memcontrol.c 144.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299 300 301

	bool		oom_lock;
	atomic_t	under_oom;
302
	atomic_t	oom_wakeups;
303

304
	int	swappiness;
305 306
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
307

308 309 310 311
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
312
	struct mem_cgroup_thresholds thresholds;
313

314
	/* thresholds for mem+swap usage. RCU-protected */
315
	struct mem_cgroup_thresholds memsw_thresholds;
316

K
KAMEZAWA Hiroyuki 已提交
317 318
	/* For oom notifier event fd */
	struct list_head oom_notify;
319

320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
324
	unsigned long move_charge_at_immigrate;
325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
328
	atomic_t		moving_account;
329
	/* taken only while moving_account > 0 */
330 331 332
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
333
	/*
334
	 * percpu counter.
335
	 */
336
	struct mem_cgroup_stat_cpu __percpu *stat;
337 338 339 340 341 342
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
343

M
Michal Hocko 已提交
344
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
345
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
346
#endif
347 348 349 350
#if defined(CONFIG_MEMCG_KMEM)
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
351 352 353 354 355 356 357

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
358

359 360 361 362
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

363 364
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
365 366
};

367
#ifdef CONFIG_MEMCG_KMEM
368 369
static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
V
Vladimir Davydov 已提交
370
	return memcg->kmemcg_id >= 0;
371
}
372 373
#endif

374 375
/* Stuffs for move charges at task migration. */
/*
376 377
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
378 379
 */
enum move_type {
380
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
381
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
382 383 384
	NR_MOVE_TYPE,
};

385 386
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
387
	spinlock_t	  lock; /* for from, to */
388 389
	struct mem_cgroup *from;
	struct mem_cgroup *to;
390
	unsigned long immigrate_flags;
391
	unsigned long precharge;
392
	unsigned long moved_charge;
393
	unsigned long moved_swap;
394 395 396
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
397
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
398 399
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
400

D
Daisuke Nishimura 已提交
401 402
static bool move_anon(void)
{
403
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
404 405
}

406 407
static bool move_file(void)
{
408
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
409 410
}

411 412 413 414
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
415
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
416
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
417

418 419
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
420
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
421
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
422
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
423 424 425
	NR_CHARGE_TYPE,
};

426
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
427 428 429 430
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
431
	_KMEM,
G
Glauber Costa 已提交
432 433
};

434 435
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
436
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
437 438
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
439

440 441 442 443 444 445 446
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

447 448
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
449
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
450 451
}

452 453 454 455 456 457 458 459 460 461 462 463 464
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

465 466 467 468 469
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

470 471 472 473 474 475
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
476 477
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
478
	return memcg->css.id;
L
Li Zefan 已提交
479 480 481 482 483 484
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

485
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
486 487 488
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
489
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
490
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
491 492 493

void sock_update_memcg(struct sock *sk)
{
494
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
495
		struct mem_cgroup *memcg;
496
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
497 498 499

		BUG_ON(!sk->sk_prot->proto_cgroup);

500 501 502 503 504 505 506 507 508 509
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
510
			css_get(&sk->sk_cgrp->memcg->css);
511 512 513
			return;
		}

G
Glauber Costa 已提交
514 515
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
516
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
517
		if (!mem_cgroup_is_root(memcg) &&
518 519
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
520
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
521 522 523 524 525 526 527 528
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
529
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
530 531 532
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
533
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
534 535
	}
}
G
Glauber Costa 已提交
536 537 538 539 540 541

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

542
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
543 544
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
545

546 547
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
548
	if (!memcg_proto_activated(&memcg->tcp_mem))
549 550 551 552 553 554 555 556 557
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

558
#ifdef CONFIG_MEMCG_KMEM
559 560
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
561 562 563 564 565
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
566 567 568 569 570 571
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
572 573
int memcg_limited_groups_array_size;

574 575 576 577 578 579
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
580
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
581 582
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
583
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
584 585 586
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
587
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
588

589 590 591 592 593 594
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
595
struct static_key memcg_kmem_enabled_key;
596
EXPORT_SYMBOL(memcg_kmem_enabled_key);
597

598 599
static void memcg_free_cache_id(int id);

600 601
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
602
	if (memcg_kmem_is_active(memcg)) {
603
		static_key_slow_dec(&memcg_kmem_enabled_key);
604
		memcg_free_cache_id(memcg->kmemcg_id);
605
	}
606 607 608 609
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
610
	WARN_ON(page_counter_read(&memcg->kmem));
611 612 613 614 615 616 617 618 619 620 621 622 623
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

624
static struct mem_cgroup_per_zone *
625
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
626
{
627 628 629
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

630
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
631 632
}

633
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
634
{
635
	return &memcg->css;
636 637
}

638
static struct mem_cgroup_per_zone *
639
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
640
{
641 642
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
643

644
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

662 663
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
664
					 unsigned long new_usage_in_excess)
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

694 695
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
696 697 698 699 700 701 702
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

703 704
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
705
{
706 707 708
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
709
	__mem_cgroup_remove_exceeded(mz, mctz);
710
	spin_unlock_irqrestore(&mctz->lock, flags);
711 712
}

713 714 715 716 717 718 719 720 721 722 723
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
724 725 726

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
727
	unsigned long excess;
728 729 730
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

731
	mctz = soft_limit_tree_from_page(page);
732 733 734 735 736
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
737
		mz = mem_cgroup_page_zoneinfo(memcg, page);
738
		excess = soft_limit_excess(memcg);
739 740 741 742 743
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
744 745 746
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
747 748
			/* if on-tree, remove it */
			if (mz->on_tree)
749
				__mem_cgroup_remove_exceeded(mz, mctz);
750 751 752 753
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
754
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
755
			spin_unlock_irqrestore(&mctz->lock, flags);
756 757 758 759 760 761 762
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
763 764
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
765

766 767 768 769
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
770
			mem_cgroup_remove_exceeded(mz, mctz);
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
793
	__mem_cgroup_remove_exceeded(mz, mctz);
794
	if (!soft_limit_excess(mz->memcg) ||
795
	    !css_tryget_online(&mz->memcg->css))
796 797 798 799 800 801 802 803 804 805
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

806
	spin_lock_irq(&mctz->lock);
807
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
808
	spin_unlock_irq(&mctz->lock);
809 810 811
	return mz;
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
831
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
832
				 enum mem_cgroup_stat_index idx)
833
{
834
	long val = 0;
835 836
	int cpu;

837 838
	get_online_cpus();
	for_each_online_cpu(cpu)
839
		val += per_cpu(memcg->stat->count[idx], cpu);
840
#ifdef CONFIG_HOTPLUG_CPU
841 842 843
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
844 845
#endif
	put_online_cpus();
846 847 848
	return val;
}

849
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
850 851 852 853 854
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

855
	get_online_cpus();
856
	for_each_online_cpu(cpu)
857
		val += per_cpu(memcg->stat->events[idx], cpu);
858
#ifdef CONFIG_HOTPLUG_CPU
859 860 861
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
862
#endif
863
	put_online_cpus();
864 865 866
	return val;
}

867
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
868
					 struct page *page,
869
					 int nr_pages)
870
{
871 872 873 874
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
875
	if (PageAnon(page))
876
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
877
				nr_pages);
878
	else
879
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
880
				nr_pages);
881

882 883 884 885
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

886 887
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
888
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
889
	else {
890
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
891 892
		nr_pages = -nr_pages; /* for event */
	}
893

894
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
895 896
}

897
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
898 899 900 901 902 903 904
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

905 906 907
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
908
{
909
	unsigned long nr = 0;
910 911
	int zid;

912
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
913

914 915 916 917 918 919 920 921 922 923 924 925
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
926
}
927

928
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
929
			unsigned int lru_mask)
930
{
931
	unsigned long nr = 0;
932
	int nid;
933

934
	for_each_node_state(nid, N_MEMORY)
935 936
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
937 938
}

939 940
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
941 942 943
{
	unsigned long val, next;

944
	val = __this_cpu_read(memcg->stat->nr_page_events);
945
	next = __this_cpu_read(memcg->stat->targets[target]);
946
	/* from time_after() in jiffies.h */
947 948 949 950 951
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
952 953 954
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
955 956 957 958 959 960 961 962
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
963
	}
964
	return false;
965 966 967 968 969 970
}

/*
 * Check events in order.
 *
 */
971
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
972 973
{
	/* threshold event is triggered in finer grain than soft limit */
974 975
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
976
		bool do_softlimit;
977
		bool do_numainfo __maybe_unused;
978

979 980
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
981 982 983 984
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
985
		mem_cgroup_threshold(memcg);
986 987
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
988
#if MAX_NUMNODES > 1
989
		if (unlikely(do_numainfo))
990
			atomic_inc(&memcg->numainfo_events);
991
#endif
992
	}
993 994
}

995
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
996
{
997 998 999 1000 1001 1002 1003 1004
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1005
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1006 1007
}

1008
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1009
{
1010
	struct mem_cgroup *memcg = NULL;
1011

1012 1013
	rcu_read_lock();
	do {
1014 1015 1016 1017 1018 1019
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1020
			memcg = root_mem_cgroup;
1021 1022 1023 1024 1025
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1026
	} while (!css_tryget_online(&memcg->css));
1027
	rcu_read_unlock();
1028
	return memcg;
1029 1030
}

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1048
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1049
				   struct mem_cgroup *prev,
1050
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1051
{
1052 1053
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1054
	struct mem_cgroup *memcg = NULL;
1055
	struct mem_cgroup *pos = NULL;
1056

1057 1058
	if (mem_cgroup_disabled())
		return NULL;
1059

1060 1061
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1062

1063
	if (prev && !reclaim)
1064
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1065

1066 1067
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1068
			goto out;
1069
		return root;
1070
	}
K
KAMEZAWA Hiroyuki 已提交
1071

1072
	rcu_read_lock();
M
Michal Hocko 已提交
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1108
		}
K
KAMEZAWA Hiroyuki 已提交
1109

1110 1111 1112 1113 1114 1115
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1116

1117 1118
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1119

1120
		if (css_tryget(css)) {
1121 1122 1123 1124 1125 1126 1127
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1128

1129
			css_put(css);
1130
		}
1131

1132
		memcg = NULL;
1133
	}
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1154
	}
1155

1156 1157
out_unlock:
	rcu_read_unlock();
1158
out:
1159 1160 1161
	if (prev && prev != root)
		css_put(&prev->css);

1162
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1163
}
K
KAMEZAWA Hiroyuki 已提交
1164

1165 1166 1167 1168 1169 1170 1171
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1172 1173 1174 1175 1176 1177
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1178

1179 1180 1181 1182 1183 1184
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1185
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1186
	     iter != NULL;				\
1187
	     iter = mem_cgroup_iter(root, iter, NULL))
1188

1189
#define for_each_mem_cgroup(iter)			\
1190
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1191
	     iter != NULL;				\
1192
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1193

1194
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1195
{
1196
	struct mem_cgroup *memcg;
1197 1198

	rcu_read_lock();
1199 1200
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1201 1202 1203 1204
		goto out;

	switch (idx) {
	case PGFAULT:
1205 1206 1207 1208
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1209 1210 1211 1212 1213 1214 1215
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1216
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1217

1218 1219 1220
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1221
 * @memcg: memcg of the wanted lruvec
1222 1223 1224 1225 1226 1227 1228 1229 1230
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1231
	struct lruvec *lruvec;
1232

1233 1234 1235 1236
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1237

1238
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1249 1250 1251
}

/**
1252
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1253
 * @page: the page
1254
 * @zone: zone of the page
1255 1256 1257 1258
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1259
 */
1260
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1261 1262
{
	struct mem_cgroup_per_zone *mz;
1263
	struct mem_cgroup *memcg;
1264
	struct lruvec *lruvec;
1265

1266 1267 1268 1269
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1270

1271
	memcg = page->mem_cgroup;
1272
	/*
1273
	 * Swapcache readahead pages are added to the LRU - and
1274
	 * possibly migrated - before they are charged.
1275
	 */
1276 1277
	if (!memcg)
		memcg = root_mem_cgroup;
1278

1279
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1290
}
1291

1292
/**
1293 1294 1295 1296
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1297
 *
1298 1299
 * This function must be called when a page is added to or removed from an
 * lru list.
1300
 */
1301 1302
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1303 1304
{
	struct mem_cgroup_per_zone *mz;
1305
	unsigned long *lru_size;
1306 1307 1308 1309

	if (mem_cgroup_disabled())
		return;

1310 1311 1312 1313
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1314
}
1315

1316
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1317
{
1318
	if (root == memcg)
1319
		return true;
1320
	if (!root->use_hierarchy)
1321
		return false;
1322
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1323 1324
}

1325
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1326
{
1327
	struct mem_cgroup *task_memcg;
1328
	struct task_struct *p;
1329
	bool ret;
1330

1331
	p = find_lock_task_mm(task);
1332
	if (p) {
1333
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1334 1335 1336 1337 1338 1339 1340
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1341
		rcu_read_lock();
1342 1343
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1344
		rcu_read_unlock();
1345
	}
1346 1347
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1348 1349 1350
	return ret;
}

1351
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1352
{
1353
	unsigned long inactive_ratio;
1354
	unsigned long inactive;
1355
	unsigned long active;
1356
	unsigned long gb;
1357

1358 1359
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1360

1361 1362 1363 1364 1365 1366
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1367
	return inactive * inactive_ratio < active;
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1384
#define mem_cgroup_from_counter(counter, member)	\
1385 1386
	container_of(counter, struct mem_cgroup, member)

1387
/**
1388
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1389
 * @memcg: the memory cgroup
1390
 *
1391
 * Returns the maximum amount of memory @mem can be charged with, in
1392
 * pages.
1393
 */
1394
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1395
{
1396 1397 1398
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1413 1414
}

1415
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1416 1417
{
	/* root ? */
1418
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1419 1420
		return vm_swappiness;

1421
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1422 1423
}

1424
/*
Q
Qiang Huang 已提交
1425
 * A routine for checking "mem" is under move_account() or not.
1426
 *
Q
Qiang Huang 已提交
1427 1428 1429
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1430
 */
1431
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1432
{
1433 1434
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1435
	bool ret = false;
1436 1437 1438 1439 1440 1441 1442 1443 1444
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1445

1446 1447
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1448 1449
unlock:
	spin_unlock(&mc.lock);
1450 1451 1452
	return ret;
}

1453
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1454 1455
{
	if (mc.moving_task && current != mc.moving_task) {
1456
		if (mem_cgroup_under_move(memcg)) {
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1469
#define K(x) ((x) << (PAGE_SHIFT-10))
1470
/**
1471
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1472 1473 1474 1475 1476 1477 1478 1479
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1480
	/* oom_info_lock ensures that parallel ooms do not interleave */
1481
	static DEFINE_MUTEX(oom_info_lock);
1482 1483
	struct mem_cgroup *iter;
	unsigned int i;
1484

1485
	if (!p)
1486 1487
		return;

1488
	mutex_lock(&oom_info_lock);
1489 1490
	rcu_read_lock();

T
Tejun Heo 已提交
1491 1492
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1493
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1494
	pr_cont_cgroup_path(memcg->css.cgroup);
1495
	pr_cont("\n");
1496 1497 1498

	rcu_read_unlock();

1499 1500 1501 1502 1503 1504 1505 1506 1507
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1508 1509

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1510 1511
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1527
	mutex_unlock(&oom_info_lock);
1528 1529
}

1530 1531 1532 1533
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1534
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1535 1536
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1537 1538
	struct mem_cgroup *iter;

1539
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1540
		num++;
1541 1542 1543
	return num;
}

D
David Rientjes 已提交
1544 1545 1546
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1547
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1548
{
1549
	unsigned long limit;
1550

1551
	limit = memcg->memory.limit;
1552
	if (mem_cgroup_swappiness(memcg)) {
1553
		unsigned long memsw_limit;
1554

1555 1556
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1557 1558
	}
	return limit;
D
David Rientjes 已提交
1559 1560
}

1561 1562
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1563 1564 1565 1566 1567 1568 1569
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1570
	/*
1571 1572 1573
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1574
	 */
1575
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1576 1577 1578 1579 1580
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1581
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1582
	for_each_mem_cgroup_tree(iter, memcg) {
1583
		struct css_task_iter it;
1584 1585
		struct task_struct *task;

1586 1587
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1600
				css_task_iter_end(&it);
1601 1602 1603 1604 1605 1606 1607 1608
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1621
		}
1622
		css_task_iter_end(&it);
1623 1624 1625 1626 1627 1628 1629 1630 1631
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1632 1633
#if MAX_NUMNODES > 1

1634 1635
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1636
 * @memcg: the target memcg
1637 1638 1639 1640 1641 1642 1643
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1644
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1645 1646
		int nid, bool noswap)
{
1647
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1648 1649 1650
		return true;
	if (noswap || !total_swap_pages)
		return false;
1651
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1652 1653 1654 1655
		return true;
	return false;

}
1656 1657 1658 1659 1660 1661 1662

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1663
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1664 1665
{
	int nid;
1666 1667 1668 1669
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1670
	if (!atomic_read(&memcg->numainfo_events))
1671
		return;
1672
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1673 1674 1675
		return;

	/* make a nodemask where this memcg uses memory from */
1676
	memcg->scan_nodes = node_states[N_MEMORY];
1677

1678
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1679

1680 1681
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1682
	}
1683

1684 1685
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1700
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1701 1702 1703
{
	int node;

1704 1705
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1706

1707
	node = next_node(node, memcg->scan_nodes);
1708
	if (node == MAX_NUMNODES)
1709
		node = first_node(memcg->scan_nodes);
1710 1711 1712 1713 1714 1715 1716 1717 1718
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1719
	memcg->last_scanned_node = node;
1720 1721 1722
	return node;
}
#else
1723
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1724 1725 1726 1727 1728
{
	return 0;
}
#endif

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1744
	excess = soft_limit_excess(root_memcg);
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1773
		if (!soft_limit_excess(root_memcg))
1774
			break;
1775
	}
1776 1777
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1778 1779
}

1780 1781 1782 1783 1784 1785
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1786 1787
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1788 1789 1790 1791
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1792
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1793
{
1794
	struct mem_cgroup *iter, *failed = NULL;
1795

1796 1797
	spin_lock(&memcg_oom_lock);

1798
	for_each_mem_cgroup_tree(iter, memcg) {
1799
		if (iter->oom_lock) {
1800 1801 1802 1803 1804
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1805 1806
			mem_cgroup_iter_break(memcg, iter);
			break;
1807 1808
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1809
	}
K
KAMEZAWA Hiroyuki 已提交
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1822
		}
1823 1824
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1825 1826 1827 1828

	spin_unlock(&memcg_oom_lock);

	return !failed;
1829
}
1830

1831
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1832
{
K
KAMEZAWA Hiroyuki 已提交
1833 1834
	struct mem_cgroup *iter;

1835
	spin_lock(&memcg_oom_lock);
1836
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1837
	for_each_mem_cgroup_tree(iter, memcg)
1838
		iter->oom_lock = false;
1839
	spin_unlock(&memcg_oom_lock);
1840 1841
}

1842
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1843 1844 1845
{
	struct mem_cgroup *iter;

1846
	for_each_mem_cgroup_tree(iter, memcg)
1847 1848 1849
		atomic_inc(&iter->under_oom);
}

1850
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1851 1852 1853
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1854 1855 1856 1857 1858
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1859
	for_each_mem_cgroup_tree(iter, memcg)
1860
		atomic_add_unless(&iter->under_oom, -1, 0);
1861 1862
}

K
KAMEZAWA Hiroyuki 已提交
1863 1864
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1865
struct oom_wait_info {
1866
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1867 1868 1869 1870 1871 1872
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1873 1874
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1875 1876 1877
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1878
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1879

1880 1881
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1882 1883 1884 1885
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1886
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1887
{
1888
	atomic_inc(&memcg->oom_wakeups);
1889 1890
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1891 1892
}

1893
static void memcg_oom_recover(struct mem_cgroup *memcg)
1894
{
1895 1896
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1897 1898
}

1899
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1900
{
1901 1902
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1903
	/*
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1916
	 */
1917 1918 1919 1920
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1921 1922 1923 1924
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1925
 * @handle: actually kill/wait or just clean up the OOM state
1926
 *
1927 1928
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1929
 *
1930
 * Memcg supports userspace OOM handling where failed allocations must
1931 1932 1933 1934
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1935
 * the end of the page fault to complete the OOM handling.
1936 1937
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1938
 * completed, %false otherwise.
1939
 */
1940
bool mem_cgroup_oom_synchronize(bool handle)
1941
{
1942
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1943
	struct oom_wait_info owait;
1944
	bool locked;
1945 1946 1947

	/* OOM is global, do not handle */
	if (!memcg)
1948
		return false;
1949

1950 1951
	if (!handle)
		goto cleanup;
1952 1953 1954 1955 1956 1957

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1958

1959
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1973
		schedule();
1974 1975 1976 1977 1978
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1979 1980 1981 1982 1983 1984 1985 1986
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1987 1988
cleanup:
	current->memcg_oom.memcg = NULL;
1989
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1990
	return true;
1991 1992
}

1993 1994 1995
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1996
 *
1997 1998 1999
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2000
 *
2001
 *   memcg = mem_cgroup_begin_page_stat(page);
2002 2003
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
2004
 *   mem_cgroup_end_page_stat(memcg);
2005
 */
2006
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
2007 2008
{
	struct mem_cgroup *memcg;
2009
	unsigned long flags;
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
2023 2024 2025 2026
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2027
again:
2028
	memcg = page->mem_cgroup;
2029
	if (unlikely(!memcg))
2030 2031
		return NULL;

Q
Qiang Huang 已提交
2032
	if (atomic_read(&memcg->moving_account) <= 0)
2033
		return memcg;
2034

2035
	spin_lock_irqsave(&memcg->move_lock, flags);
2036
	if (memcg != page->mem_cgroup) {
2037
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2038 2039
		goto again;
	}
2040 2041 2042 2043 2044 2045 2046 2047

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2048 2049

	return memcg;
2050 2051
}

2052 2053 2054 2055
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2056
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2057
{
2058 2059 2060 2061 2062 2063 2064 2065
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2066

2067
	rcu_read_unlock();
2068 2069
}

2070 2071 2072 2073 2074 2075 2076 2077 2078
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2079
				 enum mem_cgroup_stat_index idx, int val)
2080
{
2081
	VM_BUG_ON(!rcu_read_lock_held());
2082

2083 2084
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2085
}
2086

2087 2088 2089 2090
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2091
#define CHARGE_BATCH	32U
2092 2093
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2094
	unsigned int nr_pages;
2095
	struct work_struct work;
2096
	unsigned long flags;
2097
#define FLUSHING_CACHED_CHARGE	0
2098 2099
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2100
static DEFINE_MUTEX(percpu_charge_mutex);
2101

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2112
 */
2113
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2114 2115
{
	struct memcg_stock_pcp *stock;
2116
	bool ret = false;
2117

2118
	if (nr_pages > CHARGE_BATCH)
2119
		return ret;
2120

2121
	stock = &get_cpu_var(memcg_stock);
2122
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2123
		stock->nr_pages -= nr_pages;
2124 2125
		ret = true;
	}
2126 2127 2128 2129 2130
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2131
 * Returns stocks cached in percpu and reset cached information.
2132 2133 2134 2135 2136
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2137
	if (stock->nr_pages) {
2138
		page_counter_uncharge(&old->memory, stock->nr_pages);
2139
		if (do_swap_account)
2140
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2141
		css_put_many(&old->css, stock->nr_pages);
2142
		stock->nr_pages = 0;
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2153
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2154
	drain_stock(stock);
2155
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2156 2157
}

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2169
/*
2170
 * Cache charges(val) to local per_cpu area.
2171
 * This will be consumed by consume_stock() function, later.
2172
 */
2173
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2174 2175 2176
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2177
	if (stock->cached != memcg) { /* reset if necessary */
2178
		drain_stock(stock);
2179
		stock->cached = memcg;
2180
	}
2181
	stock->nr_pages += nr_pages;
2182 2183 2184 2185
	put_cpu_var(memcg_stock);
}

/*
2186
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2187
 * of the hierarchy under it.
2188
 */
2189
static void drain_all_stock(struct mem_cgroup *root_memcg)
2190
{
2191
	int cpu, curcpu;
2192

2193 2194 2195
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2196 2197
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2198
	curcpu = get_cpu();
2199 2200
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2201
		struct mem_cgroup *memcg;
2202

2203 2204
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2205
			continue;
2206
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2207
			continue;
2208 2209 2210 2211 2212 2213
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2214
	}
2215
	put_cpu();
A
Andrew Morton 已提交
2216
	put_online_cpus();
2217
	mutex_unlock(&percpu_charge_mutex);
2218 2219
}

2220 2221 2222 2223
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2224
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2225 2226 2227
{
	int i;

2228
	spin_lock(&memcg->pcp_counter_lock);
2229
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2230
		long x = per_cpu(memcg->stat->count[i], cpu);
2231

2232 2233
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2234
	}
2235
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2236
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2237

2238 2239
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2240
	}
2241
	spin_unlock(&memcg->pcp_counter_lock);
2242 2243
}

2244
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2245 2246 2247 2248 2249
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2250
	struct mem_cgroup *iter;
2251

2252
	if (action == CPU_ONLINE)
2253 2254
		return NOTIFY_OK;

2255
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2256
		return NOTIFY_OK;
2257

2258
	for_each_mem_cgroup(iter)
2259 2260
		mem_cgroup_drain_pcp_counter(iter, cpu);

2261 2262 2263 2264 2265
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2266 2267
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2268
{
2269
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2270
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2271
	struct mem_cgroup *mem_over_limit;
2272
	struct page_counter *counter;
2273
	unsigned long nr_reclaimed;
2274 2275
	bool may_swap = true;
	bool drained = false;
2276
	int ret = 0;
2277

2278 2279
	if (mem_cgroup_is_root(memcg))
		goto done;
2280
retry:
2281 2282
	if (consume_stock(memcg, nr_pages))
		goto done;
2283

2284
	if (!do_swap_account ||
2285 2286
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2287
			goto done_restock;
2288
		if (do_swap_account)
2289 2290
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2291
	} else {
2292
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2293
		may_swap = false;
2294
	}
2295

2296 2297 2298 2299
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2315 2316
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2317

2318 2319
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2320

2321
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2322
		goto retry;
2323

2324
	if (!drained) {
2325
		drain_all_stock(mem_over_limit);
2326 2327 2328 2329
		drained = true;
		goto retry;
	}

2330 2331
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2332 2333 2334 2335 2336 2337 2338 2339 2340
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2341
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2342 2343 2344 2345 2346 2347 2348 2349
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2350 2351 2352
	if (nr_retries--)
		goto retry;

2353 2354 2355
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2356 2357 2358
	if (fatal_signal_pending(current))
		goto bypass;

2359
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2360
nomem:
2361
	if (!(gfp_mask & __GFP_NOFAIL))
2362
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2363
bypass:
2364
	return -EINTR;
2365 2366

done_restock:
2367
	css_get_many(&memcg->css, batch);
2368 2369 2370
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2371
	return ret;
2372
}
2373

2374
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2375
{
2376 2377 2378
	if (mem_cgroup_is_root(memcg))
		return;

2379
	page_counter_uncharge(&memcg->memory, nr_pages);
2380
	if (do_swap_account)
2381
		page_counter_uncharge(&memcg->memsw, nr_pages);
2382

2383
	css_put_many(&memcg->css, nr_pages);
2384 2385
}

2386 2387
/*
 * A helper function to get mem_cgroup from ID. must be called under
2388 2389 2390
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2391 2392 2393 2394 2395 2396
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2397
	return mem_cgroup_from_id(id);
2398 2399
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2410
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2411
{
2412
	struct mem_cgroup *memcg;
2413
	unsigned short id;
2414 2415
	swp_entry_t ent;

2416
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2417

2418
	memcg = page->mem_cgroup;
2419 2420
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2421
			memcg = NULL;
2422
	} else if (PageSwapCache(page)) {
2423
		ent.val = page_private(page);
2424
		id = lookup_swap_cgroup_id(ent);
2425
		rcu_read_lock();
2426
		memcg = mem_cgroup_lookup(id);
2427
		if (memcg && !css_tryget_online(&memcg->css))
2428
			memcg = NULL;
2429
		rcu_read_unlock();
2430
	}
2431
	return memcg;
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2465
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2466
			  bool lrucare)
2467
{
2468
	int isolated;
2469

2470
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2471 2472 2473 2474 2475

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2476 2477
	if (lrucare)
		lock_page_lru(page, &isolated);
2478

2479 2480
	/*
	 * Nobody should be changing or seriously looking at
2481
	 * page->mem_cgroup at this point:
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2493
	page->mem_cgroup = memcg;
2494

2495 2496
	if (lrucare)
		unlock_page_lru(page, isolated);
2497
}
2498

2499
#ifdef CONFIG_MEMCG_KMEM
2500 2501
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2502
{
2503
	struct page_counter *counter;
2504 2505
	int ret = 0;

2506 2507
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2508 2509
		return ret;

2510
	ret = try_charge(memcg, gfp, nr_pages);
2511 2512
	if (ret == -EINTR)  {
		/*
2513 2514 2515 2516 2517 2518
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2519 2520 2521
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2522 2523 2524
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2525 2526
		 * directed to the root cgroup in memcontrol.h
		 */
2527
		page_counter_charge(&memcg->memory, nr_pages);
2528
		if (do_swap_account)
2529
			page_counter_charge(&memcg->memsw, nr_pages);
2530
		css_get_many(&memcg->css, nr_pages);
2531 2532
		ret = 0;
	} else if (ret)
2533
		page_counter_uncharge(&memcg->kmem, nr_pages);
2534 2535 2536 2537

	return ret;
}

2538
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2539
{
2540
	page_counter_uncharge(&memcg->memory, nr_pages);
2541
	if (do_swap_account)
2542
		page_counter_uncharge(&memcg->memsw, nr_pages);
2543

2544
	page_counter_uncharge(&memcg->kmem, nr_pages);
2545

2546
	css_put_many(&memcg->css, nr_pages);
2547 2548
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2559
static int memcg_alloc_cache_id(void)
2560
{
2561 2562 2563 2564 2565 2566 2567
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2568

2569 2570 2571 2572 2573 2574 2575 2576 2577
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2578 2579 2580 2581 2582
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	err = memcg_update_all_caches(size);
	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2594 2595 2596 2597 2598 2599 2600 2601 2602
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2603
	memcg_limited_groups_array_size = num;
2604 2605
}

2606
struct memcg_kmem_cache_create_work {
2607 2608 2609 2610 2611
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2612
static void memcg_kmem_cache_create_func(struct work_struct *w)
2613
{
2614 2615
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2616 2617
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2618

2619
	memcg_create_kmem_cache(memcg, cachep);
2620

2621
	css_put(&memcg->css);
2622 2623 2624 2625 2626 2627
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2628 2629
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2630
{
2631
	struct memcg_kmem_cache_create_work *cw;
2632

2633
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2634
	if (!cw)
2635
		return;
2636 2637

	css_get(&memcg->css);
2638 2639 2640

	cw->memcg = memcg;
	cw->cachep = cachep;
2641
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2642 2643 2644 2645

	schedule_work(&cw->work);
}

2646 2647
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2648 2649 2650 2651
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2652
	 * in __memcg_schedule_kmem_cache_create will recurse.
2653 2654 2655 2656 2657 2658 2659
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2660
	current->memcg_kmem_skip_account = 1;
2661
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2662
	current->memcg_kmem_skip_account = 0;
2663
}
2664

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2678
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2679 2680
{
	struct mem_cgroup *memcg;
2681
	struct kmem_cache *memcg_cachep;
2682 2683 2684 2685

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2686
	if (current->memcg_kmem_skip_account)
2687 2688
		return cachep;

2689
	memcg = get_mem_cgroup_from_mm(current->mm);
2690
	if (!memcg_kmem_is_active(memcg))
2691
		goto out;
2692

2693
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2694 2695
	if (likely(memcg_cachep))
		return memcg_cachep;
2696 2697 2698 2699 2700 2701 2702 2703 2704

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2705 2706 2707
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2708
	 */
2709
	memcg_schedule_kmem_cache_create(memcg, cachep);
2710
out:
2711
	css_put(&memcg->css);
2712
	return cachep;
2713 2714
}

2715 2716 2717 2718 2719 2720
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
		css_put(&cachep->memcg_params->memcg->css);
}

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2742

2743
	memcg = get_mem_cgroup_from_mm(current->mm);
2744

2745
	if (!memcg_kmem_is_active(memcg)) {
2746 2747 2748 2749
		css_put(&memcg->css);
		return true;
	}

2750
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2765
		memcg_uncharge_kmem(memcg, 1 << order);
2766 2767
		return;
	}
2768
	page->mem_cgroup = memcg;
2769 2770 2771 2772
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2773
	struct mem_cgroup *memcg = page->mem_cgroup;
2774 2775 2776 2777

	if (!memcg)
		return;

2778
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2779

2780
	memcg_uncharge_kmem(memcg, 1 << order);
2781
	page->mem_cgroup = NULL;
2782 2783 2784
}
#endif /* CONFIG_MEMCG_KMEM */

2785 2786 2787 2788
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2789 2790 2791
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2792
 */
2793
void mem_cgroup_split_huge_fixup(struct page *head)
2794
{
2795
	int i;
2796

2797 2798
	if (mem_cgroup_disabled())
		return;
2799

2800
	for (i = 1; i < HPAGE_PMD_NR; i++)
2801
		head[i].mem_cgroup = head->mem_cgroup;
2802

2803
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2804
		       HPAGE_PMD_NR);
2805
}
2806
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2807

2808
/**
2809
 * mem_cgroup_move_account - move account of the page
2810
 * @page: the page
2811
 * @nr_pages: number of regular pages (>1 for huge pages)
2812 2813 2814 2815
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2816
 * - page is not on LRU (isolate_page() is useful.)
2817
 * - compound_lock is held when nr_pages > 1
2818
 *
2819 2820
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2821
 */
2822 2823 2824
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2825
				   struct mem_cgroup *to)
2826
{
2827 2828
	unsigned long flags;
	int ret;
2829

2830
	VM_BUG_ON(from == to);
2831
	VM_BUG_ON_PAGE(PageLRU(page), page);
2832 2833 2834 2835 2836 2837 2838
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2839
	if (nr_pages > 1 && !PageTransHuge(page))
2840 2841
		goto out;

2842
	/*
2843
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2844 2845 2846 2847 2848
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2849 2850

	ret = -EINVAL;
2851
	if (page->mem_cgroup != from)
2852
		goto out_unlock;
2853

2854
	spin_lock_irqsave(&from->move_lock, flags);
2855

2856
	if (!PageAnon(page) && page_mapped(page)) {
2857 2858 2859 2860 2861
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2862

2863 2864 2865 2866 2867 2868
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2869

2870
	/*
2871
	 * It is safe to change page->mem_cgroup here because the page
2872 2873 2874
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2875

2876
	/* caller should have done css_get */
2877
	page->mem_cgroup = to;
2878 2879
	spin_unlock_irqrestore(&from->move_lock, flags);

2880
	ret = 0;
2881 2882 2883

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2884
	memcg_check_events(to, page);
2885
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2886
	memcg_check_events(from, page);
2887 2888 2889
	local_irq_enable();
out_unlock:
	unlock_page(page);
2890
out:
2891 2892 2893
	return ret;
}

A
Andrew Morton 已提交
2894
#ifdef CONFIG_MEMCG_SWAP
2895 2896
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2897
{
2898 2899
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2900
}
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2913
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2914 2915 2916
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2917
				struct mem_cgroup *from, struct mem_cgroup *to)
2918 2919 2920
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2921 2922
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2923 2924 2925

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2926
		mem_cgroup_swap_statistics(to, true);
2927 2928 2929 2930 2931 2932
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2933
				struct mem_cgroup *from, struct mem_cgroup *to)
2934 2935 2936
{
	return -EINVAL;
}
2937
#endif
K
KAMEZAWA Hiroyuki 已提交
2938

2939
static DEFINE_MUTEX(memcg_limit_mutex);
2940

2941
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2942
				   unsigned long limit)
2943
{
2944 2945 2946
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2947
	int retry_count;
2948
	int ret;
2949 2950 2951 2952 2953 2954

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2955 2956
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2957

2958
	oldusage = page_counter_read(&memcg->memory);
2959

2960
	do {
2961 2962 2963 2964
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2965 2966 2967 2968

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2969
			ret = -EINVAL;
2970 2971
			break;
		}
2972 2973 2974 2975
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2976 2977 2978 2979

		if (!ret)
			break;

2980 2981
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2982
		curusage = page_counter_read(&memcg->memory);
2983
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2984
		if (curusage >= oldusage)
2985 2986 2987
			retry_count--;
		else
			oldusage = curusage;
2988 2989
	} while (retry_count);

2990 2991
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2992

2993 2994 2995
	return ret;
}

L
Li Zefan 已提交
2996
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2997
					 unsigned long limit)
2998
{
2999 3000 3001
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3002
	int retry_count;
3003
	int ret;
3004

3005
	/* see mem_cgroup_resize_res_limit */
3006 3007 3008 3009 3010 3011
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3012 3013 3014 3015
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3016 3017 3018 3019

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3020 3021 3022
			ret = -EINVAL;
			break;
		}
3023 3024 3025 3026
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3027 3028 3029 3030

		if (!ret)
			break;

3031 3032
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3033
		curusage = page_counter_read(&memcg->memsw);
3034
		/* Usage is reduced ? */
3035
		if (curusage >= oldusage)
3036
			retry_count--;
3037 3038
		else
			oldusage = curusage;
3039 3040
	} while (retry_count);

3041 3042
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3043

3044 3045 3046
	return ret;
}

3047 3048 3049 3050 3051 3052 3053 3054 3055
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3056
	unsigned long excess;
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3081
		spin_lock_irq(&mctz->lock);
3082
		__mem_cgroup_remove_exceeded(mz, mctz);
3083 3084 3085 3086 3087 3088

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3089 3090 3091
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3092
		excess = soft_limit_excess(mz->memcg);
3093 3094 3095 3096 3097 3098 3099 3100 3101
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3102
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3103
		spin_unlock_irq(&mctz->lock);
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3121 3122 3123 3124 3125 3126
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3127 3128
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3129 3130
	bool ret;

3131
	/*
3132 3133 3134 3135
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3136
	 */
3137 3138 3139 3140 3141 3142
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3143 3144
}

3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3155 3156
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3157
	/* try to free all pages in this cgroup */
3158
	while (nr_retries && page_counter_read(&memcg->memory)) {
3159
		int progress;
3160

3161 3162 3163
		if (signal_pending(current))
			return -EINTR;

3164 3165
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3166
		if (!progress) {
3167
			nr_retries--;
3168
			/* maybe some writeback is necessary */
3169
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3170
		}
3171 3172

	}
3173 3174

	return 0;
3175 3176
}

3177 3178 3179
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3180
{
3181
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3182

3183 3184
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3185
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3186 3187
}

3188 3189
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3190
{
3191
	return mem_cgroup_from_css(css)->use_hierarchy;
3192 3193
}

3194 3195
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3196 3197
{
	int retval = 0;
3198
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3199
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3200

3201
	mutex_lock(&memcg_create_mutex);
3202 3203 3204 3205

	if (memcg->use_hierarchy == val)
		goto out;

3206
	/*
3207
	 * If parent's use_hierarchy is set, we can't make any modifications
3208 3209 3210 3211 3212 3213
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3214
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3215
				(val == 1 || val == 0)) {
3216
		if (!memcg_has_children(memcg))
3217
			memcg->use_hierarchy = val;
3218 3219 3220 3221
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3222 3223

out:
3224
	mutex_unlock(&memcg_create_mutex);
3225 3226 3227 3228

	return retval;
}

3229 3230
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3248 3249 3250 3251 3252 3253
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3254
		if (!swap)
3255
			val = page_counter_read(&memcg->memory);
3256
		else
3257
			val = page_counter_read(&memcg->memsw);
3258 3259 3260 3261
	}
	return val << PAGE_SHIFT;
}

3262 3263 3264 3265 3266 3267 3268
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3269

3270
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3271
			       struct cftype *cft)
B
Balbir Singh 已提交
3272
{
3273
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3274
	struct page_counter *counter;
3275

3276
	switch (MEMFILE_TYPE(cft->private)) {
3277
	case _MEM:
3278 3279
		counter = &memcg->memory;
		break;
3280
	case _MEMSWAP:
3281 3282
		counter = &memcg->memsw;
		break;
3283
	case _KMEM:
3284
		counter = &memcg->kmem;
3285
		break;
3286 3287 3288
	default:
		BUG();
	}
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3308
}
3309 3310

#ifdef CONFIG_MEMCG_KMEM
3311 3312
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3313 3314 3315 3316 3317 3318 3319
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3332
	mutex_lock(&memcg_create_mutex);
3333 3334
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3335 3336 3337 3338
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3339

3340
	memcg_id = memcg_alloc_cache_id();
3341 3342 3343 3344 3345 3346
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3347 3348
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3349
	 */
3350
	err = page_counter_limit(&memcg->kmem, nr_pages);
3351 3352 3353 3354
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3355 3356
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3357 3358 3359
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3360
	memcg->kmemcg_id = memcg_id;
3361
out:
3362 3363 3364 3365
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3366
				   unsigned long limit)
3367 3368 3369
{
	int ret;

3370
	mutex_lock(&memcg_limit_mutex);
3371
	if (!memcg_kmem_is_active(memcg))
3372
		ret = memcg_activate_kmem(memcg, limit);
3373
	else
3374 3375
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3376 3377 3378
	return ret;
}

3379
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3380
{
3381
	int ret = 0;
3382
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3383

3384 3385
	if (!parent)
		return 0;
3386

3387
	mutex_lock(&memcg_limit_mutex);
3388
	/*
3389 3390
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3391
	 */
3392
	if (memcg_kmem_is_active(parent))
3393 3394
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3395
	return ret;
3396
}
3397 3398
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3399
				   unsigned long limit)
3400 3401 3402
{
	return -EINVAL;
}
3403
#endif /* CONFIG_MEMCG_KMEM */
3404

3405 3406 3407 3408
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3409 3410
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3411
{
3412
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3413
	unsigned long nr_pages;
3414 3415
	int ret;

3416
	buf = strstrip(buf);
3417 3418 3419
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3420

3421
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3422
	case RES_LIMIT:
3423 3424 3425 3426
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3427 3428 3429
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3430
			break;
3431 3432
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3433
			break;
3434 3435 3436 3437
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3438
		break;
3439 3440 3441
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3442 3443
		break;
	}
3444
	return ret ?: nbytes;
B
Balbir Singh 已提交
3445 3446
}

3447 3448
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3449
{
3450
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3451
	struct page_counter *counter;
3452

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3466

3467
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3468
	case RES_MAX_USAGE:
3469
		page_counter_reset_watermark(counter);
3470 3471
		break;
	case RES_FAILCNT:
3472
		counter->failcnt = 0;
3473
		break;
3474 3475
	default:
		BUG();
3476
	}
3477

3478
	return nbytes;
3479 3480
}

3481
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3482 3483
					struct cftype *cft)
{
3484
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3485 3486
}

3487
#ifdef CONFIG_MMU
3488
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3489 3490
					struct cftype *cft, u64 val)
{
3491
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3492 3493 3494

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3495

3496
	/*
3497 3498 3499 3500
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3501
	 */
3502
	memcg->move_charge_at_immigrate = val;
3503 3504
	return 0;
}
3505
#else
3506
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3507 3508 3509 3510 3511
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3512

3513
#ifdef CONFIG_NUMA
3514
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3515
{
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3528
	int nid;
3529
	unsigned long nr;
3530
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3531

3532 3533 3534 3535 3536 3537 3538 3539 3540
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3541 3542
	}

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3558 3559 3560 3561 3562 3563
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3564
static int memcg_stat_show(struct seq_file *m, void *v)
3565
{
3566
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3567
	unsigned long memory, memsw;
3568 3569
	struct mem_cgroup *mi;
	unsigned int i;
3570

3571 3572
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3573
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3574
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3575
			continue;
3576 3577
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3578
	}
L
Lee Schermerhorn 已提交
3579

3580 3581 3582 3583 3584 3585 3586 3587
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3588
	/* Hierarchical information */
3589 3590 3591 3592
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3593
	}
3594 3595 3596 3597 3598
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3599

3600 3601 3602
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3603
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3604
			continue;
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3625
	}
K
KAMEZAWA Hiroyuki 已提交
3626

K
KOSAKI Motohiro 已提交
3627 3628 3629 3630
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3631
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3632 3633 3634 3635 3636
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3637
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3638
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3639

3640 3641 3642 3643
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3644
			}
3645 3646 3647 3648
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3649 3650 3651
	}
#endif

3652 3653 3654
	return 0;
}

3655 3656
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3657
{
3658
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3659

3660
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3661 3662
}

3663 3664
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3665
{
3666
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3667

3668
	if (val > 100)
K
KOSAKI Motohiro 已提交
3669 3670
		return -EINVAL;

3671
	if (css->parent)
3672 3673 3674
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3675

K
KOSAKI Motohiro 已提交
3676 3677 3678
	return 0;
}

3679 3680 3681
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3682
	unsigned long usage;
3683 3684 3685 3686
	int i;

	rcu_read_lock();
	if (!swap)
3687
		t = rcu_dereference(memcg->thresholds.primary);
3688
	else
3689
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3690 3691 3692 3693

	if (!t)
		goto unlock;

3694
	usage = mem_cgroup_usage(memcg, swap);
3695 3696

	/*
3697
	 * current_threshold points to threshold just below or equal to usage.
3698 3699 3700
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3701
	i = t->current_threshold;
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3725
	t->current_threshold = i - 1;
3726 3727 3728 3729 3730 3731
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3732 3733 3734 3735 3736 3737 3738
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3739 3740 3741 3742 3743 3744 3745
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3746 3747 3748 3749 3750 3751 3752
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3753 3754
}

3755
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3756 3757 3758
{
	struct mem_cgroup_eventfd_list *ev;

3759 3760
	spin_lock(&memcg_oom_lock);

3761
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3762
		eventfd_signal(ev->eventfd, 1);
3763 3764

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3765 3766 3767
	return 0;
}

3768
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3769
{
K
KAMEZAWA Hiroyuki 已提交
3770 3771
	struct mem_cgroup *iter;

3772
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3773
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3774 3775
}

3776
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3777
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3778
{
3779 3780
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3781 3782
	unsigned long threshold;
	unsigned long usage;
3783
	int i, size, ret;
3784

3785
	ret = page_counter_memparse(args, &threshold);
3786 3787 3788 3789
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3790

3791
	if (type == _MEM) {
3792
		thresholds = &memcg->thresholds;
3793
		usage = mem_cgroup_usage(memcg, false);
3794
	} else if (type == _MEMSWAP) {
3795
		thresholds = &memcg->memsw_thresholds;
3796
		usage = mem_cgroup_usage(memcg, true);
3797
	} else
3798 3799 3800
		BUG();

	/* Check if a threshold crossed before adding a new one */
3801
	if (thresholds->primary)
3802 3803
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3804
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3805 3806

	/* Allocate memory for new array of thresholds */
3807
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3808
			GFP_KERNEL);
3809
	if (!new) {
3810 3811 3812
		ret = -ENOMEM;
		goto unlock;
	}
3813
	new->size = size;
3814 3815

	/* Copy thresholds (if any) to new array */
3816 3817
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3818
				sizeof(struct mem_cgroup_threshold));
3819 3820
	}

3821
	/* Add new threshold */
3822 3823
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3824 3825

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3826
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3827 3828 3829
			compare_thresholds, NULL);

	/* Find current threshold */
3830
	new->current_threshold = -1;
3831
	for (i = 0; i < size; i++) {
3832
		if (new->entries[i].threshold <= usage) {
3833
			/*
3834 3835
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3836 3837
			 * it here.
			 */
3838
			++new->current_threshold;
3839 3840
		} else
			break;
3841 3842
	}

3843 3844 3845 3846 3847
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3848

3849
	/* To be sure that nobody uses thresholds */
3850 3851 3852 3853 3854 3855 3856 3857
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3858
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3859 3860
	struct eventfd_ctx *eventfd, const char *args)
{
3861
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3862 3863
}

3864
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3865 3866
	struct eventfd_ctx *eventfd, const char *args)
{
3867
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3868 3869
}

3870
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3871
	struct eventfd_ctx *eventfd, enum res_type type)
3872
{
3873 3874
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3875
	unsigned long usage;
3876
	int i, j, size;
3877 3878

	mutex_lock(&memcg->thresholds_lock);
3879 3880

	if (type == _MEM) {
3881
		thresholds = &memcg->thresholds;
3882
		usage = mem_cgroup_usage(memcg, false);
3883
	} else if (type == _MEMSWAP) {
3884
		thresholds = &memcg->memsw_thresholds;
3885
		usage = mem_cgroup_usage(memcg, true);
3886
	} else
3887 3888
		BUG();

3889 3890 3891
	if (!thresholds->primary)
		goto unlock;

3892 3893 3894 3895
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3896 3897 3898
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3899 3900 3901
			size++;
	}

3902
	new = thresholds->spare;
3903

3904 3905
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3906 3907
		kfree(new);
		new = NULL;
3908
		goto swap_buffers;
3909 3910
	}

3911
	new->size = size;
3912 3913

	/* Copy thresholds and find current threshold */
3914 3915 3916
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3917 3918
			continue;

3919
		new->entries[j] = thresholds->primary->entries[i];
3920
		if (new->entries[j].threshold <= usage) {
3921
			/*
3922
			 * new->current_threshold will not be used
3923 3924 3925
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3926
			++new->current_threshold;
3927 3928 3929 3930
		}
		j++;
	}

3931
swap_buffers:
3932 3933
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3934 3935 3936 3937 3938 3939
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3940
	rcu_assign_pointer(thresholds->primary, new);
3941

3942
	/* To be sure that nobody uses thresholds */
3943
	synchronize_rcu();
3944
unlock:
3945 3946
	mutex_unlock(&memcg->thresholds_lock);
}
3947

3948
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3949 3950
	struct eventfd_ctx *eventfd)
{
3951
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3952 3953
}

3954
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3955 3956
	struct eventfd_ctx *eventfd)
{
3957
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3958 3959
}

3960
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3961
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3962 3963 3964 3965 3966 3967 3968
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3969
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3970 3971 3972 3973 3974

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3975
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3976
		eventfd_signal(eventfd, 1);
3977
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3978 3979 3980 3981

	return 0;
}

3982
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3983
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3984 3985 3986
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3987
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3988

3989
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3990 3991 3992 3993 3994 3995
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3996
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3997 3998
}

3999
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4000
{
4001
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4002

4003 4004
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4005 4006 4007
	return 0;
}

4008
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4009 4010
	struct cftype *cft, u64 val)
{
4011
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4012 4013

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4014
	if (!css->parent || !((val == 0) || (val == 1)))
4015 4016
		return -EINVAL;

4017
	memcg->oom_kill_disable = val;
4018
	if (!val)
4019
		memcg_oom_recover(memcg);
4020

4021 4022 4023
	return 0;
}

A
Andrew Morton 已提交
4024
#ifdef CONFIG_MEMCG_KMEM
4025
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4026
{
4027 4028 4029 4030 4031
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4032

4033
	return mem_cgroup_sockets_init(memcg, ss);
4034
}
4035

4036
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4037
{
4038
	memcg_destroy_kmem_caches(memcg);
4039
	mem_cgroup_sockets_destroy(memcg);
4040
}
4041
#else
4042
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4043 4044 4045
{
	return 0;
}
G
Glauber Costa 已提交
4046

4047 4048 4049
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4050 4051
#endif

4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4065 4066 4067 4068 4069
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4070
static void memcg_event_remove(struct work_struct *work)
4071
{
4072 4073
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4074
	struct mem_cgroup *memcg = event->memcg;
4075 4076 4077

	remove_wait_queue(event->wqh, &event->wait);

4078
	event->unregister_event(memcg, event->eventfd);
4079 4080 4081 4082 4083 4084

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4085
	css_put(&memcg->css);
4086 4087 4088 4089 4090 4091 4092
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4093 4094
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4095
{
4096 4097
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4098
	struct mem_cgroup *memcg = event->memcg;
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4111
		spin_lock(&memcg->event_list_lock);
4112 4113 4114 4115 4116 4117 4118 4119
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4120
		spin_unlock(&memcg->event_list_lock);
4121 4122 4123 4124 4125
	}

	return 0;
}

4126
static void memcg_event_ptable_queue_proc(struct file *file,
4127 4128
		wait_queue_head_t *wqh, poll_table *pt)
{
4129 4130
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4131 4132 4133 4134 4135 4136

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4137 4138
 * DO NOT USE IN NEW FILES.
 *
4139 4140 4141 4142 4143
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4144 4145
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4146
{
4147
	struct cgroup_subsys_state *css = of_css(of);
4148
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4149
	struct mem_cgroup_event *event;
4150 4151 4152 4153
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4154
	const char *name;
4155 4156 4157
	char *endp;
	int ret;

4158 4159 4160
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4161 4162
	if (*endp != ' ')
		return -EINVAL;
4163
	buf = endp + 1;
4164

4165
	cfd = simple_strtoul(buf, &endp, 10);
4166 4167
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4168
	buf = endp + 1;
4169 4170 4171 4172 4173

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4174
	event->memcg = memcg;
4175
	INIT_LIST_HEAD(&event->list);
4176 4177 4178
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4204 4205 4206 4207 4208
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4209 4210
	 *
	 * DO NOT ADD NEW FILES.
4211
	 */
A
Al Viro 已提交
4212
	name = cfile.file->f_path.dentry->d_name.name;
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4224 4225
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4226 4227 4228 4229 4230
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4231
	/*
4232 4233 4234
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4235
	 */
A
Al Viro 已提交
4236
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4237
					       &memory_cgrp_subsys);
4238
	ret = -EINVAL;
4239
	if (IS_ERR(cfile_css))
4240
		goto out_put_cfile;
4241 4242
	if (cfile_css != css) {
		css_put(cfile_css);
4243
		goto out_put_cfile;
4244
	}
4245

4246
	ret = event->register_event(memcg, event->eventfd, buf);
4247 4248 4249 4250 4251
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4252 4253 4254
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4255 4256 4257 4258

	fdput(cfile);
	fdput(efile);

4259
	return nbytes;
4260 4261

out_put_css:
4262
	css_put(css);
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4275 4276
static struct cftype mem_cgroup_files[] = {
	{
4277
		.name = "usage_in_bytes",
4278
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4279
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4280
	},
4281 4282
	{
		.name = "max_usage_in_bytes",
4283
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4284
		.write = mem_cgroup_reset,
4285
		.read_u64 = mem_cgroup_read_u64,
4286
	},
B
Balbir Singh 已提交
4287
	{
4288
		.name = "limit_in_bytes",
4289
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4290
		.write = mem_cgroup_write,
4291
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4292
	},
4293 4294 4295
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4296
		.write = mem_cgroup_write,
4297
		.read_u64 = mem_cgroup_read_u64,
4298
	},
B
Balbir Singh 已提交
4299 4300
	{
		.name = "failcnt",
4301
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4302
		.write = mem_cgroup_reset,
4303
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4304
	},
4305 4306
	{
		.name = "stat",
4307
		.seq_show = memcg_stat_show,
4308
	},
4309 4310
	{
		.name = "force_empty",
4311
		.write = mem_cgroup_force_empty_write,
4312
	},
4313 4314 4315 4316 4317
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4318
	{
4319
		.name = "cgroup.event_control",		/* XXX: for compat */
4320
		.write = memcg_write_event_control,
4321 4322 4323
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4324 4325 4326 4327 4328
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4329 4330 4331 4332 4333
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4334 4335
	{
		.name = "oom_control",
4336
		.seq_show = mem_cgroup_oom_control_read,
4337
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4338 4339
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4340 4341 4342
	{
		.name = "pressure_level",
	},
4343 4344 4345
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4346
		.seq_show = memcg_numa_stat_show,
4347 4348
	},
#endif
4349 4350 4351 4352
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4353
		.write = mem_cgroup_write,
4354
		.read_u64 = mem_cgroup_read_u64,
4355 4356 4357 4358
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4359
		.read_u64 = mem_cgroup_read_u64,
4360 4361 4362 4363
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4364
		.write = mem_cgroup_reset,
4365
		.read_u64 = mem_cgroup_read_u64,
4366 4367 4368 4369
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4370
		.write = mem_cgroup_reset,
4371
		.read_u64 = mem_cgroup_read_u64,
4372
	},
4373 4374 4375
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4376 4377 4378 4379
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4380 4381
	},
#endif
4382
#endif
4383
	{ },	/* terminate */
4384
};
4385

4386 4387 4388 4389 4390
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4391
		.read_u64 = mem_cgroup_read_u64,
4392 4393 4394 4395
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4396
		.write = mem_cgroup_reset,
4397
		.read_u64 = mem_cgroup_read_u64,
4398 4399 4400 4401
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4402
		.write = mem_cgroup_write,
4403
		.read_u64 = mem_cgroup_read_u64,
4404 4405 4406 4407
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4408
		.write = mem_cgroup_reset,
4409
		.read_u64 = mem_cgroup_read_u64,
4410 4411 4412 4413
	},
	{ },	/* terminate */
};
#endif
4414
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4415 4416
{
	struct mem_cgroup_per_node *pn;
4417
	struct mem_cgroup_per_zone *mz;
4418
	int zone, tmp = node;
4419 4420 4421 4422 4423 4424 4425 4426
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4427 4428
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4429
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4430 4431
	if (!pn)
		return 1;
4432 4433 4434

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4435
		lruvec_init(&mz->lruvec);
4436 4437
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4438
		mz->memcg = memcg;
4439
	}
4440
	memcg->nodeinfo[node] = pn;
4441 4442 4443
	return 0;
}

4444
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4445
{
4446
	kfree(memcg->nodeinfo[node]);
4447 4448
}

4449 4450
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4451
	struct mem_cgroup *memcg;
4452
	size_t size;
4453

4454 4455
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4456

4457
	memcg = kzalloc(size, GFP_KERNEL);
4458
	if (!memcg)
4459 4460
		return NULL;

4461 4462
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4463
		goto out_free;
4464 4465
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4466 4467

out_free:
4468
	kfree(memcg);
4469
	return NULL;
4470 4471
}

4472
/*
4473 4474 4475 4476 4477 4478 4479 4480
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4481
 */
4482 4483

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4484
{
4485
	int node;
4486

4487
	mem_cgroup_remove_from_trees(memcg);
4488 4489 4490 4491 4492 4493

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4494
	disarm_static_keys(memcg);
4495
	kfree(memcg);
4496
}
4497

4498 4499 4500
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4501
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4502
{
4503
	if (!memcg->memory.parent)
4504
		return NULL;
4505
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4506
}
G
Glauber Costa 已提交
4507
EXPORT_SYMBOL(parent_mem_cgroup);
4508

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4532
static struct cgroup_subsys_state * __ref
4533
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4534
{
4535
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4536
	long error = -ENOMEM;
4537
	int node;
B
Balbir Singh 已提交
4538

4539 4540
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4541
		return ERR_PTR(error);
4542

B
Bob Liu 已提交
4543
	for_each_node(node)
4544
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4545
			goto free_out;
4546

4547
	/* root ? */
4548
	if (parent_css == NULL) {
4549
		root_mem_cgroup = memcg;
4550
		page_counter_init(&memcg->memory, NULL);
4551
		memcg->soft_limit = PAGE_COUNTER_MAX;
4552 4553
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4554
	}
4555

4556 4557 4558 4559 4560
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4561
	vmpressure_init(&memcg->vmpressure);
4562 4563
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4564 4565 4566
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4567 4568 4569 4570 4571 4572 4573 4574 4575

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4576
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4577
{
4578
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4579
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4580
	int ret;
4581

4582
	if (css->id > MEM_CGROUP_ID_MAX)
4583 4584
		return -ENOSPC;

T
Tejun Heo 已提交
4585
	if (!parent)
4586 4587
		return 0;

4588
	mutex_lock(&memcg_create_mutex);
4589 4590 4591 4592 4593 4594

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4595
		page_counter_init(&memcg->memory, &parent->memory);
4596
		memcg->soft_limit = PAGE_COUNTER_MAX;
4597 4598
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4599

4600
		/*
4601 4602
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4603
		 */
4604
	} else {
4605
		page_counter_init(&memcg->memory, NULL);
4606
		memcg->soft_limit = PAGE_COUNTER_MAX;
4607 4608
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4609 4610 4611 4612 4613
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4614
		if (parent != root_mem_cgroup)
4615
			memory_cgrp_subsys.broken_hierarchy = true;
4616
	}
4617
	mutex_unlock(&memcg_create_mutex);
4618

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4631 4632
}

4633
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4634
{
4635
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4636
	struct mem_cgroup_event *event, *tmp;
4637 4638 4639 4640 4641 4642

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4643 4644
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4645 4646 4647
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4648
	spin_unlock(&memcg->event_list_lock);
4649

4650
	vmpressure_cleanup(&memcg->vmpressure);
4651 4652
}

4653
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4654
{
4655
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4656

4657
	memcg_destroy_kmem(memcg);
4658
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4659 4660
}

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4678 4679 4680
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4681
	memcg->soft_limit = PAGE_COUNTER_MAX;
4682 4683
}

4684
#ifdef CONFIG_MMU
4685
/* Handlers for move charge at task migration. */
4686
static int mem_cgroup_do_precharge(unsigned long count)
4687
{
4688
	int ret;
4689 4690

	/* Try a single bulk charge without reclaim first */
4691
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4692
	if (!ret) {
4693 4694 4695
		mc.precharge += count;
		return ret;
	}
4696
	if (ret == -EINTR) {
4697
		cancel_charge(root_mem_cgroup, count);
4698 4699
		return ret;
	}
4700 4701

	/* Try charges one by one with reclaim */
4702
	while (count--) {
4703
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4704 4705 4706
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4707 4708
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4709
		 */
4710
		if (ret == -EINTR)
4711
			cancel_charge(root_mem_cgroup, 1);
4712 4713
		if (ret)
			return ret;
4714
		mc.precharge++;
4715
		cond_resched();
4716
	}
4717
	return 0;
4718 4719 4720
}

/**
4721
 * get_mctgt_type - get target type of moving charge
4722 4723 4724
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4725
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4726 4727 4728 4729 4730 4731
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4732 4733 4734
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4735 4736 4737 4738 4739
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4740
	swp_entry_t	ent;
4741 4742 4743
};

enum mc_target_type {
4744
	MC_TARGET_NONE = 0,
4745
	MC_TARGET_PAGE,
4746
	MC_TARGET_SWAP,
4747 4748
};

D
Daisuke Nishimura 已提交
4749 4750
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4751
{
D
Daisuke Nishimura 已提交
4752
	struct page *page = vm_normal_page(vma, addr, ptent);
4753

D
Daisuke Nishimura 已提交
4754 4755 4756 4757
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
4758
		if (!move_anon())
D
Daisuke Nishimura 已提交
4759
			return NULL;
4760 4761
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4762 4763 4764 4765 4766 4767 4768
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4769
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4770 4771 4772 4773 4774 4775 4776 4777
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
4778 4779 4780 4781
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4782
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4783 4784 4785 4786 4787
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4788 4789 4790 4791 4792 4793 4794
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4795

4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
4809
	pgoff = linear_page_index(vma, addr);
4810 4811

	/* page is moved even if it's not RSS of this task(page-faulted). */
4812 4813
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4826
#endif
4827 4828 4829
	return page;
}

4830
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4831 4832 4833
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4834
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4835 4836 4837 4838 4839 4840
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4841
	else if (pte_none(ptent))
4842
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4843 4844

	if (!page && !ent.val)
4845
		return ret;
4846 4847
	if (page) {
		/*
4848
		 * Do only loose check w/o serialization.
4849
		 * mem_cgroup_move_account() checks the page is valid or
4850
		 * not under LRU exclusion.
4851
		 */
4852
		if (page->mem_cgroup == mc.from) {
4853 4854 4855 4856 4857 4858 4859
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4860 4861
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4862
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4863 4864 4865
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4866 4867 4868 4869
	}
	return ret;
}

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4883
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4884 4885
	if (!move_anon())
		return ret;
4886
	if (page->mem_cgroup == mc.from) {
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4903 4904 4905 4906 4907 4908 4909 4910
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4911
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4912 4913
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4914
		spin_unlock(ptl);
4915
		return 0;
4916
	}
4917

4918 4919
	if (pmd_trans_unstable(pmd))
		return 0;
4920 4921
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4922
		if (get_mctgt_type(vma, addr, *pte, NULL))
4923 4924 4925 4926
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4927 4928 4929
	return 0;
}

4930 4931 4932 4933 4934
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4935
	down_read(&mm->mmap_sem);
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4947
	up_read(&mm->mmap_sem);
4948 4949 4950 4951 4952 4953 4954 4955 4956

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4957 4958 4959 4960 4961
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4962 4963
}

4964 4965
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4966
{
4967 4968 4969
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4970
	/* we must uncharge all the leftover precharges from mc.to */
4971
	if (mc.precharge) {
4972
		cancel_charge(mc.to, mc.precharge);
4973 4974 4975 4976 4977 4978 4979
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4980
		cancel_charge(mc.from, mc.moved_charge);
4981
		mc.moved_charge = 0;
4982
	}
4983 4984 4985
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4986
		if (!mem_cgroup_is_root(mc.from))
4987
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4988

4989
		/*
4990 4991
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4992
		 */
4993
		if (!mem_cgroup_is_root(mc.to))
4994 4995
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4996
		css_put_many(&mc.from->css, mc.moved_swap);
4997

L
Li Zefan 已提交
4998
		/* we've already done css_get(mc.to) */
4999 5000
		mc.moved_swap = 0;
	}
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5014
	spin_lock(&mc.lock);
5015 5016
	mc.from = NULL;
	mc.to = NULL;
5017
	spin_unlock(&mc.lock);
5018 5019
}

5020
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5021
				 struct cgroup_taskset *tset)
5022
{
5023
	struct task_struct *p = cgroup_taskset_first(tset);
5024
	int ret = 0;
5025
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5026
	unsigned long move_charge_at_immigrate;
5027

5028 5029 5030 5031 5032 5033 5034
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5035 5036 5037
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5038
		VM_BUG_ON(from == memcg);
5039 5040 5041 5042 5043

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5044 5045 5046 5047
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5048
			VM_BUG_ON(mc.moved_charge);
5049
			VM_BUG_ON(mc.moved_swap);
5050

5051
			spin_lock(&mc.lock);
5052
			mc.from = from;
5053
			mc.to = memcg;
5054
			mc.immigrate_flags = move_charge_at_immigrate;
5055
			spin_unlock(&mc.lock);
5056
			/* We set mc.moving_task later */
5057 5058 5059 5060

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5061 5062
		}
		mmput(mm);
5063 5064 5065 5066
	}
	return ret;
}

5067
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5068
				     struct cgroup_taskset *tset)
5069
{
5070 5071
	if (mc.to)
		mem_cgroup_clear_mc();
5072 5073
}

5074 5075 5076
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5077
{
5078 5079 5080 5081
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5082 5083 5084
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5085

5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5096
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5097
		if (mc.precharge < HPAGE_PMD_NR) {
5098
			spin_unlock(ptl);
5099 5100 5101 5102 5103 5104 5105
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5106
							     mc.from, mc.to)) {
5107 5108 5109 5110 5111 5112 5113
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5114
		spin_unlock(ptl);
5115
		return 0;
5116 5117
	}

5118 5119
	if (pmd_trans_unstable(pmd))
		return 0;
5120 5121 5122 5123
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5124
		swp_entry_t ent;
5125 5126 5127 5128

		if (!mc.precharge)
			break;

5129
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5130 5131 5132 5133
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5134
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5135
				mc.precharge--;
5136 5137
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5138 5139
			}
			putback_lru_page(page);
5140
put:			/* get_mctgt_type() gets the page */
5141 5142
			put_page(page);
			break;
5143 5144
		case MC_TARGET_SWAP:
			ent = target.ent;
5145
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5146
				mc.precharge--;
5147 5148 5149
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5150
			break;
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5165
		ret = mem_cgroup_do_precharge(1);
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5178 5179 5180 5181 5182 5183 5184
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5216
	up_read(&mm->mmap_sem);
5217
	atomic_dec(&mc.from->moving_account);
5218 5219
}

5220
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5221
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5222
{
5223
	struct task_struct *p = cgroup_taskset_first(tset);
5224
	struct mm_struct *mm = get_task_mm(p);
5225 5226

	if (mm) {
5227 5228
		if (mc.to)
			mem_cgroup_move_charge(mm);
5229 5230
		mmput(mm);
	}
5231 5232
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5233
}
5234
#else	/* !CONFIG_MMU */
5235
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5236
				 struct cgroup_taskset *tset)
5237 5238 5239
{
	return 0;
}
5240
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5241
				     struct cgroup_taskset *tset)
5242 5243
{
}
5244
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5245
				 struct cgroup_taskset *tset)
5246 5247 5248
{
}
#endif
B
Balbir Singh 已提交
5249

5250 5251
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5252 5253
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5254
 */
5255
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5256 5257
{
	/*
5258
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5259 5260 5261
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5262
	if (cgroup_on_dfl(root_css->cgroup))
5263
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5264 5265
}

5266
struct cgroup_subsys memory_cgrp_subsys = {
5267
	.css_alloc = mem_cgroup_css_alloc,
5268
	.css_online = mem_cgroup_css_online,
5269 5270
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5271
	.css_reset = mem_cgroup_css_reset,
5272 5273
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5274
	.attach = mem_cgroup_move_task,
5275
	.bind = mem_cgroup_bind,
5276
	.legacy_cftypes = mem_cgroup_files,
5277
	.early_init = 0,
B
Balbir Singh 已提交
5278
};
5279

A
Andrew Morton 已提交
5280
#ifdef CONFIG_MEMCG_SWAP
5281 5282
static int __init enable_swap_account(char *s)
{
5283
	if (!strcmp(s, "1"))
5284
		really_do_swap_account = 1;
5285
	else if (!strcmp(s, "0"))
5286 5287 5288
		really_do_swap_account = 0;
	return 1;
}
5289
__setup("swapaccount=", enable_swap_account);
5290

5291 5292
static void __init memsw_file_init(void)
{
5293 5294
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5295 5296 5297 5298 5299 5300 5301 5302
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5303
}
5304

5305
#else
5306
static void __init enable_swap_cgroup(void)
5307 5308
{
}
5309
#endif
5310

5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5321
	struct mem_cgroup *memcg;
5322 5323 5324 5325 5326 5327 5328 5329
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

5330
	memcg = page->mem_cgroup;
5331 5332

	/* Readahead page, never charged */
5333
	if (!memcg)
5334 5335
		return;

5336
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5337
	VM_BUG_ON_PAGE(oldid, page);
5338 5339
	mem_cgroup_swap_statistics(memcg, true);

5340
	page->mem_cgroup = NULL;
5341

5342 5343 5344 5345 5346
	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5347

5348 5349
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5370
		if (!mem_cgroup_is_root(memcg))
5371
			page_counter_uncharge(&memcg->memsw, 1);
5372 5373 5374 5375 5376 5377 5378
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5414
		if (page->mem_cgroup)
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5475 5476
	commit_charge(page, memcg, lrucare);

5477 5478 5479 5480 5481
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5482 5483 5484 5485
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5527 5528 5529 5530
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5531
	unsigned long nr_pages = nr_anon + nr_file;
5532 5533
	unsigned long flags;

5534
	if (!mem_cgroup_is_root(memcg)) {
5535 5536 5537
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5538 5539
		memcg_oom_recover(memcg);
	}
5540 5541 5542 5543 5544 5545

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5546
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5547 5548
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5549 5550

	if (!mem_cgroup_is_root(memcg))
5551
		css_put_many(&memcg->css, nr_pages);
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5574
		if (!page->mem_cgroup)
5575 5576 5577 5578
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5579
		 * page->mem_cgroup at this point, we have fully
5580
		 * exclusive access to the page.
5581 5582
		 */

5583
		if (memcg != page->mem_cgroup) {
5584
			if (memcg) {
5585 5586 5587
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5588
			}
5589
			memcg = page->mem_cgroup;
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5603
		page->mem_cgroup = NULL;
5604 5605 5606 5607 5608

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5609 5610
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5611 5612
}

5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5625
	/* Don't touch page->lru of any random page, pre-check: */
5626
	if (!page->mem_cgroup)
5627 5628
		return;

5629 5630 5631
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5632

5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5644

5645 5646
	if (!list_empty(page_list))
		uncharge_list(page_list);
5647 5648 5649 5650 5651 5652
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5653
 * @lrucare: either or both pages might be on the LRU already
5654 5655 5656 5657 5658 5659 5660 5661
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5662
	struct mem_cgroup *memcg;
5663 5664 5665 5666 5667 5668 5669
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5670 5671
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5672 5673 5674 5675 5676

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5677
	if (newpage->mem_cgroup)
5678 5679
		return;

5680 5681 5682 5683 5684 5685
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5686
	memcg = oldpage->mem_cgroup;
5687
	if (!memcg)
5688 5689 5690 5691 5692
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5693
	oldpage->mem_cgroup = NULL;
5694 5695 5696 5697

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5698
	commit_charge(newpage, memcg, lrucare);
5699 5700
}

5701
/*
5702 5703 5704 5705 5706 5707
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5708 5709 5710 5711
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5712
	enable_swap_cgroup();
5713
	mem_cgroup_soft_limit_tree_init();
5714
	memcg_stock_init();
5715 5716 5717
	return 0;
}
subsys_initcall(mem_cgroup_init);