1181 1182

	rcu_read_lock();
1183 1184
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1185 1186 1187 1188
		goto out;

	switch (idx) {
	case PGFAULT:
1189 1190 1191 1192
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1193 1194 1195 1196 1197 1198 1199
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1200
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1201

1202 1203 1204
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1205
 * @memcg: memcg of the wanted lruvec
1206 1207 1208 1209 1210 1211 1212 1213 1214
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1215
	struct lruvec *lruvec;
1216

1217 1218 1219 1220
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1221

1222
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1233 1234 1235
}

/**
1236
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1237
 * @page: the page
1238
 * @zone: zone of the page
1239 1240 1241 1242
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1243
 */
1244
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1245 1246
{
	struct mem_cgroup_per_zone *mz;
1247
	struct mem_cgroup *memcg;
1248
	struct lruvec *lruvec;
1249

1250 1251 1252 1253
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1254

1255
	memcg = page->mem_cgroup;
1256
	/*
1257
	 * Swapcache readahead pages are added to the LRU - and
1258
	 * possibly migrated - before they are charged.
1259
	 */
1260 1261
	if (!memcg)
		memcg = root_mem_cgroup;
1262

1263
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1274
}
1275

1276
/**
1277 1278 1279 1280
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1281
 *
1282 1283
 * This function must be called when a page is added to or removed from an
 * lru list.
1284
 */
1285 1286
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1287 1288
{
	struct mem_cgroup_per_zone *mz;
1289
	unsigned long *lru_size;
1290 1291 1292 1293

	if (mem_cgroup_disabled())
		return;

1294 1295 1296 1297
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1298
}
1299

1300
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1301
{
1302
	if (root == memcg)
1303
		return true;
1304
	if (!root->use_hierarchy)
1305
		return false;
1306
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1307 1308
}

1309
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1310
{
1311
	struct mem_cgroup *task_memcg;
1312
	struct task_struct *p;
1313
	bool ret;
1314

1315
	p = find_lock_task_mm(task);
1316
	if (p) {
1317
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1318 1319 1320 1321 1322 1323 1324
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1325
		rcu_read_lock();
1326 1327
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1328
		rcu_read_unlock();
1329
	}
1330 1331
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1332 1333 1334
	return ret;
}

1335
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1336
{
1337
	unsigned long inactive_ratio;
1338
	unsigned long inactive;
1339
	unsigned long active;
1340
	unsigned long gb;
1341

1342 1343
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1344

1345 1346 1347 1348 1349 1350
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1351
	return inactive * inactive_ratio < active;
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1368
#define mem_cgroup_from_counter(counter, member)	\
1369 1370
	container_of(counter, struct mem_cgroup, member)

1371
/**
1372
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1373
 * @memcg: the memory cgroup
1374
 *
1375
 * Returns the maximum amount of memory @mem can be charged with, in
1376
 * pages.
1377
 */
1378
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1379
{
1380 1381 1382
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1383

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1397 1398
}

1399
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1400 1401
{
	/* root ? */
1402
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1403 1404
		return vm_swappiness;

1405
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1406 1407
}

1408
/*
Q
Qiang Huang 已提交
1409
 * A routine for checking "mem" is under move_account() or not.
1410
 *
Q
Qiang Huang 已提交
1411 1412 1413
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1414
 */
1415
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1416
{
1417 1418
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1419
	bool ret = false;
1420 1421 1422 1423 1424 1425 1426 1427 1428
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1429

1430 1431
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1432 1433
unlock:
	spin_unlock(&mc.lock);
1434 1435 1436
	return ret;
}

1437
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1438 1439
{
	if (mc.moving_task && current != mc.moving_task) {
1440
		if (mem_cgroup_under_move(memcg)) {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1453
#define K(x) ((x) << (PAGE_SHIFT-10))
1454
/**
1455
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1456 1457 1458 1459 1460 1461 1462 1463
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1464
	/* oom_info_lock ensures that parallel ooms do not interleave */
1465
	static DEFINE_MUTEX(oom_info_lock);
1466 1467
	struct mem_cgroup *iter;
	unsigned int i;
1468

1469
	if (!p)
1470 1471
		return;

1472
	mutex_lock(&oom_info_lock);
1473 1474
	rcu_read_lock();

T
Tejun Heo 已提交
1475 1476
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1477
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1478
	pr_cont_cgroup_path(memcg->css.cgroup);
1479
	pr_cont("\n");
1480 1481 1482

	rcu_read_unlock();

1483 1484 1485 1486 1487 1488 1489 1490 1491
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1492 1493

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1494 1495
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1511
	mutex_unlock(&oom_info_lock);
1512 1513
}

1514 1515 1516 1517
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1518
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1519 1520
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1521 1522
	struct mem_cgroup *iter;

1523
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1524
		num++;
1525 1526 1527
	return num;
}

D
David Rientjes 已提交
1528 1529 1530
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1531
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1532
{
1533
	unsigned long limit;
1534

1535
	limit = memcg->memory.limit;
1536
	if (mem_cgroup_swappiness(memcg)) {
1537
		unsigned long memsw_limit;
1538

1539 1540
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1541 1542
	}
	return limit;
D
David Rientjes 已提交
1543 1544
}

1545 1546
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1547 1548 1549 1550 1551 1552 1553
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1554
	/*
1555 1556 1557
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1558
	 */
1559
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1560
		mark_tsk_oom_victim(current);
1561 1562 1563 1564
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1565
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1566
	for_each_mem_cgroup_tree(iter, memcg) {
1567
		struct css_task_iter it;
1568 1569
		struct task_struct *task;

1570 1571
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1584
				css_task_iter_end(&it);
1585 1586 1587 1588 1589 1590 1591 1592
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1605
		}
1606
		css_task_iter_end(&it);
1607 1608 1609 1610 1611 1612 1613 1614 1615
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1616 1617
#if MAX_NUMNODES > 1

1618 1619
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1620
 * @memcg: the target memcg
1621 1622 1623 1624 1625 1626 1627
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1628
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1629 1630
		int nid, bool noswap)
{
1631
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1632 1633 1634
		return true;
	if (noswap || !total_swap_pages)
		return false;
1635
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1636 1637 1638 1639
		return true;
	return false;

}
1640 1641 1642 1643 1644 1645 1646

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1647
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1648 1649
{
	int nid;
1650 1651 1652 1653
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1654
	if (!atomic_read(&memcg->numainfo_events))
1655
		return;
1656
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1657 1658 1659
		return;

	/* make a nodemask where this memcg uses memory from */
1660
	memcg->scan_nodes = node_states[N_MEMORY];
1661

1662
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1663

1664 1665
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1666
	}
1667

1668 1669
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1684
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1685 1686 1687
{
	int node;

1688 1689
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1690

1691
	node = next_node(node, memcg->scan_nodes);
1692
	if (node == MAX_NUMNODES)
1693
		node = first_node(memcg->scan_nodes);
1694 1695 1696 1697 1698 1699 1700 1701 1702
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1703
	memcg->last_scanned_node = node;
1704 1705 1706
	return node;
}
#else
1707
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1708 1709 1710 1711 1712
{
	return 0;
}
#endif

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1728
	excess = soft_limit_excess(root_memcg);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1757
		if (!soft_limit_excess(root_memcg))
1758
			break;
1759
	}
1760 1761
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1762 1763
}

1764 1765 1766 1767 1768 1769
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1770 1771
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1772 1773 1774 1775
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1776
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1777
{
1778
	struct mem_cgroup *iter, *failed = NULL;
1779

1780 1781
	spin_lock(&memcg_oom_lock);

1782
	for_each_mem_cgroup_tree(iter, memcg) {
1783
		if (iter->oom_lock) {
1784 1785 1786 1787 1788
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1789 1790
			mem_cgroup_iter_break(memcg, iter);
			break;
1791 1792
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1793
	}
K
KAMEZAWA Hiroyuki 已提交
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1806
		}
1807 1808
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1809 1810 1811 1812

	spin_unlock(&memcg_oom_lock);

	return !failed;
1813
}
1814

1815
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1816
{
K
KAMEZAWA Hiroyuki 已提交
1817 1818
	struct mem_cgroup *iter;

1819
	spin_lock(&memcg_oom_lock);
1820
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1821
	for_each_mem_cgroup_tree(iter, memcg)
1822
		iter->oom_lock = false;
1823
	spin_unlock(&memcg_oom_lock);
1824 1825
}

1826
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1827 1828 1829
{
	struct mem_cgroup *iter;

1830
	for_each_mem_cgroup_tree(iter, memcg)
1831 1832 1833
		atomic_inc(&iter->under_oom);
}

1834
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1835 1836 1837
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840 1841 1842
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1843
	for_each_mem_cgroup_tree(iter, memcg)
1844
		atomic_add_unless(&iter->under_oom, -1, 0);
1845 1846
}

K
KAMEZAWA Hiroyuki 已提交
1847 1848
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1849
struct oom_wait_info {
1850
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1851 1852 1853 1854 1855 1856
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1857 1858
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1859 1860 1861
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1862
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1863

1864 1865
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1866 1867 1868 1869
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1870
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1871
{
1872
	atomic_inc(&memcg->oom_wakeups);
1873 1874
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1875 1876
}

1877
static void memcg_oom_recover(struct mem_cgroup *memcg)
1878
{
1879 1880
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1881 1882
}

1883
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1884
{
1885 1886
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1887
	/*
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1900
	 */
1901 1902 1903 1904
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1905 1906 1907 1908
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1909
 * @handle: actually kill/wait or just clean up the OOM state
1910
 *
1911 1912
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1913
 *
1914
 * Memcg supports userspace OOM handling where failed allocations must
1915 1916 1917 1918
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1919
 * the end of the page fault to complete the OOM handling.
1920 1921
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1922
 * completed, %false otherwise.
1923
 */
1924
bool mem_cgroup_oom_synchronize(bool handle)
1925
{
1926
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1927
	struct oom_wait_info owait;
1928
	bool locked;
1929 1930 1931

	/* OOM is global, do not handle */
	if (!memcg)
1932
		return false;
1933

1934
	if (!handle || oom_killer_disabled)
1935
		goto cleanup;
1936 1937 1938 1939 1940 1941

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1942

1943
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1957
		schedule();
1958 1959 1960 1961 1962
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1963 1964 1965 1966 1967 1968 1969 1970
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1971 1972
cleanup:
	current->memcg_oom.memcg = NULL;
1973
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1974
	return true;
1975 1976
}

1977 1978 1979
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1980
 *
1981 1982 1983
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1984
 *
1985
 *   memcg = mem_cgroup_begin_page_stat(page);
1986 1987
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1988
 *   mem_cgroup_end_page_stat(memcg);
1989
 */
1990
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1991 1992
{
	struct mem_cgroup *memcg;
1993
	unsigned long flags;
1994

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
2007 2008 2009 2010
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2011
again:
2012
	memcg = page->mem_cgroup;
2013
	if (unlikely(!memcg))
2014 2015
		return NULL;

Q
Qiang Huang 已提交
2016
	if (atomic_read(&memcg->moving_account) <= 0)
2017
		return memcg;
2018

2019
	spin_lock_irqsave(&memcg->move_lock, flags);
2020
	if (memcg != page->mem_cgroup) {
2021
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2022 2023
		goto again;
	}
2024 2025 2026 2027 2028 2029 2030 2031

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2032 2033

	return memcg;
2034 2035
}

2036 2037 2038 2039
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2040
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2041
{
2042 2043 2044 2045 2046 2047 2048 2049
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2050

2051
	rcu_read_unlock();
2052 2053
}

2054 2055 2056 2057 2058 2059 2060 2061 2062
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2063
				 enum mem_cgroup_stat_index idx, int val)
2064
{
2065
	VM_BUG_ON(!rcu_read_lock_held());
2066

2067 2068
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2069
}
2070

2071 2072 2073 2074
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2075
#define CHARGE_BATCH	32U
2076 2077
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2078
	unsigned int nr_pages;
2079
	struct work_struct work;
2080
	unsigned long flags;
2081
#define FLUSHING_CACHED_CHARGE	0
2082 2083
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2084
static DEFINE_MUTEX(percpu_charge_mutex);
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2096
 */
2097
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2098 2099
{
	struct memcg_stock_pcp *stock;
2100
	bool ret = false;
2101

2102
	if (nr_pages > CHARGE_BATCH)
2103
		return ret;
2104

2105
	stock = &get_cpu_var(memcg_stock);
2106
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2107
		stock->nr_pages -= nr_pages;
2108 2109
		ret = true;
	}
2110 2111 2112 2113 2114
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2115
 * Returns stocks cached in percpu and reset cached information.
2116 2117 2118 2119 2120
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2121
	if (stock->nr_pages) {
2122
		page_counter_uncharge(&old->memory, stock->nr_pages);
2123
		if (do_swap_account)
2124
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2125
		css_put_many(&old->css, stock->nr_pages);
2126
		stock->nr_pages = 0;
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2137
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2138
	drain_stock(stock);
2139
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2140 2141 2142
}

/*
2143
 * Cache charges(val) to local per_cpu area.
2144
 * This will be consumed by consume_stock() function, later.
2145
 */
2146
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2147 2148 2149
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2150
	if (stock->cached != memcg) { /* reset if necessary */
2151
		drain_stock(stock);
2152
		stock->cached = memcg;
2153
	}
2154
	stock->nr_pages += nr_pages;
2155 2156 2157 2158
	put_cpu_var(memcg_stock);
}

/*
2159
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2160
 * of the hierarchy under it.
2161
 */
2162
static void drain_all_stock(struct mem_cgroup *root_memcg)
2163
{
2164
	int cpu, curcpu;
2165

2166 2167 2168
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2169 2170
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2171
	curcpu = get_cpu();
2172 2173
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2174
		struct mem_cgroup *memcg;
2175

2176 2177
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2178
			continue;
2179
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2180
			continue;
2181 2182 2183 2184 2185 2186
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2187
	}
2188
	put_cpu();
A
Andrew Morton 已提交
2189
	put_online_cpus();
2190
	mutex_unlock(&percpu_charge_mutex);
2191 2192
}

2193 2194 2195 2196
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2197
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2198 2199 2200
{
	int i;

2201
	spin_lock(&memcg->pcp_counter_lock);
2202
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2203
		long x = per_cpu(memcg->stat->count[i], cpu);
2204

2205 2206
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2207
	}
2208
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2209
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2210

2211 2212
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2213
	}
2214
	spin_unlock(&memcg->pcp_counter_lock);
2215 2216
}

2217
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2218 2219 2220 2221 2222
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2223
	struct mem_cgroup *iter;
2224

2225
	if (action == CPU_ONLINE)
2226 2227
		return NOTIFY_OK;

2228
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2229
		return NOTIFY_OK;
2230

2231
	for_each_mem_cgroup(iter)
2232 2233
		mem_cgroup_drain_pcp_counter(iter, cpu);

2234 2235 2236 2237 2238
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2239 2240
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2241
{
2242
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2243
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2244
	struct mem_cgroup *mem_over_limit;
2245
	struct page_counter *counter;
2246
	unsigned long nr_reclaimed;
2247 2248
	bool may_swap = true;
	bool drained = false;
2249
	int ret = 0;
2250

2251 2252
	if (mem_cgroup_is_root(memcg))
		goto done;
2253
retry:
2254 2255
	if (consume_stock(memcg, nr_pages))
		goto done;
2256

2257
	if (!do_swap_account ||
2258 2259
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2260
			goto done_restock;
2261
		if (do_swap_account)
2262 2263
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2264
	} else {
2265
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2266
		may_swap = false;
2267
	}
2268

2269 2270 2271 2272
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2273

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2288 2289
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2290

2291 2292
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2293 2294
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2295

2296
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2297
		goto retry;
2298

2299
	if (!drained) {
2300
		drain_all_stock(mem_over_limit);
2301 2302 2303 2304
		drained = true;
		goto retry;
	}

2305 2306
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2307 2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2316
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2317 2318 2319 2320 2321 2322 2323 2324
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2325 2326 2327
	if (nr_retries--)
		goto retry;

2328 2329 2330
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2331 2332 2333
	if (fatal_signal_pending(current))
		goto bypass;

2334 2335
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2336
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2337
nomem:
2338
	if (!(gfp_mask & __GFP_NOFAIL))
2339
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2340
bypass:
2341
	return -EINTR;
2342 2343

done_restock:
2344
	css_get_many(&memcg->css, batch);
2345 2346
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2357
done:
2358
	return ret;
2359
}
2360

2361
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2362
{
2363 2364 2365
	if (mem_cgroup_is_root(memcg))
		return;

2366
	page_counter_uncharge(&memcg->memory, nr_pages);
2367
	if (do_swap_account)
2368
		page_counter_uncharge(&memcg->memsw, nr_pages);
2369

2370
	css_put_many(&memcg->css, nr_pages);
2371 2372
}

2373 2374
/*
 * A helper function to get mem_cgroup from ID. must be called under
2375 2376 2377
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2378 2379 2380 2381 2382 2383
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2384
	return mem_cgroup_from_id(id);
2385 2386
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2397
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2398
{
2399
	struct mem_cgroup *memcg;
2400
	unsigned short id;
2401 2402
	swp_entry_t ent;

2403
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2404

2405
	memcg = page->mem_cgroup;
2406 2407
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2408
			memcg = NULL;
2409
	} else if (PageSwapCache(page)) {
2410
		ent.val = page_private(page);
2411
		id = lookup_swap_cgroup_id(ent);
2412
		rcu_read_lock();
2413
		memcg = mem_cgroup_lookup(id);
2414
		if (memcg && !css_tryget_online(&memcg->css))
2415
			memcg = NULL;
2416
		rcu_read_unlock();
2417
	}
2418
	return memcg;
2419 2420
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2452
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2453
			  bool lrucare)
2454
{
2455
	int isolated;
2456

2457
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2458 2459 2460 2461 2462

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2463 2464
	if (lrucare)
		lock_page_lru(page, &isolated);
2465

2466 2467
	/*
	 * Nobody should be changing or seriously looking at
2468
	 * page->mem_cgroup at this point:
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2480
	page->mem_cgroup = memcg;
2481

2482 2483
	if (lrucare)
		unlock_page_lru(page, isolated);
2484
}
2485

2486
#ifdef CONFIG_MEMCG_KMEM
2487 2488
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2489
{
2490
	struct page_counter *counter;
2491 2492
	int ret = 0;

2493 2494
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2495 2496
		return ret;

2497
	ret = try_charge(memcg, gfp, nr_pages);
2498 2499
	if (ret == -EINTR)  {
		/*
2500 2501 2502 2503 2504 2505
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2506 2507 2508
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2509 2510 2511
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2512 2513
		 * directed to the root cgroup in memcontrol.h
		 */
2514
		page_counter_charge(&memcg->memory, nr_pages);
2515
		if (do_swap_account)
2516
			page_counter_charge(&memcg->memsw, nr_pages);
2517
		css_get_many(&memcg->css, nr_pages);
2518 2519
		ret = 0;
	} else if (ret)
2520
		page_counter_uncharge(&memcg->kmem, nr_pages);
2521 2522 2523 2524

	return ret;
}

2525
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2526
{
2527
	page_counter_uncharge(&memcg->memory, nr_pages);
2528
	if (do_swap_account)
2529
		page_counter_uncharge(&memcg->memsw, nr_pages);
2530

2531
	page_counter_uncharge(&memcg->kmem, nr_pages);
2532

2533
	css_put_many(&memcg->css, nr_pages);
2534 2535
}

2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2546
static int memcg_alloc_cache_id(void)
2547
{
2548 2549 2550
	int id, size;
	int err;

2551
	id = ida_simple_get(&memcg_cache_ida,
2552 2553 2554
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2555

2556
	if (id < memcg_nr_cache_ids)
2557 2558 2559 2560 2561 2562
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2563
	down_write(&memcg_cache_ids_sem);
2564 2565

	size = 2 * (id + 1);
2566 2567 2568 2569 2570
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2571
	err = memcg_update_all_caches(size);
2572 2573
	if (!err)
		err = memcg_update_all_list_lrus(size);
2574 2575 2576 2577 2578
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2579
	if (err) {
2580
		ida_simple_remove(&memcg_cache_ida, id);
2581 2582 2583 2584 2585 2586 2587
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2588
	ida_simple_remove(&memcg_cache_ida, id);
2589 2590
}

2591
struct memcg_kmem_cache_create_work {
2592 2593 2594 2595 2596
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2597
static void memcg_kmem_cache_create_func(struct work_struct *w)
2598
{
2599 2600
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2601 2602
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2603

2604
	memcg_create_kmem_cache(memcg, cachep);
2605

2606
	css_put(&memcg->css);
2607 2608 2609 2610 2611 2612
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2613 2614
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2615
{
2616
	struct memcg_kmem_cache_create_work *cw;
2617

2618
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2619
	if (!cw)
2620
		return;
2621 2622

	css_get(&memcg->css);
2623 2624 2625

	cw->memcg = memcg;
	cw->cachep = cachep;
2626
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2627 2628 2629 2630

	schedule_work(&cw->work);
}

2631 2632
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2633 2634 2635 2636
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2637
	 * in __memcg_schedule_kmem_cache_create will recurse.
2638 2639 2640 2641 2642 2643 2644
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2645
	current->memcg_kmem_skip_account = 1;
2646
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2647
	current->memcg_kmem_skip_account = 0;
2648
}
2649

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2663
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2664 2665
{
	struct mem_cgroup *memcg;
2666
	struct kmem_cache *memcg_cachep;
2667
	int kmemcg_id;
2668

2669
	VM_BUG_ON(!is_root_cache(cachep));
2670

2671
	if (current->memcg_kmem_skip_account)
2672 2673
		return cachep;

2674
	memcg = get_mem_cgroup_from_mm(current->mm);
2675 2676
	kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
	if (kmemcg_id < 0)
2677
		goto out;
2678

2679
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2680 2681
	if (likely(memcg_cachep))
		return memcg_cachep;
2682 2683 2684 2685 2686 2687 2688 2689 2690

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2691 2692 2693
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2694
	 */
2695
	memcg_schedule_kmem_cache_create(memcg, cachep);
2696
out:
2697
	css_put(&memcg->css);
2698
	return cachep;
2699 2700
}

2701 2702 2703
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2704
		css_put(&cachep->memcg_params.memcg->css);
2705 2706
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2728

2729
	memcg = get_mem_cgroup_from_mm(current->mm);
2730

2731
	if (!memcg_kmem_is_active(memcg)) {
2732 2733 2734 2735
		css_put(&memcg->css);
		return true;
	}

2736
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2751
		memcg_uncharge_kmem(memcg, 1 << order);
2752 2753
		return;
	}
2754
	page->mem_cgroup = memcg;
2755 2756 2757 2758
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2759
	struct mem_cgroup *memcg = page->mem_cgroup;
2760 2761 2762 2763

	if (!memcg)
		return;

2764
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2765

2766
	memcg_uncharge_kmem(memcg, 1 << order);
2767
	page->mem_cgroup = NULL;
2768
}
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2780
			memcg = cachep->memcg_params.memcg;
2781 2782 2783 2784 2785 2786
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2787 2788
#endif /* CONFIG_MEMCG_KMEM */

2789 2790 2791 2792
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2793 2794 2795
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2796
 */
2797
void mem_cgroup_split_huge_fixup(struct page *head)
2798
{
2799
	int i;
2800

2801 2802
	if (mem_cgroup_disabled())
		return;
2803

2804
	for (i = 1; i < HPAGE_PMD_NR; i++)
2805
		head[i].mem_cgroup = head->mem_cgroup;
2806

2807
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2808
		       HPAGE_PMD_NR);
2809
}
2810
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2811

2812
/**
2813
 * mem_cgroup_move_account - move account of the page
2814
 * @page: the page
2815
 * @nr_pages: number of regular pages (>1 for huge pages)
2816 2817 2818 2819
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2820
 * - page is not on LRU (isolate_page() is useful.)
2821
 * - compound_lock is held when nr_pages > 1
2822
 *
2823 2824
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2825
 */
2826 2827 2828
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2829
				   struct mem_cgroup *to)
2830
{
2831 2832
	unsigned long flags;
	int ret;
2833

2834
	VM_BUG_ON(from == to);
2835
	VM_BUG_ON_PAGE(PageLRU(page), page);
2836 2837 2838 2839 2840 2841 2842
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2843
	if (nr_pages > 1 && !PageTransHuge(page))
2844 2845
		goto out;

2846
	/*
2847
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2848 2849 2850 2851 2852
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2853 2854

	ret = -EINVAL;
2855
	if (page->mem_cgroup != from)
2856
		goto out_unlock;
2857

2858
	spin_lock_irqsave(&from->move_lock, flags);
2859

2860
	if (!PageAnon(page) && page_mapped(page)) {
2861 2862 2863 2864 2865
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2866

2867 2868 2869 2870 2871 2872
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2873

2874
	/*
2875
	 * It is safe to change page->mem_cgroup here because the page
2876 2877 2878
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2879

2880
	/* caller should have done css_get */
2881
	page->mem_cgroup = to;
2882 2883
	spin_unlock_irqrestore(&from->move_lock, flags);

2884
	ret = 0;
2885 2886 2887

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2888
	memcg_check_events(to, page);
2889
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2890
	memcg_check_events(from, page);
2891 2892 2893
	local_irq_enable();
out_unlock:
	unlock_page(page);
2894
out:
2895 2896 2897
	return ret;
}

A
Andrew Morton 已提交
2898
#ifdef CONFIG_MEMCG_SWAP
2899 2900
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2901
{
2902 2903
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2904
}
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2917
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2918 2919 2920
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2921
				struct mem_cgroup *from, struct mem_cgroup *to)
2922 2923 2924
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2925 2926
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2927 2928 2929

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2930
		mem_cgroup_swap_statistics(to, true);
2931 2932 2933 2934 2935 2936
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2937
				struct mem_cgroup *from, struct mem_cgroup *to)
2938 2939 2940
{
	return -EINVAL;
}
2941
#endif
K
KAMEZAWA Hiroyuki 已提交
2942

2943
static DEFINE_MUTEX(memcg_limit_mutex);
2944

2945
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2946
				   unsigned long limit)
2947
{
2948 2949 2950
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2951
	int retry_count;
2952
	int ret;
2953 2954 2955 2956 2957 2958

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2959 2960
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2961

2962
	oldusage = page_counter_read(&memcg->memory);
2963

2964
	do {
2965 2966 2967 2968
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2969 2970 2971 2972

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2973
			ret = -EINVAL;
2974 2975
			break;
		}
2976 2977 2978 2979
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2980 2981 2982 2983

		if (!ret)
			break;

2984 2985
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2986
		curusage = page_counter_read(&memcg->memory);
2987
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2988
		if (curusage >= oldusage)
2989 2990 2991
			retry_count--;
		else
			oldusage = curusage;
2992 2993
	} while (retry_count);

2994 2995
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2996

2997 2998 2999
	return ret;
}

L
Li Zefan 已提交
3000
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3001
					 unsigned long limit)
3002
{
3003 3004 3005
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3006
	int retry_count;
3007
	int ret;
3008

3009
	/* see mem_cgroup_resize_res_limit */
3010 3011 3012 3013 3014 3015
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3016 3017 3018 3019
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3020 3021 3022 3023

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3024 3025 3026
			ret = -EINVAL;
			break;
		}
3027 3028 3029 3030
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3031 3032 3033 3034

		if (!ret)
			break;

3035 3036
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3037
		curusage = page_counter_read(&memcg->memsw);
3038
		/* Usage is reduced ? */
3039
		if (curusage >= oldusage)
3040
			retry_count--;
3041 3042
		else
			oldusage = curusage;
3043 3044
	} while (retry_count);

3045 3046
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3047

3048 3049 3050
	return ret;
}

3051 3052 3053 3054 3055 3056 3057 3058 3059
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3060
	unsigned long excess;
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3085
		spin_lock_irq(&mctz->lock);
3086
		__mem_cgroup_remove_exceeded(mz, mctz);
3087 3088 3089 3090 3091 3092

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3093 3094 3095
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3096
		excess = soft_limit_excess(mz->memcg);
3097 3098 3099 3100 3101 3102 3103 3104 3105
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3106
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3107
		spin_unlock_irq(&mctz->lock);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3125 3126 3127 3128 3129 3130
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3131 3132
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3133 3134
	bool ret;

3135
	/*
3136 3137 3138 3139
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3140
	 */
3141 3142 3143 3144 3145 3146
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3147 3148
}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3159 3160
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3161
	/* try to free all pages in this cgroup */
3162
	while (nr_retries && page_counter_read(&memcg->memory)) {
3163
		int progress;
3164

3165 3166 3167
		if (signal_pending(current))
			return -EINTR;

3168 3169
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3170
		if (!progress) {
3171
			nr_retries--;
3172
			/* maybe some writeback is necessary */
3173
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3174
		}
3175 3176

	}
3177 3178

	return 0;
3179 3180
}

3181 3182 3183
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3184
{
3185
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3186

3187 3188
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3189
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3190 3191
}

3192 3193
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3194
{
3195
	return mem_cgroup_from_css(css)->use_hierarchy;
3196 3197
}

3198 3199
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3200 3201
{
	int retval = 0;
3202
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3203
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3204

3205
	mutex_lock(&memcg_create_mutex);
3206 3207 3208 3209

	if (memcg->use_hierarchy == val)
		goto out;

3210
	/*
3211
	 * If parent's use_hierarchy is set, we can't make any modifications
3212 3213 3214 3215 3216 3217
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3218
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3219
				(val == 1 || val == 0)) {
3220
		if (!memcg_has_children(memcg))
3221
			memcg->use_hierarchy = val;
3222 3223 3224 3225
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3226 3227

out:
3228
	mutex_unlock(&memcg_create_mutex);
3229 3230 3231 3232

	return retval;
}

3233 3234
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3252 3253 3254 3255 3256 3257
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3258
		if (!swap)
3259
			val = page_counter_read(&memcg->memory);
3260
		else
3261
			val = page_counter_read(&memcg->memsw);
3262 3263 3264 3265
	}
	return val << PAGE_SHIFT;
}

3266 3267 3268 3269 3270 3271 3272
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3273

3274
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3275
			       struct cftype *cft)
B
Balbir Singh 已提交
3276
{
3277
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3278
	struct page_counter *counter;
3279

3280
	switch (MEMFILE_TYPE(cft->private)) {
3281
	case _MEM:
3282 3283
		counter = &memcg->memory;
		break;
3284
	case _MEMSWAP:
3285 3286
		counter = &memcg->memsw;
		break;
3287
	case _KMEM:
3288
		counter = &memcg->kmem;
3289
		break;
3290 3291 3292
	default:
		BUG();
	}
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3312
}
3313 3314

#ifdef CONFIG_MEMCG_KMEM
3315 3316
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3317 3318 3319 3320
{
	int err = 0;
	int memcg_id;

3321
	BUG_ON(memcg->kmemcg_id >= 0);
3322
	BUG_ON(memcg->kmem_acct_activated);
3323
	BUG_ON(memcg->kmem_acct_active);
3324

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3337
	mutex_lock(&memcg_create_mutex);
3338 3339
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3340 3341 3342 3343
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3344

3345
	memcg_id = memcg_alloc_cache_id();
3346 3347 3348 3349 3350 3351
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3352 3353
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3354
	 */
3355
	err = page_counter_limit(&memcg->kmem, nr_pages);
3356 3357 3358 3359
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3360 3361
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3362 3363 3364
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3365
	memcg->kmemcg_id = memcg_id;
3366
	memcg->kmem_acct_activated = true;
3367
	memcg->kmem_acct_active = true;
3368
out:
3369 3370 3371 3372
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3373
				   unsigned long limit)
3374 3375 3376
{
	int ret;

3377
	mutex_lock(&memcg_limit_mutex);
3378
	if (!memcg_kmem_is_active(memcg))
3379
		ret = memcg_activate_kmem(memcg, limit);
3380
	else
3381 3382
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3383 3384 3385
	return ret;
}

3386
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3387
{
3388
	int ret = 0;
3389
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3390

3391 3392
	if (!parent)
		return 0;
3393

3394
	mutex_lock(&memcg_limit_mutex);
3395
	/*
3396 3397
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3398
	 */
3399
	if (memcg_kmem_is_active(parent))
3400 3401
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3402
	return ret;
3403
}
3404 3405
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3406
				   unsigned long limit)
3407 3408 3409
{
	return -EINVAL;
}
3410
#endif /* CONFIG_MEMCG_KMEM */
3411

3412 3413 3414 3415
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3416 3417
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3418
{
3419
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3420
	unsigned long nr_pages;
3421 3422
	int ret;

3423
	buf = strstrip(buf);
3424
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3425 3426
	if (ret)
		return ret;
3427

3428
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3429
	case RES_LIMIT:
3430 3431 3432 3433
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3434 3435 3436
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3437
			break;
3438 3439
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3440
			break;
3441 3442 3443 3444
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3445
		break;
3446 3447 3448
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3449 3450
		break;
	}
3451
	return ret ?: nbytes;
B
Balbir Singh 已提交
3452 3453
}

3454 3455
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3456
{
3457
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3458
	struct page_counter *counter;
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3473

3474
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3475
	case RES_MAX_USAGE:
3476
		page_counter_reset_watermark(counter);
3477 3478
		break;
	case RES_FAILCNT:
3479
		counter->failcnt = 0;
3480
		break;
3481 3482
	default:
		BUG();
3483
	}
3484

3485
	return nbytes;
3486 3487
}

3488
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3489 3490
					struct cftype *cft)
{
3491
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3492 3493
}

3494
#ifdef CONFIG_MMU
3495
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3496 3497
					struct cftype *cft, u64 val)
{
3498
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3499

3500
	if (val & ~MOVE_MASK)
3501
		return -EINVAL;
3502

3503
	/*
3504 3505 3506 3507
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3508
	 */
3509
	memcg->move_charge_at_immigrate = val;
3510 3511
	return 0;
}
3512
#else
3513
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3514 3515 3516 3517 3518
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3519

3520
#ifdef CONFIG_NUMA
3521
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3522
{
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3535
	int nid;
3536
	unsigned long nr;
3537
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3538

3539 3540 3541 3542 3543 3544 3545 3546 3547
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3548 3549
	}

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3565 3566 3567 3568 3569 3570
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3571
static int memcg_stat_show(struct seq_file *m, void *v)
3572
{
3573
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3574
	unsigned long memory, memsw;
3575 3576
	struct mem_cgroup *mi;
	unsigned int i;
3577

3578 3579 3580 3581
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3582 3583
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3584
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3585
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3586
			continue;
3587 3588
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3589
	}
L
Lee Schermerhorn 已提交
3590

3591 3592 3593 3594 3595 3596 3597 3598
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3599
	/* Hierarchical information */
3600 3601 3602 3603
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3604
	}
3605 3606 3607 3608 3609
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3610

3611 3612 3613
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3614
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3615
			continue;
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3636
	}
K
KAMEZAWA Hiroyuki 已提交
3637

K
KOSAKI Motohiro 已提交
3638 3639 3640 3641
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3642
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3643 3644 3645 3646 3647
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3648
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3649
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3650

3651 3652 3653 3654
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3655
			}
3656 3657 3658 3659
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3660 3661 3662
	}
#endif

3663 3664 3665
	return 0;
}

3666 3667
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3668
{
3669
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3670

3671
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3672 3673
}

3674 3675
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3676
{
3677
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3678

3679
	if (val > 100)
K
KOSAKI Motohiro 已提交
3680 3681
		return -EINVAL;

3682
	if (css->parent)
3683 3684 3685
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3686

K
KOSAKI Motohiro 已提交
3687 3688 3689
	return 0;
}

3690 3691 3692
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3693
	unsigned long usage;
3694 3695 3696 3697
	int i;

	rcu_read_lock();
	if (!swap)
3698
		t = rcu_dereference(memcg->thresholds.primary);
3699
	else
3700
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3701 3702 3703 3704

	if (!t)
		goto unlock;

3705
	usage = mem_cgroup_usage(memcg, swap);
3706 3707

	/*
3708
	 * current_threshold points to threshold just below or equal to usage.
3709 3710 3711
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3712
	i = t->current_threshold;
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3736
	t->current_threshold = i - 1;
3737 3738 3739 3740 3741 3742
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3743 3744 3745 3746 3747 3748 3749
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3750 3751 3752 3753 3754 3755 3756
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3757 3758 3759 3760 3761 3762 3763
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3764 3765
}

3766
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3767 3768 3769
{
	struct mem_cgroup_eventfd_list *ev;

3770 3771
	spin_lock(&memcg_oom_lock);

3772
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3773
		eventfd_signal(ev->eventfd, 1);
3774 3775

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3776 3777 3778
	return 0;
}

3779
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3780
{
K
KAMEZAWA Hiroyuki 已提交
3781 3782
	struct mem_cgroup *iter;

3783
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3784
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3785 3786
}

3787
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3788
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3789
{
3790 3791
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3792 3793
	unsigned long threshold;
	unsigned long usage;
3794
	int i, size, ret;
3795

3796
	ret = page_counter_memparse(args, "-1", &threshold);
3797 3798 3799 3800
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3801

3802
	if (type == _MEM) {
3803
		thresholds = &memcg->thresholds;
3804
		usage = mem_cgroup_usage(memcg, false);
3805
	} else if (type == _MEMSWAP) {
3806
		thresholds = &memcg->memsw_thresholds;
3807
		usage = mem_cgroup_usage(memcg, true);
3808
	} else
3809 3810 3811
		BUG();

	/* Check if a threshold crossed before adding a new one */
3812
	if (thresholds->primary)
3813 3814
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3815
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3816 3817

	/* Allocate memory for new array of thresholds */
3818
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3819
			GFP_KERNEL);
3820
	if (!new) {
3821 3822 3823
		ret = -ENOMEM;
		goto unlock;
	}
3824
	new->size = size;
3825 3826

	/* Copy thresholds (if any) to new array */
3827 3828
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3829
				sizeof(struct mem_cgroup_threshold));
3830 3831
	}

3832
	/* Add new threshold */
3833 3834
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3835 3836

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3837
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3838 3839 3840
			compare_thresholds, NULL);

	/* Find current threshold */
3841
	new->current_threshold = -1;
3842
	for (i = 0; i < size; i++) {
3843
		if (new->entries[i].threshold <= usage) {
3844
			/*
3845 3846
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3847 3848
			 * it here.
			 */
3849
			++new->current_threshold;
3850 3851
		} else
			break;
3852 3853
	}

3854 3855 3856 3857 3858
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3859

3860
	/* To be sure that nobody uses thresholds */
3861 3862 3863 3864 3865 3866 3867 3868
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3869
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3870 3871
	struct eventfd_ctx *eventfd, const char *args)
{
3872
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3873 3874
}

3875
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3876 3877
	struct eventfd_ctx *eventfd, const char *args)
{
3878
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3879 3880
}

3881
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3882
	struct eventfd_ctx *eventfd, enum res_type type)
3883
{
3884 3885
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3886
	unsigned long usage;
3887
	int i, j, size;
3888 3889

	mutex_lock(&memcg->thresholds_lock);
3890 3891

	if (type == _MEM) {
3892
		thresholds = &memcg->thresholds;
3893
		usage = mem_cgroup_usage(memcg, false);
3894
	} else if (type == _MEMSWAP) {
3895
		thresholds = &memcg->memsw_thresholds;
3896
		usage = mem_cgroup_usage(memcg, true);
3897
	} else
3898 3899
		BUG();

3900 3901 3902
	if (!thresholds->primary)
		goto unlock;

3903 3904 3905 3906
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3907 3908 3909
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3910 3911 3912
			size++;
	}

3913
	new = thresholds->spare;
3914

3915 3916
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3917 3918
		kfree(new);
		new = NULL;
3919
		goto swap_buffers;
3920 3921
	}

3922
	new->size = size;
3923 3924

	/* Copy thresholds and find current threshold */
3925 3926 3927
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3928 3929
			continue;

3930
		new->entries[j] = thresholds->primary->entries[i];
3931
		if (new->entries[j].threshold <= usage) {
3932
			/*
3933
			 * new->current_threshold will not be used
3934 3935 3936
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3937
			++new->current_threshold;
3938 3939 3940 3941
		}
		j++;
	}

3942
swap_buffers:
3943 3944
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3945 3946 3947 3948 3949 3950
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3951
	rcu_assign_pointer(thresholds->primary, new);
3952

3953
	/* To be sure that nobody uses thresholds */
3954
	synchronize_rcu();
3955
unlock:
3956 3957
	mutex_unlock(&memcg->thresholds_lock);
}
3958

3959
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3960 3961
	struct eventfd_ctx *eventfd)
{
3962
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3963 3964
}

3965
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3966 3967
	struct eventfd_ctx *eventfd)
{
3968
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3969 3970
}

3971
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3972
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3973 3974 3975 3976 3977 3978 3979
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3980
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3981 3982 3983 3984 3985

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3986
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3987
		eventfd_signal(eventfd, 1);
3988
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3989 3990 3991 3992

	return 0;
}

3993
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3994
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3995 3996 3997
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3998
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3999

4000
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4001 4002 4003 4004 4005 4006
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4007
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4008 4009
}

4010
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4011
{
4012
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4013

4014 4015
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4016 4017 4018
	return 0;
}

4019
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4020 4021
	struct cftype *cft, u64 val)
{
4022
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4023 4024

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4025
	if (!css->parent || !((val == 0) || (val == 1)))
4026 4027
		return -EINVAL;

4028
	memcg->oom_kill_disable = val;
4029
	if (!val)
4030
		memcg_oom_recover(memcg);
4031

4032 4033 4034
	return 0;
}

A
Andrew Morton 已提交
4035
#ifdef CONFIG_MEMCG_KMEM
4036
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4037
{
4038 4039 4040 4041 4042
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4043

4044
	return mem_cgroup_sockets_init(memcg, ss);
4045
}
4046

4047 4048
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
4049 4050 4051 4052
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
4091 4092
}

4093
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4094
{
4095
	memcg_destroy_kmem_caches(memcg);
4096
	mem_cgroup_sockets_destroy(memcg);
4097
}
4098
#else
4099
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4100 4101 4102
{
	return 0;
}
G
Glauber Costa 已提交
4103

4104 4105 4106 4107
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

4108 4109 4110
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4111 4112
#endif

4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4126 4127 4128 4129 4130
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4131
static void memcg_event_remove(struct work_struct *work)
4132
{
4133 4134
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4135
	struct mem_cgroup *memcg = event->memcg;
4136 4137 4138

	remove_wait_queue(event->wqh, &event->wait);

4139
	event->unregister_event(memcg, event->eventfd);
4140 4141 4142 4143 4144 4145

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4146
	css_put(&memcg->css);
4147 4148 4149 4150 4151 4152 4153
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4154 4155
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4156
{
4157 4158
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4159
	struct mem_cgroup *memcg = event->memcg;
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4172
		spin_lock(&memcg->event_list_lock);
4173 4174 4175 4176 4177 4178 4179 4180
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4181
		spin_unlock(&memcg->event_list_lock);
4182 4183 4184 4185 4186
	}

	return 0;
}

4187
static void memcg_event_ptable_queue_proc(struct file *file,
4188 4189
		wait_queue_head_t *wqh, poll_table *pt)
{
4190 4191
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4192 4193 4194 4195 4196 4197

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4198 4199
 * DO NOT USE IN NEW FILES.
 *
4200 4201 4202 4203 4204
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4205 4206
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4207
{
4208
	struct cgroup_subsys_state *css = of_css(of);
4209
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4210
	struct mem_cgroup_event *event;
4211 4212 4213 4214
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4215
	const char *name;
4216 4217 4218
	char *endp;
	int ret;

4219 4220 4221
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4222 4223
	if (*endp != ' ')
		return -EINVAL;
4224
	buf = endp + 1;
4225

4226
	cfd = simple_strtoul(buf, &endp, 10);
4227 4228
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4229
	buf = endp + 1;
4230 4231 4232 4233 4234

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4235
	event->memcg = memcg;
4236
	INIT_LIST_HEAD(&event->list);
4237 4238 4239
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4265 4266 4267 4268 4269
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4270 4271
	 *
	 * DO NOT ADD NEW FILES.
4272
	 */
A
Al Viro 已提交
4273
	name = cfile.file->f_path.dentry->d_name.name;
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4285 4286
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4287 4288 4289 4290 4291
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4292
	/*
4293 4294 4295
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4296
	 */
A
Al Viro 已提交
4297
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4298
					       &memory_cgrp_subsys);
4299
	ret = -EINVAL;
4300
	if (IS_ERR(cfile_css))
4301
		goto out_put_cfile;
4302 4303
	if (cfile_css != css) {
		css_put(cfile_css);
4304
		goto out_put_cfile;
4305
	}
4306

4307
	ret = event->register_event(memcg, event->eventfd, buf);
4308 4309 4310 4311 4312
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4313 4314 4315
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4316 4317 4318 4319

	fdput(cfile);
	fdput(efile);

4320
	return nbytes;
4321 4322

out_put_css:
4323
	css_put(css);
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4336
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4337
	{
4338
		.name = "usage_in_bytes",
4339
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4340
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4341
	},
4342 4343
	{
		.name = "max_usage_in_bytes",
4344
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4345
		.write = mem_cgroup_reset,
4346
		.read_u64 = mem_cgroup_read_u64,
4347
	},
B
Balbir Singh 已提交
4348
	{
4349
		.name = "limit_in_bytes",
4350
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4351
		.write = mem_cgroup_write,
4352
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4353
	},
4354 4355 4356
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4357
		.write = mem_cgroup_write,
4358
		.read_u64 = mem_cgroup_read_u64,
4359
	},
B
Balbir Singh 已提交
4360 4361
	{
		.name = "failcnt",
4362
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4363
		.write = mem_cgroup_reset,
4364
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4365
	},
4366 4367
	{
		.name = "stat",
4368
		.seq_show = memcg_stat_show,
4369
	},
4370 4371
	{
		.name = "force_empty",
4372
		.write = mem_cgroup_force_empty_write,
4373
	},
4374 4375 4376 4377 4378
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4379
	{
4380
		.name = "cgroup.event_control",		/* XXX: for compat */
4381
		.write = memcg_write_event_control,
4382 4383 4384
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4385 4386 4387 4388 4389
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4390 4391 4392 4393 4394
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4395 4396
	{
		.name = "oom_control",
4397
		.seq_show = mem_cgroup_oom_control_read,
4398
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4399 4400
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4401 4402 4403
	{
		.name = "pressure_level",
	},
4404 4405 4406
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4407
		.seq_show = memcg_numa_stat_show,
4408 4409
	},
#endif
4410 4411 4412 4413
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4414
		.write = mem_cgroup_write,
4415
		.read_u64 = mem_cgroup_read_u64,
4416 4417 4418 4419
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4420
		.read_u64 = mem_cgroup_read_u64,
4421 4422 4423 4424
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4425
		.write = mem_cgroup_reset,
4426
		.read_u64 = mem_cgroup_read_u64,
4427 4428 4429 4430
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4431
		.write = mem_cgroup_reset,
4432
		.read_u64 = mem_cgroup_read_u64,
4433
	},
4434 4435 4436
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4437 4438 4439 4440
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4441 4442
	},
#endif
4443
#endif
4444
	{ },	/* terminate */
4445
};
4446

4447
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4448 4449
{
	struct mem_cgroup_per_node *pn;
4450
	struct mem_cgroup_per_zone *mz;
4451
	int zone, tmp = node;
4452 4453 4454 4455 4456 4457 4458 4459
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4460 4461
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4462
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4463 4464
	if (!pn)
		return 1;
4465 4466 4467

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4468
		lruvec_init(&mz->lruvec);
4469 4470
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4471
		mz->memcg = memcg;
4472
	}
4473
	memcg->nodeinfo[node] = pn;
4474 4475 4476
	return 0;
}

4477
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4478
{
4479
	kfree(memcg->nodeinfo[node]);
4480 4481
}

4482 4483
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4484
	struct mem_cgroup *memcg;
4485
	size_t size;
4486

4487 4488
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4489

4490
	memcg = kzalloc(size, GFP_KERNEL);
4491
	if (!memcg)
4492 4493
		return NULL;

4494 4495
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4496
		goto out_free;
4497 4498
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4499 4500

out_free:
4501
	kfree(memcg);
4502
	return NULL;
4503 4504
}

4505
/*
4506 4507 4508 4509 4510 4511 4512 4513
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4514
 */
4515 4516

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4517
{
4518
	int node;
4519

4520
	mem_cgroup_remove_from_trees(memcg);
4521 4522 4523 4524 4525 4526

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4527
	disarm_static_keys(memcg);
4528
	kfree(memcg);
4529
}
4530

4531 4532 4533
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4534
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4535
{
4536
	if (!memcg->memory.parent)
4537
		return NULL;
4538
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4539
}
G
Glauber Costa 已提交
4540
EXPORT_SYMBOL(parent_mem_cgroup);
4541

L
Li Zefan 已提交
4542
static struct cgroup_subsys_state * __ref
4543
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4544
{
4545
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4546
	long error = -ENOMEM;
4547
	int node;
B
Balbir Singh 已提交
4548

4549 4550
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4551
		return ERR_PTR(error);
4552

B
Bob Liu 已提交
4553
	for_each_node(node)
4554
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4555
			goto free_out;
4556

4557
	/* root ? */
4558
	if (parent_css == NULL) {
4559
		root_mem_cgroup = memcg;
4560
		page_counter_init(&memcg->memory, NULL);
4561
		memcg->high = PAGE_COUNTER_MAX;
4562
		memcg->soft_limit = PAGE_COUNTER_MAX;
4563 4564
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4565
	}
4566

4567 4568 4569 4570 4571
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4572
	vmpressure_init(&memcg->vmpressure);
4573 4574
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4575 4576 4577
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4578 4579 4580 4581 4582 4583 4584 4585 4586

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4587
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4588
{
4589
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4590
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4591
	int ret;
4592

4593
	if (css->id > MEM_CGROUP_ID_MAX)
4594 4595
		return -ENOSPC;

T
Tejun Heo 已提交
4596
	if (!parent)
4597 4598
		return 0;

4599
	mutex_lock(&memcg_create_mutex);
4600 4601 4602 4603 4604 4605

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4606
		page_counter_init(&memcg->memory, &parent->memory);
4607
		memcg->high = PAGE_COUNTER_MAX;
4608
		memcg->soft_limit = PAGE_COUNTER_MAX;
4609 4610
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4611

4612
		/*
4613 4614
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4615
		 */
4616
	} else {
4617
		page_counter_init(&memcg->memory, NULL);
4618
		memcg->high = PAGE_COUNTER_MAX;
4619
		memcg->soft_limit = PAGE_COUNTER_MAX;
4620 4621
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4622 4623 4624 4625 4626
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4627
		if (parent != root_mem_cgroup)
4628
			memory_cgrp_subsys.broken_hierarchy = true;
4629
	}
4630
	mutex_unlock(&memcg_create_mutex);
4631

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4644 4645
}

4646
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4647
{
4648
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4649
	struct mem_cgroup_event *event, *tmp;
4650 4651 4652 4653 4654 4655

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4656 4657
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4658 4659 4660
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4661
	spin_unlock(&memcg->event_list_lock);
4662

4663
	vmpressure_cleanup(&memcg->vmpressure);
4664 4665

	memcg_deactivate_kmem(memcg);
4666 4667
}

4668
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4669
{
4670
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4671

4672
	memcg_destroy_kmem(memcg);
4673
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4674 4675
}

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4693 4694 4695
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4696 4697
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4698
	memcg->soft_limit = PAGE_COUNTER_MAX;
4699 4700
}

4701
#ifdef CONFIG_MMU
4702
/* Handlers for move charge at task migration. */
4703
static int mem_cgroup_do_precharge(unsigned long count)
4704
{
4705
	int ret;
4706 4707

	/* Try a single bulk charge without reclaim first */
4708
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4709
	if (!ret) {
4710 4711 4712
		mc.precharge += count;
		return ret;
	}
4713
	if (ret == -EINTR) {
4714
		cancel_charge(root_mem_cgroup, count);
4715 4716
		return ret;
	}
4717 4718

	/* Try charges one by one with reclaim */
4719
	while (count--) {
4720
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4721 4722 4723
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4724 4725
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4726
		 */
4727
		if (ret == -EINTR)
4728
			cancel_charge(root_mem_cgroup, 1);
4729 4730
		if (ret)
			return ret;
4731
		mc.precharge++;
4732
		cond_resched();
4733
	}
4734
	return 0;
4735 4736 4737
}

/**
4738
 * get_mctgt_type - get target type of moving charge
4739 4740 4741
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4742
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4743 4744 4745 4746 4747 4748
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4749 4750 4751
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4752 4753 4754 4755 4756
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4757
	swp_entry_t	ent;
4758 4759 4760
};

enum mc_target_type {
4761
	MC_TARGET_NONE = 0,
4762
	MC_TARGET_PAGE,
4763
	MC_TARGET_SWAP,
4764 4765
};

D
Daisuke Nishimura 已提交
4766 4767
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4768
{
D
Daisuke Nishimura 已提交
4769
	struct page *page = vm_normal_page(vma, addr, ptent);
4770

D
Daisuke Nishimura 已提交
4771 4772 4773
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4774
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4775
			return NULL;
4776 4777 4778 4779
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4780 4781 4782 4783 4784 4785
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4786
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4787 4788 4789 4790 4791 4792
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4793
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4794
		return NULL;
4795 4796 4797 4798
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4799
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4800 4801 4802 4803 4804
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4805 4806 4807 4808 4809 4810 4811
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4812

4813 4814 4815 4816 4817 4818 4819 4820 4821
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4822
	if (!(mc.flags & MOVE_FILE))
4823 4824 4825
		return NULL;

	mapping = vma->vm_file->f_mapping;
4826
	pgoff = linear_page_index(vma, addr);
4827 4828

	/* page is moved even if it's not RSS of this task(page-faulted). */
4829 4830
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4843
#endif
4844 4845 4846
	return page;
}

4847
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4848 4849 4850
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4851
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4852 4853 4854 4855 4856 4857
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4858
	else if (pte_none(ptent))
4859
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4860 4861

	if (!page && !ent.val)
4862
		return ret;
4863 4864
	if (page) {
		/*
4865
		 * Do only loose check w/o serialization.
4866
		 * mem_cgroup_move_account() checks the page is valid or
4867
		 * not under LRU exclusion.
4868
		 */
4869
		if (page->mem_cgroup == mc.from) {
4870 4871 4872 4873 4874 4875 4876
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4877 4878
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4879
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4880 4881 4882
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4883 4884 4885 4886
	}
	return ret;
}

4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4900
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4901
	if (!(mc.flags & MOVE_ANON))
4902
		return ret;
4903
	if (page->mem_cgroup == mc.from) {
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4920 4921 4922 4923
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4924
	struct vm_area_struct *vma = walk->vma;
4925 4926 4927
	pte_t *pte;
	spinlock_t *ptl;

4928
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4929 4930
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4931
		spin_unlock(ptl);
4932
		return 0;
4933
	}
4934

4935 4936
	if (pmd_trans_unstable(pmd))
		return 0;
4937 4938
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4939
		if (get_mctgt_type(vma, addr, *pte, NULL))
4940 4941 4942 4943
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4944 4945 4946
	return 0;
}

4947 4948 4949 4950
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4951 4952 4953 4954
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4955
	down_read(&mm->mmap_sem);
4956
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4957
	up_read(&mm->mmap_sem);
4958 4959 4960 4961 4962 4963 4964 4965 4966

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4967 4968 4969 4970 4971
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4972 4973
}

4974 4975
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4976
{
4977 4978 4979
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4980
	/* we must uncharge all the leftover precharges from mc.to */
4981
	if (mc.precharge) {
4982
		cancel_charge(mc.to, mc.precharge);
4983 4984 4985 4986 4987 4988 4989
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4990
		cancel_charge(mc.from, mc.moved_charge);
4991
		mc.moved_charge = 0;
4992
	}
4993 4994 4995
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4996
		if (!mem_cgroup_is_root(mc.from))
4997
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4998

4999
		/*
5000 5001
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5002
		 */
5003
		if (!mem_cgroup_is_root(mc.to))
5004 5005
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5006
		css_put_many(&mc.from->css, mc.moved_swap);
5007

L
Li Zefan 已提交
5008
		/* we've already done css_get(mc.to) */
5009 5010
		mc.moved_swap = 0;
	}
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5024
	spin_lock(&mc.lock);
5025 5026
	mc.from = NULL;
	mc.to = NULL;
5027
	spin_unlock(&mc.lock);
5028 5029
}

5030
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5031
				 struct cgroup_taskset *tset)
5032
{
5033
	struct task_struct *p = cgroup_taskset_first(tset);
5034
	int ret = 0;
5035
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5036
	unsigned long move_flags;
5037

5038 5039 5040 5041 5042
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5043 5044
	move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
	if (move_flags) {
5045 5046 5047
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5048
		VM_BUG_ON(from == memcg);
5049 5050 5051 5052 5053

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5054 5055 5056 5057
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5058
			VM_BUG_ON(mc.moved_charge);
5059
			VM_BUG_ON(mc.moved_swap);
5060

5061
			spin_lock(&mc.lock);
5062
			mc.from = from;
5063
			mc.to = memcg;
5064
			mc.flags = move_flags;
5065
			spin_unlock(&mc.lock);
5066
			/* We set mc.moving_task later */
5067 5068 5069 5070

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5071 5072
		}
		mmput(mm);
5073 5074 5075 5076
	}
	return ret;
}

5077
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5078
				     struct cgroup_taskset *tset)
5079
{
5080 5081
	if (mc.to)
		mem_cgroup_clear_mc();
5082 5083
}

5084 5085 5086
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5087
{
5088
	int ret = 0;
5089
	struct vm_area_struct *vma = walk->vma;
5090 5091
	pte_t *pte;
	spinlock_t *ptl;
5092 5093 5094
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5095

5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5106
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5107
		if (mc.precharge < HPAGE_PMD_NR) {
5108
			spin_unlock(ptl);
5109 5110 5111 5112 5113 5114 5115
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5116
							     mc.from, mc.to)) {
5117 5118 5119 5120 5121 5122 5123
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5124
		spin_unlock(ptl);
5125
		return 0;
5126 5127
	}

5128 5129
	if (pmd_trans_unstable(pmd))
		return 0;
5130 5131 5132 5133
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5134
		swp_entry_t ent;
5135 5136 5137 5138

		if (!mc.precharge)
			break;

5139
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5140 5141 5142 5143
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5144
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5145
				mc.precharge--;
5146 5147
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5148 5149
			}
			putback_lru_page(page);
5150
put:			/* get_mctgt_type() gets the page */
5151 5152
			put_page(page);
			break;
5153 5154
		case MC_TARGET_SWAP:
			ent = target.ent;
5155
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5156
				mc.precharge--;
5157 5158 5159
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5160
			break;
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5175
		ret = mem_cgroup_do_precharge(1);
5176 5177 5178 5179 5180 5181 5182 5183 5184
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5185 5186 5187 5188
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5189 5190

	lru_add_drain_all();
5191 5192 5193 5194 5195 5196 5197
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5211 5212 5213 5214 5215
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5216
	up_read(&mm->mmap_sem);
5217
	atomic_dec(&mc.from->moving_account);
5218 5219
}

5220
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5221
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5222
{
5223
	struct task_struct *p = cgroup_taskset_first(tset);
5224
	struct mm_struct *mm = get_task_mm(p);
5225 5226

	if (mm) {
5227 5228
		if (mc.to)
			mem_cgroup_move_charge(mm);
5229 5230
		mmput(mm);
	}
5231 5232
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5233
}
5234
#else	/* !CONFIG_MMU */
5235
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5236
				 struct cgroup_taskset *tset)
5237 5238 5239
{
	return 0;
}
5240
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5241
				     struct cgroup_taskset *tset)
5242 5243
{
}
5244
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5245
				 struct cgroup_taskset *tset)
5246 5247 5248
{
}
#endif
B
Balbir Singh 已提交
5249

5250 5251
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5252 5253
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5254
 */
5255
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5256 5257
{
	/*
5258
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5259 5260 5261
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5262
	if (cgroup_on_dfl(root_css->cgroup))
5263
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5264 5265
}

5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &low);
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &high);
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &max);
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5407
struct cgroup_subsys memory_cgrp_subsys = {
5408
	.css_alloc = mem_cgroup_css_alloc,
5409
	.css_online = mem_cgroup_css_online,
5410 5411
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5412
	.css_reset = mem_cgroup_css_reset,
5413 5414
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5415
	.attach = mem_cgroup_move_task,
5416
	.bind = mem_cgroup_bind,
5417 5418
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5419
	.early_init = 0,
B
Balbir Singh 已提交
5420
};
5421

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

	if (page_counter_read(&memcg->memory) > memcg->low)
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

		if (page_counter_read(&memcg->memory) > memcg->low)
			return false;
	}
	return true;
}

5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5507
		if (page->mem_cgroup)
5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5568 5569
	commit_charge(page, memcg, lrucare);

5570 5571 5572 5573 5574
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5575 5576 5577 5578
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5620 5621 5622 5623
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5624
	unsigned long nr_pages = nr_anon + nr_file;
5625 5626
	unsigned long flags;

5627
	if (!mem_cgroup_is_root(memcg)) {
5628 5629 5630
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5631 5632
		memcg_oom_recover(memcg);
	}
5633 5634 5635 5636 5637 5638

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5639
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5640 5641
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5642 5643

	if (!mem_cgroup_is_root(memcg))
5644
		css_put_many(&memcg->css, nr_pages);
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5667
		if (!page->mem_cgroup)
5668 5669 5670 5671
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5672
		 * page->mem_cgroup at this point, we have fully
5673
		 * exclusive access to the page.
5674 5675
		 */

5676
		if (memcg != page->mem_cgroup) {
5677
			if (memcg) {
5678 5679 5680
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5681
			}
5682
			memcg = page->mem_cgroup;
5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5696
		page->mem_cgroup = NULL;
5697 5698 5699 5700 5701

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5702 5703
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5704 5705
}

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5718
	/* Don't touch page->lru of any random page, pre-check: */
5719
	if (!page->mem_cgroup)
5720 5721
		return;

5722 5723 5724
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5725

5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5737

5738 5739
	if (!list_empty(page_list))
		uncharge_list(page_list);
5740 5741 5742 5743 5744 5745
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5746
 * @lrucare: either or both pages might be on the LRU already
5747 5748 5749 5750 5751 5752 5753 5754
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5755
	struct mem_cgroup *memcg;
5756 5757 5758 5759 5760 5761 5762
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5763 5764
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5765 5766 5767 5768 5769

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5770
	if (newpage->mem_cgroup)
5771 5772
		return;

5773 5774 5775 5776 5777 5778
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5779
	memcg = oldpage->mem_cgroup;
5780
	if (!memcg)
5781 5782 5783 5784 5785
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5786
	oldpage->mem_cgroup = NULL;
5787 5788 5789 5790

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5791
	commit_charge(newpage, memcg, lrucare);
5792 5793
}

5794
/*
5795 5796 5797 5798 5799 5800
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5801 5802 5803
 */
static int __init mem_cgroup_init(void)
{
5804 5805
	int cpu, node;

5806
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5829 5830 5831
	return 0;
}
subsys_initcall(mem_cgroup_init);
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */