memcontrol.c 149.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

75
/* Whether the swap controller is active */
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP
77 78
int do_swap_account __read_mostly;
#else
79
#define do_swap_account		0
80 81
#endif

82 83 84
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
85
	"rss_huge",
86
	"mapped_file",
87
	"writeback",
88 89 90 91 92 93 94 95 96 97
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

98 99 100 101 102 103 104 105
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

106 107 108 109 110 111 112 113
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
114
	MEM_CGROUP_TARGET_SOFTLIMIT,
115
	MEM_CGROUP_TARGET_NUMAINFO,
116 117
	MEM_CGROUP_NTARGETS,
};
118 119 120
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
121

122
struct mem_cgroup_stat_cpu {
123
	long count[MEM_CGROUP_STAT_NSTATS];
124
	unsigned long events[MEMCG_NR_EVENTS];
125
	unsigned long nr_page_events;
126
	unsigned long targets[MEM_CGROUP_NTARGETS];
127 128
};

129 130
struct reclaim_iter {
	struct mem_cgroup *position;
131 132 133 134
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

135 136 137 138
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
139
	struct lruvec		lruvec;
140
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
141

142
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
143

144
	struct rb_node		tree_node;	/* RB tree node */
145
	unsigned long		usage_in_excess;/* Set to the value by which */
146 147
						/* the soft limit is exceeded*/
	bool			on_tree;
148
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
149
						/* use container_of	   */
150 151 152 153 154 155
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
178
	unsigned long threshold;
179 180
};

K
KAMEZAWA Hiroyuki 已提交
181
/* For threshold */
182
struct mem_cgroup_threshold_ary {
183
	/* An array index points to threshold just below or equal to usage. */
184
	int current_threshold;
185 186 187 188 189
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
190 191 192 193 194 195 196 197 198 199 200 201

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
202 203 204 205 206
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
207

208 209 210
/*
 * cgroup_event represents events which userspace want to receive.
 */
211
struct mem_cgroup_event {
212
	/*
213
	 * memcg which the event belongs to.
214
	 */
215
	struct mem_cgroup *memcg;
216 217 218 219 220 221 222 223
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
224 225 226 227 228
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
229
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
230
			      struct eventfd_ctx *eventfd, const char *args);
231 232 233 234 235
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
236
	void (*unregister_event)(struct mem_cgroup *memcg,
237
				 struct eventfd_ctx *eventfd);
238 239 240 241 242 243 244 245 246 247
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

248 249
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
250

B
Balbir Singh 已提交
251 252 253 254 255 256 257
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
258 259 260
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
261 262 263
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
264 265 266 267 268 269

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

270 271 272 273
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

274
	unsigned long soft_limit;
275

276 277 278
	/* vmpressure notifications */
	struct vmpressure vmpressure;

279 280 281
	/* css_online() has been completed */
	int initialized;

282 283 284 285
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
286 287 288

	bool		oom_lock;
	atomic_t	under_oom;
289
	atomic_t	oom_wakeups;
290

291
	int	swappiness;
292 293
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
294

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
311
	unsigned long move_charge_at_immigrate;
312 313 314
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
315
	atomic_t		moving_account;
316
	/* taken only while moving_account > 0 */
317 318 319
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
320
	/*
321
	 * percpu counter.
322
	 */
323
	struct mem_cgroup_stat_cpu __percpu *stat;
324 325 326 327 328 329
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
330

M
Michal Hocko 已提交
331
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
332
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
333
#endif
334
#if defined(CONFIG_MEMCG_KMEM)
335
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
336
	int kmemcg_id;
337
	bool kmem_acct_activated;
338
	bool kmem_acct_active;
339
#endif
340 341 342 343 344 345 346

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
347

348 349 350 351
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

352 353
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
354 355
};

356
#ifdef CONFIG_MEMCG_KMEM
357
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
358
{
359
	return memcg->kmem_acct_active;
360
}
361 362
#endif

363 364
/* Stuffs for move charges at task migration. */
/*
365
 * Types of charges to be moved.
366
 */
367 368 369
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
370

371 372
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
373
	spinlock_t	  lock; /* for from, to */
374 375
	struct mem_cgroup *from;
	struct mem_cgroup *to;
376
	unsigned long flags;
377
	unsigned long precharge;
378
	unsigned long moved_charge;
379
	unsigned long moved_swap;
380 381 382
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
383
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
384 385
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
386

387 388 389 390
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
391
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
392
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
393

394 395
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
396
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
397
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
398
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
399 400 401
	NR_CHARGE_TYPE,
};

402
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
403 404 405 406
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
407
	_KMEM,
G
Glauber Costa 已提交
408 409
};

410 411
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
412
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
413 414
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
415

416 417 418 419 420 421 422
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

423 424
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
425
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

441 442 443 444 445
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

446 447 448 449 450 451
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
452 453
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
454
	return memcg->css.id;
L
Li Zefan 已提交
455 456 457 458 459 460
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

461
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
462 463 464
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
465
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
466
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
467 468 469

void sock_update_memcg(struct sock *sk)
{
470
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
471
		struct mem_cgroup *memcg;
472
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
473 474 475

		BUG_ON(!sk->sk_prot->proto_cgroup);

476 477 478 479 480 481 482 483 484 485
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
486
			css_get(&sk->sk_cgrp->memcg->css);
487 488 489
			return;
		}

G
Glauber Costa 已提交
490 491
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
492
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
493
		if (!mem_cgroup_is_root(memcg) &&
494 495
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
496
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
497 498 499 500 501 502 503 504
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
505
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
506 507 508
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
509
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
510 511
	}
}
G
Glauber Costa 已提交
512 513 514 515 516 517

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

518
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
519 520
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
521

522 523
#endif

524
#ifdef CONFIG_MEMCG_KMEM
525
/*
526
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
527 528 529 530 531
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
532
 *
533 534
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
535
 */
536 537
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
538

539 540 541 542 543 544 545 546 547 548 549 550 551
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

552 553 554 555 556 557
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
558
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
559 560
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
561
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
562 563 564
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
565
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
566

567 568 569 570 571 572
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
573
struct static_key memcg_kmem_enabled_key;
574
EXPORT_SYMBOL(memcg_kmem_enabled_key);
575 576 577

#endif /* CONFIG_MEMCG_KMEM */

578
static struct mem_cgroup_per_zone *
579
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
580
{
581 582 583
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

584
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
585 586
}

587
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
588
{
589
	return &memcg->css;
590 591
}

592
static struct mem_cgroup_per_zone *
593
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
594
{
595 596
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
597

598
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
599 600
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

616 617
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
618
					 unsigned long new_usage_in_excess)
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

648 649
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
650 651 652 653 654 655 656
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

657 658
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
659
{
660 661 662
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
663
	__mem_cgroup_remove_exceeded(mz, mctz);
664
	spin_unlock_irqrestore(&mctz->lock, flags);
665 666
}

667 668 669 670 671 672 673 674 675 676 677
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
678 679 680

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
681
	unsigned long excess;
682 683 684
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

685
	mctz = soft_limit_tree_from_page(page);
686 687 688 689 690
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
691
		mz = mem_cgroup_page_zoneinfo(memcg, page);
692
		excess = soft_limit_excess(memcg);
693 694 695 696 697
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
698 699 700
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
701 702
			/* if on-tree, remove it */
			if (mz->on_tree)
703
				__mem_cgroup_remove_exceeded(mz, mctz);
704 705 706 707
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
708
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
709
			spin_unlock_irqrestore(&mctz->lock, flags);
710 711 712 713 714 715 716
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
717 718
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
719

720 721 722 723
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
724
			mem_cgroup_remove_exceeded(mz, mctz);
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
747
	__mem_cgroup_remove_exceeded(mz, mctz);
748
	if (!soft_limit_excess(mz->memcg) ||
749
	    !css_tryget_online(&mz->memcg->css))
750 751 752 753 754 755 756 757 758 759
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

760
	spin_lock_irq(&mctz->lock);
761
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
762
	spin_unlock_irq(&mctz->lock);
763 764 765
	return mz;
}

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
785
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
786
				 enum mem_cgroup_stat_index idx)
787
{
788
	long val = 0;
789 790
	int cpu;

791 792
	get_online_cpus();
	for_each_online_cpu(cpu)
793
		val += per_cpu(memcg->stat->count[idx], cpu);
794
#ifdef CONFIG_HOTPLUG_CPU
795 796 797
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
798 799
#endif
	put_online_cpus();
800 801 802
	return val;
}

803
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
804 805 806 807 808
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

809
	get_online_cpus();
810
	for_each_online_cpu(cpu)
811
		val += per_cpu(memcg->stat->events[idx], cpu);
812
#ifdef CONFIG_HOTPLUG_CPU
813 814 815
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
816
#endif
817
	put_online_cpus();
818 819 820
	return val;
}

821
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
822
					 struct page *page,
823
					 int nr_pages)
824
{
825 826 827 828
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
829
	if (PageAnon(page))
830
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
831
				nr_pages);
832
	else
833
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
834
				nr_pages);
835

836 837 838 839
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

840 841
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
842
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
843
	else {
844
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
845 846
		nr_pages = -nr_pages; /* for event */
	}
847

848
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
849 850
}

851
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
852 853 854 855 856 857 858
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

859 860 861
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
862
{
863
	unsigned long nr = 0;
864 865
	int zid;

866
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
867

868 869 870 871 872 873 874 875 876 877 878 879
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
880
}
881

882
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
883
			unsigned int lru_mask)
884
{
885
	unsigned long nr = 0;
886
	int nid;
887

888
	for_each_node_state(nid, N_MEMORY)
889 890
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
891 892
}

893 894
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
895 896 897
{
	unsigned long val, next;

898
	val = __this_cpu_read(memcg->stat->nr_page_events);
899
	next = __this_cpu_read(memcg->stat->targets[target]);
900
	/* from time_after() in jiffies.h */
901 902 903 904 905
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
906 907 908
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
909 910 911 912 913 914 915 916
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
917
	}
918
	return false;
919 920 921 922 923 924
}

/*
 * Check events in order.
 *
 */
925
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
926 927
{
	/* threshold event is triggered in finer grain than soft limit */
928 929
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
930
		bool do_softlimit;
931
		bool do_numainfo __maybe_unused;
932

933 934
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
935 936 937 938
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
939
		mem_cgroup_threshold(memcg);
940 941
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
942
#if MAX_NUMNODES > 1
943
		if (unlikely(do_numainfo))
944
			atomic_inc(&memcg->numainfo_events);
945
#endif
946
	}
947 948
}

949
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
950
{
951 952 953 954 955 956 957 958
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

959
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
960 961
}

962
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
963
{
964
	struct mem_cgroup *memcg = NULL;
965

966 967
	rcu_read_lock();
	do {
968 969 970 971 972 973
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
974
			memcg = root_mem_cgroup;
975 976 977 978 979
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
980
	} while (!css_tryget_online(&memcg->css));
981
	rcu_read_unlock();
982
	return memcg;
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1002
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1003
				   struct mem_cgroup *prev,
1004
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1005
{
1006 1007
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1008
	struct mem_cgroup *memcg = NULL;
1009
	struct mem_cgroup *pos = NULL;
1010

1011 1012
	if (mem_cgroup_disabled())
		return NULL;
1013

1014 1015
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1016

1017
	if (prev && !reclaim)
1018
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1019

1020 1021
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1022
			goto out;
1023
		return root;
1024
	}
K
KAMEZAWA Hiroyuki 已提交
1025

1026
	rcu_read_lock();
M
Michal Hocko 已提交
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1062
		}
K
KAMEZAWA Hiroyuki 已提交
1063

1064 1065 1066 1067 1068 1069
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1070

1071 1072
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1073

1074
		if (css_tryget(css)) {
1075 1076 1077 1078 1079 1080 1081
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1082

1083
			css_put(css);
1084
		}
1085

1086
		memcg = NULL;
1087
	}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1108
	}
1109

1110 1111
out_unlock:
	rcu_read_unlock();
1112
out:
1113 1114 1115
	if (prev && prev != root)
		css_put(&prev->css);

1116
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1117
}
K
KAMEZAWA Hiroyuki 已提交
1118

1119 1120 1121 1122 1123 1124 1125
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1126 1127 1128 1129 1130 1131
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1132

1133 1134 1135 1136 1137 1138
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1139
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1140
	     iter != NULL;				\
1141
	     iter = mem_cgroup_iter(root, iter, NULL))
1142

1143
#define for_each_mem_cgroup(iter)			\
1144
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1145
	     iter != NULL;				\
1146
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1147

1148
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1149
{
1150
	struct mem_cgroup *memcg;
1151 1152

	rcu_read_lock();
1153 1154
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1155 1156 1157 1158
		goto out;

	switch (idx) {
	case PGFAULT:
1159 1160 1161 1162
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1163 1164 1165 1166 1167 1168 1169
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1170
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1171

1172 1173 1174
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1175
 * @memcg: memcg of the wanted lruvec
1176 1177 1178 1179 1180 1181 1182 1183 1184
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1185
	struct lruvec *lruvec;
1186

1187 1188 1189 1190
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1191

1192
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1203 1204 1205
}

/**
1206
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1207
 * @page: the page
1208
 * @zone: zone of the page
1209 1210 1211 1212
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1213
 */
1214
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1215 1216
{
	struct mem_cgroup_per_zone *mz;
1217
	struct mem_cgroup *memcg;
1218
	struct lruvec *lruvec;
1219

1220 1221 1222 1223
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1224

1225
	memcg = page->mem_cgroup;
1226
	/*
1227
	 * Swapcache readahead pages are added to the LRU - and
1228
	 * possibly migrated - before they are charged.
1229
	 */
1230 1231
	if (!memcg)
		memcg = root_mem_cgroup;
1232

1233
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1244
}
1245

1246
/**
1247 1248 1249 1250
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1251
 *
1252 1253
 * This function must be called when a page is added to or removed from an
 * lru list.
1254
 */
1255 1256
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1257 1258
{
	struct mem_cgroup_per_zone *mz;
1259
	unsigned long *lru_size;
1260 1261 1262 1263

	if (mem_cgroup_disabled())
		return;

1264 1265 1266 1267
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1268
}
1269

1270
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1271
{
1272
	if (root == memcg)
1273
		return true;
1274
	if (!root->use_hierarchy)
1275
		return false;
1276
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1277 1278
}

1279
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1280
{
1281
	struct mem_cgroup *task_memcg;
1282
	struct task_struct *p;
1283
	bool ret;
1284

1285
	p = find_lock_task_mm(task);
1286
	if (p) {
1287
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1288 1289 1290 1291 1292 1293 1294
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1295
		rcu_read_lock();
1296 1297
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1298
		rcu_read_unlock();
1299
	}
1300 1301
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1302 1303 1304
	return ret;
}

1305
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1306
{
1307
	unsigned long inactive_ratio;
1308
	unsigned long inactive;
1309
	unsigned long active;
1310
	unsigned long gb;
1311

1312 1313
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1314

1315 1316 1317 1318 1319 1320
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1321
	return inactive * inactive_ratio < active;
1322 1323
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1338
#define mem_cgroup_from_counter(counter, member)	\
1339 1340
	container_of(counter, struct mem_cgroup, member)

1341
/**
1342
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1343
 * @memcg: the memory cgroup
1344
 *
1345
 * Returns the maximum amount of memory @mem can be charged with, in
1346
 * pages.
1347
 */
1348
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1349
{
1350 1351 1352
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1367 1368
}

1369
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1370 1371
{
	/* root ? */
1372
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1373 1374
		return vm_swappiness;

1375
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1376 1377
}

1378
/*
Q
Qiang Huang 已提交
1379
 * A routine for checking "mem" is under move_account() or not.
1380
 *
Q
Qiang Huang 已提交
1381 1382 1383
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1384
 */
1385
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1386
{
1387 1388
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1389
	bool ret = false;
1390 1391 1392 1393 1394 1395 1396 1397 1398
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1399

1400 1401
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1402 1403
unlock:
	spin_unlock(&mc.lock);
1404 1405 1406
	return ret;
}

1407
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1408 1409
{
	if (mc.moving_task && current != mc.moving_task) {
1410
		if (mem_cgroup_under_move(memcg)) {
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1423
#define K(x) ((x) << (PAGE_SHIFT-10))
1424
/**
1425
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1426 1427 1428 1429 1430 1431 1432 1433
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1434
	/* oom_info_lock ensures that parallel ooms do not interleave */
1435
	static DEFINE_MUTEX(oom_info_lock);
1436 1437
	struct mem_cgroup *iter;
	unsigned int i;
1438

1439
	if (!p)
1440 1441
		return;

1442
	mutex_lock(&oom_info_lock);
1443 1444
	rcu_read_lock();

T
Tejun Heo 已提交
1445 1446
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1447
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1448
	pr_cont_cgroup_path(memcg->css.cgroup);
1449
	pr_cont("\n");
1450 1451 1452

	rcu_read_unlock();

1453 1454 1455 1456 1457 1458 1459 1460 1461
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1462 1463

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1464 1465
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1481
	mutex_unlock(&oom_info_lock);
1482 1483
}

1484 1485 1486 1487
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1488
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1489 1490
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1491 1492
	struct mem_cgroup *iter;

1493
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1494
		num++;
1495 1496 1497
	return num;
}

D
David Rientjes 已提交
1498 1499 1500
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1501
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1502
{
1503
	unsigned long limit;
1504

1505
	limit = memcg->memory.limit;
1506
	if (mem_cgroup_swappiness(memcg)) {
1507
		unsigned long memsw_limit;
1508

1509 1510
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1511 1512
	}
	return limit;
D
David Rientjes 已提交
1513 1514
}

1515 1516
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1517 1518 1519 1520 1521 1522 1523
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1524
	/*
1525 1526 1527
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1528
	 */
1529
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1530
		mark_tsk_oom_victim(current);
1531 1532 1533 1534
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1535
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1536
	for_each_mem_cgroup_tree(iter, memcg) {
1537
		struct css_task_iter it;
1538 1539
		struct task_struct *task;

1540 1541
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1554
				css_task_iter_end(&it);
1555 1556 1557 1558 1559 1560 1561 1562
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1575
		}
1576
		css_task_iter_end(&it);
1577 1578 1579 1580 1581 1582 1583 1584 1585
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1586 1587
#if MAX_NUMNODES > 1

1588 1589
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1590
 * @memcg: the target memcg
1591 1592 1593 1594 1595 1596 1597
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1598
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1599 1600
		int nid, bool noswap)
{
1601
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1602 1603 1604
		return true;
	if (noswap || !total_swap_pages)
		return false;
1605
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1606 1607 1608 1609
		return true;
	return false;

}
1610 1611 1612 1613 1614 1615 1616

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1617
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1618 1619
{
	int nid;
1620 1621 1622 1623
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1624
	if (!atomic_read(&memcg->numainfo_events))
1625
		return;
1626
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1627 1628 1629
		return;

	/* make a nodemask where this memcg uses memory from */
1630
	memcg->scan_nodes = node_states[N_MEMORY];
1631

1632
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1633

1634 1635
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1636
	}
1637

1638 1639
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1654
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1655 1656 1657
{
	int node;

1658 1659
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1660

1661
	node = next_node(node, memcg->scan_nodes);
1662
	if (node == MAX_NUMNODES)
1663
		node = first_node(memcg->scan_nodes);
1664 1665 1666 1667 1668 1669 1670 1671 1672
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1673
	memcg->last_scanned_node = node;
1674 1675 1676
	return node;
}
#else
1677
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1678 1679 1680 1681 1682
{
	return 0;
}
#endif

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1698
	excess = soft_limit_excess(root_memcg);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1727
		if (!soft_limit_excess(root_memcg))
1728
			break;
1729
	}
1730 1731
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1732 1733
}

1734 1735 1736 1737 1738 1739
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1740 1741
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1742 1743 1744 1745
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1746
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1747
{
1748
	struct mem_cgroup *iter, *failed = NULL;
1749

1750 1751
	spin_lock(&memcg_oom_lock);

1752
	for_each_mem_cgroup_tree(iter, memcg) {
1753
		if (iter->oom_lock) {
1754 1755 1756 1757 1758
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1759 1760
			mem_cgroup_iter_break(memcg, iter);
			break;
1761 1762
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1763
	}
K
KAMEZAWA Hiroyuki 已提交
1764

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1776
		}
1777 1778
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1779 1780 1781 1782

	spin_unlock(&memcg_oom_lock);

	return !failed;
1783
}
1784

1785
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1786
{
K
KAMEZAWA Hiroyuki 已提交
1787 1788
	struct mem_cgroup *iter;

1789
	spin_lock(&memcg_oom_lock);
1790
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1791
	for_each_mem_cgroup_tree(iter, memcg)
1792
		iter->oom_lock = false;
1793
	spin_unlock(&memcg_oom_lock);
1794 1795
}

1796
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1797 1798 1799
{
	struct mem_cgroup *iter;

1800
	for_each_mem_cgroup_tree(iter, memcg)
1801 1802 1803
		atomic_inc(&iter->under_oom);
}

1804
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1805 1806 1807
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1808 1809 1810 1811 1812
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1813
	for_each_mem_cgroup_tree(iter, memcg)
1814
		atomic_add_unless(&iter->under_oom, -1, 0);
1815 1816
}

K
KAMEZAWA Hiroyuki 已提交
1817 1818
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1819
struct oom_wait_info {
1820
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1821 1822 1823 1824 1825 1826
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1827 1828
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1829 1830 1831
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1832
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1833

1834 1835
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838 1839
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1840
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1841
{
1842
	atomic_inc(&memcg->oom_wakeups);
1843 1844
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1845 1846
}

1847
static void memcg_oom_recover(struct mem_cgroup *memcg)
1848
{
1849 1850
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1851 1852
}

1853
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1854
{
1855 1856
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1857
	/*
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1870
	 */
1871 1872 1873 1874
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1875 1876 1877 1878
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1879
 * @handle: actually kill/wait or just clean up the OOM state
1880
 *
1881 1882
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1883
 *
1884
 * Memcg supports userspace OOM handling where failed allocations must
1885 1886 1887 1888
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1889
 * the end of the page fault to complete the OOM handling.
1890 1891
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1892
 * completed, %false otherwise.
1893
 */
1894
bool mem_cgroup_oom_synchronize(bool handle)
1895
{
1896
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1897
	struct oom_wait_info owait;
1898
	bool locked;
1899 1900 1901

	/* OOM is global, do not handle */
	if (!memcg)
1902
		return false;
1903

1904
	if (!handle || oom_killer_disabled)
1905
		goto cleanup;
1906 1907 1908 1909 1910 1911

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1912

1913
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1927
		schedule();
1928 1929 1930 1931 1932
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1933 1934 1935 1936 1937 1938 1939 1940
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1941 1942
cleanup:
	current->memcg_oom.memcg = NULL;
1943
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1944
	return true;
1945 1946
}

1947 1948 1949
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1950
 *
1951 1952 1953
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1954
 *
1955
 *   memcg = mem_cgroup_begin_page_stat(page);
1956 1957
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1958
 *   mem_cgroup_end_page_stat(memcg);
1959
 */
1960
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1961 1962
{
	struct mem_cgroup *memcg;
1963
	unsigned long flags;
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1977 1978 1979 1980
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1981
again:
1982
	memcg = page->mem_cgroup;
1983
	if (unlikely(!memcg))
1984 1985
		return NULL;

Q
Qiang Huang 已提交
1986
	if (atomic_read(&memcg->moving_account) <= 0)
1987
		return memcg;
1988

1989
	spin_lock_irqsave(&memcg->move_lock, flags);
1990
	if (memcg != page->mem_cgroup) {
1991
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1992 1993
		goto again;
	}
1994 1995 1996 1997 1998 1999 2000 2001

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2002 2003

	return memcg;
2004 2005
}

2006 2007 2008 2009
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2010
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2011
{
2012 2013 2014 2015 2016 2017 2018 2019
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2020

2021
	rcu_read_unlock();
2022 2023
}

2024 2025 2026 2027 2028 2029 2030 2031 2032
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2033
				 enum mem_cgroup_stat_index idx, int val)
2034
{
2035
	VM_BUG_ON(!rcu_read_lock_held());
2036

2037 2038
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2039
}
2040

2041 2042 2043 2044
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2045
#define CHARGE_BATCH	32U
2046 2047
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2048
	unsigned int nr_pages;
2049
	struct work_struct work;
2050
	unsigned long flags;
2051
#define FLUSHING_CACHED_CHARGE	0
2052 2053
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2054
static DEFINE_MUTEX(percpu_charge_mutex);
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2066
 */
2067
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2068 2069
{
	struct memcg_stock_pcp *stock;
2070
	bool ret = false;
2071

2072
	if (nr_pages > CHARGE_BATCH)
2073
		return ret;
2074

2075
	stock = &get_cpu_var(memcg_stock);
2076
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2077
		stock->nr_pages -= nr_pages;
2078 2079
		ret = true;
	}
2080 2081 2082 2083 2084
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2085
 * Returns stocks cached in percpu and reset cached information.
2086 2087 2088 2089 2090
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2091
	if (stock->nr_pages) {
2092
		page_counter_uncharge(&old->memory, stock->nr_pages);
2093
		if (do_swap_account)
2094
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2095
		css_put_many(&old->css, stock->nr_pages);
2096
		stock->nr_pages = 0;
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2107
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2108
	drain_stock(stock);
2109
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2110 2111 2112
}

/*
2113
 * Cache charges(val) to local per_cpu area.
2114
 * This will be consumed by consume_stock() function, later.
2115
 */
2116
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2117 2118 2119
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2120
	if (stock->cached != memcg) { /* reset if necessary */
2121
		drain_stock(stock);
2122
		stock->cached = memcg;
2123
	}
2124
	stock->nr_pages += nr_pages;
2125 2126 2127 2128
	put_cpu_var(memcg_stock);
}

/*
2129
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2130
 * of the hierarchy under it.
2131
 */
2132
static void drain_all_stock(struct mem_cgroup *root_memcg)
2133
{
2134
	int cpu, curcpu;
2135

2136 2137 2138
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2139 2140
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2141
	curcpu = get_cpu();
2142 2143
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2144
		struct mem_cgroup *memcg;
2145

2146 2147
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2148
			continue;
2149
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2150
			continue;
2151 2152 2153 2154 2155 2156
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2157
	}
2158
	put_cpu();
A
Andrew Morton 已提交
2159
	put_online_cpus();
2160
	mutex_unlock(&percpu_charge_mutex);
2161 2162
}

2163 2164 2165 2166
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2167
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2168 2169 2170
{
	int i;

2171
	spin_lock(&memcg->pcp_counter_lock);
2172
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2173
		long x = per_cpu(memcg->stat->count[i], cpu);
2174

2175 2176
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2177
	}
2178
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2179
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2180

2181 2182
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2183
	}
2184
	spin_unlock(&memcg->pcp_counter_lock);
2185 2186
}

2187
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2188 2189 2190 2191 2192
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2193
	struct mem_cgroup *iter;
2194

2195
	if (action == CPU_ONLINE)
2196 2197
		return NOTIFY_OK;

2198
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2199
		return NOTIFY_OK;
2200

2201
	for_each_mem_cgroup(iter)
2202 2203
		mem_cgroup_drain_pcp_counter(iter, cpu);

2204 2205 2206 2207 2208
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2209 2210
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2211
{
2212
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2213
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2214
	struct mem_cgroup *mem_over_limit;
2215
	struct page_counter *counter;
2216
	unsigned long nr_reclaimed;
2217 2218
	bool may_swap = true;
	bool drained = false;
2219
	int ret = 0;
2220

2221 2222
	if (mem_cgroup_is_root(memcg))
		goto done;
2223
retry:
2224 2225
	if (consume_stock(memcg, nr_pages))
		goto done;
2226

2227
	if (!do_swap_account ||
2228 2229
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2230
			goto done_restock;
2231
		if (do_swap_account)
2232 2233
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2234
	} else {
2235
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2236
		may_swap = false;
2237
	}
2238

2239 2240 2241 2242
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2243

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2258 2259
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2260

2261 2262
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2263 2264
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2265

2266
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2267
		goto retry;
2268

2269
	if (!drained) {
2270
		drain_all_stock(mem_over_limit);
2271 2272 2273 2274
		drained = true;
		goto retry;
	}

2275 2276
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2277 2278 2279 2280 2281 2282 2283 2284 2285
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2286
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2287 2288 2289 2290 2291 2292 2293 2294
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2295 2296 2297
	if (nr_retries--)
		goto retry;

2298 2299 2300
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2301 2302 2303
	if (fatal_signal_pending(current))
		goto bypass;

2304 2305
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2306
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2307
nomem:
2308
	if (!(gfp_mask & __GFP_NOFAIL))
2309
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2310
bypass:
2311
	return -EINTR;
2312 2313

done_restock:
2314
	css_get_many(&memcg->css, batch);
2315 2316
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2327
done:
2328
	return ret;
2329
}
2330

2331
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2332
{
2333 2334 2335
	if (mem_cgroup_is_root(memcg))
		return;

2336
	page_counter_uncharge(&memcg->memory, nr_pages);
2337
	if (do_swap_account)
2338
		page_counter_uncharge(&memcg->memsw, nr_pages);
2339

2340
	css_put_many(&memcg->css, nr_pages);
2341 2342
}

2343 2344
/*
 * A helper function to get mem_cgroup from ID. must be called under
2345 2346 2347
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2348 2349 2350 2351 2352 2353
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2354
	return mem_cgroup_from_id(id);
2355 2356
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2367
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2368
{
2369
	struct mem_cgroup *memcg;
2370
	unsigned short id;
2371 2372
	swp_entry_t ent;

2373
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2374

2375
	memcg = page->mem_cgroup;
2376 2377
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2378
			memcg = NULL;
2379
	} else if (PageSwapCache(page)) {
2380
		ent.val = page_private(page);
2381
		id = lookup_swap_cgroup_id(ent);
2382
		rcu_read_lock();
2383
		memcg = mem_cgroup_lookup(id);
2384
		if (memcg && !css_tryget_online(&memcg->css))
2385
			memcg = NULL;
2386
		rcu_read_unlock();
2387
	}
2388
	return memcg;
2389 2390
}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2422
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2423
			  bool lrucare)
2424
{
2425
	int isolated;
2426

2427
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2428 2429 2430 2431 2432

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2433 2434
	if (lrucare)
		lock_page_lru(page, &isolated);
2435

2436 2437
	/*
	 * Nobody should be changing or seriously looking at
2438
	 * page->mem_cgroup at this point:
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2450
	page->mem_cgroup = memcg;
2451

2452 2453
	if (lrucare)
		unlock_page_lru(page, isolated);
2454
}
2455

2456
#ifdef CONFIG_MEMCG_KMEM
2457 2458
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2459
{
2460
	struct page_counter *counter;
2461 2462
	int ret = 0;

2463 2464
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2465 2466
		return ret;

2467
	ret = try_charge(memcg, gfp, nr_pages);
2468 2469
	if (ret == -EINTR)  {
		/*
2470 2471 2472 2473 2474 2475
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2476 2477 2478
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2479 2480 2481
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2482 2483
		 * directed to the root cgroup in memcontrol.h
		 */
2484
		page_counter_charge(&memcg->memory, nr_pages);
2485
		if (do_swap_account)
2486
			page_counter_charge(&memcg->memsw, nr_pages);
2487
		css_get_many(&memcg->css, nr_pages);
2488 2489
		ret = 0;
	} else if (ret)
2490
		page_counter_uncharge(&memcg->kmem, nr_pages);
2491 2492 2493 2494

	return ret;
}

2495
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2496
{
2497
	page_counter_uncharge(&memcg->memory, nr_pages);
2498
	if (do_swap_account)
2499
		page_counter_uncharge(&memcg->memsw, nr_pages);
2500

2501
	page_counter_uncharge(&memcg->kmem, nr_pages);
2502

2503
	css_put_many(&memcg->css, nr_pages);
2504 2505
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2516
static int memcg_alloc_cache_id(void)
2517
{
2518 2519 2520
	int id, size;
	int err;

2521
	id = ida_simple_get(&memcg_cache_ida,
2522 2523 2524
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2525

2526
	if (id < memcg_nr_cache_ids)
2527 2528 2529 2530 2531 2532
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2533
	down_write(&memcg_cache_ids_sem);
2534 2535

	size = 2 * (id + 1);
2536 2537 2538 2539 2540
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2541
	err = memcg_update_all_caches(size);
2542 2543
	if (!err)
		err = memcg_update_all_list_lrus(size);
2544 2545 2546 2547 2548
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2549
	if (err) {
2550
		ida_simple_remove(&memcg_cache_ida, id);
2551 2552 2553 2554 2555 2556 2557
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2558
	ida_simple_remove(&memcg_cache_ida, id);
2559 2560
}

2561
struct memcg_kmem_cache_create_work {
2562 2563 2564 2565 2566
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2567
static void memcg_kmem_cache_create_func(struct work_struct *w)
2568
{
2569 2570
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2571 2572
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2573

2574
	memcg_create_kmem_cache(memcg, cachep);
2575

2576
	css_put(&memcg->css);
2577 2578 2579 2580 2581 2582
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2583 2584
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2585
{
2586
	struct memcg_kmem_cache_create_work *cw;
2587

2588
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2589
	if (!cw)
2590
		return;
2591 2592

	css_get(&memcg->css);
2593 2594 2595

	cw->memcg = memcg;
	cw->cachep = cachep;
2596
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2597 2598 2599 2600

	schedule_work(&cw->work);
}

2601 2602
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2603 2604 2605 2606
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2607
	 * in __memcg_schedule_kmem_cache_create will recurse.
2608 2609 2610 2611 2612 2613 2614
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2615
	current->memcg_kmem_skip_account = 1;
2616
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2617
	current->memcg_kmem_skip_account = 0;
2618
}
2619

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2633
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2634 2635
{
	struct mem_cgroup *memcg;
2636
	struct kmem_cache *memcg_cachep;
2637
	int kmemcg_id;
2638

2639
	VM_BUG_ON(!is_root_cache(cachep));
2640

2641
	if (current->memcg_kmem_skip_account)
2642 2643
		return cachep;

2644
	memcg = get_mem_cgroup_from_mm(current->mm);
2645 2646
	kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
	if (kmemcg_id < 0)
2647
		goto out;
2648

2649
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2650 2651
	if (likely(memcg_cachep))
		return memcg_cachep;
2652 2653 2654 2655 2656 2657 2658 2659 2660

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2661 2662 2663
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2664
	 */
2665
	memcg_schedule_kmem_cache_create(memcg, cachep);
2666
out:
2667
	css_put(&memcg->css);
2668
	return cachep;
2669 2670
}

2671 2672 2673
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2674
		css_put(&cachep->memcg_params.memcg->css);
2675 2676
}

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2698

2699
	memcg = get_mem_cgroup_from_mm(current->mm);
2700

2701
	if (!memcg_kmem_is_active(memcg)) {
2702 2703 2704 2705
		css_put(&memcg->css);
		return true;
	}

2706
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2721
		memcg_uncharge_kmem(memcg, 1 << order);
2722 2723
		return;
	}
2724
	page->mem_cgroup = memcg;
2725 2726 2727 2728
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2729
	struct mem_cgroup *memcg = page->mem_cgroup;
2730 2731 2732 2733

	if (!memcg)
		return;

2734
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2735

2736
	memcg_uncharge_kmem(memcg, 1 << order);
2737
	page->mem_cgroup = NULL;
2738
}
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2750
			memcg = cachep->memcg_params.memcg;
2751 2752 2753 2754 2755 2756
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2757 2758
#endif /* CONFIG_MEMCG_KMEM */

2759 2760 2761 2762
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2763 2764 2765
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2766
 */
2767
void mem_cgroup_split_huge_fixup(struct page *head)
2768
{
2769
	int i;
2770

2771 2772
	if (mem_cgroup_disabled())
		return;
2773

2774
	for (i = 1; i < HPAGE_PMD_NR; i++)
2775
		head[i].mem_cgroup = head->mem_cgroup;
2776

2777
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2778
		       HPAGE_PMD_NR);
2779
}
2780
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2781

2782
/**
2783
 * mem_cgroup_move_account - move account of the page
2784
 * @page: the page
2785
 * @nr_pages: number of regular pages (>1 for huge pages)
2786 2787 2788 2789
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2790
 * - page is not on LRU (isolate_page() is useful.)
2791
 * - compound_lock is held when nr_pages > 1
2792
 *
2793 2794
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2795
 */
2796 2797 2798
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2799
				   struct mem_cgroup *to)
2800
{
2801 2802
	unsigned long flags;
	int ret;
2803

2804
	VM_BUG_ON(from == to);
2805
	VM_BUG_ON_PAGE(PageLRU(page), page);
2806 2807 2808 2809 2810 2811 2812
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2813
	if (nr_pages > 1 && !PageTransHuge(page))
2814 2815
		goto out;

2816
	/*
2817
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2818 2819 2820 2821 2822
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2823 2824

	ret = -EINVAL;
2825
	if (page->mem_cgroup != from)
2826
		goto out_unlock;
2827

2828
	spin_lock_irqsave(&from->move_lock, flags);
2829

2830
	if (!PageAnon(page) && page_mapped(page)) {
2831 2832 2833 2834 2835
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2836

2837 2838 2839 2840 2841 2842
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2843

2844
	/*
2845
	 * It is safe to change page->mem_cgroup here because the page
2846 2847 2848
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2849

2850
	/* caller should have done css_get */
2851
	page->mem_cgroup = to;
2852 2853
	spin_unlock_irqrestore(&from->move_lock, flags);

2854
	ret = 0;
2855 2856 2857

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2858
	memcg_check_events(to, page);
2859
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2860
	memcg_check_events(from, page);
2861 2862 2863
	local_irq_enable();
out_unlock:
	unlock_page(page);
2864
out:
2865 2866 2867
	return ret;
}

A
Andrew Morton 已提交
2868
#ifdef CONFIG_MEMCG_SWAP
2869 2870
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2871
{
2872 2873
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2874
}
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2887
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2888 2889 2890
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2891
				struct mem_cgroup *from, struct mem_cgroup *to)
2892 2893 2894
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2895 2896
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2897 2898 2899

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2900
		mem_cgroup_swap_statistics(to, true);
2901 2902 2903 2904 2905 2906
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2907
				struct mem_cgroup *from, struct mem_cgroup *to)
2908 2909 2910
{
	return -EINVAL;
}
2911
#endif
K
KAMEZAWA Hiroyuki 已提交
2912

2913
static DEFINE_MUTEX(memcg_limit_mutex);
2914

2915
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2916
				   unsigned long limit)
2917
{
2918 2919 2920
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2921
	int retry_count;
2922
	int ret;
2923 2924 2925 2926 2927 2928

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2929 2930
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2931

2932
	oldusage = page_counter_read(&memcg->memory);
2933

2934
	do {
2935 2936 2937 2938
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2939 2940 2941 2942

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2943
			ret = -EINVAL;
2944 2945
			break;
		}
2946 2947 2948 2949
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2950 2951 2952 2953

		if (!ret)
			break;

2954 2955
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2956
		curusage = page_counter_read(&memcg->memory);
2957
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2958
		if (curusage >= oldusage)
2959 2960 2961
			retry_count--;
		else
			oldusage = curusage;
2962 2963
	} while (retry_count);

2964 2965
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2966

2967 2968 2969
	return ret;
}

L
Li Zefan 已提交
2970
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2971
					 unsigned long limit)
2972
{
2973 2974 2975
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2976
	int retry_count;
2977
	int ret;
2978

2979
	/* see mem_cgroup_resize_res_limit */
2980 2981 2982 2983 2984 2985
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2986 2987 2988 2989
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2990 2991 2992 2993

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2994 2995 2996
			ret = -EINVAL;
			break;
		}
2997 2998 2999 3000
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3001 3002 3003 3004

		if (!ret)
			break;

3005 3006
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3007
		curusage = page_counter_read(&memcg->memsw);
3008
		/* Usage is reduced ? */
3009
		if (curusage >= oldusage)
3010
			retry_count--;
3011 3012
		else
			oldusage = curusage;
3013 3014
	} while (retry_count);

3015 3016
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3017

3018 3019 3020
	return ret;
}

3021 3022 3023 3024 3025 3026 3027 3028 3029
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3030
	unsigned long excess;
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3055
		spin_lock_irq(&mctz->lock);
3056
		__mem_cgroup_remove_exceeded(mz, mctz);
3057 3058 3059 3060 3061 3062

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3063 3064 3065
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3066
		excess = soft_limit_excess(mz->memcg);
3067 3068 3069 3070 3071 3072 3073 3074 3075
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3076
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3077
		spin_unlock_irq(&mctz->lock);
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3095 3096 3097 3098 3099 3100
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3101 3102
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3103 3104
	bool ret;

3105
	/*
3106 3107 3108 3109
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3110
	 */
3111 3112 3113 3114 3115 3116
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3117 3118
}

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3129 3130
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3131
	/* try to free all pages in this cgroup */
3132
	while (nr_retries && page_counter_read(&memcg->memory)) {
3133
		int progress;
3134

3135 3136 3137
		if (signal_pending(current))
			return -EINTR;

3138 3139
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3140
		if (!progress) {
3141
			nr_retries--;
3142
			/* maybe some writeback is necessary */
3143
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3144
		}
3145 3146

	}
3147 3148

	return 0;
3149 3150
}

3151 3152 3153
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3154
{
3155
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3156

3157 3158
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3159
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3160 3161
}

3162 3163
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3164
{
3165
	return mem_cgroup_from_css(css)->use_hierarchy;
3166 3167
}

3168 3169
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3170 3171
{
	int retval = 0;
3172
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3173
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3174

3175
	mutex_lock(&memcg_create_mutex);
3176 3177 3178 3179

	if (memcg->use_hierarchy == val)
		goto out;

3180
	/*
3181
	 * If parent's use_hierarchy is set, we can't make any modifications
3182 3183 3184 3185 3186 3187
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3188
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3189
				(val == 1 || val == 0)) {
3190
		if (!memcg_has_children(memcg))
3191
			memcg->use_hierarchy = val;
3192 3193 3194 3195
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3196 3197

out:
3198
	mutex_unlock(&memcg_create_mutex);
3199 3200 3201 3202

	return retval;
}

3203 3204
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3222 3223 3224 3225 3226 3227
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3228
		if (!swap)
3229
			val = page_counter_read(&memcg->memory);
3230
		else
3231
			val = page_counter_read(&memcg->memsw);
3232 3233 3234 3235
	}
	return val << PAGE_SHIFT;
}

3236 3237 3238 3239 3240 3241 3242
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3243

3244
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3245
			       struct cftype *cft)
B
Balbir Singh 已提交
3246
{
3247
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3248
	struct page_counter *counter;
3249

3250
	switch (MEMFILE_TYPE(cft->private)) {
3251
	case _MEM:
3252 3253
		counter = &memcg->memory;
		break;
3254
	case _MEMSWAP:
3255 3256
		counter = &memcg->memsw;
		break;
3257
	case _KMEM:
3258
		counter = &memcg->kmem;
3259
		break;
3260 3261 3262
	default:
		BUG();
	}
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3282
}
3283 3284

#ifdef CONFIG_MEMCG_KMEM
3285 3286
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3287 3288 3289 3290
{
	int err = 0;
	int memcg_id;

3291
	BUG_ON(memcg->kmemcg_id >= 0);
3292
	BUG_ON(memcg->kmem_acct_activated);
3293
	BUG_ON(memcg->kmem_acct_active);
3294

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3307
	mutex_lock(&memcg_create_mutex);
3308 3309
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3310 3311 3312 3313
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3314

3315
	memcg_id = memcg_alloc_cache_id();
3316 3317 3318 3319 3320 3321
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3322 3323
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3324
	 */
3325
	err = page_counter_limit(&memcg->kmem, nr_pages);
3326 3327 3328 3329
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3330 3331
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3332 3333 3334
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3335
	memcg->kmemcg_id = memcg_id;
3336
	memcg->kmem_acct_activated = true;
3337
	memcg->kmem_acct_active = true;
3338
out:
3339 3340 3341 3342
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3343
				   unsigned long limit)
3344 3345 3346
{
	int ret;

3347
	mutex_lock(&memcg_limit_mutex);
3348
	if (!memcg_kmem_is_active(memcg))
3349
		ret = memcg_activate_kmem(memcg, limit);
3350
	else
3351 3352
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3353 3354 3355
	return ret;
}

3356
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3357
{
3358
	int ret = 0;
3359
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3360

3361 3362
	if (!parent)
		return 0;
3363

3364
	mutex_lock(&memcg_limit_mutex);
3365
	/*
3366 3367
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3368
	 */
3369
	if (memcg_kmem_is_active(parent))
3370 3371
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3372
	return ret;
3373
}
3374 3375
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3376
				   unsigned long limit)
3377 3378 3379
{
	return -EINVAL;
}
3380
#endif /* CONFIG_MEMCG_KMEM */
3381

3382 3383 3384 3385
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3386 3387
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3388
{
3389
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3390
	unsigned long nr_pages;
3391 3392
	int ret;

3393
	buf = strstrip(buf);
3394
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3395 3396
	if (ret)
		return ret;
3397

3398
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3399
	case RES_LIMIT:
3400 3401 3402 3403
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3404 3405 3406
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3407
			break;
3408 3409
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3410
			break;
3411 3412 3413 3414
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3415
		break;
3416 3417 3418
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3419 3420
		break;
	}
3421
	return ret ?: nbytes;
B
Balbir Singh 已提交
3422 3423
}

3424 3425
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3426
{
3427
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3428
	struct page_counter *counter;
3429

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3443

3444
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3445
	case RES_MAX_USAGE:
3446
		page_counter_reset_watermark(counter);
3447 3448
		break;
	case RES_FAILCNT:
3449
		counter->failcnt = 0;
3450
		break;
3451 3452
	default:
		BUG();
3453
	}
3454

3455
	return nbytes;
3456 3457
}

3458
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3459 3460
					struct cftype *cft)
{
3461
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3462 3463
}

3464
#ifdef CONFIG_MMU
3465
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3466 3467
					struct cftype *cft, u64 val)
{
3468
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3469

3470
	if (val & ~MOVE_MASK)
3471
		return -EINVAL;
3472

3473
	/*
3474 3475 3476 3477
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3478
	 */
3479
	memcg->move_charge_at_immigrate = val;
3480 3481
	return 0;
}
3482
#else
3483
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3484 3485 3486 3487 3488
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3489

3490
#ifdef CONFIG_NUMA
3491
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3492
{
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3505
	int nid;
3506
	unsigned long nr;
3507
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3508

3509 3510 3511 3512 3513 3514 3515 3516 3517
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3518 3519
	}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3535 3536 3537 3538 3539 3540
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3541
static int memcg_stat_show(struct seq_file *m, void *v)
3542
{
3543
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3544
	unsigned long memory, memsw;
3545 3546
	struct mem_cgroup *mi;
	unsigned int i;
3547

3548 3549 3550 3551
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3552 3553
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3554
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3555
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3556
			continue;
3557 3558
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3559
	}
L
Lee Schermerhorn 已提交
3560

3561 3562 3563 3564 3565 3566 3567 3568
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3569
	/* Hierarchical information */
3570 3571 3572 3573
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3574
	}
3575 3576 3577 3578 3579
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3580

3581 3582 3583
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3584
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3585
			continue;
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3606
	}
K
KAMEZAWA Hiroyuki 已提交
3607

K
KOSAKI Motohiro 已提交
3608 3609 3610 3611
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3612
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3613 3614 3615 3616 3617
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3618
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3619
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3620

3621 3622 3623 3624
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3625
			}
3626 3627 3628 3629
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3630 3631 3632
	}
#endif

3633 3634 3635
	return 0;
}

3636 3637
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3638
{
3639
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3640

3641
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3642 3643
}

3644 3645
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3646
{
3647
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3648

3649
	if (val > 100)
K
KOSAKI Motohiro 已提交
3650 3651
		return -EINVAL;

3652
	if (css->parent)
3653 3654 3655
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3656

K
KOSAKI Motohiro 已提交
3657 3658 3659
	return 0;
}

3660 3661 3662
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3663
	unsigned long usage;
3664 3665 3666 3667
	int i;

	rcu_read_lock();
	if (!swap)
3668
		t = rcu_dereference(memcg->thresholds.primary);
3669
	else
3670
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3671 3672 3673 3674

	if (!t)
		goto unlock;

3675
	usage = mem_cgroup_usage(memcg, swap);
3676 3677

	/*
3678
	 * current_threshold points to threshold just below or equal to usage.
3679 3680 3681
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3682
	i = t->current_threshold;
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3706
	t->current_threshold = i - 1;
3707 3708 3709 3710 3711 3712
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3713 3714 3715 3716 3717 3718 3719
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3720 3721 3722 3723 3724 3725 3726
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3727 3728 3729 3730 3731 3732 3733
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3734 3735
}

3736
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3737 3738 3739
{
	struct mem_cgroup_eventfd_list *ev;

3740 3741
	spin_lock(&memcg_oom_lock);

3742
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3743
		eventfd_signal(ev->eventfd, 1);
3744 3745

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3746 3747 3748
	return 0;
}

3749
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3750
{
K
KAMEZAWA Hiroyuki 已提交
3751 3752
	struct mem_cgroup *iter;

3753
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3754
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3755 3756
}

3757
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3758
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3759
{
3760 3761
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3762 3763
	unsigned long threshold;
	unsigned long usage;
3764
	int i, size, ret;
3765

3766
	ret = page_counter_memparse(args, "-1", &threshold);
3767 3768 3769 3770
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3771

3772
	if (type == _MEM) {
3773
		thresholds = &memcg->thresholds;
3774
		usage = mem_cgroup_usage(memcg, false);
3775
	} else if (type == _MEMSWAP) {
3776
		thresholds = &memcg->memsw_thresholds;
3777
		usage = mem_cgroup_usage(memcg, true);
3778
	} else
3779 3780 3781
		BUG();

	/* Check if a threshold crossed before adding a new one */
3782
	if (thresholds->primary)
3783 3784
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3785
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3786 3787

	/* Allocate memory for new array of thresholds */
3788
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3789
			GFP_KERNEL);
3790
	if (!new) {
3791 3792 3793
		ret = -ENOMEM;
		goto unlock;
	}
3794
	new->size = size;
3795 3796

	/* Copy thresholds (if any) to new array */
3797 3798
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3799
				sizeof(struct mem_cgroup_threshold));
3800 3801
	}

3802
	/* Add new threshold */
3803 3804
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3805 3806

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3807
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3808 3809 3810
			compare_thresholds, NULL);

	/* Find current threshold */
3811
	new->current_threshold = -1;
3812
	for (i = 0; i < size; i++) {
3813
		if (new->entries[i].threshold <= usage) {
3814
			/*
3815 3816
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3817 3818
			 * it here.
			 */
3819
			++new->current_threshold;
3820 3821
		} else
			break;
3822 3823
	}

3824 3825 3826 3827 3828
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3829

3830
	/* To be sure that nobody uses thresholds */
3831 3832 3833 3834 3835 3836 3837 3838
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3839
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3840 3841
	struct eventfd_ctx *eventfd, const char *args)
{
3842
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3843 3844
}

3845
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3846 3847
	struct eventfd_ctx *eventfd, const char *args)
{
3848
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3849 3850
}

3851
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3852
	struct eventfd_ctx *eventfd, enum res_type type)
3853
{
3854 3855
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3856
	unsigned long usage;
3857
	int i, j, size;
3858 3859

	mutex_lock(&memcg->thresholds_lock);
3860 3861

	if (type == _MEM) {
3862
		thresholds = &memcg->thresholds;
3863
		usage = mem_cgroup_usage(memcg, false);
3864
	} else if (type == _MEMSWAP) {
3865
		thresholds = &memcg->memsw_thresholds;
3866
		usage = mem_cgroup_usage(memcg, true);
3867
	} else
3868 3869
		BUG();

3870 3871 3872
	if (!thresholds->primary)
		goto unlock;

3873 3874 3875 3876
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3877 3878 3879
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3880 3881 3882
			size++;
	}

3883
	new = thresholds->spare;
3884

3885 3886
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3887 3888
		kfree(new);
		new = NULL;
3889
		goto swap_buffers;
3890 3891
	}

3892
	new->size = size;
3893 3894

	/* Copy thresholds and find current threshold */
3895 3896 3897
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3898 3899
			continue;

3900
		new->entries[j] = thresholds->primary->entries[i];
3901
		if (new->entries[j].threshold <= usage) {
3902
			/*
3903
			 * new->current_threshold will not be used
3904 3905 3906
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3907
			++new->current_threshold;
3908 3909 3910 3911
		}
		j++;
	}

3912
swap_buffers:
3913 3914
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3915 3916 3917 3918 3919 3920
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3921
	rcu_assign_pointer(thresholds->primary, new);
3922

3923
	/* To be sure that nobody uses thresholds */
3924
	synchronize_rcu();
3925
unlock:
3926 3927
	mutex_unlock(&memcg->thresholds_lock);
}
3928

3929
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3930 3931
	struct eventfd_ctx *eventfd)
{
3932
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3933 3934
}

3935
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3936 3937
	struct eventfd_ctx *eventfd)
{
3938
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3939 3940
}

3941
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3942
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3943 3944 3945 3946 3947 3948 3949
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3950
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3951 3952 3953 3954 3955

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3956
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3957
		eventfd_signal(eventfd, 1);
3958
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3959 3960 3961 3962

	return 0;
}

3963
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3964
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3965 3966 3967
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3968
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3969

3970
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3971 3972 3973 3974 3975 3976
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3977
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3978 3979
}

3980
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3981
{
3982
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3983

3984 3985
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3986 3987 3988
	return 0;
}

3989
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3990 3991
	struct cftype *cft, u64 val)
{
3992
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3993 3994

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3995
	if (!css->parent || !((val == 0) || (val == 1)))
3996 3997
		return -EINVAL;

3998
	memcg->oom_kill_disable = val;
3999
	if (!val)
4000
		memcg_oom_recover(memcg);
4001

4002 4003 4004
	return 0;
}

A
Andrew Morton 已提交
4005
#ifdef CONFIG_MEMCG_KMEM
4006
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4007
{
4008 4009 4010 4011 4012
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4013

4014
	return mem_cgroup_sockets_init(memcg, ss);
4015
}
4016

4017 4018
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
4019 4020 4021 4022
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
4061 4062
}

4063
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4064
{
4065 4066 4067 4068 4069
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
4070
	mem_cgroup_sockets_destroy(memcg);
4071
}
4072
#else
4073
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4074 4075 4076
{
	return 0;
}
G
Glauber Costa 已提交
4077

4078 4079 4080 4081
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

4082 4083 4084
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4085 4086
#endif

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4100 4101 4102 4103 4104
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4105
static void memcg_event_remove(struct work_struct *work)
4106
{
4107 4108
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4109
	struct mem_cgroup *memcg = event->memcg;
4110 4111 4112

	remove_wait_queue(event->wqh, &event->wait);

4113
	event->unregister_event(memcg, event->eventfd);
4114 4115 4116 4117 4118 4119

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4120
	css_put(&memcg->css);
4121 4122 4123 4124 4125 4126 4127
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4128 4129
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4130
{
4131 4132
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4133
	struct mem_cgroup *memcg = event->memcg;
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4146
		spin_lock(&memcg->event_list_lock);
4147 4148 4149 4150 4151 4152 4153 4154
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4155
		spin_unlock(&memcg->event_list_lock);
4156 4157 4158 4159 4160
	}

	return 0;
}

4161
static void memcg_event_ptable_queue_proc(struct file *file,
4162 4163
		wait_queue_head_t *wqh, poll_table *pt)
{
4164 4165
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4166 4167 4168 4169 4170 4171

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4172 4173
 * DO NOT USE IN NEW FILES.
 *
4174 4175 4176 4177 4178
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4179 4180
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4181
{
4182
	struct cgroup_subsys_state *css = of_css(of);
4183
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4184
	struct mem_cgroup_event *event;
4185 4186 4187 4188
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4189
	const char *name;
4190 4191 4192
	char *endp;
	int ret;

4193 4194 4195
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4196 4197
	if (*endp != ' ')
		return -EINVAL;
4198
	buf = endp + 1;
4199

4200
	cfd = simple_strtoul(buf, &endp, 10);
4201 4202
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4203
	buf = endp + 1;
4204 4205 4206 4207 4208

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4209
	event->memcg = memcg;
4210
	INIT_LIST_HEAD(&event->list);
4211 4212 4213
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4239 4240 4241 4242 4243
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4244 4245
	 *
	 * DO NOT ADD NEW FILES.
4246
	 */
A
Al Viro 已提交
4247
	name = cfile.file->f_path.dentry->d_name.name;
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4259 4260
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4261 4262 4263 4264 4265
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4266
	/*
4267 4268 4269
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4270
	 */
A
Al Viro 已提交
4271
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4272
					       &memory_cgrp_subsys);
4273
	ret = -EINVAL;
4274
	if (IS_ERR(cfile_css))
4275
		goto out_put_cfile;
4276 4277
	if (cfile_css != css) {
		css_put(cfile_css);
4278
		goto out_put_cfile;
4279
	}
4280

4281
	ret = event->register_event(memcg, event->eventfd, buf);
4282 4283 4284 4285 4286
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4287 4288 4289
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4290 4291 4292 4293

	fdput(cfile);
	fdput(efile);

4294
	return nbytes;
4295 4296

out_put_css:
4297
	css_put(css);
4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4310
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4311
	{
4312
		.name = "usage_in_bytes",
4313
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4314
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4315
	},
4316 4317
	{
		.name = "max_usage_in_bytes",
4318
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4319
		.write = mem_cgroup_reset,
4320
		.read_u64 = mem_cgroup_read_u64,
4321
	},
B
Balbir Singh 已提交
4322
	{
4323
		.name = "limit_in_bytes",
4324
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4325
		.write = mem_cgroup_write,
4326
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4327
	},
4328 4329 4330
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4331
		.write = mem_cgroup_write,
4332
		.read_u64 = mem_cgroup_read_u64,
4333
	},
B
Balbir Singh 已提交
4334 4335
	{
		.name = "failcnt",
4336
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4337
		.write = mem_cgroup_reset,
4338
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4339
	},
4340 4341
	{
		.name = "stat",
4342
		.seq_show = memcg_stat_show,
4343
	},
4344 4345
	{
		.name = "force_empty",
4346
		.write = mem_cgroup_force_empty_write,
4347
	},
4348 4349 4350 4351 4352
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4353
	{
4354
		.name = "cgroup.event_control",		/* XXX: for compat */
4355
		.write = memcg_write_event_control,
4356 4357 4358
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4359 4360 4361 4362 4363
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4364 4365 4366 4367 4368
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4369 4370
	{
		.name = "oom_control",
4371
		.seq_show = mem_cgroup_oom_control_read,
4372
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4373 4374
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4375 4376 4377
	{
		.name = "pressure_level",
	},
4378 4379 4380
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4381
		.seq_show = memcg_numa_stat_show,
4382 4383
	},
#endif
4384 4385 4386 4387
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4388
		.write = mem_cgroup_write,
4389
		.read_u64 = mem_cgroup_read_u64,
4390 4391 4392 4393
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4394
		.read_u64 = mem_cgroup_read_u64,
4395 4396 4397 4398
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4399
		.write = mem_cgroup_reset,
4400
		.read_u64 = mem_cgroup_read_u64,
4401 4402 4403 4404
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4405
		.write = mem_cgroup_reset,
4406
		.read_u64 = mem_cgroup_read_u64,
4407
	},
4408 4409 4410
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4411 4412 4413 4414
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4415 4416
	},
#endif
4417
#endif
4418
	{ },	/* terminate */
4419
};
4420

4421
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4422 4423
{
	struct mem_cgroup_per_node *pn;
4424
	struct mem_cgroup_per_zone *mz;
4425
	int zone, tmp = node;
4426 4427 4428 4429 4430 4431 4432 4433
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4434 4435
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4436
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4437 4438
	if (!pn)
		return 1;
4439 4440 4441

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4442
		lruvec_init(&mz->lruvec);
4443 4444
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4445
		mz->memcg = memcg;
4446
	}
4447
	memcg->nodeinfo[node] = pn;
4448 4449 4450
	return 0;
}

4451
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4452
{
4453
	kfree(memcg->nodeinfo[node]);
4454 4455
}

4456 4457
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4458
	struct mem_cgroup *memcg;
4459
	size_t size;
4460

4461 4462
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4463

4464
	memcg = kzalloc(size, GFP_KERNEL);
4465
	if (!memcg)
4466 4467
		return NULL;

4468 4469
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4470
		goto out_free;
4471 4472
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4473 4474

out_free:
4475
	kfree(memcg);
4476
	return NULL;
4477 4478
}

4479
/*
4480 4481 4482 4483 4484 4485 4486 4487
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4488
 */
4489 4490

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4491
{
4492
	int node;
4493

4494
	mem_cgroup_remove_from_trees(memcg);
4495 4496 4497 4498 4499

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
4500
	kfree(memcg);
4501
}
4502

4503 4504 4505
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4506
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4507
{
4508
	if (!memcg->memory.parent)
4509
		return NULL;
4510
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4511
}
G
Glauber Costa 已提交
4512
EXPORT_SYMBOL(parent_mem_cgroup);
4513

L
Li Zefan 已提交
4514
static struct cgroup_subsys_state * __ref
4515
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4516
{
4517
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4518
	long error = -ENOMEM;
4519
	int node;
B
Balbir Singh 已提交
4520

4521 4522
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4523
		return ERR_PTR(error);
4524

B
Bob Liu 已提交
4525
	for_each_node(node)
4526
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4527
			goto free_out;
4528

4529
	/* root ? */
4530
	if (parent_css == NULL) {
4531
		root_mem_cgroup = memcg;
4532
		page_counter_init(&memcg->memory, NULL);
4533
		memcg->high = PAGE_COUNTER_MAX;
4534
		memcg->soft_limit = PAGE_COUNTER_MAX;
4535 4536
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4537
	}
4538

4539 4540 4541 4542 4543
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4544
	vmpressure_init(&memcg->vmpressure);
4545 4546
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4547 4548 4549
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4550 4551 4552 4553 4554 4555 4556 4557 4558

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4559
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4560
{
4561
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4562
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4563
	int ret;
4564

4565
	if (css->id > MEM_CGROUP_ID_MAX)
4566 4567
		return -ENOSPC;

T
Tejun Heo 已提交
4568
	if (!parent)
4569 4570
		return 0;

4571
	mutex_lock(&memcg_create_mutex);
4572 4573 4574 4575 4576 4577

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4578
		page_counter_init(&memcg->memory, &parent->memory);
4579
		memcg->high = PAGE_COUNTER_MAX;
4580
		memcg->soft_limit = PAGE_COUNTER_MAX;
4581 4582
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4583

4584
		/*
4585 4586
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4587
		 */
4588
	} else {
4589
		page_counter_init(&memcg->memory, NULL);
4590
		memcg->high = PAGE_COUNTER_MAX;
4591
		memcg->soft_limit = PAGE_COUNTER_MAX;
4592 4593
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4594 4595 4596 4597 4598
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4599
		if (parent != root_mem_cgroup)
4600
			memory_cgrp_subsys.broken_hierarchy = true;
4601
	}
4602
	mutex_unlock(&memcg_create_mutex);
4603

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4616 4617
}

4618
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4619
{
4620
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4621
	struct mem_cgroup_event *event, *tmp;
4622 4623 4624 4625 4626 4627

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4628 4629
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4630 4631 4632
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4633
	spin_unlock(&memcg->event_list_lock);
4634

4635
	vmpressure_cleanup(&memcg->vmpressure);
4636 4637

	memcg_deactivate_kmem(memcg);
4638 4639
}

4640
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4641
{
4642
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4643

4644
	memcg_destroy_kmem(memcg);
4645
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4646 4647
}

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4665 4666 4667
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4668 4669
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4670
	memcg->soft_limit = PAGE_COUNTER_MAX;
4671 4672
}

4673
#ifdef CONFIG_MMU
4674
/* Handlers for move charge at task migration. */
4675
static int mem_cgroup_do_precharge(unsigned long count)
4676
{
4677
	int ret;
4678 4679

	/* Try a single bulk charge without reclaim first */
4680
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4681
	if (!ret) {
4682 4683 4684
		mc.precharge += count;
		return ret;
	}
4685
	if (ret == -EINTR) {
4686
		cancel_charge(root_mem_cgroup, count);
4687 4688
		return ret;
	}
4689 4690

	/* Try charges one by one with reclaim */
4691
	while (count--) {
4692
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4693 4694 4695
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4696 4697
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4698
		 */
4699
		if (ret == -EINTR)
4700
			cancel_charge(root_mem_cgroup, 1);
4701 4702
		if (ret)
			return ret;
4703
		mc.precharge++;
4704
		cond_resched();
4705
	}
4706
	return 0;
4707 4708 4709
}

/**
4710
 * get_mctgt_type - get target type of moving charge
4711 4712 4713
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4714
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4715 4716 4717 4718 4719 4720
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4721 4722 4723
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4724 4725 4726 4727 4728
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4729
	swp_entry_t	ent;
4730 4731 4732
};

enum mc_target_type {
4733
	MC_TARGET_NONE = 0,
4734
	MC_TARGET_PAGE,
4735
	MC_TARGET_SWAP,
4736 4737
};

D
Daisuke Nishimura 已提交
4738 4739
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4740
{
D
Daisuke Nishimura 已提交
4741
	struct page *page = vm_normal_page(vma, addr, ptent);
4742

D
Daisuke Nishimura 已提交
4743 4744 4745
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4746
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4747
			return NULL;
4748 4749 4750 4751
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4752 4753 4754 4755 4756 4757
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4758
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4759 4760 4761 4762 4763 4764
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4765
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4766
		return NULL;
4767 4768 4769 4770
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4771
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4772 4773 4774 4775 4776
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4777 4778 4779 4780 4781 4782 4783
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4784

4785 4786 4787 4788 4789 4790 4791 4792 4793
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4794
	if (!(mc.flags & MOVE_FILE))
4795 4796 4797
		return NULL;

	mapping = vma->vm_file->f_mapping;
4798
	pgoff = linear_page_index(vma, addr);
4799 4800

	/* page is moved even if it's not RSS of this task(page-faulted). */
4801 4802
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4815
#endif
4816 4817 4818
	return page;
}

4819
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4820 4821 4822
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4823
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4824 4825 4826 4827 4828 4829
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4830
	else if (pte_none(ptent))
4831
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4832 4833

	if (!page && !ent.val)
4834
		return ret;
4835 4836
	if (page) {
		/*
4837
		 * Do only loose check w/o serialization.
4838
		 * mem_cgroup_move_account() checks the page is valid or
4839
		 * not under LRU exclusion.
4840
		 */
4841
		if (page->mem_cgroup == mc.from) {
4842 4843 4844 4845 4846 4847 4848
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4849 4850
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4851
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4852 4853 4854
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4855 4856 4857 4858
	}
	return ret;
}

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4872
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4873
	if (!(mc.flags & MOVE_ANON))
4874
		return ret;
4875
	if (page->mem_cgroup == mc.from) {
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4892 4893 4894 4895
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4896
	struct vm_area_struct *vma = walk->vma;
4897 4898 4899
	pte_t *pte;
	spinlock_t *ptl;

4900
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4901 4902
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4903
		spin_unlock(ptl);
4904
		return 0;
4905
	}
4906

4907 4908
	if (pmd_trans_unstable(pmd))
		return 0;
4909 4910
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4911
		if (get_mctgt_type(vma, addr, *pte, NULL))
4912 4913 4914 4915
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4916 4917 4918
	return 0;
}

4919 4920 4921 4922
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4923 4924 4925 4926
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4927
	down_read(&mm->mmap_sem);
4928
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4929
	up_read(&mm->mmap_sem);
4930 4931 4932 4933 4934 4935 4936 4937 4938

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4939 4940 4941 4942 4943
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4944 4945
}

4946 4947
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4948
{
4949 4950 4951
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4952
	/* we must uncharge all the leftover precharges from mc.to */
4953
	if (mc.precharge) {
4954
		cancel_charge(mc.to, mc.precharge);
4955 4956 4957 4958 4959 4960 4961
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4962
		cancel_charge(mc.from, mc.moved_charge);
4963
		mc.moved_charge = 0;
4964
	}
4965 4966 4967
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4968
		if (!mem_cgroup_is_root(mc.from))
4969
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4970

4971
		/*
4972 4973
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4974
		 */
4975
		if (!mem_cgroup_is_root(mc.to))
4976 4977
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4978
		css_put_many(&mc.from->css, mc.moved_swap);
4979

L
Li Zefan 已提交
4980
		/* we've already done css_get(mc.to) */
4981 4982
		mc.moved_swap = 0;
	}
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4996
	spin_lock(&mc.lock);
4997 4998
	mc.from = NULL;
	mc.to = NULL;
4999
	spin_unlock(&mc.lock);
5000 5001
}

5002
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5003
				 struct cgroup_taskset *tset)
5004
{
5005
	struct task_struct *p = cgroup_taskset_first(tset);
5006
	int ret = 0;
5007
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5008
	unsigned long move_flags;
5009

5010 5011 5012 5013 5014
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5015 5016
	move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
	if (move_flags) {
5017 5018 5019
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5020
		VM_BUG_ON(from == memcg);
5021 5022 5023 5024 5025

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5026 5027 5028 5029
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5030
			VM_BUG_ON(mc.moved_charge);
5031
			VM_BUG_ON(mc.moved_swap);
5032

5033
			spin_lock(&mc.lock);
5034
			mc.from = from;
5035
			mc.to = memcg;
5036
			mc.flags = move_flags;
5037
			spin_unlock(&mc.lock);
5038
			/* We set mc.moving_task later */
5039 5040 5041 5042

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5043 5044
		}
		mmput(mm);
5045 5046 5047 5048
	}
	return ret;
}

5049
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5050
				     struct cgroup_taskset *tset)
5051
{
5052 5053
	if (mc.to)
		mem_cgroup_clear_mc();
5054 5055
}

5056 5057 5058
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5059
{
5060
	int ret = 0;
5061
	struct vm_area_struct *vma = walk->vma;
5062 5063
	pte_t *pte;
	spinlock_t *ptl;
5064 5065 5066
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5067

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5078
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5079
		if (mc.precharge < HPAGE_PMD_NR) {
5080
			spin_unlock(ptl);
5081 5082 5083 5084 5085 5086 5087
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5088
							     mc.from, mc.to)) {
5089 5090 5091 5092 5093 5094 5095
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5096
		spin_unlock(ptl);
5097
		return 0;
5098 5099
	}

5100 5101
	if (pmd_trans_unstable(pmd))
		return 0;
5102 5103 5104 5105
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5106
		swp_entry_t ent;
5107 5108 5109 5110

		if (!mc.precharge)
			break;

5111
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5112 5113 5114 5115
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5116
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5117
				mc.precharge--;
5118 5119
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5120 5121
			}
			putback_lru_page(page);
5122
put:			/* get_mctgt_type() gets the page */
5123 5124
			put_page(page);
			break;
5125 5126
		case MC_TARGET_SWAP:
			ent = target.ent;
5127
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5128
				mc.precharge--;
5129 5130 5131
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5132
			break;
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5147
		ret = mem_cgroup_do_precharge(1);
5148 5149 5150 5151 5152 5153 5154 5155 5156
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5157 5158 5159 5160
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5161 5162

	lru_add_drain_all();
5163 5164 5165 5166 5167 5168 5169
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5183 5184 5185 5186 5187
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5188
	up_read(&mm->mmap_sem);
5189
	atomic_dec(&mc.from->moving_account);
5190 5191
}

5192
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5193
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5194
{
5195
	struct task_struct *p = cgroup_taskset_first(tset);
5196
	struct mm_struct *mm = get_task_mm(p);
5197 5198

	if (mm) {
5199 5200
		if (mc.to)
			mem_cgroup_move_charge(mm);
5201 5202
		mmput(mm);
	}
5203 5204
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5205
}
5206
#else	/* !CONFIG_MMU */
5207
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5208
				 struct cgroup_taskset *tset)
5209 5210 5211
{
	return 0;
}
5212
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5213
				     struct cgroup_taskset *tset)
5214 5215
{
}
5216
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5217
				 struct cgroup_taskset *tset)
5218 5219 5220
{
}
#endif
B
Balbir Singh 已提交
5221

5222 5223
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5224 5225
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5226
 */
5227
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5228 5229
{
	/*
5230
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5231 5232 5233
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5234
	if (cgroup_on_dfl(root_css->cgroup))
5235 5236 5237
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5238 5239
}

5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
5252
		seq_puts(m, "max\n");
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5267
	err = page_counter_memparse(buf, "max", &low);
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
5282
		seq_puts(m, "max\n");
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5297
	err = page_counter_memparse(buf, "max", &high);
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
5312
		seq_puts(m, "max\n");
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5327
	err = page_counter_memparse(buf, "max", &max);
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5381
struct cgroup_subsys memory_cgrp_subsys = {
5382
	.css_alloc = mem_cgroup_css_alloc,
5383
	.css_online = mem_cgroup_css_online,
5384 5385
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5386
	.css_reset = mem_cgroup_css_reset,
5387 5388
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5389
	.attach = mem_cgroup_move_task,
5390
	.bind = mem_cgroup_bind,
5391 5392
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5393
	.early_init = 0,
B
Balbir Singh 已提交
5394
};
5395

5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5431
	if (page_counter_read(&memcg->memory) >= memcg->low)
5432 5433 5434 5435 5436 5437 5438 5439
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5440
		if (page_counter_read(&memcg->memory) >= memcg->low)
5441 5442 5443 5444 5445
			return false;
	}
	return true;
}

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5481
		if (page->mem_cgroup)
5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5542 5543
	commit_charge(page, memcg, lrucare);

5544 5545 5546 5547 5548
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5549 5550 5551 5552
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5594 5595 5596 5597
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5598
	unsigned long nr_pages = nr_anon + nr_file;
5599 5600
	unsigned long flags;

5601
	if (!mem_cgroup_is_root(memcg)) {
5602 5603 5604
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5605 5606
		memcg_oom_recover(memcg);
	}
5607 5608 5609 5610 5611 5612

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5613
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5614 5615
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5616 5617

	if (!mem_cgroup_is_root(memcg))
5618
		css_put_many(&memcg->css, nr_pages);
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5641
		if (!page->mem_cgroup)
5642 5643 5644 5645
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5646
		 * page->mem_cgroup at this point, we have fully
5647
		 * exclusive access to the page.
5648 5649
		 */

5650
		if (memcg != page->mem_cgroup) {
5651
			if (memcg) {
5652 5653 5654
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5655
			}
5656
			memcg = page->mem_cgroup;
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5670
		page->mem_cgroup = NULL;
5671 5672 5673 5674 5675

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5676 5677
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5678 5679
}

5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5692
	/* Don't touch page->lru of any random page, pre-check: */
5693
	if (!page->mem_cgroup)
5694 5695
		return;

5696 5697 5698
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5699

5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5711

5712 5713
	if (!list_empty(page_list))
		uncharge_list(page_list);
5714 5715 5716 5717 5718 5719
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5720
 * @lrucare: either or both pages might be on the LRU already
5721 5722 5723 5724 5725 5726 5727 5728
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5729
	struct mem_cgroup *memcg;
5730 5731 5732 5733 5734 5735 5736
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5737 5738
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5739 5740 5741 5742 5743

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5744
	if (newpage->mem_cgroup)
5745 5746
		return;

5747 5748 5749 5750 5751 5752
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5753
	memcg = oldpage->mem_cgroup;
5754
	if (!memcg)
5755 5756 5757 5758 5759
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5760
	oldpage->mem_cgroup = NULL;
5761 5762 5763 5764

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5765
	commit_charge(newpage, memcg, lrucare);
5766 5767
}

5768
/*
5769 5770 5771 5772 5773 5774
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5775 5776 5777
 */
static int __init mem_cgroup_init(void)
{
5778 5779
	int cpu, node;

5780
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5803 5804 5805
	return 0;
}
subsys_initcall(mem_cgroup_init);
5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */