core.c 138.7 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/gpio/consumer.h>
28
#include <linux/of.h>
29
#include <linux/regmap.h>
30
#include <linux/regulator/of_regulator.h>
31 32 33
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
34
#include <linux/module.h>
35

36 37 38
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

39
#include "dummy.h"
40
#include "internal.h"
41

M
Mark Brown 已提交
42 43
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 45 46 47 48 49 50 51 52
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

53 54
static DEFINE_WW_CLASS(regulator_ww_class);
static DEFINE_MUTEX(regulator_nesting_mutex);
55 56
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_map_list);
57
static LIST_HEAD(regulator_ena_gpio_list);
58
static LIST_HEAD(regulator_supply_alias_list);
59
static bool has_full_constraints;
60

61 62
static struct dentry *debugfs_root;

63
/*
64 65 66 67 68 69
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
70
	const char *dev_name;   /* The dev_name() for the consumer */
71
	const char *supply;
72
	struct regulator_dev *regulator;
73 74
};

75 76 77 78 79 80 81
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
82
	struct gpio_desc *gpiod;
83 84 85 86 87
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * struct regulator_supply_alias
 *
 * Used to map lookups for a supply onto an alternative device.
 */
struct regulator_supply_alias {
	struct list_head list;
	struct device *src_dev;
	const char *src_supply;
	struct device *alias_dev;
	const char *alias_supply;
};

101
static int _regulator_is_enabled(struct regulator_dev *rdev);
102
static int _regulator_disable(struct regulator_dev *rdev);
103 104 105
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106
static int _notifier_call_chain(struct regulator_dev *rdev,
107
				  unsigned long event, void *data);
108 109
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
110 111
static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state);
112 113 114
static int regulator_set_voltage_rdev(struct regulator_dev *rdev,
				      int min_uV, int max_uV,
				      suspend_state_t state);
115 116 117
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
118
static void _regulator_put(struct regulator *regulator);
119

120 121 122 123 124 125 126 127 128 129
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

130 131
static bool have_full_constraints(void)
{
132
	return has_full_constraints || of_have_populated_dt();
133 134
}

135 136 137 138 139 140 141 142 143 144 145 146 147
static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
{
	if (!rdev->constraints) {
		rdev_err(rdev, "no constraints\n");
		return false;
	}

	if (rdev->constraints->valid_ops_mask & ops)
		return true;

	return false;
}

148 149 150 151 152 153 154 155
static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
{
	if (rdev && rdev->supply)
		return rdev->supply->rdev;

	return NULL;
}

156 157 158
/**
 * regulator_lock_nested - lock a single regulator
 * @rdev:		regulator source
159
 * @ww_ctx:		w/w mutex acquire context
160 161 162 163 164 165 166
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
167 168
static inline int regulator_lock_nested(struct regulator_dev *rdev,
					struct ww_acquire_ctx *ww_ctx)
169
{
170 171 172 173 174 175 176
	bool lock = false;
	int ret = 0;

	mutex_lock(&regulator_nesting_mutex);

	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
		if (rdev->mutex_owner == current)
177
			rdev->ref_cnt++;
178 179 180 181 182 183 184
		else
			lock = true;

		if (lock) {
			mutex_unlock(&regulator_nesting_mutex);
			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
			mutex_lock(&regulator_nesting_mutex);
185
		}
186 187
	} else {
		lock = true;
188 189
	}

190 191 192 193 194 195 196 197
	if (lock && ret != -EDEADLK) {
		rdev->ref_cnt++;
		rdev->mutex_owner = current;
	}

	mutex_unlock(&regulator_nesting_mutex);

	return ret;
198 199
}

200 201 202 203 204 205 206 207 208 209 210
/**
 * regulator_lock - lock a single regulator
 * @rdev:		regulator source
 *
 * This function can be called many times by one task on
 * a single regulator and its mutex will be locked only
 * once. If a task, which is calling this function is other
 * than the one, which initially locked the mutex, it will
 * wait on mutex.
 */
void regulator_lock(struct regulator_dev *rdev)
211
{
212
	regulator_lock_nested(rdev, NULL);
213 214 215 216 217 218 219 220 221
}

/**
 * regulator_unlock - unlock a single regulator
 * @rdev:		regulator_source
 *
 * This function unlocks the mutex when the
 * reference counter reaches 0.
 */
222
void regulator_unlock(struct regulator_dev *rdev)
223
{
224
	mutex_lock(&regulator_nesting_mutex);
225

226 227 228
	if (--rdev->ref_cnt == 0) {
		rdev->mutex_owner = NULL;
		ww_mutex_unlock(&rdev->mutex);
229
	}
230 231 232 233

	WARN_ON_ONCE(rdev->ref_cnt < 0);

	mutex_unlock(&regulator_nesting_mutex);
234 235
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static bool regulator_supply_is_couple(struct regulator_dev *rdev)
{
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];

		if (rdev->supply->rdev == c_rdev)
			return true;
	}

	return false;
}

251 252
static void regulator_unlock_recursive(struct regulator_dev *rdev,
				       unsigned int n_coupled)
253
{
254
	struct regulator_dev *c_rdev;
255
	int i;
256

257 258
	for (i = n_coupled; i > 0; i--) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
259 260 261 262

		if (!c_rdev)
			continue;

263
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
264 265 266
			regulator_unlock_recursive(
					c_rdev->supply->rdev,
					c_rdev->coupling_desc.n_coupled);
267

268 269
		regulator_unlock(c_rdev);
	}
270 271
}

272 273 274 275
static int regulator_lock_recursive(struct regulator_dev *rdev,
				    struct regulator_dev **new_contended_rdev,
				    struct regulator_dev **old_contended_rdev,
				    struct ww_acquire_ctx *ww_ctx)
276
{
277
	struct regulator_dev *c_rdev;
278
	int i, err;
279

280 281
	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282

283 284
		if (!c_rdev)
			continue;
285

286 287 288 289 290 291 292
		if (c_rdev != *old_contended_rdev) {
			err = regulator_lock_nested(c_rdev, ww_ctx);
			if (err) {
				if (err == -EDEADLK) {
					*new_contended_rdev = c_rdev;
					goto err_unlock;
				}
293

294 295 296 297 298 299 300
				/* shouldn't happen */
				WARN_ON_ONCE(err != -EALREADY);
			}
		} else {
			*old_contended_rdev = NULL;
		}

301
		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
302 303 304 305 306 307 308 309 310
			err = regulator_lock_recursive(c_rdev->supply->rdev,
						       new_contended_rdev,
						       old_contended_rdev,
						       ww_ctx);
			if (err) {
				regulator_unlock(c_rdev);
				goto err_unlock;
			}
		}
311
	}
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	return 0;

err_unlock:
	regulator_unlock_recursive(rdev, i);

	return err;
}

/**
 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 *				regulators
 * @rdev:			regulator source
 * @ww_ctx:			w/w mutex acquire context
 *
 * Unlock all regulators related with rdev by coupling or suppling.
 */
static void regulator_unlock_dependent(struct regulator_dev *rdev,
				       struct ww_acquire_ctx *ww_ctx)
{
	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
	ww_acquire_fini(ww_ctx);
334 335
}

336 337 338
/**
 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 * @rdev:			regulator source
339
 * @ww_ctx:			w/w mutex acquire context
340 341 342 343
 *
 * This function as a wrapper on regulator_lock_recursive(), which locks
 * all regulators related with rdev by coupling or suppling.
 */
344 345
static void regulator_lock_dependent(struct regulator_dev *rdev,
				     struct ww_acquire_ctx *ww_ctx)
346
{
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

	mutex_lock(&regulator_list_mutex);

	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_lock_recursive(rdev,
					       &new_contended_rdev,
					       &old_contended_rdev,
					       ww_ctx);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);

	mutex_unlock(&regulator_list_mutex);
375 376
}

377 378 379 380 381 382
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
383
 * returns the device node corresponding to the regulator if found, else
384 385 386 387 388 389 390 391 392 393 394 395 396
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
397 398
		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
				prop_name, dev->of_node);
399 400 401 402 403
		return NULL;
	}
	return regnode;
}

404 405 406 407 408 409
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

410
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
411
		rdev_err(rdev, "voltage operation not allowed\n");
412 413 414 415 416 417 418 419
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

420 421
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
422
			 *min_uV, *max_uV);
423
		return -EINVAL;
424
	}
425 426 427 428

	return 0;
}

429 430 431 432 433 434
/* return 0 if the state is valid */
static int regulator_check_states(suspend_state_t state)
{
	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
}

435 436 437 438
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
439 440
				     int *min_uV, int *max_uV,
				     suspend_state_t state)
441 442
{
	struct regulator *regulator;
443
	struct regulator_voltage *voltage;
444 445

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
446
		voltage = &regulator->voltage[state];
447 448 449 450
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
451
		if (!voltage->min_uV && !voltage->max_uV)
452 453
			continue;

454 455 456 457
		if (*max_uV > voltage->max_uV)
			*max_uV = voltage->max_uV;
		if (*min_uV < voltage->min_uV)
			*min_uV = voltage->min_uV;
458 459
	}

460
	if (*min_uV > *max_uV) {
461 462
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
463
		return -EINVAL;
464
	}
465 466 467 468

	return 0;
}

469 470 471 472 473 474
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

475
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
476
		rdev_err(rdev, "current operation not allowed\n");
477 478 479 480 481 482 483 484
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

485 486
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
487
			 *min_uA, *max_uA);
488
		return -EINVAL;
489
	}
490 491 492 493 494

	return 0;
}

/* operating mode constraint check */
495 496
static int regulator_mode_constrain(struct regulator_dev *rdev,
				    unsigned int *mode)
497
{
498
	switch (*mode) {
499 500 501 502 503 504
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
505
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
506 507 508
		return -EINVAL;
	}

509
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
510
		rdev_err(rdev, "mode operation not allowed\n");
511 512
		return -EPERM;
	}
513 514 515 516 517 518 519 520

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
521
	}
522 523

	return -EINVAL;
524 525
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
{
	if (rdev->constraints == NULL)
		return NULL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return &rdev->constraints->state_standby;
	case PM_SUSPEND_MEM:
		return &rdev->constraints->state_mem;
	case PM_SUSPEND_MAX:
		return &rdev->constraints->state_disk;
	default:
		return NULL;
	}
}

544 545 546
static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
547
	struct regulator_dev *rdev = dev_get_drvdata(dev);
548 549
	ssize_t ret;

550
	regulator_lock(rdev);
551
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
552
	regulator_unlock(rdev);
553 554 555

	return ret;
}
556
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
557 558 559 560

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
561
	struct regulator_dev *rdev = dev_get_drvdata(dev);
562 563 564

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
565
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
566

567 568
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
569 570 571
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

572
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
573
}
574
static DEVICE_ATTR_RO(name);
575

576
static const char *regulator_opmode_to_str(int mode)
577 578 579
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
580
		return "fast";
581
	case REGULATOR_MODE_NORMAL:
582
		return "normal";
583
	case REGULATOR_MODE_IDLE:
584
		return "idle";
585
	case REGULATOR_MODE_STANDBY:
586
		return "standby";
587
	}
588 589 590 591 592 593
	return "unknown";
}

static ssize_t regulator_print_opmode(char *buf, int mode)
{
	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
594 595
}

D
David Brownell 已提交
596 597
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
598
{
599
	struct regulator_dev *rdev = dev_get_drvdata(dev);
600

D
David Brownell 已提交
601 602
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
603
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
604 605 606

static ssize_t regulator_print_state(char *buf, int state)
{
607 608 609 610 611 612 613 614
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
615 616 617 618
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
619 620
	ssize_t ret;

621
	regulator_lock(rdev);
622
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
623
	regulator_unlock(rdev);
D
David Brownell 已提交
624

625
	return ret;
D
David Brownell 已提交
626
}
627
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
628

D
David Brownell 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
662 663 664
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
665 666 667
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
668 669 670 671 672 673 674 675
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

676 677 678
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
679
	struct regulator_dev *rdev = dev_get_drvdata(dev);
680 681 682 683 684 685

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
686
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
687 688 689 690

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
691
	struct regulator_dev *rdev = dev_get_drvdata(dev);
692 693 694 695 696 697

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
698
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
699 700 701 702

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
703
	struct regulator_dev *rdev = dev_get_drvdata(dev);
704 705 706 707 708 709

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
710
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
711 712 713 714

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
715
	struct regulator_dev *rdev = dev_get_drvdata(dev);
716 717 718 719 720 721

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
722
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
723 724 725 726

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
727
	struct regulator_dev *rdev = dev_get_drvdata(dev);
728 729 730
	struct regulator *regulator;
	int uA = 0;

731
	regulator_lock(rdev);
732
	list_for_each_entry(regulator, &rdev->consumer_list, list)
733
		uA += regulator->uA_load;
734
	regulator_unlock(rdev);
735 736
	return sprintf(buf, "%d\n", uA);
}
737
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
738

739 740
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
741
{
742
	struct regulator_dev *rdev = dev_get_drvdata(dev);
743 744
	return sprintf(buf, "%d\n", rdev->use_count);
}
745
static DEVICE_ATTR_RO(num_users);
746

747 748
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
749
{
750
	struct regulator_dev *rdev = dev_get_drvdata(dev);
751 752 753 754 755 756 757 758 759

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
760
static DEVICE_ATTR_RO(type);
761 762 763 764

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
765
	struct regulator_dev *rdev = dev_get_drvdata(dev);
766 767 768

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
769 770
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
771 772 773 774

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
775
	struct regulator_dev *rdev = dev_get_drvdata(dev);
776 777 778

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
779 780
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
781 782 783 784

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
785
	struct regulator_dev *rdev = dev_get_drvdata(dev);
786 787 788

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
789 790
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
791 792 793 794

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
795
	struct regulator_dev *rdev = dev_get_drvdata(dev);
796

D
David Brownell 已提交
797 798
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
799
}
800 801
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
802 803 804 805

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
806
	struct regulator_dev *rdev = dev_get_drvdata(dev);
807

D
David Brownell 已提交
808 809
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
810
}
811 812
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
813 814 815 816

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
817
	struct regulator_dev *rdev = dev_get_drvdata(dev);
818

D
David Brownell 已提交
819 820
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
821
}
822 823
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
824 825 826 827

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
828
	struct regulator_dev *rdev = dev_get_drvdata(dev);
829

D
David Brownell 已提交
830 831
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
832
}
833 834
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
835 836 837 838

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
839
	struct regulator_dev *rdev = dev_get_drvdata(dev);
840

D
David Brownell 已提交
841 842
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
843
}
844 845
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
846 847 848 849

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
850
	struct regulator_dev *rdev = dev_get_drvdata(dev);
851

D
David Brownell 已提交
852 853
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
854
}
855 856 857
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
879

880 881
/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
882
static int drms_uA_update(struct regulator_dev *rdev)
883 884 885 886 887
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

888
	lockdep_assert_held_once(&rdev->mutex.base);
889

890 891 892 893
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
894
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
895 896
		return 0;

897 898
	if (!rdev->desc->ops->get_optimum_mode &&
	    !rdev->desc->ops->set_load)
899 900
		return 0;

901 902
	if (!rdev->desc->ops->set_mode &&
	    !rdev->desc->ops->set_load)
903
		return -EINVAL;
904 905 906

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
907
		current_uA += sibling->uA_load;
908

909 910
	current_uA += rdev->constraints->system_load;

911 912 913 914 915 916
	if (rdev->desc->ops->set_load) {
		/* set the optimum mode for our new total regulator load */
		err = rdev->desc->ops->set_load(rdev, current_uA);
		if (err < 0)
			rdev_err(rdev, "failed to set load %d\n", current_uA);
	} else {
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
		/* get output voltage */
		output_uV = _regulator_get_voltage(rdev);
		if (output_uV <= 0) {
			rdev_err(rdev, "invalid output voltage found\n");
			return -EINVAL;
		}

		/* get input voltage */
		input_uV = 0;
		if (rdev->supply)
			input_uV = regulator_get_voltage(rdev->supply);
		if (input_uV <= 0)
			input_uV = rdev->constraints->input_uV;
		if (input_uV <= 0) {
			rdev_err(rdev, "invalid input voltage found\n");
			return -EINVAL;
		}

935 936 937 938 939 940 941 942 943 944 945
		/* now get the optimum mode for our new total regulator load */
		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
							 output_uV, current_uA);

		/* check the new mode is allowed */
		err = regulator_mode_constrain(rdev, &mode);
		if (err < 0) {
			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
				 current_uA, input_uV, output_uV);
			return err;
		}
946

947 948 949
		err = rdev->desc->ops->set_mode(rdev, mode);
		if (err < 0)
			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
950 951 952
	}

	return err;
953 954 955
}

static int suspend_set_state(struct regulator_dev *rdev,
956
				    suspend_state_t state)
957 958
{
	int ret = 0;
959 960 961 962
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
M
Mark Brown 已提交
963
		return 0;
964 965

	/* If we have no suspend mode configration don't set anything;
966 967
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
968
	 */
969 970
	if (rstate->enabled != ENABLE_IN_SUSPEND &&
	    rstate->enabled != DISABLE_IN_SUSPEND) {
971 972
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
973
			rdev_warn(rdev, "No configuration\n");
974 975 976
		return 0;
	}

977 978
	if (rstate->enabled == ENABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_enable)
979
		ret = rdev->desc->ops->set_suspend_enable(rdev);
980 981
	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
		rdev->desc->ops->set_suspend_disable)
982
		ret = rdev->desc->ops->set_suspend_disable(rdev);
983 984 985
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

986
	if (ret < 0) {
987
		rdev_err(rdev, "failed to enabled/disable\n");
988 989 990 991 992 993
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
994
			rdev_err(rdev, "failed to set voltage\n");
995 996 997 998 999 1000 1001
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
1002
			rdev_err(rdev, "failed to set mode\n");
1003 1004 1005 1006
			return ret;
		}
	}

1007
	return ret;
1008 1009 1010 1011 1012
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
1013
	char buf[160] = "";
1014
	size_t len = sizeof(buf) - 1;
1015 1016
	int count = 0;
	int ret;
1017

1018
	if (constraints->min_uV && constraints->max_uV) {
1019
		if (constraints->min_uV == constraints->max_uV)
1020 1021
			count += scnprintf(buf + count, len - count, "%d mV ",
					   constraints->min_uV / 1000);
1022
		else
1023 1024 1025 1026
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mV ",
					   constraints->min_uV / 1000,
					   constraints->max_uV / 1000);
1027 1028 1029 1030 1031 1032
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
1033 1034
			count += scnprintf(buf + count, len - count,
					   "at %d mV ", ret / 1000);
1035 1036
	}

1037
	if (constraints->uV_offset)
1038 1039
		count += scnprintf(buf + count, len - count, "%dmV offset ",
				   constraints->uV_offset / 1000);
1040

1041
	if (constraints->min_uA && constraints->max_uA) {
1042
		if (constraints->min_uA == constraints->max_uA)
1043 1044
			count += scnprintf(buf + count, len - count, "%d mA ",
					   constraints->min_uA / 1000);
1045
		else
1046 1047 1048 1049
			count += scnprintf(buf + count, len - count,
					   "%d <--> %d mA ",
					   constraints->min_uA / 1000,
					   constraints->max_uA / 1000);
1050 1051 1052 1053 1054 1055
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
1056 1057
			count += scnprintf(buf + count, len - count,
					   "at %d mA ", ret / 1000);
1058
	}
1059

1060
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1061
		count += scnprintf(buf + count, len - count, "fast ");
1062
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1063
		count += scnprintf(buf + count, len - count, "normal ");
1064
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1065
		count += scnprintf(buf + count, len - count, "idle ");
1066
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1067
		count += scnprintf(buf + count, len - count, "standby");
1068

1069
	if (!count)
1070
		scnprintf(buf, len, "no parameters");
1071

1072
	rdev_dbg(rdev, "%s\n", buf);
1073 1074

	if ((constraints->min_uV != constraints->max_uV) &&
1075
	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1076 1077
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1078 1079
}

1080
static int machine_constraints_voltage(struct regulator_dev *rdev,
1081
	struct regulation_constraints *constraints)
1082
{
1083
	const struct regulator_ops *ops = rdev->desc->ops;
1084 1085 1086 1087
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
1088 1089
	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
		int target_min, target_max;
1090
		int current_uV = _regulator_get_voltage(rdev);
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

		if (current_uV == -ENOTRECOVERABLE) {
			/* This regulator can't be read and must be initted */
			rdev_info(rdev, "Setting %d-%duV\n",
				  rdev->constraints->min_uV,
				  rdev->constraints->max_uV);
			_regulator_do_set_voltage(rdev,
						  rdev->constraints->min_uV,
						  rdev->constraints->max_uV);
			current_uV = _regulator_get_voltage(rdev);
		}

1103
		if (current_uV < 0) {
1104 1105 1106
			rdev_err(rdev,
				 "failed to get the current voltage(%d)\n",
				 current_uV);
1107 1108
			return current_uV;
		}
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

		/*
		 * If we're below the minimum voltage move up to the
		 * minimum voltage, if we're above the maximum voltage
		 * then move down to the maximum.
		 */
		target_min = current_uV;
		target_max = current_uV;

		if (current_uV < rdev->constraints->min_uV) {
			target_min = rdev->constraints->min_uV;
			target_max = rdev->constraints->min_uV;
		}

		if (current_uV > rdev->constraints->max_uV) {
			target_min = rdev->constraints->max_uV;
			target_max = rdev->constraints->max_uV;
		}

		if (target_min != current_uV || target_max != current_uV) {
1129 1130
			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
				  current_uV, target_min, target_max);
1131
			ret = _regulator_do_set_voltage(
1132
				rdev, target_min, target_max);
1133 1134
			if (ret < 0) {
				rdev_err(rdev,
1135 1136
					"failed to apply %d-%duV constraint(%d)\n",
					target_min, target_max, ret);
1137 1138
				return ret;
			}
1139
		}
1140
	}
1141

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

1153 1154
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
1155
		if (count == 1 && !cmin) {
1156
			cmin = 1;
1157
			cmax = INT_MAX;
1158 1159
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
1160 1161
		}

1162 1163
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
1164
			return 0;
1165

1166
		/* else require explicit machine-level constraints */
1167
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1168
			rdev_err(rdev, "invalid voltage constraints\n");
1169
			return -EINVAL;
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
1189 1190 1191
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
1192
			return -EINVAL;
1193 1194 1195 1196
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
1197 1198
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
1199 1200 1201
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
1202 1203
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
1204 1205 1206 1207
			constraints->max_uV = max_uV;
		}
	}

1208 1209 1210
	return 0;
}

1211 1212 1213
static int machine_constraints_current(struct regulator_dev *rdev,
	struct regulation_constraints *constraints)
{
1214
	const struct regulator_ops *ops = rdev->desc->ops;
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	int ret;

	if (!constraints->min_uA && !constraints->max_uA)
		return 0;

	if (constraints->min_uA > constraints->max_uA) {
		rdev_err(rdev, "Invalid current constraints\n");
		return -EINVAL;
	}

	if (!ops->set_current_limit || !ops->get_current_limit) {
		rdev_warn(rdev, "Operation of current configuration missing\n");
		return 0;
	}

	/* Set regulator current in constraints range */
	ret = ops->set_current_limit(rdev, constraints->min_uA,
			constraints->max_uA);
	if (ret < 0) {
		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
		return ret;
	}

	return 0;
}

1241 1242
static int _regulator_do_enable(struct regulator_dev *rdev);

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
1255
	const struct regulation_constraints *constraints)
1256 1257
{
	int ret = 0;
1258
	const struct regulator_ops *ops = rdev->desc->ops;
1259

1260 1261 1262 1263 1264 1265
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
1266 1267
	if (!rdev->constraints)
		return -ENOMEM;
1268

1269
	ret = machine_constraints_voltage(rdev, rdev->constraints);
1270
	if (ret != 0)
1271
		return ret;
1272

1273
	ret = machine_constraints_current(rdev, rdev->constraints);
1274
	if (ret != 0)
1275
		return ret;
1276

1277 1278 1279 1280 1281
	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
		ret = ops->set_input_current_limit(rdev,
						   rdev->constraints->ilim_uA);
		if (ret < 0) {
			rdev_err(rdev, "failed to set input limit\n");
1282
			return ret;
1283 1284 1285
		}
	}

1286
	/* do we need to setup our suspend state */
1287
	if (rdev->constraints->initial_state) {
1288
		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1289
		if (ret < 0) {
1290
			rdev_err(rdev, "failed to set suspend state\n");
1291
			return ret;
1292 1293
		}
	}
1294

1295
	if (rdev->constraints->initial_mode) {
1296
		if (!ops->set_mode) {
1297
			rdev_err(rdev, "no set_mode operation\n");
1298
			return -EINVAL;
1299 1300
		}

1301
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1302
		if (ret < 0) {
1303
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1304
			return ret;
1305 1306 1307
		}
	}

1308 1309 1310
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
1311 1312 1313
	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
		ret = _regulator_do_enable(rdev);
		if (ret < 0 && ret != -EINVAL) {
1314
			rdev_err(rdev, "failed to enable\n");
1315
			return ret;
1316 1317 1318
		}
	}

1319 1320
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
1321 1322 1323
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
1324
			return ret;
1325 1326 1327
		}
	}

S
Stephen Boyd 已提交
1328 1329 1330 1331
	if (rdev->constraints->pull_down && ops->set_pull_down) {
		ret = ops->set_pull_down(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set pull down\n");
1332
			return ret;
S
Stephen Boyd 已提交
1333 1334 1335
		}
	}

S
Stephen Boyd 已提交
1336 1337 1338 1339
	if (rdev->constraints->soft_start && ops->set_soft_start) {
		ret = ops->set_soft_start(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set soft start\n");
1340
			return ret;
S
Stephen Boyd 已提交
1341 1342 1343
		}
	}

1344 1345 1346 1347 1348
	if (rdev->constraints->over_current_protection
		&& ops->set_over_current_protection) {
		ret = ops->set_over_current_protection(rdev);
		if (ret < 0) {
			rdev_err(rdev, "failed to set over current protection\n");
1349
			return ret;
1350 1351 1352
		}
	}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
		bool ad_state = (rdev->constraints->active_discharge ==
			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;

		ret = ops->set_active_discharge(rdev, ad_state);
		if (ret < 0) {
			rdev_err(rdev, "failed to set active discharge\n");
			return ret;
		}
	}

1364
	print_constraints(rdev);
1365
	return 0;
1366 1367 1368 1369
}

/**
 * set_supply - set regulator supply regulator
1370 1371
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1372 1373 1374 1375 1376 1377
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1378
		      struct regulator_dev *supply_rdev)
1379 1380 1381
{
	int err;

1382 1383
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

1384 1385 1386
	if (!try_module_get(supply_rdev->owner))
		return -ENODEV;

1387
	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1388 1389
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1390
		return err;
1391
	}
1392
	supply_rdev->open_count++;
1393 1394

	return 0;
1395 1396 1397
}

/**
1398
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1399
 * @rdev:         regulator source
1400
 * @consumer_dev_name: dev_name() string for device supply applies to
1401
 * @supply:       symbolic name for supply
1402 1403 1404 1405 1406 1407 1408
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1409 1410
				      const char *consumer_dev_name,
				      const char *supply)
1411 1412
{
	struct regulator_map *node;
1413
	int has_dev;
1414 1415 1416 1417

	if (supply == NULL)
		return -EINVAL;

1418 1419 1420 1421 1422
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1423
	list_for_each_entry(node, &regulator_map_list, list) {
1424 1425 1426 1427
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1428
			continue;
1429 1430
		}

1431 1432 1433
		if (strcmp(node->supply, supply) != 0)
			continue;

1434 1435 1436 1437 1438 1439
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1440 1441 1442
		return -EBUSY;
	}

1443
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1444 1445 1446 1447 1448 1449
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1450 1451 1452 1453 1454 1455
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1456 1457
	}

1458 1459 1460 1461
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1462 1463 1464 1465 1466 1467 1468
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1469
			kfree(node->dev_name);
1470 1471 1472 1473 1474
			kfree(node);
		}
	}
}

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
#ifdef CONFIG_DEBUG_FS
static ssize_t constraint_flags_read_file(struct file *file,
					  char __user *user_buf,
					  size_t count, loff_t *ppos)
{
	const struct regulator *regulator = file->private_data;
	const struct regulation_constraints *c = regulator->rdev->constraints;
	char *buf;
	ssize_t ret;

	if (!c)
		return 0;

	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = snprintf(buf, PAGE_SIZE,
			"always_on: %u\n"
			"boot_on: %u\n"
			"apply_uV: %u\n"
			"ramp_disable: %u\n"
			"soft_start: %u\n"
			"pull_down: %u\n"
			"over_current_protection: %u\n",
			c->always_on,
			c->boot_on,
			c->apply_uV,
			c->ramp_disable,
			c->soft_start,
			c->pull_down,
			c->over_current_protection);

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
	kfree(buf);

	return ret;
}

#endif

static const struct file_operations constraint_flags_fops = {
#ifdef CONFIG_DEBUG_FS
	.open = simple_open,
	.read = constraint_flags_read_file,
	.llseek = default_llseek,
#endif
};

1524
#define REG_STR_SIZE	64
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

1538
	regulator_lock(rdev);
1539 1540 1541 1542
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1543 1544
		regulator->dev = dev;

1545
		/* Add a link to the device sysfs entry */
1546 1547
		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
				dev->kobj.name, supply_name);
1548
		if (size >= REG_STR_SIZE)
1549
			goto overflow_err;
1550 1551 1552

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1553
			goto overflow_err;
1554

1555
		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1556 1557
					buf);
		if (err) {
1558
			rdev_dbg(rdev, "could not add device link %s err %d\n",
1559
				  dev->kobj.name, err);
1560
			/* non-fatal */
1561
		}
1562
	} else {
1563
		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1564
		if (regulator->supply_name == NULL)
1565
			goto overflow_err;
1566 1567 1568 1569
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1570
	if (!regulator->debugfs) {
1571
		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1572 1573 1574 1575
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1576
				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1577
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1578
				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1579 1580 1581
		debugfs_create_file("constraint_flags", 0444,
				    regulator->debugfs, regulator,
				    &constraint_flags_fops);
1582
	}
1583

1584 1585 1586 1587 1588
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
1589
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1590 1591 1592
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1593
	regulator_unlock(rdev);
1594 1595 1596 1597
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
1598
	regulator_unlock(rdev);
1599 1600 1601
	return NULL;
}

1602 1603
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
1604 1605
	if (rdev->constraints && rdev->constraints->enable_time)
		return rdev->constraints->enable_time;
1606
	if (!rdev->desc->ops->enable_time)
1607
		return rdev->desc->enable_time;
1608 1609 1610
	return rdev->desc->ops->enable_time(rdev);
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
static struct regulator_supply_alias *regulator_find_supply_alias(
		struct device *dev, const char *supply)
{
	struct regulator_supply_alias *map;

	list_for_each_entry(map, &regulator_supply_alias_list, list)
		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
			return map;

	return NULL;
}

static void regulator_supply_alias(struct device **dev, const char **supply)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(*dev, *supply);
	if (map) {
		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
				*supply, map->alias_supply,
				dev_name(map->alias_dev));
		*dev = map->alias_dev;
		*supply = map->alias_supply;
	}
}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
static int regulator_match(struct device *dev, const void *data)
{
	struct regulator_dev *r = dev_to_rdev(dev);

	return strcmp(rdev_get_name(r), data) == 0;
}

static struct regulator_dev *regulator_lookup_by_name(const char *name)
{
	struct device *dev;

	dev = class_find_device(&regulator_class, NULL, name, regulator_match);

	return dev ? dev_to_rdev(dev) : NULL;
}

/**
 * regulator_dev_lookup - lookup a regulator device.
 * @dev: device for regulator "consumer".
 * @supply: Supply name or regulator ID.
 *
 * If successful, returns a struct regulator_dev that corresponds to the name
1659 1660 1661 1662 1663
 * @supply and with the embedded struct device refcount incremented by one.
 * The refcount must be dropped by calling put_device().
 * On failure one of the following ERR-PTR-encoded values is returned:
 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
 * in the future.
1664
 */
1665
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1666
						  const char *supply)
1667
{
1668
	struct regulator_dev *r = NULL;
1669
	struct device_node *node;
1670 1671
	struct regulator_map *map;
	const char *devname = NULL;
1672

1673 1674
	regulator_supply_alias(&dev, &supply);

1675 1676 1677
	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1678
		if (node) {
1679 1680 1681
			r = of_find_regulator_by_node(node);
			if (r)
				return r;
1682

1683
			/*
1684 1685
			 * We have a node, but there is no device.
			 * assume it has not registered yet.
1686
			 */
1687
			return ERR_PTR(-EPROBE_DEFER);
1688
		}
1689 1690 1691
	}

	/* if not found, try doing it non-dt way */
1692 1693 1694
	if (dev)
		devname = dev_name(dev);

1695
	mutex_lock(&regulator_list_mutex);
1696 1697 1698 1699 1700 1701
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

1702 1703
		if (strcmp(map->supply, supply) == 0 &&
		    get_device(&map->regulator->dev)) {
1704 1705
			r = map->regulator;
			break;
1706
		}
1707
	}
1708
	mutex_unlock(&regulator_list_mutex);
1709

1710 1711 1712 1713
	if (r)
		return r;

	r = regulator_lookup_by_name(supply);
1714 1715 1716 1717
	if (r)
		return r;

	return ERR_PTR(-ENODEV);
1718 1719
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
static int regulator_resolve_supply(struct regulator_dev *rdev)
{
	struct regulator_dev *r;
	struct device *dev = rdev->dev.parent;
	int ret;

	/* No supply to resovle? */
	if (!rdev->supply_name)
		return 0;

	/* Supply already resolved? */
	if (rdev->supply)
		return 0;

1734 1735 1736 1737
	r = regulator_dev_lookup(dev, rdev->supply_name);
	if (IS_ERR(r)) {
		ret = PTR_ERR(r);

1738 1739 1740 1741
		/* Did the lookup explicitly defer for us? */
		if (ret == -EPROBE_DEFER)
			return ret;

1742 1743
		if (have_full_constraints()) {
			r = dummy_regulator_rdev;
1744
			get_device(&r->dev);
1745 1746 1747 1748 1749
		} else {
			dev_err(dev, "Failed to resolve %s-supply for %s\n",
				rdev->supply_name, rdev->desc->name);
			return -EPROBE_DEFER;
		}
1750 1751
	}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
	/*
	 * If the supply's parent device is not the same as the
	 * regulator's parent device, then ensure the parent device
	 * is bound before we resolve the supply, in case the parent
	 * device get probe deferred and unregisters the supply.
	 */
	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
		if (!device_is_bound(r->dev.parent)) {
			put_device(&r->dev);
			return -EPROBE_DEFER;
		}
	}

1765 1766
	/* Recursively resolve the supply of the supply */
	ret = regulator_resolve_supply(r);
1767 1768
	if (ret < 0) {
		put_device(&r->dev);
1769
		return ret;
1770
	}
1771 1772

	ret = set_supply(rdev, r);
1773 1774
	if (ret < 0) {
		put_device(&r->dev);
1775
		return ret;
1776
	}
1777 1778

	/* Cascade always-on state to supply */
1779
	if (_regulator_is_enabled(rdev)) {
1780
		ret = regulator_enable(rdev->supply);
1781
		if (ret < 0) {
1782
			_regulator_put(rdev->supply);
1783
			rdev->supply = NULL;
1784
			return ret;
1785
		}
1786 1787 1788 1789 1790
	}

	return 0;
}

1791
/* Internal regulator request function */
1792 1793
struct regulator *_regulator_get(struct device *dev, const char *id,
				 enum regulator_get_type get_type)
1794 1795
{
	struct regulator_dev *rdev;
1796
	struct regulator *regulator;
1797
	const char *devname = dev ? dev_name(dev) : "deviceless";
1798
	int ret;
1799

1800 1801 1802 1803 1804
	if (get_type >= MAX_GET_TYPE) {
		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
		return ERR_PTR(-EINVAL);
	}

1805
	if (id == NULL) {
1806
		pr_err("get() with no identifier\n");
1807
		return ERR_PTR(-EINVAL);
1808 1809
	}

1810
	rdev = regulator_dev_lookup(dev, id);
1811 1812
	if (IS_ERR(rdev)) {
		ret = PTR_ERR(rdev);
1813

1814 1815 1816 1817 1818 1819
		/*
		 * If regulator_dev_lookup() fails with error other
		 * than -ENODEV our job here is done, we simply return it.
		 */
		if (ret != -ENODEV)
			return ERR_PTR(ret);
1820

1821 1822 1823 1824 1825
		if (!have_full_constraints()) {
			dev_warn(dev,
				 "incomplete constraints, dummy supplies not allowed\n");
			return ERR_PTR(-ENODEV);
		}
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
		switch (get_type) {
		case NORMAL_GET:
			/*
			 * Assume that a regulator is physically present and
			 * enabled, even if it isn't hooked up, and just
			 * provide a dummy.
			 */
			dev_warn(dev,
				 "%s supply %s not found, using dummy regulator\n",
				 devname, id);
			rdev = dummy_regulator_rdev;
			get_device(&rdev->dev);
			break;
1840

1841 1842 1843 1844
		case EXCLUSIVE_GET:
			dev_warn(dev,
				 "dummy supplies not allowed for exclusive requests\n");
			/* fall through */
1845

1846 1847 1848
		default:
			return ERR_PTR(-ENODEV);
		}
1849 1850
	}

1851 1852
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
1853 1854
		put_device(&rdev->dev);
		return regulator;
1855 1856
	}

1857
	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1858
		regulator = ERR_PTR(-EBUSY);
1859 1860
		put_device(&rdev->dev);
		return regulator;
1861 1862
	}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	mutex_lock(&regulator_list_mutex);
	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
	mutex_unlock(&regulator_list_mutex);

	if (ret != 0) {
		regulator = ERR_PTR(-EPROBE_DEFER);
		put_device(&rdev->dev);
		return regulator;
	}

1873 1874 1875
	ret = regulator_resolve_supply(rdev);
	if (ret < 0) {
		regulator = ERR_PTR(ret);
1876 1877
		put_device(&rdev->dev);
		return regulator;
1878 1879
	}

1880
	if (!try_module_get(rdev->owner)) {
1881
		regulator = ERR_PTR(-EPROBE_DEFER);
1882 1883 1884
		put_device(&rdev->dev);
		return regulator;
	}
1885

1886 1887 1888
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
1889
		put_device(&rdev->dev);
1890
		module_put(rdev->owner);
1891
		return regulator;
1892 1893
	}

1894
	rdev->open_count++;
1895
	if (get_type == EXCLUSIVE_GET) {
1896 1897 1898 1899 1900 1901 1902 1903 1904
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1905 1906
	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);

1907 1908
	return regulator;
}
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1925
	return _regulator_get(dev, id, NORMAL_GET);
1926
}
1927 1928
EXPORT_SYMBOL_GPL(regulator_get);

1929 1930 1931 1932 1933 1934 1935
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
1936 1937 1938
 * unable to obtain this regulator while this reference is held and the
 * use count for the regulator will be initialised to reflect the current
 * state of the regulator.
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1952
	return _regulator_get(dev, id, EXCLUSIVE_GET);
1953 1954 1955
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1956 1957 1958 1959 1960 1961
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
1962
 * or IS_ERR() condition containing errno.
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1978
	return _regulator_get(dev, id, OPTIONAL_GET);
1979 1980 1981
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

1982
/* regulator_list_mutex lock held by regulator_put() */
1983
static void _regulator_put(struct regulator *regulator)
1984 1985 1986
{
	struct regulator_dev *rdev;

1987
	if (IS_ERR_OR_NULL(regulator))
1988 1989
		return;

1990 1991
	lockdep_assert_held_once(&regulator_list_mutex);

1992 1993
	rdev = regulator->rdev;

1994 1995
	debugfs_remove_recursive(regulator->debugfs);

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	if (regulator->dev) {
		int count = 0;
		struct regulator *r;

		list_for_each_entry(r, &rdev->consumer_list, list)
			if (r->dev == regulator->dev)
				count++;

		if (count == 1)
			device_link_remove(regulator->dev, &rdev->dev);

		/* remove any sysfs entries */
2008
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2009 2010
	}

2011
	regulator_lock(rdev);
2012 2013
	list_del(&regulator->list);

2014 2015
	rdev->open_count--;
	rdev->exclusive = 0;
2016
	put_device(&rdev->dev);
2017
	regulator_unlock(rdev);
2018

2019
	kfree_const(regulator->supply_name);
2020 2021
	kfree(regulator);

2022
	module_put(rdev->owner);
2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
}

/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
2037 2038 2039 2040
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
/**
 * regulator_register_supply_alias - Provide device alias for supply lookup
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: Supply name or regulator ID that should be used to lookup the
 * supply
 *
 * All lookups for id on dev will instead be conducted for alias_id on
 * alias_dev.
 */
int regulator_register_supply_alias(struct device *dev, const char *id,
				    struct device *alias_dev,
				    const char *alias_id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map)
		return -EEXIST;

	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	map->src_dev = dev;
	map->src_supply = id;
	map->alias_dev = alias_dev;
	map->alias_supply = alias_id;

	list_add(&map->list, &regulator_supply_alias_list);

	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
		id, dev_name(dev), alias_id, dev_name(alias_dev));

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_register_supply_alias);

/**
 * regulator_unregister_supply_alias - Remove device alias
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: Supply name or regulator ID
 *
 * Remove a lookup alias if one exists for id on dev.
 */
void regulator_unregister_supply_alias(struct device *dev, const char *id)
{
	struct regulator_supply_alias *map;

	map = regulator_find_supply_alias(dev, id);
	if (map) {
		list_del(&map->list);
		kfree(map);
	}
}
EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);

/**
 * regulator_bulk_register_supply_alias - register multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @alias_dev: device that should be used to lookup the supply
 * @alias_id: List of supply names or regulator IDs that should be used to
 * lookup the supply
 * @num_id: Number of aliases to register
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to register several supply
 * aliases in one operation.  If any of the aliases cannot be
 * registered any aliases that were registered will be removed
 * before returning to the caller.
 */
2118 2119
int regulator_bulk_register_supply_alias(struct device *dev,
					 const char *const *id,
2120
					 struct device *alias_dev,
2121
					 const char *const *alias_id,
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
					 int num_id)
{
	int i;
	int ret;

	for (i = 0; i < num_id; ++i) {
		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
						      alias_id[i]);
		if (ret < 0)
			goto err;
	}

	return 0;

err:
	dev_err(dev,
		"Failed to create supply alias %s,%s -> %s,%s\n",
		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));

	while (--i >= 0)
		regulator_unregister_supply_alias(dev, id[i]);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);

/**
 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
 *
 * @dev: device that will be given as the regulator "consumer"
 * @id: List of supply names or regulator IDs
 * @num_id: Number of aliases to unregister
 *
 * This helper function allows drivers to unregister several supply
 * aliases in one operation.
 */
void regulator_bulk_unregister_supply_alias(struct device *dev,
2159
					    const char *const *id,
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
					    int num_id)
{
	int i;

	for (i = 0; i < num_id; ++i)
		regulator_unregister_supply_alias(dev, id[i]);
}
EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);


2170 2171 2172 2173 2174
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
2175
	struct gpio_desc *gpiod;
2176 2177
	int ret;

2178 2179 2180 2181
	if (config->ena_gpiod)
		gpiod = config->ena_gpiod;
	else
		gpiod = gpio_to_desc(config->ena_gpio);
2182

2183
	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2184
		if (pin->gpiod == gpiod) {
2185 2186 2187 2188 2189 2190
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

2191 2192 2193 2194 2195 2196 2197
	if (!config->ena_gpiod) {
		ret = gpio_request_one(config->ena_gpio,
				       GPIOF_DIR_OUT | config->ena_gpio_flags,
				       rdev_get_name(rdev));
		if (ret)
			return ret;
	}
2198 2199 2200

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
2201 2202
		if (!config->ena_gpiod)
			gpio_free(config->ena_gpio);
2203 2204 2205
		return -ENOMEM;
	}

2206
	pin->gpiod = gpiod;
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2225
		if (pin->gpiod == rdev->ena_pin->gpiod) {
2226 2227
			if (pin->request_count <= 1) {
				pin->request_count = 0;
2228
				gpiod_put(pin->gpiod);
2229 2230
				list_del(&pin->list);
				kfree(pin);
2231 2232
				rdev->ena_pin = NULL;
				return;
2233 2234 2235 2236 2237 2238 2239
			} else {
				pin->request_count--;
			}
		}
	}
}

2240
/**
2241 2242 2243 2244
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
2258 2259
			gpiod_set_value_cansleep(pin->gpiod,
						 !pin->ena_gpio_invert);
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
2270 2271
			gpiod_set_value_cansleep(pin->gpiod,
						 pin->ena_gpio_invert);
2272 2273 2274 2275 2276 2277 2278
			pin->enable_count = 0;
		}
	}

	return 0;
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
/**
 * _regulator_enable_delay - a delay helper function
 * @delay: time to delay in microseconds
 *
 * Delay for the requested amount of time as per the guidelines in:
 *
 *     Documentation/timers/timers-howto.txt
 *
 * The assumption here is that regulators will never be enabled in
 * atomic context and therefore sleeping functions can be used.
 */
static void _regulator_enable_delay(unsigned int delay)
{
	unsigned int ms = delay / 1000;
	unsigned int us = delay % 1000;

	if (ms > 0) {
		/*
		 * For small enough values, handle super-millisecond
		 * delays in the usleep_range() call below.
		 */
		if (ms < 20)
			us += ms * 1000;
		else
			msleep(ms);
	}

	/*
	 * Give the scheduler some room to coalesce with any other
	 * wakeup sources. For delays shorter than 10 us, don't even
	 * bother setting up high-resolution timers and just busy-
	 * loop.
	 */
	if (us >= 10)
		usleep_range(us, us + 100);
	else
		udelay(us);
}

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	if (rdev->desc->off_on_delay) {
		/* if needed, keep a distance of off_on_delay from last time
		 * this regulator was disabled.
		 */
		unsigned long start_jiffy = jiffies;
		unsigned long intended, max_delay, remaining;

		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
		intended = rdev->last_off_jiffy + max_delay;

		if (time_before(start_jiffy, intended)) {
			/* calc remaining jiffies to deal with one-time
			 * timer wrapping.
			 * in case of multiple timer wrapping, either it can be
			 * detected by out-of-range remaining, or it cannot be
			 * detected and we gets a panelty of
			 * _regulator_enable_delay().
			 */
			remaining = intended - start_jiffy;
			if (remaining <= max_delay)
				_regulator_enable_delay(
						jiffies_to_usecs(remaining));
		}
	}

2358
	if (rdev->ena_pin) {
2359 2360 2361 2362 2363 2364
		if (!rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, true);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 1;
		}
2365
	} else if (rdev->desc->ops->enable) {
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

2378
	_regulator_enable_delay(delay);
2379 2380 2381 2382 2383 2384

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

2385 2386 2387
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
2388
	int ret;
2389

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	lockdep_assert_held_once(&rdev->mutex.base);

	if (rdev->supply) {
		ret = _regulator_enable(rdev->supply->rdev);
		if (ret < 0)
			return ret;
	}

	/* balance only if there are regulators coupled */
	if (rdev->coupling_desc.n_coupled > 1) {
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
		if (ret < 0)
			goto err_disable_supply;
	}
2404

2405
	/* check voltage and requested load before enabling */
2406
	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2407
		drms_uA_update(rdev);
2408

2409 2410 2411 2412
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
2413
			if (!regulator_ops_is_valid(rdev,
2414 2415 2416 2417
					REGULATOR_CHANGE_STATUS)) {
				ret = -EPERM;
				goto err_disable_supply;
			}
2418

2419
			ret = _regulator_do_enable(rdev);
2420
			if (ret < 0)
2421
				goto err_disable_supply;
2422

2423 2424
			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
					     NULL);
2425
		} else if (ret < 0) {
2426
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2427
			goto err_disable_supply;
2428
		}
2429
		/* Fallthrough on positive return values - already enabled */
2430 2431
	}

2432 2433 2434
	rdev->use_count++;

	return 0;
2435 2436 2437 2438 2439 2440

err_disable_supply:
	if (rdev->supply)
		_regulator_disable(rdev->supply->rdev);

	return ret;
2441 2442 2443 2444 2445 2446
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
2447 2448 2449 2450
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
2451
 * NOTE: the output value can be set by other drivers, boot loader or may be
2452
 * hardwired in the regulator.
2453 2454 2455
 */
int regulator_enable(struct regulator *regulator)
{
2456
	struct regulator_dev *rdev = regulator->rdev;
2457
	struct ww_acquire_ctx ww_ctx;
2458
	int ret = 0;
2459

2460 2461 2462
	if (regulator->always_on)
		return 0;

2463
	regulator_lock_dependent(rdev, &ww_ctx);
D
David Brownell 已提交
2464
	ret = _regulator_enable(rdev);
2465
	regulator_unlock_dependent(rdev, &ww_ctx);
2466

2467 2468 2469 2470
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

2471 2472 2473 2474 2475 2476
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

2477
	if (rdev->ena_pin) {
2478 2479 2480 2481 2482 2483
		if (rdev->ena_gpio_state) {
			ret = regulator_ena_gpio_ctrl(rdev, false);
			if (ret < 0)
				return ret;
			rdev->ena_gpio_state = 0;
		}
2484 2485 2486 2487 2488 2489 2490

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

2491 2492 2493 2494 2495 2496
	/* cares about last_off_jiffy only if off_on_delay is required by
	 * device.
	 */
	if (rdev->desc->off_on_delay)
		rdev->last_off_jiffy = jiffies;

2497 2498 2499 2500 2501
	trace_regulator_disable_complete(rdev_get_name(rdev));

	return 0;
}

2502
/* locks held by regulator_disable() */
2503
static int _regulator_disable(struct regulator_dev *rdev)
2504 2505 2506
{
	int ret = 0;

2507
	lockdep_assert_held_once(&rdev->mutex.base);
2508

D
David Brownell 已提交
2509
	if (WARN(rdev->use_count <= 0,
2510
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
2511 2512
		return -EIO;

2513
	/* are we the last user and permitted to disable ? */
2514 2515
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
2516 2517

		/* we are last user */
2518
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2519 2520 2521 2522 2523 2524
			ret = _notifier_call_chain(rdev,
						   REGULATOR_EVENT_PRE_DISABLE,
						   NULL);
			if (ret & NOTIFY_STOP_MASK)
				return -EINVAL;

2525
			ret = _regulator_do_disable(rdev);
2526
			if (ret < 0) {
2527
				rdev_err(rdev, "failed to disable\n");
2528 2529 2530
				_notifier_call_chain(rdev,
						REGULATOR_EVENT_ABORT_DISABLE,
						NULL);
2531 2532
				return ret;
			}
2533 2534
			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
					NULL);
2535 2536 2537 2538
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {
2539
		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2540 2541 2542 2543
			drms_uA_update(rdev);

		rdev->use_count--;
	}
2544

2545 2546 2547 2548 2549 2550
	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	if (ret == 0 && rdev->supply)
		ret = _regulator_disable(rdev->supply->rdev);

2551 2552 2553 2554 2555 2556 2557
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
2558 2559 2560
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
2561
 *
2562
 * NOTE: this will only disable the regulator output if no other consumer
2563 2564
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
2565 2566 2567
 */
int regulator_disable(struct regulator *regulator)
{
2568
	struct regulator_dev *rdev = regulator->rdev;
2569
	struct ww_acquire_ctx ww_ctx;
2570
	int ret = 0;
2571

2572 2573 2574
	if (regulator->always_on)
		return 0;

2575
	regulator_lock_dependent(rdev, &ww_ctx);
2576
	ret = _regulator_disable(rdev);
2577
	regulator_unlock_dependent(rdev, &ww_ctx);
2578

2579 2580 2581 2582 2583
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
2584
static int _regulator_force_disable(struct regulator_dev *rdev)
2585 2586 2587
{
	int ret = 0;

2588
	lockdep_assert_held_once(&rdev->mutex.base);
2589

2590 2591 2592 2593 2594
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_PRE_DISABLE, NULL);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

2595 2596 2597
	ret = _regulator_do_disable(rdev);
	if (ret < 0) {
		rdev_err(rdev, "failed to force disable\n");
2598 2599
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2600
		return ret;
2601 2602
	}

2603 2604 2605 2606
	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);

	return 0;
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
2620
	struct regulator_dev *rdev = regulator->rdev;
2621
	struct ww_acquire_ctx ww_ctx;
2622 2623
	int ret;

2624
	regulator_lock_dependent(rdev, &ww_ctx);
2625
	regulator->uA_load = 0;
2626
	ret = _regulator_force_disable(regulator->rdev);
2627 2628
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2629
	regulator_unlock_dependent(rdev, &ww_ctx);
2630

2631 2632 2633
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
2634

2635 2636 2637 2638
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

2639 2640 2641 2642
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
2643
	struct ww_acquire_ctx ww_ctx;
2644 2645
	int count, i, ret;

2646
	regulator_lock_dependent(rdev, &ww_ctx);
2647 2648 2649 2650 2651 2652

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

2653 2654 2655 2656 2657 2658 2659 2660
	/*
	 * Workqueue functions queue the new work instance while the previous
	 * work instance is being processed. Cancel the queued work instance
	 * as the work instance under processing does the job of the queued
	 * work instance.
	 */
	cancel_delayed_work(&rdev->disable_work);

2661 2662 2663 2664 2665 2666
	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

2667 2668 2669 2670
	if (rdev->coupling_desc.n_coupled > 1)
		regulator_balance_voltage(rdev, PM_SUSPEND_ON);

	regulator_unlock_dependent(rdev, &ww_ctx);
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;

2699 2700 2701
	if (regulator->always_on)
		return 0;

2702 2703 2704
	if (!ms)
		return regulator_disable(regulator);

2705
	regulator_lock(rdev);
2706
	rdev->deferred_disables++;
2707 2708
	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
			 msecs_to_jiffies(ms));
2709
	regulator_unlock(rdev);
2710

2711
	return 0;
2712 2713 2714
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

2715 2716
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2717
	/* A GPIO control always takes precedence */
2718
	if (rdev->ena_pin)
2719 2720
		return rdev->ena_gpio_state;

2721
	/* If we don't know then assume that the regulator is always on */
2722
	if (!rdev->desc->ops->is_enabled)
2723
		return 1;
2724

2725
	return rdev->desc->ops->is_enabled(rdev);
2726 2727
}

2728 2729
static int _regulator_list_voltage(struct regulator_dev *rdev,
				   unsigned selector, int lock)
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
{
	const struct regulator_ops *ops = rdev->desc->ops;
	int ret;

	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
		return rdev->desc->fixed_uV;

	if (ops->list_voltage) {
		if (selector >= rdev->desc->n_voltages)
			return -EINVAL;
		if (lock)
2741
			regulator_lock(rdev);
2742 2743
		ret = ops->list_voltage(rdev, selector);
		if (lock)
2744
			regulator_unlock(rdev);
2745
	} else if (rdev->is_switch && rdev->supply) {
2746 2747
		ret = _regulator_list_voltage(rdev->supply->rdev,
					      selector, lock);
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	} else {
		return -EINVAL;
	}

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}

2762 2763 2764 2765
/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2766 2767 2768 2769 2770 2771 2772
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2773 2774 2775
 */
int regulator_is_enabled(struct regulator *regulator)
{
2776 2777
	int ret;

2778 2779 2780
	if (regulator->always_on)
		return 1;

2781
	regulator_lock(regulator->rdev);
2782
	ret = _regulator_is_enabled(regulator->rdev);
2783
	regulator_unlock(regulator->rdev);
2784 2785

	return ret;
2786 2787 2788
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

2801 2802 2803
	if (rdev->desc->n_voltages)
		return rdev->desc->n_voltages;

2804
	if (!rdev->is_switch || !rdev->supply)
2805 2806 2807
		return -EINVAL;

	return regulator_count_voltages(rdev->supply);
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2818
 * zero if this selector code can't be used on this system, or a
2819 2820 2821 2822
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
2823
	return _regulator_list_voltage(regulator->rdev, selector, 1);
2824 2825 2826
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
/**
 * regulator_get_regmap - get the regulator's register map
 * @regulator: regulator source
 *
 * Returns the register map for the given regulator, or an ERR_PTR value
 * if the regulator doesn't use regmap.
 */
struct regmap *regulator_get_regmap(struct regulator *regulator)
{
	struct regmap *map = regulator->rdev->regmap;

	return map ? map : ERR_PTR(-EOPNOTSUPP);
}

/**
 * regulator_get_hardware_vsel_register - get the HW voltage selector register
 * @regulator: regulator source
 * @vsel_reg: voltage selector register, output parameter
 * @vsel_mask: mask for voltage selector bitfield, output parameter
 *
 * Returns the hardware register offset and bitmask used for setting the
 * regulator voltage. This might be useful when configuring voltage-scaling
 * hardware or firmware that can make I2C requests behind the kernel's back,
 * for example.
 *
 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
 * and 0 is returned, otherwise a negative errno is returned.
 */
int regulator_get_hardware_vsel_register(struct regulator *regulator,
					 unsigned *vsel_reg,
					 unsigned *vsel_mask)
{
2859 2860
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2861 2862 2863 2864

	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

2865 2866
	*vsel_reg = rdev->desc->vsel_reg;
	*vsel_mask = rdev->desc->vsel_mask;
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885

	 return 0;
}
EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);

/**
 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
 * @regulator: regulator source
 * @selector: identify voltage to list
 *
 * Converts the selector to a hardware-specific voltage selector that can be
 * directly written to the regulator registers. The address of the voltage
 * register can be determined by calling @regulator_get_hardware_vsel_register.
 *
 * On error a negative errno is returned.
 */
int regulator_list_hardware_vsel(struct regulator *regulator,
				 unsigned selector)
{
2886 2887
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

	if (selector >= rdev->desc->n_voltages)
		return -EINVAL;
	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
		return -EOPNOTSUPP;

	return selector;
}
EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2925
	struct regulator_dev *rdev = regulator->rdev;
2926 2927
	int i, voltages, ret;

2928
	/* If we can't change voltage check the current voltage */
2929
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2930 2931
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2932
			return min_uV <= ret && ret <= max_uV;
2933 2934 2935 2936
		else
			return ret;
	}

2937 2938 2939 2940 2941
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2956
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
				 int max_uV)
{
	const struct regulator_desc *desc = rdev->desc;

	if (desc->ops->map_voltage)
		return desc->ops->map_voltage(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear)
		return regulator_map_voltage_linear(rdev, min_uV, max_uV);

	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);

2972 2973 2974 2975 2976
	if (desc->ops->list_voltage ==
		regulator_list_voltage_pickable_linear_range)
		return regulator_map_voltage_pickable_linear_range(rdev,
							min_uV, max_uV);

2977 2978 2979
	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
}

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
static int _regulator_call_set_voltage(struct regulator_dev *rdev,
				       int min_uV, int max_uV,
				       unsigned *selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = min_uV;
	data.max_uV = max_uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
					   int uV, unsigned selector)
{
	struct pre_voltage_change_data data;
	int ret;

	data.old_uV = _regulator_get_voltage(rdev);
	data.min_uV = uV;
	data.max_uV = uV;
	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
				   &data);
	if (ret & NOTIFY_STOP_MASK)
		return -EINVAL;

	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
	if (ret >= 0)
		return ret;

	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
			     (void *)data.old_uV);

	return ret;
}

3029 3030 3031 3032 3033 3034 3035 3036 3037
static int _regulator_set_voltage_time(struct regulator_dev *rdev,
				       int old_uV, int new_uV)
{
	unsigned int ramp_delay = 0;

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;
3038 3039
	else if (rdev->constraints->settling_time)
		return rdev->constraints->settling_time;
3040 3041 3042 3043 3044 3045
	else if (rdev->constraints->settling_time_up &&
		 (new_uV > old_uV))
		return rdev->constraints->settling_time_up;
	else if (rdev->constraints->settling_time_down &&
		 (new_uV < old_uV))
		return rdev->constraints->settling_time_down;
3046 3047

	if (ramp_delay == 0) {
3048
		rdev_dbg(rdev, "ramp_delay not set\n");
3049 3050 3051 3052 3053 3054
		return 0;
	}

	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
}

3055 3056 3057 3058
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
3059
	int delay = 0;
3060
	int best_val = 0;
3061
	unsigned int selector;
3062
	int old_selector = -1;
3063
	const struct regulator_ops *ops = rdev->desc->ops;
3064
	int old_uV = _regulator_get_voltage(rdev);
3065 3066 3067

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

3068 3069 3070
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

3071 3072 3073 3074
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
3075
	if (_regulator_is_enabled(rdev) &&
3076 3077
	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
		old_selector = ops->get_voltage_sel(rdev);
3078 3079 3080 3081
		if (old_selector < 0)
			return old_selector;
	}

3082
	if (ops->set_voltage) {
3083 3084
		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
						  &selector);
3085 3086

		if (ret >= 0) {
3087 3088 3089
			if (ops->list_voltage)
				best_val = ops->list_voltage(rdev,
							     selector);
3090 3091 3092 3093
			else
				best_val = _regulator_get_voltage(rdev);
		}

3094
	} else if (ops->set_voltage_sel) {
3095
		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3096
		if (ret >= 0) {
3097
			best_val = ops->list_voltage(rdev, ret);
3098 3099
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
3100 3101 3102
				if (old_selector == selector)
					ret = 0;
				else
3103 3104
					ret = _regulator_call_set_voltage_sel(
						rdev, best_val, selector);
3105 3106 3107
			} else {
				ret = -EINVAL;
			}
3108
		}
3109 3110 3111
	} else {
		ret = -EINVAL;
	}
3112

3113 3114
	if (ret)
		goto out;
3115

3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	if (ops->set_voltage_time_sel) {
		/*
		 * Call set_voltage_time_sel if successfully obtained
		 * old_selector
		 */
		if (old_selector >= 0 && old_selector != selector)
			delay = ops->set_voltage_time_sel(rdev, old_selector,
							  selector);
	} else {
		if (old_uV != best_val) {
			if (ops->set_voltage_time)
				delay = ops->set_voltage_time(rdev, old_uV,
							      best_val);
			else
				delay = _regulator_set_voltage_time(rdev,
								    old_uV,
								    best_val);
3133
		}
3134
	}
3135

3136 3137 3138
	if (delay < 0) {
		rdev_warn(rdev, "failed to get delay: %d\n", delay);
		delay = 0;
3139 3140
	}

3141 3142 3143 3144 3145 3146
	/* Insert any necessary delays */
	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
3147 3148
	}

3149
	if (best_val >= 0) {
3150 3151
		unsigned long data = best_val;

3152
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3153 3154
				     (void *)data);
	}
3155

3156
out:
3157
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3158 3159 3160 3161

	return ret;
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV, suspend_state_t state)
{
	struct regulator_state *rstate;
	int uV, sel;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (min_uV < rstate->min_uV)
		min_uV = rstate->min_uV;
	if (max_uV > rstate->max_uV)
		max_uV = rstate->max_uV;

	sel = regulator_map_voltage(rdev, min_uV, max_uV);
	if (sel < 0)
		return sel;

	uV = rdev->desc->ops->list_voltage(rdev, sel);
	if (uV >= min_uV && uV <= max_uV)
		rstate->uV = uV;

	return 0;
}

3188
static int regulator_set_voltage_unlocked(struct regulator *regulator,
3189 3190
					  int min_uV, int max_uV,
					  suspend_state_t state)
3191 3192
{
	struct regulator_dev *rdev = regulator->rdev;
3193
	struct regulator_voltage *voltage = &regulator->voltage[state];
3194
	int ret = 0;
3195
	int old_min_uV, old_max_uV;
3196
	int current_uV;
3197

3198 3199 3200 3201
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
3202
	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3203 3204
		goto out;

3205
	/* If we're trying to set a range that overlaps the current voltage,
V
Viresh Kumar 已提交
3206
	 * return successfully even though the regulator does not support
3207 3208
	 * changing the voltage.
	 */
3209
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3210 3211
		current_uV = _regulator_get_voltage(rdev);
		if (min_uV <= current_uV && current_uV <= max_uV) {
3212 3213
			voltage->min_uV = min_uV;
			voltage->max_uV = max_uV;
3214 3215 3216 3217
			goto out;
		}
	}

3218
	/* sanity check */
3219 3220
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
3221 3222 3223 3224 3225 3226 3227 3228
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
3229

3230
	/* restore original values in case of error */
3231 3232 3233 3234
	old_min_uV = voltage->min_uV;
	old_max_uV = voltage->max_uV;
	voltage->min_uV = min_uV;
	voltage->max_uV = max_uV;
3235

3236 3237
	/* for not coupled regulators this will just set the voltage */
	ret = regulator_balance_voltage(rdev, state);
3238
	if (ret < 0)
3239
		goto out2;
3240

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
out:
	return 0;
out2:
	voltage->min_uV = old_min_uV;
	voltage->max_uV = old_max_uV;

	return ret;
}

static int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
				      int max_uV, suspend_state_t state)
{
	int best_supply_uV = 0;
	int supply_change_uV = 0;
	int ret;

3257 3258 3259
	if (rdev->supply &&
	    regulator_ops_is_valid(rdev->supply->rdev,
				   REGULATOR_CHANGE_VOLTAGE) &&
3260 3261
	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
					   rdev->desc->ops->get_voltage_sel))) {
3262 3263 3264 3265 3266 3267
		int current_supply_uV;
		int selector;

		selector = regulator_map_voltage(rdev, min_uV, max_uV);
		if (selector < 0) {
			ret = selector;
3268
			goto out;
3269 3270
		}

M
Mark Brown 已提交
3271
		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3272 3273
		if (best_supply_uV < 0) {
			ret = best_supply_uV;
3274
			goto out;
3275 3276 3277 3278 3279 3280 3281
		}

		best_supply_uV += rdev->desc->min_dropout_uV;

		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
		if (current_supply_uV < 0) {
			ret = current_supply_uV;
3282
			goto out;
3283 3284 3285 3286 3287 3288 3289
		}

		supply_change_uV = best_supply_uV - current_supply_uV;
	}

	if (supply_change_uV > 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3290
				best_supply_uV, INT_MAX, state);
3291 3292 3293
		if (ret) {
			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
					ret);
3294
			goto out;
3295 3296 3297
		}
	}

3298 3299 3300 3301 3302
	if (state == PM_SUSPEND_ON)
		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
	else
		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
							max_uV, state);
3303
	if (ret < 0)
3304
		goto out;
3305

3306 3307
	if (supply_change_uV < 0) {
		ret = regulator_set_voltage_unlocked(rdev->supply,
3308
				best_supply_uV, INT_MAX, state);
3309 3310 3311 3312 3313 3314 3315
		if (ret)
			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
					ret);
		/* No need to fail here */
		ret = 0;
	}

3316
out:
3317 3318 3319
	return ret;
}

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
static int regulator_limit_voltage_step(struct regulator_dev *rdev,
					int *current_uV, int *min_uV)
{
	struct regulation_constraints *constraints = rdev->constraints;

	/* Limit voltage change only if necessary */
	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
		return 1;

	if (*current_uV < 0) {
		*current_uV = _regulator_get_voltage(rdev);

		if (*current_uV < 0)
			return *current_uV;
	}

	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
		return 1;

	/* Clamp target voltage within the given step */
	if (*current_uV < *min_uV)
		*min_uV = min(*current_uV + constraints->max_uV_step,
			      *min_uV);
	else
		*min_uV = max(*current_uV - constraints->max_uV_step,
			      *min_uV);

	return 0;
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
					 int *current_uV,
					 int *min_uV, int *max_uV,
					 suspend_state_t state,
					 int n_coupled)
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
	struct regulation_constraints *constraints = rdev->constraints;
	int max_spread = constraints->max_spread;
	int desired_min_uV = 0, desired_max_uV = INT_MAX;
	int max_current_uV = 0, min_current_uV = INT_MAX;
	int highest_min_uV = 0, target_uV, possible_uV;
	int i, ret;
	bool done;

	*current_uV = -1;

	/*
	 * If there are no coupled regulators, simply set the voltage
	 * demanded by consumers.
	 */
	if (n_coupled == 1) {
		/*
		 * If consumers don't provide any demands, set voltage
		 * to min_uV
		 */
		desired_min_uV = constraints->min_uV;
		desired_max_uV = constraints->max_uV;

		ret = regulator_check_consumers(rdev,
						&desired_min_uV,
						&desired_max_uV, state);
		if (ret < 0)
			return ret;

		possible_uV = desired_min_uV;
		done = true;

		goto finish;
	}

	/* Find highest min desired voltage */
	for (i = 0; i < n_coupled; i++) {
		int tmp_min = 0;
		int tmp_max = INT_MAX;

3397
		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460

		ret = regulator_check_consumers(c_rdevs[i],
						&tmp_min,
						&tmp_max, state);
		if (ret < 0)
			return ret;

		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
		if (ret < 0)
			return ret;

		highest_min_uV = max(highest_min_uV, tmp_min);

		if (i == 0) {
			desired_min_uV = tmp_min;
			desired_max_uV = tmp_max;
		}
	}

	/*
	 * Let target_uV be equal to the desired one if possible.
	 * If not, set it to minimum voltage, allowed by other coupled
	 * regulators.
	 */
	target_uV = max(desired_min_uV, highest_min_uV - max_spread);

	/*
	 * Find min and max voltages, which currently aren't violating
	 * max_spread.
	 */
	for (i = 1; i < n_coupled; i++) {
		int tmp_act;

		if (!_regulator_is_enabled(c_rdevs[i]))
			continue;

		tmp_act = _regulator_get_voltage(c_rdevs[i]);
		if (tmp_act < 0)
			return tmp_act;

		min_current_uV = min(tmp_act, min_current_uV);
		max_current_uV = max(tmp_act, max_current_uV);
	}

	/* There aren't any other regulators enabled */
	if (max_current_uV == 0) {
		possible_uV = target_uV;
	} else {
		/*
		 * Correct target voltage, so as it currently isn't
		 * violating max_spread
		 */
		possible_uV = max(target_uV, max_current_uV - max_spread);
		possible_uV = min(possible_uV, min_current_uV + max_spread);
	}

	if (possible_uV > desired_max_uV)
		return -EINVAL;

	done = (possible_uV == target_uV);
	desired_min_uV = possible_uV;

finish:
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
	/* Apply max_uV_step constraint if necessary */
	if (state == PM_SUSPEND_ON) {
		ret = regulator_limit_voltage_step(rdev, current_uV,
						   &desired_min_uV);
		if (ret < 0)
			return ret;

		if (ret == 0)
			done = false;
	}

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	/* Set current_uV if wasn't done earlier in the code and if necessary */
	if (n_coupled > 1 && *current_uV == -1) {

		if (_regulator_is_enabled(rdev)) {
			ret = _regulator_get_voltage(rdev);
			if (ret < 0)
				return ret;

			*current_uV = ret;
		} else {
			*current_uV = desired_min_uV;
		}
	}

	*min_uV = desired_min_uV;
	*max_uV = desired_max_uV;

	return done;
}

static int regulator_balance_voltage(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator_dev **c_rdevs;
	struct regulator_dev *best_rdev;
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
	bool best_c_rdev_done, c_rdev_done[MAX_COUPLED];
	unsigned int delta, best_delta;

	c_rdevs = c_desc->coupled_rdevs;
	n_coupled = c_desc->n_coupled;

	/*
	 * If system is in a state other than PM_SUSPEND_ON, don't check
	 * other coupled regulators.
	 */
	if (state != PM_SUSPEND_ON)
		n_coupled = 1;

	if (c_desc->n_resolved < n_coupled) {
		rdev_err(rdev, "Not all coupled regulators registered\n");
		return -EPERM;
	}

	for (i = 0; i < n_coupled; i++)
		c_rdev_done[i] = false;

	/*
	 * Find the best possible voltage change on each loop. Leave the loop
	 * if there isn't any possible change.
	 */
	do {
		best_c_rdev_done = false;
		best_delta = 0;
		best_min_uV = 0;
		best_max_uV = 0;
		best_c_rdev = 0;
		best_rdev = NULL;

		/*
		 * Find highest difference between optimal voltage
		 * and current voltage.
		 */
		for (i = 0; i < n_coupled; i++) {
			/*
			 * optimal_uV is the best voltage that can be set for
			 * i-th regulator at the moment without violating
			 * max_spread constraint in order to balance
			 * the coupled voltages.
			 */
			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;

			if (c_rdev_done[i])
				continue;

			ret = regulator_get_optimal_voltage(c_rdevs[i],
							    &current_uV,
							    &optimal_uV,
							    &optimal_max_uV,
							    state, n_coupled);
			if (ret < 0)
				goto out;

			delta = abs(optimal_uV - current_uV);

			if (delta && best_delta <= delta) {
				best_c_rdev_done = ret;
				best_delta = delta;
				best_rdev = c_rdevs[i];
				best_min_uV = optimal_uV;
				best_max_uV = optimal_max_uV;
				best_c_rdev = i;
			}
		}

		/* Nothing to change, return successfully */
		if (!best_rdev) {
			ret = 0;
			goto out;
		}
3573

3574 3575
		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
						 best_max_uV, state);
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
		if (ret < 0)
			goto out;

		c_rdev_done[best_c_rdev] = best_c_rdev_done;

	} while (n_coupled > 1);

out:
	return ret;
}

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
 * Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
3608 3609
	struct ww_acquire_ctx ww_ctx;
	int ret;
3610

3611
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3612

3613 3614
	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
					     PM_SUSPEND_ON);
3615

3616
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3617

3618 3619 3620 3621
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
					   suspend_state_t state, bool en)
{
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (!rstate->changeable)
		return -EPERM;

3634
	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687

	return 0;
}

int regulator_suspend_enable(struct regulator_dev *rdev,
				    suspend_state_t state)
{
	return regulator_suspend_toggle(rdev, state, true);
}
EXPORT_SYMBOL_GPL(regulator_suspend_enable);

int regulator_suspend_disable(struct regulator_dev *rdev,
				     suspend_state_t state)
{
	struct regulator *regulator;
	struct regulator_voltage *voltage;

	/*
	 * if any consumer wants this regulator device keeping on in
	 * suspend states, don't set it as disabled.
	 */
	list_for_each_entry(regulator, &rdev->consumer_list, list) {
		voltage = &regulator->voltage[state];
		if (voltage->min_uV || voltage->max_uV)
			return 0;
	}

	return regulator_suspend_toggle(rdev, state, false);
}
EXPORT_SYMBOL_GPL(regulator_suspend_disable);

static int _regulator_set_suspend_voltage(struct regulator *regulator,
					  int min_uV, int max_uV,
					  suspend_state_t state)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator_state *rstate;

	rstate = regulator_get_suspend_state(rdev, state);
	if (rstate == NULL)
		return -EINVAL;

	if (rstate->min_uV == rstate->max_uV) {
		rdev_err(rdev, "The suspend voltage can't be changed!\n");
		return -EPERM;
	}

	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
}

int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
				  int max_uV, suspend_state_t state)
{
3688 3689
	struct ww_acquire_ctx ww_ctx;
	int ret;
3690 3691 3692 3693 3694

	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
		return -EINVAL;

3695
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3696 3697 3698 3699

	ret = _regulator_set_suspend_voltage(regulator, min_uV,
					     max_uV, state);

3700
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3701 3702 3703 3704 3705

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);

3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
3719 3720
	struct regulator_dev *rdev = regulator->rdev;
	const struct regulator_ops *ops = rdev->desc->ops;
3721 3722 3723 3724 3725
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

3726 3727 3728 3729 3730
	if (ops->set_voltage_time)
		return ops->set_voltage_time(rdev, old_uV, new_uV);
	else if (!ops->set_voltage_time_sel)
		return _regulator_set_voltage_time(rdev, old_uV, new_uV);

3731
	/* Currently requires operations to do this */
3732
	if (!ops->list_voltage || !rdev->desc->n_voltages)
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

3755
/**
3756 3757
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
3758 3759 3760 3761 3762 3763
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
3764
 * Drivers providing ramp_delay in regulation_constraints can use this as their
3765
 * set_voltage_time_sel() operation.
3766 3767 3768 3769 3770
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
3771
	int old_volt, new_volt;
3772

3773 3774 3775
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
3776

3777 3778 3779
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

3780 3781 3782 3783 3784
	if (rdev->desc->ops->set_voltage_time)
		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
							 new_volt);
	else
		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3785
}
3786
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3787

3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
3799
	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3800 3801
	int ret, min_uV, max_uV;

3802
	regulator_lock(rdev);
3803 3804 3805 3806 3807 3808 3809 3810

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
3811
	if (!voltage->min_uV && !voltage->max_uV) {
3812 3813 3814 3815
		ret = -EINVAL;
		goto out;
	}

3816 3817
	min_uV = voltage->min_uV;
	max_uV = voltage->max_uV;
3818 3819 3820 3821 3822 3823

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

3824
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3825 3826 3827 3828 3829 3830
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
3831
	regulator_unlock(rdev);
3832 3833 3834 3835
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

3836 3837
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
3838
	int sel, ret;
3839 3840 3841 3842 3843 3844 3845 3846
	bool bypassed;

	if (rdev->desc->ops->get_bypass) {
		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
		if (ret < 0)
			return ret;
		if (bypassed) {
			/* if bypassed the regulator must have a supply */
3847 3848 3849 3850 3851
			if (!rdev->supply) {
				rdev_err(rdev,
					 "bypassed regulator has no supply!\n");
				return -EPROBE_DEFER;
			}
3852 3853 3854 3855

			return _regulator_get_voltage(rdev->supply->rdev);
		}
	}
3856 3857 3858 3859 3860

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
3861
		ret = rdev->desc->ops->list_voltage(rdev, sel);
3862
	} else if (rdev->desc->ops->get_voltage) {
3863
		ret = rdev->desc->ops->get_voltage(rdev);
3864 3865
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
3866 3867
	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
		ret = rdev->desc->fixed_uV;
3868
	} else if (rdev->supply) {
3869
		ret = _regulator_get_voltage(rdev->supply->rdev);
3870
	} else {
3871
		return -EINVAL;
3872
	}
3873

3874 3875
	if (ret < 0)
		return ret;
3876
	return ret - rdev->constraints->uV_offset;
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
3890
	struct ww_acquire_ctx ww_ctx;
3891 3892
	int ret;

3893
	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3894
	ret = _regulator_get_voltage(regulator->rdev);
3895
	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3896 3897 3898 3899 3900 3901 3902 3903

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
3904
 * @min_uA: Minimum supported current in uA
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

3923
	regulator_lock(rdev);
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
3938
	regulator_unlock(rdev);
3939 3940 3941 3942
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

3943 3944 3945 3946 3947 3948 3949 3950 3951
static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_current_limit)
		return -EINVAL;

	return rdev->desc->ops->get_current_limit(rdev);
}

3952 3953 3954 3955
static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

3956
	regulator_lock(rdev);
3957
	ret = _regulator_get_current_limit_unlocked(rdev);
3958
	regulator_unlock(rdev);
3959

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
3993
	int regulator_curr_mode;
3994

3995
	regulator_lock(rdev);
3996 3997 3998 3999 4000 4001 4002

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

4003 4004 4005 4006 4007 4008 4009 4010 4011
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

4012
	/* constraints check */
4013
	ret = regulator_mode_constrain(rdev, &mode);
4014 4015 4016 4017 4018
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
4019
	regulator_unlock(rdev);
4020 4021 4022 4023
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

4024 4025 4026 4027 4028 4029 4030 4031 4032
static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
{
	/* sanity check */
	if (!rdev->desc->ops->get_mode)
		return -EINVAL;

	return rdev->desc->ops->get_mode(rdev);
}

4033 4034 4035 4036
static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

4037
	regulator_lock(rdev);
4038
	ret = _regulator_get_mode_unlocked(rdev);
4039
	regulator_unlock(rdev);
4040

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

4056 4057 4058 4059 4060
static int _regulator_get_error_flags(struct regulator_dev *rdev,
					unsigned int *flags)
{
	int ret;

4061
	regulator_lock(rdev);
4062 4063 4064 4065 4066 4067 4068 4069 4070

	/* sanity check */
	if (!rdev->desc->ops->get_error_flags) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_error_flags(rdev, flags);
out:
4071
	regulator_unlock(rdev);
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	return ret;
}

/**
 * regulator_get_error_flags - get regulator error information
 * @regulator: regulator source
 * @flags: pointer to store error flags
 *
 * Get the current regulator error information.
 */
int regulator_get_error_flags(struct regulator *regulator,
				unsigned int *flags)
{
	return _regulator_get_error_flags(regulator->rdev, flags);
}
EXPORT_SYMBOL_GPL(regulator_get_error_flags);

4089
/**
4090
 * regulator_set_load - set regulator load
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
4113
 * On error a negative errno is returned.
4114
 */
4115
int regulator_set_load(struct regulator *regulator, int uA_load)
4116 4117
{
	struct regulator_dev *rdev = regulator->rdev;
4118
	int ret;
4119

4120
	regulator_lock(rdev);
4121
	regulator->uA_load = uA_load;
4122
	ret = drms_uA_update(rdev);
4123
	regulator_unlock(rdev);
4124

4125 4126
	return ret;
}
4127
EXPORT_SYMBOL_GPL(regulator_set_load);
4128

4129 4130 4131 4132
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
4133
 * @enable: enable or disable bypass mode
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

4148
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4149 4150
		return 0;

4151
	regulator_lock(rdev);
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

4175
	regulator_unlock(rdev);
4176 4177 4178 4179 4180

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

4181 4182 4183
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
4184
 * @nb: notifier block
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
4199
 * @nb: notifier block
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

4211 4212 4213
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
4214
static int _notifier_call_chain(struct regulator_dev *rdev,
4215 4216 4217
				  unsigned long event, void *data)
{
	/* call rdev chain first */
4218
	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
4245 4246
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
4247 4248
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
4249 4250
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
4251 4252 4253 4254 4255 4256 4257 4258
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
4259
	while (--i >= 0)
4260 4261 4262 4263 4264 4265
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

4266 4267 4268 4269 4270 4271 4272
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
4288
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4289
	int i;
4290
	int ret = 0;
4291

4292 4293 4294 4295 4296 4297 4298
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
4299 4300 4301 4302

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
4303
	for (i = 0; i < num_consumers; i++) {
4304 4305
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
4306
			goto err;
4307
		}
4308 4309 4310 4311 4312
	}

	return 0;

err:
4313 4314 4315 4316 4317 4318 4319
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
4333 4334
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
4335 4336 4337 4338 4339 4340
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4341
	int ret, r;
4342

4343
	for (i = num_consumers - 1; i >= 0; --i) {
4344 4345 4346 4347 4348 4349 4350 4351
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
4352
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4353 4354 4355
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
4356
			pr_err("Failed to re-enable %s: %d\n",
4357 4358
			       consumers[i].supply, r);
	}
4359 4360 4361 4362 4363

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
4382
	int ret = 0;
4383

4384
	for (i = 0; i < num_consumers; i++) {
4385 4386 4387
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

4388 4389
		/* Store first error for reporting */
		if (consumers[i].ret && !ret)
4390 4391 4392 4393 4394 4395 4396
			ret = consumers[i].ret;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
4420
 * @rdev: regulator source
4421
 * @event: notifier block
4422
 * @data: callback-specific data.
4423 4424 4425
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
4426
 * Note lock must be held by caller.
4427 4428 4429 4430
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
4431
	lockdep_assert_held_once(&rdev->mutex.base);
4432

4433 4434 4435 4436 4437 4438
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
4455
	case REGULATOR_MODE_STANDBY:
4456 4457
		return REGULATOR_STATUS_STANDBY;
	default:
4458
		return REGULATOR_STATUS_UNDEFINED;
4459 4460 4461 4462
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	&dev_attr_microvolts.attr,
	&dev_attr_microamps.attr,
	&dev_attr_opmode.attr,
	&dev_attr_state.attr,
	&dev_attr_status.attr,
	&dev_attr_bypass.attr,
	&dev_attr_requested_microamps.attr,
	&dev_attr_min_microvolts.attr,
	&dev_attr_max_microvolts.attr,
	&dev_attr_min_microamps.attr,
	&dev_attr_max_microamps.attr,
	&dev_attr_suspend_standby_state.attr,
	&dev_attr_suspend_mem_state.attr,
	&dev_attr_suspend_disk_state.attr,
	&dev_attr_suspend_standby_microvolts.attr,
	&dev_attr_suspend_mem_microvolts.attr,
	&dev_attr_suspend_disk_microvolts.attr,
	&dev_attr_suspend_standby_mode.attr,
	&dev_attr_suspend_mem_mode.attr,
	&dev_attr_suspend_disk_mode.attr,
	NULL
};

4490 4491 4492 4493
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
4494 4495
static umode_t regulator_attr_is_visible(struct kobject *kobj,
					 struct attribute *attr, int idx)
4496
{
4497
	struct device *dev = kobj_to_dev(kobj);
G
Geliang Tang 已提交
4498
	struct regulator_dev *rdev = dev_to_rdev(dev);
4499
	const struct regulator_ops *ops = rdev->desc->ops;
4500 4501 4502 4503 4504 4505 4506
	umode_t mode = attr->mode;

	/* these three are always present */
	if (attr == &dev_attr_name.attr ||
	    attr == &dev_attr_num_users.attr ||
	    attr == &dev_attr_type.attr)
		return mode;
4507 4508

	/* some attributes need specific methods to be displayed */
4509 4510 4511 4512 4513 4514 4515
	if (attr == &dev_attr_microvolts.attr) {
		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
			return mode;
		return 0;
4516
	}
4517

4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532
	if (attr == &dev_attr_microamps.attr)
		return ops->get_current_limit ? mode : 0;

	if (attr == &dev_attr_opmode.attr)
		return ops->get_mode ? mode : 0;

	if (attr == &dev_attr_state.attr)
		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;

	if (attr == &dev_attr_status.attr)
		return ops->get_status ? mode : 0;

	if (attr == &dev_attr_bypass.attr)
		return ops->get_bypass ? mode : 0;

4533
	/* some attributes are type-specific */
4534 4535
	if (attr == &dev_attr_requested_microamps.attr)
		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4536 4537

	/* constraints need specific supporting methods */
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	if (attr == &dev_attr_min_microvolts.attr ||
	    attr == &dev_attr_max_microvolts.attr)
		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;

	if (attr == &dev_attr_min_microamps.attr ||
	    attr == &dev_attr_max_microamps.attr)
		return ops->set_current_limit ? mode : 0;

	if (attr == &dev_attr_suspend_standby_state.attr ||
	    attr == &dev_attr_suspend_mem_state.attr ||
	    attr == &dev_attr_suspend_disk_state.attr)
		return mode;

	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
	    attr == &dev_attr_suspend_mem_microvolts.attr ||
	    attr == &dev_attr_suspend_disk_microvolts.attr)
		return ops->set_suspend_voltage ? mode : 0;

	if (attr == &dev_attr_suspend_standby_mode.attr ||
	    attr == &dev_attr_suspend_mem_mode.attr ||
	    attr == &dev_attr_suspend_disk_mode.attr)
		return ops->set_suspend_mode ? mode : 0;

	return mode;
}

static const struct attribute_group regulator_dev_group = {
	.attrs = regulator_dev_attrs,
	.is_visible = regulator_attr_is_visible,
};

static const struct attribute_group *regulator_dev_groups[] = {
	&regulator_dev_group,
	NULL
};
4573

4574 4575 4576
static void regulator_dev_release(struct device *dev)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
4577 4578 4579

	kfree(rdev->constraints);
	of_node_put(rdev->dev.of_node);
4580
	kfree(rdev);
4581 4582
}

4583 4584
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596
	struct device *parent = rdev->dev.parent;
	const char *rname = rdev_get_name(rdev);
	char name[NAME_MAX];

	/* Avoid duplicate debugfs directory names */
	if (parent && rname == rdev->desc->name) {
		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
			 rname);
		rname = name;
	}

	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4597
	if (!rdev->debugfs) {
4598 4599 4600 4601 4602 4603 4604 4605
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
4606 4607
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
4608 4609
}

4610 4611
static int regulator_register_resolve_supply(struct device *dev, void *data)
{
4612 4613 4614 4615 4616 4617
	struct regulator_dev *rdev = dev_to_rdev(dev);

	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	return 0;
4618 4619
}

4620
static void regulator_resolve_coupling(struct regulator_dev *rdev)
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
{
	struct coupling_desc *c_desc = &rdev->coupling_desc;
	int n_coupled = c_desc->n_coupled;
	struct regulator_dev *c_rdev;
	int i;

	for (i = 1; i < n_coupled; i++) {
		/* already resolved */
		if (c_desc->coupled_rdevs[i])
			continue;

		c_rdev = of_parse_coupled_regulator(rdev, i - 1);

4634 4635
		if (!c_rdev)
			continue;
4636

4637
		regulator_lock(c_rdev);
4638

4639 4640
		c_desc->coupled_rdevs[i] = c_rdev;
		c_desc->n_resolved++;
4641

4642
		regulator_unlock(c_rdev);
4643

4644 4645
		regulator_resolve_coupling(c_rdev);
	}
4646 4647
}

4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
static void regulator_remove_coupling(struct regulator_dev *rdev)
{
	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
	struct regulator_dev *__c_rdev, *c_rdev;
	unsigned int __n_coupled, n_coupled;
	int i, k;

	n_coupled = c_desc->n_coupled;

	for (i = 1; i < n_coupled; i++) {
		c_rdev = c_desc->coupled_rdevs[i];

		if (!c_rdev)
			continue;

		regulator_lock(c_rdev);

		__c_desc = &c_rdev->coupling_desc;
		__n_coupled = __c_desc->n_coupled;

		for (k = 1; k < __n_coupled; k++) {
			__c_rdev = __c_desc->coupled_rdevs[k];

			if (__c_rdev == rdev) {
				__c_desc->coupled_rdevs[k] = NULL;
				__c_desc->n_resolved--;
				break;
			}
		}

		regulator_unlock(c_rdev);

		c_desc->coupled_rdevs[i] = NULL;
		c_desc->n_resolved--;
	}
}

4685
static int regulator_init_coupling(struct regulator_dev *rdev)
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
{
	int n_phandles;

	if (!IS_ENABLED(CONFIG_OF))
		n_phandles = 0;
	else
		n_phandles = of_get_n_coupled(rdev);

	if (n_phandles + 1 > MAX_COUPLED) {
		rdev_err(rdev, "too many regulators coupled\n");
		return -EPERM;
	}

	/*
	 * Every regulator should always have coupling descriptor filled with
	 * at least pointer to itself.
	 */
	rdev->coupling_desc.coupled_rdevs[0] = rdev;
	rdev->coupling_desc.n_coupled = n_phandles + 1;
	rdev->coupling_desc.n_resolved++;

	/* regulator isn't coupled */
	if (n_phandles == 0)
		return 0;

	/* regulator, which can't change its voltage, can't be coupled */
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
		rdev_err(rdev, "voltage operation not allowed\n");
		return -EPERM;
	}

	if (rdev->constraints->max_spread <= 0) {
		rdev_err(rdev, "wrong max_spread value\n");
		return -EPERM;
	}

	if (!of_check_coupling_data(rdev))
		return -EPERM;

	return 0;
}

4728 4729
/**
 * regulator_register - register regulator
4730
 * @regulator_desc: regulator to register
4731
 * @cfg: runtime configuration for regulator
4732 4733
 *
 * Called by regulator drivers to register a regulator.
4734 4735
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
4736
 */
4737 4738
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
4739
		   const struct regulator_config *cfg)
4740
{
4741
	const struct regulation_constraints *constraints = NULL;
4742
	const struct regulator_init_data *init_data;
4743
	struct regulator_config *config = NULL;
4744
	static atomic_t regulator_no = ATOMIC_INIT(-1);
4745
	struct regulator_dev *rdev;
4746
	struct device *dev;
4747
	int ret, i;
4748

4749
	if (regulator_desc == NULL || cfg == NULL)
4750 4751
		return ERR_PTR(-EINVAL);

4752
	dev = cfg->dev;
4753
	WARN_ON(!dev);
4754

4755 4756 4757
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

4758 4759
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
4760 4761
		return ERR_PTR(-EINVAL);

4762 4763 4764
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
4765 4766
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
4767 4768 4769 4770 4771 4772

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4773 4774 4775 4776
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
4777

4778 4779 4780 4781
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
	/*
	 * Duplicate the config so the driver could override it after
	 * parsing init data.
	 */
	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
	if (config == NULL) {
		kfree(rdev);
		return ERR_PTR(-ENOMEM);
	}

4792
	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4793 4794 4795 4796 4797 4798
					       &rdev->dev.of_node);
	if (!init_data) {
		init_data = config->init_data;
		rdev->dev.of_node = of_node_get(config->of_node);
	}

4799
	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
4800
	rdev->reg_data = config->driver_data;
4801 4802
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
4803 4804
	if (config->regmap)
		rdev->regmap = config->regmap;
4805
	else if (dev_get_regmap(dev, NULL))
4806
		rdev->regmap = dev_get_regmap(dev, NULL);
4807 4808
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4809 4810 4811
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4812
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4813

4814
	/* preform any regulator specific init */
4815
	if (init_data && init_data->regulator_init) {
4816
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
4817 4818
		if (ret < 0)
			goto clean;
4819 4820
	}

4821 4822 4823
	if (config->ena_gpiod ||
	    ((config->ena_gpio || config->ena_gpio_initialized) &&
	     gpio_is_valid(config->ena_gpio))) {
4824
		mutex_lock(&regulator_list_mutex);
4825
		ret = regulator_ena_gpio_request(rdev, config);
4826
		mutex_unlock(&regulator_list_mutex);
4827 4828 4829
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
4830
			goto clean;
4831 4832 4833
		}
	}

4834
	/* register with sysfs */
4835
	rdev->dev.class = &regulator_class;
4836
	rdev->dev.parent = dev;
4837
	dev_set_name(&rdev->dev, "regulator.%lu",
4838
		    (unsigned long) atomic_inc_return(&regulator_no));
4839

4840
	/* set regulator constraints */
4841 4842 4843 4844
	if (init_data)
		constraints = &init_data->constraints;

	if (init_data && init_data->supply_regulator)
4845
		rdev->supply_name = init_data->supply_regulator;
4846
	else if (regulator_desc->supply_name)
4847
		rdev->supply_name = regulator_desc->supply_name;
4848

4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
	/*
	 * Attempt to resolve the regulator supply, if specified,
	 * but don't return an error if we fail because we will try
	 * to resolve it again later as more regulators are added.
	 */
	if (regulator_resolve_supply(rdev))
		rdev_dbg(rdev, "unable to resolve supply\n");

	ret = set_machine_constraints(rdev, constraints);
	if (ret < 0)
		goto wash;

4861 4862
	ret = regulator_init_coupling(rdev);
	if (ret < 0)
4863 4864
		goto wash;

4865
	/* add consumers devices */
4866
	if (init_data) {
4867
		mutex_lock(&regulator_list_mutex);
4868 4869 4870
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
4871
				init_data->consumer_supplies[i].supply);
4872
			if (ret < 0) {
4873
				mutex_unlock(&regulator_list_mutex);
4874 4875 4876 4877
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
4878
		}
4879
		mutex_unlock(&regulator_list_mutex);
4880
	}
4881

4882 4883 4884 4885 4886
	if (!rdev->desc->ops->get_voltage &&
	    !rdev->desc->ops->list_voltage &&
	    !rdev->desc->fixed_uV)
		rdev->is_switch = true;

4887
	dev_set_drvdata(&rdev->dev, rdev);
4888 4889 4890 4891 4892 4893
	ret = device_register(&rdev->dev);
	if (ret != 0) {
		put_device(&rdev->dev);
		goto unset_supplies;
	}

4894
	rdev_init_debugfs(rdev);
4895

4896 4897 4898 4899 4900
	/* try to resolve regulators coupling since a new one was registered */
	mutex_lock(&regulator_list_mutex);
	regulator_resolve_coupling(rdev);
	mutex_unlock(&regulator_list_mutex);

4901 4902 4903
	/* try to resolve regulators supply since a new one was registered */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);
4904
	kfree(config);
4905
	return rdev;
D
David Brownell 已提交
4906

4907
unset_supplies:
4908
	mutex_lock(&regulator_list_mutex);
4909
	unset_regulator_supplies(rdev);
4910
	mutex_unlock(&regulator_list_mutex);
4911
wash:
4912
	kfree(rdev->constraints);
4913
	mutex_lock(&regulator_list_mutex);
4914
	regulator_ena_gpio_free(rdev);
4915
	mutex_unlock(&regulator_list_mutex);
D
David Brownell 已提交
4916 4917
clean:
	kfree(rdev);
4918 4919
	kfree(config);
	return ERR_PTR(ret);
4920 4921 4922 4923 4924
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
4925
 * @rdev: regulator to unregister
4926 4927 4928 4929 4930 4931 4932 4933
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

4934 4935 4936
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
4937
		regulator_put(rdev->supply);
4938
	}
4939

4940
	mutex_lock(&regulator_list_mutex);
4941

4942
	debugfs_remove_recursive(rdev->debugfs);
4943
	flush_work(&rdev->disable_work.work);
4944
	WARN_ON(rdev->open_count);
4945
	regulator_remove_coupling(rdev);
4946
	unset_regulator_supplies(rdev);
4947
	list_del(&rdev->list);
4948
	regulator_ena_gpio_free(rdev);
4949
	device_unregister(&rdev->dev);
4950 4951

	mutex_unlock(&regulator_list_mutex);
4952 4953 4954
}
EXPORT_SYMBOL_GPL(regulator_unregister);

4955
#ifdef CONFIG_SUSPEND
4956
/**
4957
 * regulator_suspend - prepare regulators for system wide suspend
4958
 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
4959 4960 4961
 *
 * Configure each regulator with it's suspend operating parameters for state.
 */
4962
static int regulator_suspend(struct device *dev)
4963
{
4964
	struct regulator_dev *rdev = dev_to_rdev(dev);
4965
	suspend_state_t state = pm_suspend_target_state;
4966 4967 4968 4969 4970
	int ret;

	regulator_lock(rdev);
	ret = suspend_set_state(rdev, state);
	regulator_unlock(rdev);
4971

4972
	return ret;
4973
}
4974

4975
static int regulator_resume(struct device *dev)
4976
{
4977
	suspend_state_t state = pm_suspend_target_state;
4978
	struct regulator_dev *rdev = dev_to_rdev(dev);
4979
	struct regulator_state *rstate;
4980
	int ret = 0;
4981

4982
	rstate = regulator_get_suspend_state(rdev, state);
4983
	if (rstate == NULL)
4984
		return 0;
4985

4986
	regulator_lock(rdev);
4987

4988
	if (rdev->desc->ops->resume &&
4989 4990
	    (rstate->enabled == ENABLE_IN_SUSPEND ||
	     rstate->enabled == DISABLE_IN_SUSPEND))
4991
		ret = rdev->desc->ops->resume(rdev);
4992

4993
	regulator_unlock(rdev);
4994

4995
	return ret;
4996
}
4997 4998
#else /* !CONFIG_SUSPEND */

4999 5000
#define regulator_suspend	NULL
#define regulator_resume	NULL
5001 5002 5003 5004 5005

#endif /* !CONFIG_SUSPEND */

#ifdef CONFIG_PM
static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5006 5007
	.suspend	= regulator_suspend,
	.resume		= regulator_resume,
5008 5009 5010
};
#endif

M
Mark Brown 已提交
5011
struct class regulator_class = {
5012 5013 5014 5015 5016 5017 5018
	.name = "regulator",
	.dev_release = regulator_dev_release,
	.dev_groups = regulator_dev_groups,
#ifdef CONFIG_PM
	.pm = &regulator_pm_ops,
#endif
};
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

5036 5037
/**
 * rdev_get_drvdata - get rdev regulator driver data
5038
 * @rdev: regulator
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
5075
 * @rdev: regulator
5076 5077 5078 5079 5080 5081 5082
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

5095
#ifdef CONFIG_DEBUG_FS
5096
static int supply_map_show(struct seq_file *sf, void *data)
5097 5098 5099 5100
{
	struct regulator_map *map;

	list_for_each_entry(map, &regulator_map_list, list) {
5101 5102 5103
		seq_printf(sf, "%s -> %s.%s\n",
				rdev_get_name(map->regulator), map->dev_name,
				map->supply);
5104 5105
	}

5106 5107
	return 0;
}
5108

5109 5110 5111
static int supply_map_open(struct inode *inode, struct file *file)
{
	return single_open(file, supply_map_show, inode->i_private);
5112
}
5113
#endif
5114 5115

static const struct file_operations supply_map_fops = {
5116
#ifdef CONFIG_DEBUG_FS
5117 5118 5119 5120
	.open = supply_map_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
5121
#endif
5122
};
5123

5124
#ifdef CONFIG_DEBUG_FS
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
struct summary_data {
	struct seq_file *s;
	struct regulator_dev *parent;
	int level;
};

static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level);

static int regulator_summary_show_children(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_data *summary_data = data;

	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
		regulator_summary_show_subtree(summary_data->s, rdev,
					       summary_data->level + 1);

	return 0;
}

5147 5148 5149 5150 5151 5152
static void regulator_summary_show_subtree(struct seq_file *s,
					   struct regulator_dev *rdev,
					   int level)
{
	struct regulation_constraints *c;
	struct regulator *consumer;
5153
	struct summary_data summary_data;
5154
	unsigned int opmode;
5155 5156 5157 5158

	if (!rdev)
		return;

5159
	opmode = _regulator_get_mode_unlocked(rdev);
5160
	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5161 5162
		   level * 3 + 1, "",
		   30 - level * 3, rdev_get_name(rdev),
5163
		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5164
		   regulator_opmode_to_str(opmode));
5165

5166
	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
5167 5168
	seq_printf(s, "%5dmA ",
		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186

	c = rdev->constraints;
	if (c) {
		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
			seq_printf(s, "%5dmV %5dmV ",
				   c->min_uV / 1000, c->max_uV / 1000);
			break;
		case REGULATOR_CURRENT:
			seq_printf(s, "%5dmA %5dmA ",
				   c->min_uA / 1000, c->max_uA / 1000);
			break;
		}
	}

	seq_puts(s, "\n");

	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5187
		if (consumer->dev && consumer->dev->class == &regulator_class)
5188 5189 5190 5191
			continue;

		seq_printf(s, "%*s%-*s ",
			   (level + 1) * 3 + 1, "",
5192 5193
			   30 - (level + 1) * 3,
			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5194 5195 5196

		switch (rdev->desc->type) {
		case REGULATOR_VOLTAGE:
5197 5198
			seq_printf(s, "%37dmA %5dmV %5dmV",
				   consumer->uA_load / 1000,
5199 5200
				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5201 5202 5203 5204 5205 5206 5207 5208
			break;
		case REGULATOR_CURRENT:
			break;
		}

		seq_puts(s, "\n");
	}

5209 5210 5211
	summary_data.s = s;
	summary_data.level = level;
	summary_data.parent = rdev;
5212

5213 5214
	class_for_each_device(&regulator_class, NULL, &summary_data,
			      regulator_summary_show_children);
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
}

struct summary_lock_data {
	struct ww_acquire_ctx *ww_ctx;
	struct regulator_dev **new_contended_rdev;
	struct regulator_dev **old_contended_rdev;
};

static int regulator_summary_lock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;
	int ret = 0;

	if (rdev != *lock_data->old_contended_rdev) {
		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);

		if (ret == -EDEADLK)
			*lock_data->new_contended_rdev = rdev;
		else
			WARN_ON_ONCE(ret);
	} else {
		*lock_data->old_contended_rdev = NULL;
	}

	return ret;
}

static int regulator_summary_unlock_one(struct device *dev, void *data)
{
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct summary_lock_data *lock_data = data;

	if (lock_data) {
		if (rdev == *lock_data->new_contended_rdev)
			return -EDEADLK;
	}
5252 5253

	regulator_unlock(rdev);
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283

	return 0;
}

static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
				      struct regulator_dev **new_contended_rdev,
				      struct regulator_dev **old_contended_rdev)
{
	struct summary_lock_data lock_data;
	int ret;

	lock_data.ww_ctx = ww_ctx;
	lock_data.new_contended_rdev = new_contended_rdev;
	lock_data.old_contended_rdev = old_contended_rdev;

	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
				    regulator_summary_lock_one);
	if (ret)
		class_for_each_device(&regulator_class, NULL, &lock_data,
				      regulator_summary_unlock_one);

	return ret;
}

static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
{
	struct regulator_dev *new_contended_rdev = NULL;
	struct regulator_dev *old_contended_rdev = NULL;
	int err;

5284 5285
	mutex_lock(&regulator_list_mutex);

5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	ww_acquire_init(ww_ctx, &regulator_ww_class);

	do {
		if (new_contended_rdev) {
			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
			old_contended_rdev = new_contended_rdev;
			old_contended_rdev->ref_cnt++;
		}

		err = regulator_summary_lock_all(ww_ctx,
						 &new_contended_rdev,
						 &old_contended_rdev);

		if (old_contended_rdev)
			regulator_unlock(old_contended_rdev);

	} while (err == -EDEADLK);

	ww_acquire_done(ww_ctx);
}

static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
{
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_summary_unlock_one);
	ww_acquire_fini(ww_ctx);
5312 5313

	mutex_unlock(&regulator_list_mutex);
5314 5315
}

5316
static int regulator_summary_show_roots(struct device *dev, void *data)
5317
{
5318 5319
	struct regulator_dev *rdev = dev_to_rdev(dev);
	struct seq_file *s = data;
5320

5321 5322
	if (!rdev->supply)
		regulator_summary_show_subtree(s, rdev, 0);
5323

5324 5325
	return 0;
}
5326

5327 5328
static int regulator_summary_show(struct seq_file *s, void *data)
{
5329 5330
	struct ww_acquire_ctx ww_ctx;

5331 5332
	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5333

5334 5335
	regulator_summary_lock(&ww_ctx);

5336 5337
	class_for_each_device(&regulator_class, NULL, s,
			      regulator_summary_show_roots);
5338

5339 5340
	regulator_summary_unlock(&ww_ctx);

5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
	return 0;
}

static int regulator_summary_open(struct inode *inode, struct file *file)
{
	return single_open(file, regulator_summary_show, inode->i_private);
}
#endif

static const struct file_operations regulator_summary_fops = {
#ifdef CONFIG_DEBUG_FS
	.open		= regulator_summary_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
#endif
};

5359 5360
static int __init regulator_init(void)
{
5361 5362 5363 5364
	int ret;

	ret = class_register(&regulator_class);

5365
	debugfs_root = debugfs_create_dir("regulator", NULL);
5366
	if (!debugfs_root)
5367
		pr_warn("regulator: Failed to create debugfs directory\n");
5368

5369 5370
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
5371

5372
	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5373
			    NULL, &regulator_summary_fops);
5374

5375 5376 5377
	regulator_dummy_init();

	return ret;
5378 5379 5380 5381
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
5382

5383
static int __init regulator_late_cleanup(struct device *dev, void *data)
5384
{
5385 5386 5387
	struct regulator_dev *rdev = dev_to_rdev(dev);
	const struct regulator_ops *ops = rdev->desc->ops;
	struct regulation_constraints *c = rdev->constraints;
5388 5389
	int enabled, ret;

5390 5391 5392
	if (c && c->always_on)
		return 0;

5393
	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5394 5395
		return 0;

5396
	regulator_lock(rdev);
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426

	if (rdev->use_count)
		goto unlock;

	/* If we can't read the status assume it's on. */
	if (ops->is_enabled)
		enabled = ops->is_enabled(rdev);
	else
		enabled = 1;

	if (!enabled)
		goto unlock;

	if (have_full_constraints()) {
		/* We log since this may kill the system if it goes
		 * wrong. */
		rdev_info(rdev, "disabling\n");
		ret = _regulator_do_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "couldn't disable: %d\n", ret);
	} else {
		/* The intention is that in future we will
		 * assume that full constraints are provided
		 * so warn even if we aren't going to do
		 * anything here.
		 */
		rdev_warn(rdev, "incomplete constraints, leaving on\n");
	}

unlock:
5427
	regulator_unlock(rdev);
5428 5429 5430 5431 5432 5433

	return 0;
}

static int __init regulator_init_complete(void)
{
5434 5435 5436 5437 5438 5439 5440 5441 5442
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	/*
	 * Regulators may had failed to resolve their input supplies
	 * when were registered, either because the input supply was
	 * not registered yet or because its parent device was not
	 * bound yet. So attempt to resolve the input supplies for
	 * pending regulators before trying to disable unused ones.
	 */
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_register_resolve_supply);

5453
	/* If we have a full configuration then disable any regulators
5454 5455 5456
	 * we have permission to change the status for and which are
	 * not in use or always_on.  This is effectively the default
	 * for DT and ACPI as they have full constraints.
5457
	 */
5458 5459
	class_for_each_device(&regulator_class, NULL, NULL,
			      regulator_late_cleanup);
5460 5461 5462

	return 0;
}
5463
late_initcall_sync(regulator_init_complete);