memcontrol.c 159.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

249 250 251 252 253
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

254
#ifndef CONFIG_SLOB
255
/*
256
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
257 258 259 260 261
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
262
 *
263 264
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
265
 */
266 267
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
268

269 270 271 272 273 274 275 276 277 278 279 280 281
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

282 283 284 285 286 287
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
288
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 290
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
291
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 293 294
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
295
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296

297 298 299 300 301 302
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
303
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304
EXPORT_SYMBOL(memcg_kmem_enabled_key);
305

306 307
struct workqueue_struct *memcg_kmem_cache_wq;

308
#endif /* !CONFIG_SLOB */
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

327
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 329 330 331 332
		memcg = root_mem_cgroup;

	return &memcg->css;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

361 362
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363
{
364
	int nid = page_to_nid(page);
365

366
	return memcg->nodeinfo[nid];
367 368
}

369 370
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
371
{
372
	return soft_limit_tree.rb_tree_per_node[nid];
373 374
}

375
static struct mem_cgroup_tree_per_node *
376 377 378 379
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

380
	return soft_limit_tree.rb_tree_per_node[nid];
381 382
}

383 384
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
385
					 unsigned long new_usage_in_excess)
386 387 388
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
389
	struct mem_cgroup_per_node *mz_node;
390
	bool rightmost = true;
391 392 393 394 395 396 397 398 399

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
400
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401
					tree_node);
402
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
403
			p = &(*p)->rb_left;
404 405 406
			rightmost = false;
		}

407 408 409 410 411 412 413
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
414 415 416 417

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

418 419 420 421 422
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

423 424
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
425 426 427
{
	if (!mz->on_tree)
		return;
428 429 430 431

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

432 433 434 435
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

436 437
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
438
{
439 440 441
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
442
	__mem_cgroup_remove_exceeded(mz, mctz);
443
	spin_unlock_irqrestore(&mctz->lock, flags);
444 445
}

446 447 448
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
449
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 451 452 453 454 455 456
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
457 458 459

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
460
	unsigned long excess;
461 462
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
463

464
	mctz = soft_limit_tree_from_page(page);
465 466
	if (!mctz)
		return;
467 468 469 470 471
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472
		mz = mem_cgroup_page_nodeinfo(memcg, page);
473
		excess = soft_limit_excess(memcg);
474 475 476 477 478
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
479 480 481
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
482 483
			/* if on-tree, remove it */
			if (mz->on_tree)
484
				__mem_cgroup_remove_exceeded(mz, mctz);
485 486 487 488
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
489
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
490
			spin_unlock_irqrestore(&mctz->lock, flags);
491 492 493 494 495 496
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
497 498 499
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
500

501
	for_each_node(nid) {
502 503
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
504 505
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
506 507 508
	}
}

509 510
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511
{
512
	struct mem_cgroup_per_node *mz;
513 514 515

retry:
	mz = NULL;
516
	if (!mctz->rb_rightmost)
517 518
		goto done;		/* Nothing to reclaim from */

519 520
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
521 522 523 524 525
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
526
	__mem_cgroup_remove_exceeded(mz, mctz);
527
	if (!soft_limit_excess(mz->memcg) ||
528
	    !css_tryget_online(&mz->memcg->css))
529 530 531 532 533
		goto retry;
done:
	return mz;
}

534 535
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536
{
537
	struct mem_cgroup_per_node *mz;
538

539
	spin_lock_irq(&mctz->lock);
540
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
541
	spin_unlock_irq(&mctz->lock);
542 543 544
	return mz;
}

545
/*
546 547
 * Return page count for single (non recursive) @memcg.
 *
548 549 550 551 552
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
553
 * a periodic synchronization of counter in memcg's counter.
554 555 556 557 558 559 560 561 562
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
563
 * common workload, threshold and synchronization as vmstat[] should be
564
 * implemented.
565 566
 *
 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
567
 */
568

569
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
570
				      int event)
571 572 573 574
{
	unsigned long val = 0;
	int cpu;

575
	for_each_possible_cpu(cpu)
576
		val += per_cpu(memcg->stat->events[event], cpu);
577 578 579
	return val;
}

580
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
581
					 struct page *page,
582
					 bool compound, int nr_pages)
583
{
584 585 586 587
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
588
	if (PageAnon(page))
589
		__this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
590
	else {
591
		__this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
592
		if (PageSwapBacked(page))
593
			__this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
594
	}
595

596 597
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
598
		__this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
599
	}
600

601 602
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
603
		__this_cpu_inc(memcg->stat->events[PGPGIN]);
604
	else {
605
		__this_cpu_inc(memcg->stat->events[PGPGOUT]);
606 607
		nr_pages = -nr_pages; /* for event */
	}
608

609
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
610 611
}

612 613
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
614
{
615
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
616
	unsigned long nr = 0;
617
	enum lru_list lru;
618

619
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
620

621 622 623
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
624
		nr += mem_cgroup_get_lru_size(lruvec, lru);
625 626
	}
	return nr;
627
}
628

629
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
630
			unsigned int lru_mask)
631
{
632
	unsigned long nr = 0;
633
	int nid;
634

635
	for_each_node_state(nid, N_MEMORY)
636 637
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
638 639
}

640 641
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
642 643 644
{
	unsigned long val, next;

645
	val = __this_cpu_read(memcg->stat->nr_page_events);
646
	next = __this_cpu_read(memcg->stat->targets[target]);
647
	/* from time_after() in jiffies.h */
648
	if ((long)(next - val) < 0) {
649 650 651 652
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
653 654 655
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
656 657 658 659 660 661 662 663
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
664
	}
665
	return false;
666 667 668 669 670 671
}

/*
 * Check events in order.
 *
 */
672
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
673 674
{
	/* threshold event is triggered in finer grain than soft limit */
675 676
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
677
		bool do_softlimit;
678
		bool do_numainfo __maybe_unused;
679

680 681
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
682 683 684 685
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
686
		mem_cgroup_threshold(memcg);
687 688
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
689
#if MAX_NUMNODES > 1
690
		if (unlikely(do_numainfo))
691
			atomic_inc(&memcg->numainfo_events);
692
#endif
693
	}
694 695
}

696
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
697
{
698 699 700 701 702 703 704 705
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

706
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
707
}
M
Michal Hocko 已提交
708
EXPORT_SYMBOL(mem_cgroup_from_task);
709

710
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
711
{
712
	struct mem_cgroup *memcg = NULL;
713

714 715
	rcu_read_lock();
	do {
716 717 718 719 720 721
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
722
			memcg = root_mem_cgroup;
723 724 725 726 727
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
728
	} while (!css_tryget_online(&memcg->css));
729
	rcu_read_unlock();
730
	return memcg;
731 732
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
750
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
751
				   struct mem_cgroup *prev,
752
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
753
{
M
Michal Hocko 已提交
754
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
755
	struct cgroup_subsys_state *css = NULL;
756
	struct mem_cgroup *memcg = NULL;
757
	struct mem_cgroup *pos = NULL;
758

759 760
	if (mem_cgroup_disabled())
		return NULL;
761

762 763
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
764

765
	if (prev && !reclaim)
766
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
767

768 769
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
770
			goto out;
771
		return root;
772
	}
K
KAMEZAWA Hiroyuki 已提交
773

774
	rcu_read_lock();
M
Michal Hocko 已提交
775

776
	if (reclaim) {
777
		struct mem_cgroup_per_node *mz;
778

779
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
780 781 782 783 784
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

785
		while (1) {
786
			pos = READ_ONCE(iter->position);
787 788
			if (!pos || css_tryget(&pos->css))
				break;
789
			/*
790 791 792 793 794 795
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
796
			 */
797 798
			(void)cmpxchg(&iter->position, pos, NULL);
		}
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
816
		}
K
KAMEZAWA Hiroyuki 已提交
817

818 819 820 821 822 823
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
824

825 826
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
827

828 829
		if (css_tryget(css))
			break;
830

831
		memcg = NULL;
832
	}
833 834 835

	if (reclaim) {
		/*
836 837 838
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
839
		 */
840 841
		(void)cmpxchg(&iter->position, pos, memcg);

842 843 844 845 846 847 848
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
849
	}
850

851 852
out_unlock:
	rcu_read_unlock();
853
out:
854 855 856
	if (prev && prev != root)
		css_put(&prev->css);

857
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
858
}
K
KAMEZAWA Hiroyuki 已提交
859

860 861 862 863 864 865 866
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
867 868 869 870 871 872
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
873

874 875 876 877
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
878 879
	struct mem_cgroup_per_node *mz;
	int nid;
880 881 882 883
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
884 885 886 887 888
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
889 890 891 892 893
			}
		}
	}
}

894 895 896 897 898 899
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
900
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
901
	     iter != NULL;				\
902
	     iter = mem_cgroup_iter(root, iter, NULL))
903

904
#define for_each_mem_cgroup(iter)			\
905
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
906
	     iter != NULL;				\
907
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

934
		css_task_iter_start(&iter->css, 0, &it);
935 936 937 938 939 940 941 942 943 944 945
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

946
/**
947
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
948
 * @page: the page
949
 * @zone: zone of the page
950 951 952 953
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
954
 */
M
Mel Gorman 已提交
955
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
956
{
957
	struct mem_cgroup_per_node *mz;
958
	struct mem_cgroup *memcg;
959
	struct lruvec *lruvec;
960

961
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
962
		lruvec = &pgdat->lruvec;
963 964
		goto out;
	}
965

966
	memcg = page->mem_cgroup;
967
	/*
968
	 * Swapcache readahead pages are added to the LRU - and
969
	 * possibly migrated - before they are charged.
970
	 */
971 972
	if (!memcg)
		memcg = root_mem_cgroup;
973

974
	mz = mem_cgroup_page_nodeinfo(memcg, page);
975 976 977 978 979 980 981
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
982 983
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
984
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
985
}
986

987
/**
988 989 990
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
991
 * @zid: zone id of the accounted pages
992
 * @nr_pages: positive when adding or negative when removing
993
 *
994 995 996
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
997
 */
998
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
999
				int zid, int nr_pages)
1000
{
1001
	struct mem_cgroup_per_node *mz;
1002
	unsigned long *lru_size;
1003
	long size;
1004 1005 1006 1007

	if (mem_cgroup_disabled())
		return;

1008
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1009
	lru_size = &mz->lru_zone_size[zid][lru];
1010 1011 1012 1013 1014

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1015 1016 1017
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1018 1019 1020 1021 1022 1023
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1024
}
1025

1026
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1027
{
1028
	struct mem_cgroup *task_memcg;
1029
	struct task_struct *p;
1030
	bool ret;
1031

1032
	p = find_lock_task_mm(task);
1033
	if (p) {
1034
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1035 1036 1037 1038 1039 1040 1041
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1042
		rcu_read_lock();
1043 1044
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1045
		rcu_read_unlock();
1046
	}
1047 1048
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1049 1050 1051
	return ret;
}

1052
/**
1053
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1054
 * @memcg: the memory cgroup
1055
 *
1056
 * Returns the maximum amount of memory @mem can be charged with, in
1057
 * pages.
1058
 */
1059
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1060
{
1061 1062 1063
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1064

1065
	count = page_counter_read(&memcg->memory);
1066
	limit = READ_ONCE(memcg->memory.limit);
1067 1068 1069
	if (count < limit)
		margin = limit - count;

1070
	if (do_memsw_account()) {
1071
		count = page_counter_read(&memcg->memsw);
1072
		limit = READ_ONCE(memcg->memsw.limit);
1073 1074
		if (count <= limit)
			margin = min(margin, limit - count);
1075 1076
		else
			margin = 0;
1077 1078 1079
	}

	return margin;
1080 1081
}

1082
/*
Q
Qiang Huang 已提交
1083
 * A routine for checking "mem" is under move_account() or not.
1084
 *
Q
Qiang Huang 已提交
1085 1086 1087
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1088
 */
1089
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1090
{
1091 1092
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1093
	bool ret = false;
1094 1095 1096 1097 1098 1099 1100 1101 1102
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1103

1104 1105
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1106 1107
unlock:
	spin_unlock(&mc.lock);
1108 1109 1110
	return ret;
}

1111
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1112 1113
{
	if (mc.moving_task && current != mc.moving_task) {
1114
		if (mem_cgroup_under_move(memcg)) {
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1149
#define K(x) ((x) << (PAGE_SHIFT-10))
1150
/**
1151
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1152 1153 1154 1155 1156 1157 1158 1159
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1160 1161
	struct mem_cgroup *iter;
	unsigned int i;
1162 1163 1164

	rcu_read_lock();

1165 1166 1167 1168 1169 1170 1171 1172
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1173
	pr_cont_cgroup_path(memcg->css.cgroup);
1174
	pr_cont("\n");
1175 1176 1177

	rcu_read_unlock();

1178 1179 1180 1181 1182 1183 1184 1185 1186
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1187 1188

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1189 1190
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1191 1192
		pr_cont(":");

1193 1194
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1195
				continue;
1196
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1197
				K(memcg_page_state(iter, memcg1_stats[i])));
1198 1199 1200 1201 1202 1203 1204 1205
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1206 1207
}

1208 1209 1210 1211
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1212
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1213 1214
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1215 1216
	struct mem_cgroup *iter;

1217
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1218
		num++;
1219 1220 1221
	return num;
}

D
David Rientjes 已提交
1222 1223 1224
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1225
unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1226
{
1227
	unsigned long limit;
1228

1229
	limit = memcg->memory.limit;
1230
	if (mem_cgroup_swappiness(memcg)) {
1231
		unsigned long memsw_limit;
1232
		unsigned long swap_limit;
1233

1234
		memsw_limit = memcg->memsw.limit;
1235 1236 1237
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1238 1239
	}
	return limit;
D
David Rientjes 已提交
1240 1241
}

1242
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1243
				     int order)
1244
{
1245 1246 1247
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1248
		.memcg = memcg,
1249 1250 1251
		.gfp_mask = gfp_mask,
		.order = order,
	};
1252
	bool ret;
1253

1254
	mutex_lock(&oom_lock);
1255
	ret = out_of_memory(&oc);
1256
	mutex_unlock(&oom_lock);
1257
	return ret;
1258 1259
}

1260 1261
#if MAX_NUMNODES > 1

1262 1263
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1264
 * @memcg: the target memcg
1265 1266 1267 1268 1269 1270 1271
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1272
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1273 1274
		int nid, bool noswap)
{
1275
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1276 1277 1278
		return true;
	if (noswap || !total_swap_pages)
		return false;
1279
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1280 1281 1282 1283
		return true;
	return false;

}
1284 1285 1286 1287 1288 1289 1290

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1291
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1292 1293
{
	int nid;
1294 1295 1296 1297
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1298
	if (!atomic_read(&memcg->numainfo_events))
1299
		return;
1300
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1301 1302 1303
		return;

	/* make a nodemask where this memcg uses memory from */
1304
	memcg->scan_nodes = node_states[N_MEMORY];
1305

1306
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1307

1308 1309
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1310
	}
1311

1312 1313
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1328
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1329 1330 1331
{
	int node;

1332 1333
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1334

1335
	node = next_node_in(node, memcg->scan_nodes);
1336
	/*
1337 1338 1339
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1340 1341 1342 1343
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1344
	memcg->last_scanned_node = node;
1345 1346 1347
	return node;
}
#else
1348
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1349 1350 1351 1352 1353
{
	return 0;
}
#endif

1354
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1355
				   pg_data_t *pgdat,
1356 1357 1358 1359 1360 1361 1362 1363 1364
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1365
		.pgdat = pgdat,
1366 1367 1368
		.priority = 0,
	};

1369
	excess = soft_limit_excess(root_memcg);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1395
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1396
					pgdat, &nr_scanned);
1397
		*total_scanned += nr_scanned;
1398
		if (!soft_limit_excess(root_memcg))
1399
			break;
1400
	}
1401 1402
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1403 1404
}

1405 1406 1407 1408 1409 1410
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1411 1412
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1413 1414 1415 1416
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1417
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1418
{
1419
	struct mem_cgroup *iter, *failed = NULL;
1420

1421 1422
	spin_lock(&memcg_oom_lock);

1423
	for_each_mem_cgroup_tree(iter, memcg) {
1424
		if (iter->oom_lock) {
1425 1426 1427 1428 1429
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1430 1431
			mem_cgroup_iter_break(memcg, iter);
			break;
1432 1433
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1434
	}
K
KAMEZAWA Hiroyuki 已提交
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1447
		}
1448 1449
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1450 1451 1452 1453

	spin_unlock(&memcg_oom_lock);

	return !failed;
1454
}
1455

1456
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1457
{
K
KAMEZAWA Hiroyuki 已提交
1458 1459
	struct mem_cgroup *iter;

1460
	spin_lock(&memcg_oom_lock);
1461
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1462
	for_each_mem_cgroup_tree(iter, memcg)
1463
		iter->oom_lock = false;
1464
	spin_unlock(&memcg_oom_lock);
1465 1466
}

1467
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1468 1469 1470
{
	struct mem_cgroup *iter;

1471
	spin_lock(&memcg_oom_lock);
1472
	for_each_mem_cgroup_tree(iter, memcg)
1473 1474
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1475 1476
}

1477
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1478 1479 1480
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1481 1482
	/*
	 * When a new child is created while the hierarchy is under oom,
1483
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1484
	 */
1485
	spin_lock(&memcg_oom_lock);
1486
	for_each_mem_cgroup_tree(iter, memcg)
1487 1488 1489
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1490 1491
}

K
KAMEZAWA Hiroyuki 已提交
1492 1493
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1494
struct oom_wait_info {
1495
	struct mem_cgroup *memcg;
1496
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1497 1498
};

1499
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1500 1501
	unsigned mode, int sync, void *arg)
{
1502 1503
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1504 1505 1506
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1507
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1508

1509 1510
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1511 1512 1513 1514
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1515
static void memcg_oom_recover(struct mem_cgroup *memcg)
1516
{
1517 1518 1519 1520 1521 1522 1523 1524 1525
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1526
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1527 1528
}

1529
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1530
{
1531
	if (!current->memcg_may_oom)
1532
		return;
K
KAMEZAWA Hiroyuki 已提交
1533
	/*
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1546
	 */
1547
	css_get(&memcg->css);
T
Tejun Heo 已提交
1548 1549 1550
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1551 1552 1553 1554
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1555
 * @handle: actually kill/wait or just clean up the OOM state
1556
 *
1557 1558
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1559
 *
1560
 * Memcg supports userspace OOM handling where failed allocations must
1561 1562 1563 1564
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1565
 * the end of the page fault to complete the OOM handling.
1566 1567
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1568
 * completed, %false otherwise.
1569
 */
1570
bool mem_cgroup_oom_synchronize(bool handle)
1571
{
T
Tejun Heo 已提交
1572
	struct mem_cgroup *memcg = current->memcg_in_oom;
1573
	struct oom_wait_info owait;
1574
	bool locked;
1575 1576 1577

	/* OOM is global, do not handle */
	if (!memcg)
1578
		return false;
1579

1580
	if (!handle)
1581
		goto cleanup;
1582 1583 1584 1585 1586

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1587
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1588

1589
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1600 1601
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1602
	} else {
1603
		schedule();
1604 1605 1606 1607 1608
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1609 1610 1611 1612 1613 1614 1615 1616
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1617
cleanup:
T
Tejun Heo 已提交
1618
	current->memcg_in_oom = NULL;
1619
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1620
	return true;
1621 1622
}

1623
/**
1624 1625
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1626
 *
1627
 * This function protects unlocked LRU pages from being moved to
1628 1629 1630 1631 1632
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1633
 */
1634
struct mem_cgroup *lock_page_memcg(struct page *page)
1635 1636
{
	struct mem_cgroup *memcg;
1637
	unsigned long flags;
1638

1639 1640 1641 1642
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1643 1644 1645 1646 1647 1648 1649
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1650 1651 1652
	rcu_read_lock();

	if (mem_cgroup_disabled())
1653
		return NULL;
1654
again:
1655
	memcg = page->mem_cgroup;
1656
	if (unlikely(!memcg))
1657
		return NULL;
1658

Q
Qiang Huang 已提交
1659
	if (atomic_read(&memcg->moving_account) <= 0)
1660
		return memcg;
1661

1662
	spin_lock_irqsave(&memcg->move_lock, flags);
1663
	if (memcg != page->mem_cgroup) {
1664
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1665 1666
		goto again;
	}
1667 1668 1669 1670

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1671
	 * the task who has the lock for unlock_page_memcg().
1672 1673 1674
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1675

1676
	return memcg;
1677
}
1678
EXPORT_SYMBOL(lock_page_memcg);
1679

1680
/**
1681 1682 1683 1684
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1685
 */
1686
void __unlock_page_memcg(struct mem_cgroup *memcg)
1687
{
1688 1689 1690 1691 1692 1693 1694 1695
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1696

1697
	rcu_read_unlock();
1698
}
1699 1700 1701 1702 1703 1704 1705 1706 1707

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1708
EXPORT_SYMBOL(unlock_page_memcg);
1709

1710 1711 1712 1713
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1714
#define CHARGE_BATCH	32U
1715 1716
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1717
	unsigned int nr_pages;
1718
	struct work_struct work;
1719
	unsigned long flags;
1720
#define FLUSHING_CACHED_CHARGE	0
1721 1722
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1723
static DEFINE_MUTEX(percpu_charge_mutex);
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1735
 */
1736
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1737 1738
{
	struct memcg_stock_pcp *stock;
1739
	unsigned long flags;
1740
	bool ret = false;
1741

1742
	if (nr_pages > CHARGE_BATCH)
1743
		return ret;
1744

1745 1746 1747
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1748
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1749
		stock->nr_pages -= nr_pages;
1750 1751
		ret = true;
	}
1752 1753 1754

	local_irq_restore(flags);

1755 1756 1757 1758
	return ret;
}

/*
1759
 * Returns stocks cached in percpu and reset cached information.
1760 1761 1762 1763 1764
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1765
	if (stock->nr_pages) {
1766
		page_counter_uncharge(&old->memory, stock->nr_pages);
1767
		if (do_memsw_account())
1768
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1769
		css_put_many(&old->css, stock->nr_pages);
1770
		stock->nr_pages = 0;
1771 1772 1773 1774 1775 1776
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1777 1778 1779
	struct memcg_stock_pcp *stock;
	unsigned long flags;

1780 1781 1782 1783
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
1784 1785 1786
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1787
	drain_stock(stock);
1788
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1789 1790

	local_irq_restore(flags);
1791 1792 1793
}

/*
1794
 * Cache charges(val) to local per_cpu area.
1795
 * This will be consumed by consume_stock() function, later.
1796
 */
1797
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1798
{
1799 1800 1801 1802
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1803

1804
	stock = this_cpu_ptr(&memcg_stock);
1805
	if (stock->cached != memcg) { /* reset if necessary */
1806
		drain_stock(stock);
1807
		stock->cached = memcg;
1808
	}
1809
	stock->nr_pages += nr_pages;
1810

1811 1812 1813
	if (stock->nr_pages > CHARGE_BATCH)
		drain_stock(stock);

1814
	local_irq_restore(flags);
1815 1816 1817
}

/*
1818
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1819
 * of the hierarchy under it.
1820
 */
1821
static void drain_all_stock(struct mem_cgroup *root_memcg)
1822
{
1823
	int cpu, curcpu;
1824

1825 1826 1827
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1828 1829 1830 1831 1832 1833
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
1834
	curcpu = get_cpu();
1835 1836
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1837
		struct mem_cgroup *memcg;
1838

1839
		memcg = stock->cached;
1840
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1841
			continue;
1842 1843
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
1844
			continue;
1845
		}
1846 1847 1848 1849 1850 1851
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1852
		css_put(&memcg->css);
1853
	}
1854
	put_cpu();
1855
	mutex_unlock(&percpu_charge_mutex);
1856 1857
}

1858
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1859 1860 1861 1862 1863
{
	struct memcg_stock_pcp *stock;

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1864
	return 0;
1865 1866
}

1867 1868 1869 1870 1871 1872 1873
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
1874
		mem_cgroup_event(memcg, MEMCG_HIGH);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1887 1888 1889 1890 1891 1892 1893
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1894
	struct mem_cgroup *memcg;
1895 1896 1897 1898

	if (likely(!nr_pages))
		return;

1899 1900
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1901 1902 1903 1904
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1905 1906
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1907
{
1908
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1909
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1910
	struct mem_cgroup *mem_over_limit;
1911
	struct page_counter *counter;
1912
	unsigned long nr_reclaimed;
1913 1914
	bool may_swap = true;
	bool drained = false;
1915

1916
	if (mem_cgroup_is_root(memcg))
1917
		return 0;
1918
retry:
1919
	if (consume_stock(memcg, nr_pages))
1920
		return 0;
1921

1922
	if (!do_memsw_account() ||
1923 1924
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1925
			goto done_restock;
1926
		if (do_memsw_account())
1927 1928
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1929
	} else {
1930
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1931
		may_swap = false;
1932
	}
1933

1934 1935 1936 1937
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1938

1939 1940 1941 1942 1943 1944
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
1945
	if (unlikely(tsk_is_oom_victim(current) ||
1946 1947
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1948
		goto force;
1949

1950 1951 1952 1953 1954 1955 1956 1957 1958
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1959 1960 1961
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1962
	if (!gfpflags_allow_blocking(gfp_mask))
1963
		goto nomem;
1964

1965
	mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1966

1967 1968
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1969

1970
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1971
		goto retry;
1972

1973
	if (!drained) {
1974
		drain_all_stock(mem_over_limit);
1975 1976 1977 1978
		drained = true;
		goto retry;
	}

1979 1980
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1981 1982 1983 1984 1985 1986 1987 1988 1989
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1990
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1991 1992 1993 1994 1995 1996 1997 1998
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1999 2000 2001
	if (nr_retries--)
		goto retry;

2002
	if (gfp_mask & __GFP_NOFAIL)
2003
		goto force;
2004

2005
	if (fatal_signal_pending(current))
2006
		goto force;
2007

2008
	mem_cgroup_event(mem_over_limit, MEMCG_OOM);
2009

2010 2011
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2012
nomem:
2013
	if (!(gfp_mask & __GFP_NOFAIL))
2014
		return -ENOMEM;
2015 2016 2017 2018 2019 2020 2021
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2022
	if (do_memsw_account())
2023 2024 2025 2026
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2027 2028

done_restock:
2029
	css_get_many(&memcg->css, batch);
2030 2031
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2032

2033
	/*
2034 2035
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2036
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2037 2038 2039 2040
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2041 2042
	 */
	do {
2043
		if (page_counter_read(&memcg->memory) > memcg->high) {
2044 2045 2046 2047 2048
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2049
			current->memcg_nr_pages_over_high += batch;
2050 2051 2052
			set_notify_resume(current);
			break;
		}
2053
	} while ((memcg = parent_mem_cgroup(memcg)));
2054 2055

	return 0;
2056
}
2057

2058
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2059
{
2060 2061 2062
	if (mem_cgroup_is_root(memcg))
		return;

2063
	page_counter_uncharge(&memcg->memory, nr_pages);
2064
	if (do_memsw_account())
2065
		page_counter_uncharge(&memcg->memsw, nr_pages);
2066

2067
	css_put_many(&memcg->css, nr_pages);
2068 2069
}

2070 2071 2072 2073
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2074
	spin_lock_irq(zone_lru_lock(zone));
2075 2076 2077
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2078
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2093
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2094 2095 2096 2097
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2098
	spin_unlock_irq(zone_lru_lock(zone));
2099 2100
}

2101
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2102
			  bool lrucare)
2103
{
2104
	int isolated;
2105

2106
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2107 2108 2109 2110 2111

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2112 2113
	if (lrucare)
		lock_page_lru(page, &isolated);
2114

2115 2116
	/*
	 * Nobody should be changing or seriously looking at
2117
	 * page->mem_cgroup at this point:
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2129
	page->mem_cgroup = memcg;
2130

2131 2132
	if (lrucare)
		unlock_page_lru(page, isolated);
2133
}
2134

2135
#ifndef CONFIG_SLOB
2136
static int memcg_alloc_cache_id(void)
2137
{
2138 2139 2140
	int id, size;
	int err;

2141
	id = ida_simple_get(&memcg_cache_ida,
2142 2143 2144
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2145

2146
	if (id < memcg_nr_cache_ids)
2147 2148 2149 2150 2151 2152
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2153
	down_write(&memcg_cache_ids_sem);
2154 2155

	size = 2 * (id + 1);
2156 2157 2158 2159 2160
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2161
	err = memcg_update_all_caches(size);
2162 2163
	if (!err)
		err = memcg_update_all_list_lrus(size);
2164 2165 2166 2167 2168
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2169
	if (err) {
2170
		ida_simple_remove(&memcg_cache_ida, id);
2171 2172 2173 2174 2175 2176 2177
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2178
	ida_simple_remove(&memcg_cache_ida, id);
2179 2180
}

2181
struct memcg_kmem_cache_create_work {
2182 2183 2184 2185 2186
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2187
static void memcg_kmem_cache_create_func(struct work_struct *w)
2188
{
2189 2190
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2191 2192
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2193

2194
	memcg_create_kmem_cache(memcg, cachep);
2195

2196
	css_put(&memcg->css);
2197 2198 2199 2200 2201 2202
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2203 2204
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2205
{
2206
	struct memcg_kmem_cache_create_work *cw;
2207

2208
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2209
	if (!cw)
2210
		return;
2211 2212

	css_get(&memcg->css);
2213 2214 2215

	cw->memcg = memcg;
	cw->cachep = cachep;
2216
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2217

2218
	queue_work(memcg_kmem_cache_wq, &cw->work);
2219 2220
}

2221 2222
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2223 2224 2225 2226
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2227
	 * in __memcg_schedule_kmem_cache_create will recurse.
2228 2229 2230 2231 2232 2233 2234
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2235
	current->memcg_kmem_skip_account = 1;
2236
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2237
	current->memcg_kmem_skip_account = 0;
2238
}
2239

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2251 2252 2253
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2254 2255 2256
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2257
 *
2258 2259 2260 2261
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2262
 */
2263
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2264 2265
{
	struct mem_cgroup *memcg;
2266
	struct kmem_cache *memcg_cachep;
2267
	int kmemcg_id;
2268

2269
	VM_BUG_ON(!is_root_cache(cachep));
2270

2271
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2272 2273
		return cachep;

2274
	if (current->memcg_kmem_skip_account)
2275 2276
		return cachep;

2277
	memcg = get_mem_cgroup_from_mm(current->mm);
2278
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2279
	if (kmemcg_id < 0)
2280
		goto out;
2281

2282
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2283 2284
	if (likely(memcg_cachep))
		return memcg_cachep;
2285 2286 2287 2288 2289 2290 2291 2292 2293

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2294 2295 2296
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2297
	 */
2298
	memcg_schedule_kmem_cache_create(memcg, cachep);
2299
out:
2300
	css_put(&memcg->css);
2301
	return cachep;
2302 2303
}

2304 2305 2306 2307 2308
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2309 2310
{
	if (!is_root_cache(cachep))
2311
		css_put(&cachep->memcg_params.memcg->css);
2312 2313
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2325
{
2326 2327
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2328 2329
	int ret;

2330
	ret = try_charge(memcg, gfp, nr_pages);
2331
	if (ret)
2332
		return ret;
2333 2334 2335 2336 2337

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2338 2339
	}

2340
	page->mem_cgroup = memcg;
2341

2342
	return 0;
2343 2344
}

2345 2346 2347 2348 2349 2350 2351 2352 2353
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2354
{
2355
	struct mem_cgroup *memcg;
2356
	int ret = 0;
2357

2358 2359 2360
	if (memcg_kmem_bypass())
		return 0;

2361
	memcg = get_mem_cgroup_from_mm(current->mm);
2362
	if (!mem_cgroup_is_root(memcg)) {
2363
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2364 2365 2366
		if (!ret)
			__SetPageKmemcg(page);
	}
2367
	css_put(&memcg->css);
2368
	return ret;
2369
}
2370 2371 2372 2373 2374 2375
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2376
{
2377
	struct mem_cgroup *memcg = page->mem_cgroup;
2378
	unsigned int nr_pages = 1 << order;
2379 2380 2381 2382

	if (!memcg)
		return;

2383
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2384

2385 2386 2387
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2388
	page_counter_uncharge(&memcg->memory, nr_pages);
2389
	if (do_memsw_account())
2390
		page_counter_uncharge(&memcg->memsw, nr_pages);
2391

2392
	page->mem_cgroup = NULL;
2393 2394 2395 2396 2397

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2398
	css_put_many(&memcg->css, nr_pages);
2399
}
2400
#endif /* !CONFIG_SLOB */
2401

2402 2403 2404 2405
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2406
 * zone_lru_lock and migration entries setup in all page mappings.
2407
 */
2408
void mem_cgroup_split_huge_fixup(struct page *head)
2409
{
2410
	int i;
2411

2412 2413
	if (mem_cgroup_disabled())
		return;
2414

2415
	for (i = 1; i < HPAGE_PMD_NR; i++)
2416
		head[i].mem_cgroup = head->mem_cgroup;
2417

2418
	__this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2419
		       HPAGE_PMD_NR);
2420
}
2421
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2422

A
Andrew Morton 已提交
2423
#ifdef CONFIG_MEMCG_SWAP
2424
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2425
				       int nr_entries)
K
KAMEZAWA Hiroyuki 已提交
2426
{
2427
	this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
K
KAMEZAWA Hiroyuki 已提交
2428
}
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2441
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2442 2443 2444
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2445
				struct mem_cgroup *from, struct mem_cgroup *to)
2446 2447 2448
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2449 2450
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2451 2452

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2453 2454
		mem_cgroup_swap_statistics(from, -1);
		mem_cgroup_swap_statistics(to, 1);
2455 2456 2457 2458 2459 2460
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2461
				struct mem_cgroup *from, struct mem_cgroup *to)
2462 2463 2464
{
	return -EINVAL;
}
2465
#endif
K
KAMEZAWA Hiroyuki 已提交
2466

2467
static DEFINE_MUTEX(memcg_limit_mutex);
2468

2469
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2470
				   unsigned long limit)
2471
{
2472 2473 2474
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2475
	int retry_count;
2476
	int ret;
2477 2478 2479 2480 2481 2482

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2483 2484
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2485

2486
	oldusage = page_counter_read(&memcg->memory);
2487

2488
	do {
2489 2490 2491 2492
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2493 2494 2495 2496

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2497
			ret = -EINVAL;
2498 2499
			break;
		}
2500 2501 2502 2503
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2504 2505 2506 2507

		if (!ret)
			break;

2508 2509
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2510
		curusage = page_counter_read(&memcg->memory);
2511
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2512
		if (curusage >= oldusage)
2513 2514 2515
			retry_count--;
		else
			oldusage = curusage;
2516 2517
	} while (retry_count);

2518 2519
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2520

2521 2522 2523
	return ret;
}

L
Li Zefan 已提交
2524
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2525
					 unsigned long limit)
2526
{
2527 2528 2529
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2530
	int retry_count;
2531
	int ret;
2532

2533
	/* see mem_cgroup_resize_res_limit */
2534 2535 2536 2537 2538 2539
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2540 2541 2542 2543
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2544 2545 2546 2547

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2548 2549 2550
			ret = -EINVAL;
			break;
		}
2551 2552 2553 2554
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2555 2556 2557 2558

		if (!ret)
			break;

2559 2560
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2561
		curusage = page_counter_read(&memcg->memsw);
2562
		/* Usage is reduced ? */
2563
		if (curusage >= oldusage)
2564
			retry_count--;
2565 2566
		else
			oldusage = curusage;
2567 2568
	} while (retry_count);

2569 2570
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2571

2572 2573 2574
	return ret;
}

2575
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2576 2577 2578 2579
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2580
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2581 2582
	unsigned long reclaimed;
	int loop = 0;
2583
	struct mem_cgroup_tree_per_node *mctz;
2584
	unsigned long excess;
2585 2586 2587 2588 2589
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2590
	mctz = soft_limit_tree_node(pgdat->node_id);
2591 2592 2593 2594 2595 2596

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2597
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2598 2599
		return 0;

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2614
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2615 2616 2617
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2618
		spin_lock_irq(&mctz->lock);
2619
		__mem_cgroup_remove_exceeded(mz, mctz);
2620 2621 2622 2623 2624 2625

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2626 2627 2628
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2629
		excess = soft_limit_excess(mz->memcg);
2630 2631 2632 2633 2634 2635 2636 2637 2638
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2639
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2640
		spin_unlock_irq(&mctz->lock);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2658 2659 2660 2661 2662 2663
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2664 2665
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2666 2667 2668 2669 2670 2671
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2672 2673
}

2674
/*
2675
 * Reclaims as many pages from the given memcg as possible.
2676 2677 2678 2679 2680 2681 2682
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2683 2684
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2685
	/* try to free all pages in this cgroup */
2686
	while (nr_retries && page_counter_read(&memcg->memory)) {
2687
		int progress;
2688

2689 2690 2691
		if (signal_pending(current))
			return -EINTR;

2692 2693
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2694
		if (!progress) {
2695
			nr_retries--;
2696
			/* maybe some writeback is necessary */
2697
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2698
		}
2699 2700

	}
2701 2702

	return 0;
2703 2704
}

2705 2706 2707
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2708
{
2709
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2710

2711 2712
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2713
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2714 2715
}

2716 2717
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2718
{
2719
	return mem_cgroup_from_css(css)->use_hierarchy;
2720 2721
}

2722 2723
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2724 2725
{
	int retval = 0;
2726
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2727
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2728

2729
	if (memcg->use_hierarchy == val)
2730
		return 0;
2731

2732
	/*
2733
	 * If parent's use_hierarchy is set, we can't make any modifications
2734 2735 2736 2737 2738 2739
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2740
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2741
				(val == 1 || val == 0)) {
2742
		if (!memcg_has_children(memcg))
2743
			memcg->use_hierarchy = val;
2744 2745 2746 2747
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2748

2749 2750 2751
	return retval;
}

2752
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2753 2754
{
	struct mem_cgroup *iter;
2755
	int i;
2756

2757
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2758

2759 2760
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
2761
			stat[i] += memcg_page_state(iter, i);
2762
	}
2763 2764
}

2765
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2766 2767
{
	struct mem_cgroup *iter;
2768
	int i;
2769

2770
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2771

2772 2773
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2774
			events[i] += memcg_sum_events(iter, i);
2775
	}
2776 2777
}

2778
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2779
{
2780
	unsigned long val = 0;
2781

2782
	if (mem_cgroup_is_root(memcg)) {
2783 2784 2785
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
2786 2787
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
2788
			if (swap)
2789
				val += memcg_page_state(iter, MEMCG_SWAP);
2790
		}
2791
	} else {
2792
		if (!swap)
2793
			val = page_counter_read(&memcg->memory);
2794
		else
2795
			val = page_counter_read(&memcg->memsw);
2796
	}
2797
	return val;
2798 2799
}

2800 2801 2802 2803 2804 2805 2806
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2807

2808
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2809
			       struct cftype *cft)
B
Balbir Singh 已提交
2810
{
2811
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2812
	struct page_counter *counter;
2813

2814
	switch (MEMFILE_TYPE(cft->private)) {
2815
	case _MEM:
2816 2817
		counter = &memcg->memory;
		break;
2818
	case _MEMSWAP:
2819 2820
		counter = &memcg->memsw;
		break;
2821
	case _KMEM:
2822
		counter = &memcg->kmem;
2823
		break;
V
Vladimir Davydov 已提交
2824
	case _TCP:
2825
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2826
		break;
2827 2828 2829
	default:
		BUG();
	}
2830 2831 2832 2833

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2834
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2835
		if (counter == &memcg->memsw)
2836
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2849
}
2850

2851
#ifndef CONFIG_SLOB
2852
static int memcg_online_kmem(struct mem_cgroup *memcg)
2853 2854 2855
{
	int memcg_id;

2856 2857 2858
	if (cgroup_memory_nokmem)
		return 0;

2859
	BUG_ON(memcg->kmemcg_id >= 0);
2860
	BUG_ON(memcg->kmem_state);
2861

2862
	memcg_id = memcg_alloc_cache_id();
2863 2864
	if (memcg_id < 0)
		return memcg_id;
2865

2866
	static_branch_inc(&memcg_kmem_enabled_key);
2867
	/*
2868
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2869
	 * kmemcg_id. Setting the id after enabling static branching will
2870 2871 2872
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2873
	memcg->kmemcg_id = memcg_id;
2874
	memcg->kmem_state = KMEM_ONLINE;
2875
	INIT_LIST_HEAD(&memcg->kmem_caches);
2876 2877

	return 0;
2878 2879
}

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2913
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2914 2915 2916 2917 2918 2919 2920
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2921 2922
	rcu_read_unlock();

2923 2924 2925 2926 2927 2928 2929
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2930 2931 2932 2933
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2934 2935 2936 2937 2938 2939
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2940
#else
2941
static int memcg_online_kmem(struct mem_cgroup *memcg)
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2953
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2954
				   unsigned long limit)
2955
{
2956
	int ret;
2957 2958 2959 2960 2961

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2962
}
2963

V
Vladimir Davydov 已提交
2964 2965 2966 2967 2968 2969
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2970
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2971 2972 2973
	if (ret)
		goto out;

2974
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2975 2976 2977
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2978 2979 2980
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2981 2982 2983 2984 2985 2986
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2987
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2988 2989 2990 2991
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2992
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2993 2994 2995 2996 2997 2998
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2999 3000 3001 3002
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3003 3004
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3005
{
3006
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3007
	unsigned long nr_pages;
3008 3009
	int ret;

3010
	buf = strstrip(buf);
3011
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3012 3013
	if (ret)
		return ret;
3014

3015
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3016
	case RES_LIMIT:
3017 3018 3019 3020
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3021 3022 3023
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3024
			break;
3025 3026
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3027
			break;
3028 3029 3030
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3031 3032 3033
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3034
		}
3035
		break;
3036 3037 3038
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3039 3040
		break;
	}
3041
	return ret ?: nbytes;
B
Balbir Singh 已提交
3042 3043
}

3044 3045
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3046
{
3047
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3048
	struct page_counter *counter;
3049

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3060
	case _TCP:
3061
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3062
		break;
3063 3064 3065
	default:
		BUG();
	}
3066

3067
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3068
	case RES_MAX_USAGE:
3069
		page_counter_reset_watermark(counter);
3070 3071
		break;
	case RES_FAILCNT:
3072
		counter->failcnt = 0;
3073
		break;
3074 3075
	default:
		BUG();
3076
	}
3077

3078
	return nbytes;
3079 3080
}

3081
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3082 3083
					struct cftype *cft)
{
3084
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3085 3086
}

3087
#ifdef CONFIG_MMU
3088
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3089 3090
					struct cftype *cft, u64 val)
{
3091
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3092

3093
	if (val & ~MOVE_MASK)
3094
		return -EINVAL;
3095

3096
	/*
3097 3098 3099 3100
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3101
	 */
3102
	memcg->move_charge_at_immigrate = val;
3103 3104
	return 0;
}
3105
#else
3106
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3107 3108 3109 3110 3111
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3112

3113
#ifdef CONFIG_NUMA
3114
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3115
{
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3128
	int nid;
3129
	unsigned long nr;
3130
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3141 3142
	}

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3158 3159 3160 3161 3162 3163
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
/* Universal VM events cgroup1 shows, original sort order */
unsigned int memcg1_events[] = {
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3179
static int memcg_stat_show(struct seq_file *m, void *v)
3180
{
3181
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3182
	unsigned long memory, memsw;
3183 3184
	struct mem_cgroup *mi;
	unsigned int i;
3185

3186
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3187 3188
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3189 3190
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3191
			continue;
3192
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3193
			   memcg_page_state(memcg, memcg1_stats[i]) *
3194
			   PAGE_SIZE);
3195
	}
L
Lee Schermerhorn 已提交
3196

3197 3198
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3199
			   memcg_sum_events(memcg, memcg1_events[i]));
3200 3201 3202 3203 3204

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3205
	/* Hierarchical information */
3206 3207 3208 3209
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3210
	}
3211 3212
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3213
	if (do_memsw_account())
3214 3215
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3216

3217
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3218
		unsigned long long val = 0;
3219

3220
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3221
			continue;
3222
		for_each_mem_cgroup_tree(mi, memcg)
3223
			val += memcg_page_state(mi, memcg1_stats[i]) *
3224 3225
			PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3226 3227
	}

3228
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3229 3230 3231
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
3232
			val += memcg_sum_events(mi, memcg1_events[i]);
3233
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3234 3235 3236 3237 3238 3239 3240 3241
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3242
	}
K
KAMEZAWA Hiroyuki 已提交
3243

K
KOSAKI Motohiro 已提交
3244 3245
#ifdef CONFIG_DEBUG_VM
	{
3246 3247
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3248
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3249 3250 3251
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3252 3253 3254
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3255

3256 3257 3258 3259 3260
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3261 3262 3263 3264
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3265 3266 3267
	}
#endif

3268 3269 3270
	return 0;
}

3271 3272
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3273
{
3274
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3275

3276
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3277 3278
}

3279 3280
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3281
{
3282
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3283

3284
	if (val > 100)
K
KOSAKI Motohiro 已提交
3285 3286
		return -EINVAL;

3287
	if (css->parent)
3288 3289 3290
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3291

K
KOSAKI Motohiro 已提交
3292 3293 3294
	return 0;
}

3295 3296 3297
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3298
	unsigned long usage;
3299 3300 3301 3302
	int i;

	rcu_read_lock();
	if (!swap)
3303
		t = rcu_dereference(memcg->thresholds.primary);
3304
	else
3305
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3306 3307 3308 3309

	if (!t)
		goto unlock;

3310
	usage = mem_cgroup_usage(memcg, swap);
3311 3312

	/*
3313
	 * current_threshold points to threshold just below or equal to usage.
3314 3315 3316
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3317
	i = t->current_threshold;
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3341
	t->current_threshold = i - 1;
3342 3343 3344 3345 3346 3347
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3348 3349
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3350
		if (do_memsw_account())
3351 3352 3353 3354
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3355 3356 3357 3358 3359 3360 3361
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3362 3363 3364 3365 3366 3367 3368
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3369 3370
}

3371
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3372 3373 3374
{
	struct mem_cgroup_eventfd_list *ev;

3375 3376
	spin_lock(&memcg_oom_lock);

3377
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3378
		eventfd_signal(ev->eventfd, 1);
3379 3380

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3381 3382 3383
	return 0;
}

3384
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3385
{
K
KAMEZAWA Hiroyuki 已提交
3386 3387
	struct mem_cgroup *iter;

3388
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3389
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3390 3391
}

3392
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3393
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3394
{
3395 3396
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3397 3398
	unsigned long threshold;
	unsigned long usage;
3399
	int i, size, ret;
3400

3401
	ret = page_counter_memparse(args, "-1", &threshold);
3402 3403 3404 3405
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3406

3407
	if (type == _MEM) {
3408
		thresholds = &memcg->thresholds;
3409
		usage = mem_cgroup_usage(memcg, false);
3410
	} else if (type == _MEMSWAP) {
3411
		thresholds = &memcg->memsw_thresholds;
3412
		usage = mem_cgroup_usage(memcg, true);
3413
	} else
3414 3415 3416
		BUG();

	/* Check if a threshold crossed before adding a new one */
3417
	if (thresholds->primary)
3418 3419
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3420
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3421 3422

	/* Allocate memory for new array of thresholds */
3423
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3424
			GFP_KERNEL);
3425
	if (!new) {
3426 3427 3428
		ret = -ENOMEM;
		goto unlock;
	}
3429
	new->size = size;
3430 3431

	/* Copy thresholds (if any) to new array */
3432 3433
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3434
				sizeof(struct mem_cgroup_threshold));
3435 3436
	}

3437
	/* Add new threshold */
3438 3439
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3440 3441

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3442
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3443 3444 3445
			compare_thresholds, NULL);

	/* Find current threshold */
3446
	new->current_threshold = -1;
3447
	for (i = 0; i < size; i++) {
3448
		if (new->entries[i].threshold <= usage) {
3449
			/*
3450 3451
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3452 3453
			 * it here.
			 */
3454
			++new->current_threshold;
3455 3456
		} else
			break;
3457 3458
	}

3459 3460 3461 3462 3463
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3464

3465
	/* To be sure that nobody uses thresholds */
3466 3467 3468 3469 3470 3471 3472 3473
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3474
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3475 3476
	struct eventfd_ctx *eventfd, const char *args)
{
3477
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3478 3479
}

3480
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3481 3482
	struct eventfd_ctx *eventfd, const char *args)
{
3483
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3484 3485
}

3486
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3487
	struct eventfd_ctx *eventfd, enum res_type type)
3488
{
3489 3490
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3491
	unsigned long usage;
3492
	int i, j, size;
3493 3494

	mutex_lock(&memcg->thresholds_lock);
3495 3496

	if (type == _MEM) {
3497
		thresholds = &memcg->thresholds;
3498
		usage = mem_cgroup_usage(memcg, false);
3499
	} else if (type == _MEMSWAP) {
3500
		thresholds = &memcg->memsw_thresholds;
3501
		usage = mem_cgroup_usage(memcg, true);
3502
	} else
3503 3504
		BUG();

3505 3506 3507
	if (!thresholds->primary)
		goto unlock;

3508 3509 3510 3511
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3512 3513 3514
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3515 3516 3517
			size++;
	}

3518
	new = thresholds->spare;
3519

3520 3521
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3522 3523
		kfree(new);
		new = NULL;
3524
		goto swap_buffers;
3525 3526
	}

3527
	new->size = size;
3528 3529

	/* Copy thresholds and find current threshold */
3530 3531 3532
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3533 3534
			continue;

3535
		new->entries[j] = thresholds->primary->entries[i];
3536
		if (new->entries[j].threshold <= usage) {
3537
			/*
3538
			 * new->current_threshold will not be used
3539 3540 3541
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3542
			++new->current_threshold;
3543 3544 3545 3546
		}
		j++;
	}

3547
swap_buffers:
3548 3549
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3550

3551
	rcu_assign_pointer(thresholds->primary, new);
3552

3553
	/* To be sure that nobody uses thresholds */
3554
	synchronize_rcu();
3555 3556 3557 3558 3559 3560

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3561
unlock:
3562 3563
	mutex_unlock(&memcg->thresholds_lock);
}
3564

3565
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3566 3567
	struct eventfd_ctx *eventfd)
{
3568
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3569 3570
}

3571
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3572 3573
	struct eventfd_ctx *eventfd)
{
3574
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3575 3576
}

3577
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3578
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3579 3580 3581 3582 3583 3584 3585
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3586
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3587 3588 3589 3590 3591

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3592
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3593
		eventfd_signal(eventfd, 1);
3594
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3595 3596 3597 3598

	return 0;
}

3599
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3600
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3601 3602 3603
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3604
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3605

3606
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3607 3608 3609 3610 3611 3612
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3613
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3614 3615
}

3616
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3617
{
3618
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3619

3620
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3621
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3622
	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3623 3624 3625
	return 0;
}

3626
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3627 3628
	struct cftype *cft, u64 val)
{
3629
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3630 3631

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3632
	if (!css->parent || !((val == 0) || (val == 1)))
3633 3634
		return -EINVAL;

3635
	memcg->oom_kill_disable = val;
3636
	if (!val)
3637
		memcg_oom_recover(memcg);
3638

3639 3640 3641
	return 0;
}

3642 3643 3644 3645 3646 3647 3648
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3659 3660 3661 3662 3663
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3674 3675 3676
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3677 3678
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3679 3680 3681
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3682 3683 3684
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3685
 *
3686 3687 3688 3689 3690
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3691
 */
3692 3693 3694
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3695 3696 3697 3698
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3699
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3700 3701

	/* this should eventually include NR_UNSTABLE_NFS */
3702
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3703 3704 3705
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3706 3707 3708 3709 3710

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3711
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3712 3713 3714 3715
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3727 3728 3729 3730
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3731 3732
#endif	/* CONFIG_CGROUP_WRITEBACK */

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3746 3747 3748 3749 3750
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3751
static void memcg_event_remove(struct work_struct *work)
3752
{
3753 3754
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3755
	struct mem_cgroup *memcg = event->memcg;
3756 3757 3758

	remove_wait_queue(event->wqh, &event->wait);

3759
	event->unregister_event(memcg, event->eventfd);
3760 3761 3762 3763 3764 3765

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3766
	css_put(&memcg->css);
3767 3768 3769 3770 3771 3772 3773
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3774
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3775
			    int sync, void *key)
3776
{
3777 3778
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3779
	struct mem_cgroup *memcg = event->memcg;
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3792
		spin_lock(&memcg->event_list_lock);
3793 3794 3795 3796 3797 3798 3799 3800
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3801
		spin_unlock(&memcg->event_list_lock);
3802 3803 3804 3805 3806
	}

	return 0;
}

3807
static void memcg_event_ptable_queue_proc(struct file *file,
3808 3809
		wait_queue_head_t *wqh, poll_table *pt)
{
3810 3811
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3812 3813 3814 3815 3816 3817

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3818 3819
 * DO NOT USE IN NEW FILES.
 *
3820 3821 3822 3823 3824
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3825 3826
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3827
{
3828
	struct cgroup_subsys_state *css = of_css(of);
3829
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3830
	struct mem_cgroup_event *event;
3831 3832 3833 3834
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3835
	const char *name;
3836 3837 3838
	char *endp;
	int ret;

3839 3840 3841
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3842 3843
	if (*endp != ' ')
		return -EINVAL;
3844
	buf = endp + 1;
3845

3846
	cfd = simple_strtoul(buf, &endp, 10);
3847 3848
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3849
	buf = endp + 1;
3850 3851 3852 3853 3854

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3855
	event->memcg = memcg;
3856
	INIT_LIST_HEAD(&event->list);
3857 3858 3859
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3885 3886 3887 3888 3889
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3890 3891
	 *
	 * DO NOT ADD NEW FILES.
3892
	 */
A
Al Viro 已提交
3893
	name = cfile.file->f_path.dentry->d_name.name;
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3905 3906
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3907 3908 3909 3910 3911
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3912
	/*
3913 3914 3915
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3916
	 */
A
Al Viro 已提交
3917
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3918
					       &memory_cgrp_subsys);
3919
	ret = -EINVAL;
3920
	if (IS_ERR(cfile_css))
3921
		goto out_put_cfile;
3922 3923
	if (cfile_css != css) {
		css_put(cfile_css);
3924
		goto out_put_cfile;
3925
	}
3926

3927
	ret = event->register_event(memcg, event->eventfd, buf);
3928 3929 3930 3931 3932
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3933 3934 3935
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3936 3937 3938 3939

	fdput(cfile);
	fdput(efile);

3940
	return nbytes;
3941 3942

out_put_css:
3943
	css_put(css);
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3956
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3957
	{
3958
		.name = "usage_in_bytes",
3959
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3960
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3961
	},
3962 3963
	{
		.name = "max_usage_in_bytes",
3964
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3965
		.write = mem_cgroup_reset,
3966
		.read_u64 = mem_cgroup_read_u64,
3967
	},
B
Balbir Singh 已提交
3968
	{
3969
		.name = "limit_in_bytes",
3970
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3971
		.write = mem_cgroup_write,
3972
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3973
	},
3974 3975 3976
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3977
		.write = mem_cgroup_write,
3978
		.read_u64 = mem_cgroup_read_u64,
3979
	},
B
Balbir Singh 已提交
3980 3981
	{
		.name = "failcnt",
3982
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3983
		.write = mem_cgroup_reset,
3984
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3985
	},
3986 3987
	{
		.name = "stat",
3988
		.seq_show = memcg_stat_show,
3989
	},
3990 3991
	{
		.name = "force_empty",
3992
		.write = mem_cgroup_force_empty_write,
3993
	},
3994 3995 3996 3997 3998
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3999
	{
4000
		.name = "cgroup.event_control",		/* XXX: for compat */
4001
		.write = memcg_write_event_control,
4002
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4003
	},
K
KOSAKI Motohiro 已提交
4004 4005 4006 4007 4008
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4009 4010 4011 4012 4013
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4014 4015
	{
		.name = "oom_control",
4016
		.seq_show = mem_cgroup_oom_control_read,
4017
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4018 4019
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4020 4021 4022
	{
		.name = "pressure_level",
	},
4023 4024 4025
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4026
		.seq_show = memcg_numa_stat_show,
4027 4028
	},
#endif
4029 4030 4031
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4032
		.write = mem_cgroup_write,
4033
		.read_u64 = mem_cgroup_read_u64,
4034 4035 4036 4037
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4038
		.read_u64 = mem_cgroup_read_u64,
4039 4040 4041 4042
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4043
		.write = mem_cgroup_reset,
4044
		.read_u64 = mem_cgroup_read_u64,
4045 4046 4047 4048
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4049
		.write = mem_cgroup_reset,
4050
		.read_u64 = mem_cgroup_read_u64,
4051
	},
4052 4053 4054
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4055 4056 4057
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4058
		.seq_show = memcg_slab_show,
4059 4060
	},
#endif
V
Vladimir Davydov 已提交
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4084
	{ },	/* terminate */
4085
};
4086

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4113
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4114
{
4115
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4116
	atomic_add(n, &memcg->id.ref);
4117 4118
}

4119
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4120
{
4121
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4122
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4123 4124 4125 4126 4127 4128 4129 4130
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4153
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4154 4155
{
	struct mem_cgroup_per_node *pn;
4156
	int tmp = node;
4157 4158 4159 4160 4161 4162 4163 4164
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4165 4166
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4167
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4168 4169
	if (!pn)
		return 1;
4170

4171 4172 4173 4174 4175 4176
	pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat) {
		kfree(pn);
		return 1;
	}

4177 4178 4179 4180 4181
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4182
	memcg->nodeinfo[node] = pn;
4183 4184 4185
	return 0;
}

4186
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4187
{
4188 4189 4190 4191
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

	free_percpu(pn->lruvec_stat);
	kfree(pn);
4192 4193
}

4194
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4195
{
4196
	int node;
4197

4198
	for_each_node(node)
4199
		free_mem_cgroup_per_node_info(memcg, node);
4200
	free_percpu(memcg->stat);
4201
	kfree(memcg);
4202
}
4203

4204 4205 4206 4207 4208 4209
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4210
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4211
{
4212
	struct mem_cgroup *memcg;
4213
	size_t size;
4214
	int node;
B
Balbir Singh 已提交
4215

4216 4217 4218 4219
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4220
	if (!memcg)
4221 4222
		return NULL;

4223 4224 4225 4226 4227 4228
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4229 4230 4231
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4232

B
Bob Liu 已提交
4233
	for_each_node(node)
4234
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4235
			goto fail;
4236

4237 4238
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4239

4240
	INIT_WORK(&memcg->high_work, high_work_func);
4241 4242 4243 4244
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4245
	vmpressure_init(&memcg->vmpressure);
4246 4247
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4248
	memcg->socket_pressure = jiffies;
4249
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4250 4251
	memcg->kmemcg_id = -1;
#endif
4252 4253 4254
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4255
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4256 4257
	return memcg;
fail:
4258 4259
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4260
	__mem_cgroup_free(memcg);
4261
	return NULL;
4262 4263
}

4264 4265
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4266
{
4267 4268 4269
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4270

4271 4272 4273
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4274

4275 4276 4277 4278 4279 4280 4281 4282
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4283
		page_counter_init(&memcg->memory, &parent->memory);
4284
		page_counter_init(&memcg->swap, &parent->swap);
4285 4286
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4287
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4288
	} else {
4289
		page_counter_init(&memcg->memory, NULL);
4290
		page_counter_init(&memcg->swap, NULL);
4291 4292
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4293
		page_counter_init(&memcg->tcpmem, NULL);
4294 4295 4296 4297 4298
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4299
		if (parent != root_mem_cgroup)
4300
			memory_cgrp_subsys.broken_hierarchy = true;
4301
	}
4302

4303 4304 4305 4306 4307 4308
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4309
	error = memcg_online_kmem(memcg);
4310 4311
	if (error)
		goto fail;
4312

4313
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4314
		static_branch_inc(&memcg_sockets_enabled_key);
4315

4316 4317 4318
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4319
	return ERR_PTR(-ENOMEM);
4320 4321
}

4322
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4323
{
4324 4325
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4326
	/* Online state pins memcg ID, memcg ID pins CSS */
4327
	atomic_set(&memcg->id.ref, 1);
4328
	css_get(css);
4329
	return 0;
B
Balbir Singh 已提交
4330 4331
}

4332
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4333
{
4334
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4335
	struct mem_cgroup_event *event, *tmp;
4336 4337 4338 4339 4340 4341

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4342 4343
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4344 4345 4346
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4347
	spin_unlock(&memcg->event_list_lock);
4348

4349 4350
	memcg->low = 0;

4351
	memcg_offline_kmem(memcg);
4352
	wb_memcg_offline(memcg);
4353 4354

	mem_cgroup_id_put(memcg);
4355 4356
}

4357 4358 4359 4360 4361 4362 4363
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4364
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4365
{
4366
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4367

4368
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4369
		static_branch_dec(&memcg_sockets_enabled_key);
4370

4371
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4372
		static_branch_dec(&memcg_sockets_enabled_key);
4373

4374 4375 4376
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4377
	memcg_free_kmem(memcg);
4378
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4379 4380
}

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4398 4399 4400 4401 4402
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4403 4404
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4405
	memcg->soft_limit = PAGE_COUNTER_MAX;
4406
	memcg_wb_domain_size_changed(memcg);
4407 4408
}

4409
#ifdef CONFIG_MMU
4410
/* Handlers for move charge at task migration. */
4411
static int mem_cgroup_do_precharge(unsigned long count)
4412
{
4413
	int ret;
4414

4415 4416
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4417
	if (!ret) {
4418 4419 4420
		mc.precharge += count;
		return ret;
	}
4421

4422
	/* Try charges one by one with reclaim, but do not retry */
4423
	while (count--) {
4424
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4425 4426
		if (ret)
			return ret;
4427
		mc.precharge++;
4428
		cond_resched();
4429
	}
4430
	return 0;
4431 4432 4433 4434
}

union mc_target {
	struct page	*page;
4435
	swp_entry_t	ent;
4436 4437 4438
};

enum mc_target_type {
4439
	MC_TARGET_NONE = 0,
4440
	MC_TARGET_PAGE,
4441
	MC_TARGET_SWAP,
4442
	MC_TARGET_DEVICE,
4443 4444
};

D
Daisuke Nishimura 已提交
4445 4446
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4447
{
4448
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4449

D
Daisuke Nishimura 已提交
4450 4451 4452
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4453
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4454
			return NULL;
4455 4456 4457 4458
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4459 4460 4461 4462 4463 4464
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4465
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4466
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4467
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4468 4469 4470 4471
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4472
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4473
		return NULL;
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4491 4492 4493 4494
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4495
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4496
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4497 4498 4499 4500
		entry->val = ent.val;

	return page;
}
4501 4502
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4503
			pte_t ptent, swp_entry_t *entry)
4504 4505 4506 4507
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4508

4509 4510 4511 4512 4513 4514 4515 4516 4517
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4518
	if (!(mc.flags & MOVE_FILE))
4519 4520 4521
		return NULL;

	mapping = vma->vm_file->f_mapping;
4522
	pgoff = linear_page_index(vma, addr);
4523 4524

	/* page is moved even if it's not RSS of this task(page-faulted). */
4525 4526
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4527 4528 4529 4530
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4531
			if (do_memsw_account())
4532
				*entry = swp;
4533 4534
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4535 4536 4537 4538 4539
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4540
#endif
4541 4542 4543
	return page;
}

4544 4545 4546
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4547
 * @compound: charge the page as compound or small page
4548 4549 4550
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4551
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4552 4553 4554 4555 4556
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4557
				   bool compound,
4558 4559 4560 4561
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4562
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4563
	int ret;
4564
	bool anon;
4565 4566 4567

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4568
	VM_BUG_ON(compound && !PageTransHuge(page));
4569 4570

	/*
4571
	 * Prevent mem_cgroup_migrate() from looking at
4572
	 * page->mem_cgroup of its source page while we change it.
4573
	 */
4574
	ret = -EBUSY;
4575 4576 4577 4578 4579 4580 4581
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4582 4583
	anon = PageAnon(page);

4584 4585
	spin_lock_irqsave(&from->move_lock, flags);

4586
	if (!anon && page_mapped(page)) {
4587 4588
		__this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
		__this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4589 4590
	}

4591 4592
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4593
	 * mod_memcg_page_state will serialize updates to PageDirty.
4594 4595 4596 4597 4598 4599
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4600
			__this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4601
				       nr_pages);
4602
			__this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4603 4604 4605 4606
				       nr_pages);
		}
	}

4607
	if (PageWriteback(page)) {
4608 4609
		__this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
		__this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4625
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4626
	memcg_check_events(to, page);
4627
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4628 4629 4630 4631 4632 4633 4634 4635
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4651 4652 4653 4654 4655
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4656 4657
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4658 4659 4660 4661
 *
 * Called with pte lock held.
 */

4662
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4663 4664 4665
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4666
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4667 4668 4669 4670 4671
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4672
		page = mc_handle_swap_pte(vma, ptent, &ent);
4673
	else if (pte_none(ptent))
4674
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4675 4676

	if (!page && !ent.val)
4677
		return ret;
4678 4679
	if (page) {
		/*
4680
		 * Do only loose check w/o serialization.
4681
		 * mem_cgroup_move_account() checks the page is valid or
4682
		 * not under LRU exclusion.
4683
		 */
4684
		if (page->mem_cgroup == mc.from) {
4685
			ret = MC_TARGET_PAGE;
4686 4687
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4688
				ret = MC_TARGET_DEVICE;
4689 4690 4691 4692 4693 4694
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4695 4696 4697 4698 4699
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4700
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4701 4702 4703
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4704 4705 4706 4707
	}
	return ret;
}

4708 4709
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4710 4711
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4712 4713 4714 4715 4716 4717 4718 4719
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4720 4721 4722 4723 4724
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4725
	page = pmd_page(pmd);
4726
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4727
	if (!(mc.flags & MOVE_ANON))
4728
		return ret;
4729
	if (page->mem_cgroup == mc.from) {
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4746 4747 4748 4749
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4750
	struct vm_area_struct *vma = walk->vma;
4751 4752 4753
	pte_t *pte;
	spinlock_t *ptl;

4754 4755
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4756 4757 4758 4759 4760
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
4761 4762
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4763
		spin_unlock(ptl);
4764
		return 0;
4765
	}
4766

4767 4768
	if (pmd_trans_unstable(pmd))
		return 0;
4769 4770
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4771
		if (get_mctgt_type(vma, addr, *pte, NULL))
4772 4773 4774 4775
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4776 4777 4778
	return 0;
}

4779 4780 4781 4782
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4783 4784 4785 4786
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4787
	down_read(&mm->mmap_sem);
4788 4789
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4790
	up_read(&mm->mmap_sem);
4791 4792 4793 4794 4795 4796 4797 4798 4799

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4800 4801 4802 4803 4804
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4805 4806
}

4807 4808
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4809
{
4810 4811 4812
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4813
	/* we must uncharge all the leftover precharges from mc.to */
4814
	if (mc.precharge) {
4815
		cancel_charge(mc.to, mc.precharge);
4816 4817 4818 4819 4820 4821 4822
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4823
		cancel_charge(mc.from, mc.moved_charge);
4824
		mc.moved_charge = 0;
4825
	}
4826 4827 4828
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4829
		if (!mem_cgroup_is_root(mc.from))
4830
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4831

4832 4833
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4834
		/*
4835 4836
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4837
		 */
4838
		if (!mem_cgroup_is_root(mc.to))
4839 4840
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4841 4842
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4843

4844 4845
		mc.moved_swap = 0;
	}
4846 4847 4848 4849 4850 4851 4852
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4853 4854
	struct mm_struct *mm = mc.mm;

4855 4856 4857 4858 4859 4860
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4861
	spin_lock(&mc.lock);
4862 4863
	mc.from = NULL;
	mc.to = NULL;
4864
	mc.mm = NULL;
4865
	spin_unlock(&mc.lock);
4866 4867

	mmput(mm);
4868 4869
}

4870
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4871
{
4872
	struct cgroup_subsys_state *css;
4873
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4874
	struct mem_cgroup *from;
4875
	struct task_struct *leader, *p;
4876
	struct mm_struct *mm;
4877
	unsigned long move_flags;
4878
	int ret = 0;
4879

4880 4881
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4882 4883
		return 0;

4884 4885 4886 4887 4888 4889 4890
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4891
	cgroup_taskset_for_each_leader(leader, css, tset) {
4892 4893
		WARN_ON_ONCE(p);
		p = leader;
4894
		memcg = mem_cgroup_from_css(css);
4895 4896 4897 4898
	}
	if (!p)
		return 0;

4899 4900 4901 4902 4903 4904 4905 4906 4907
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4924
		mc.mm = mm;
4925 4926 4927 4928 4929 4930 4931 4932 4933
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4934 4935
	} else {
		mmput(mm);
4936 4937 4938 4939
	}
	return ret;
}

4940
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4941
{
4942 4943
	if (mc.to)
		mem_cgroup_clear_mc();
4944 4945
}

4946 4947 4948
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4949
{
4950
	int ret = 0;
4951
	struct vm_area_struct *vma = walk->vma;
4952 4953
	pte_t *pte;
	spinlock_t *ptl;
4954 4955 4956
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4957

4958 4959
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4960
		if (mc.precharge < HPAGE_PMD_NR) {
4961
			spin_unlock(ptl);
4962 4963 4964 4965 4966 4967
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4968
				if (!mem_cgroup_move_account(page, true,
4969
							     mc.from, mc.to)) {
4970 4971 4972 4973 4974 4975
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
4976 4977 4978 4979 4980 4981 4982 4983
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
4984
		}
4985
		spin_unlock(ptl);
4986
		return 0;
4987 4988
	}

4989 4990
	if (pmd_trans_unstable(pmd))
		return 0;
4991 4992 4993 4994
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4995
		bool device = false;
4996
		swp_entry_t ent;
4997 4998 4999 5000

		if (!mc.precharge)
			break;

5001
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5002 5003 5004
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5005 5006
		case MC_TARGET_PAGE:
			page = target.page;
5007 5008 5009 5010 5011 5012 5013 5014
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5015
			if (!device && isolate_lru_page(page))
5016
				goto put;
5017 5018
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5019
				mc.precharge--;
5020 5021
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5022
			}
5023 5024
			if (!device)
				putback_lru_page(page);
5025
put:			/* get_mctgt_type() gets the page */
5026 5027
			put_page(page);
			break;
5028 5029
		case MC_TARGET_SWAP:
			ent = target.ent;
5030
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5031
				mc.precharge--;
5032 5033 5034
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5035
			break;
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5050
		ret = mem_cgroup_do_precharge(1);
5051 5052 5053 5054 5055 5056 5057
		if (!ret)
			goto retry;
	}

	return ret;
}

5058
static void mem_cgroup_move_charge(void)
5059
{
5060 5061
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5062
		.mm = mc.mm,
5063
	};
5064 5065

	lru_add_drain_all();
5066
	/*
5067 5068 5069
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5070 5071 5072
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5073
retry:
5074
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5086 5087 5088 5089
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5090 5091
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5092
	up_read(&mc.mm->mmap_sem);
5093
	atomic_dec(&mc.from->moving_account);
5094 5095
}

5096
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5097
{
5098 5099
	if (mc.to) {
		mem_cgroup_move_charge();
5100
		mem_cgroup_clear_mc();
5101
	}
B
Balbir Singh 已提交
5102
}
5103
#else	/* !CONFIG_MMU */
5104
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5105 5106 5107
{
	return 0;
}
5108
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5109 5110
{
}
5111
static void mem_cgroup_move_task(void)
5112 5113 5114
{
}
#endif
B
Balbir Singh 已提交
5115

5116 5117
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5118 5119
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5120
 */
5121
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5122 5123
{
	/*
5124
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5125 5126 5127
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5128
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5129 5130 5131
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5132 5133
}

5134 5135 5136
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5137 5138 5139
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5140 5141 5142 5143 5144
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5145
	unsigned long low = READ_ONCE(memcg->low);
5146 5147

	if (low == PAGE_COUNTER_MAX)
5148
		seq_puts(m, "max\n");
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5163
	err = page_counter_memparse(buf, "max", &low);
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5175
	unsigned long high = READ_ONCE(memcg->high);
5176 5177

	if (high == PAGE_COUNTER_MAX)
5178
		seq_puts(m, "max\n");
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5189
	unsigned long nr_pages;
5190 5191 5192 5193
	unsigned long high;
	int err;

	buf = strstrip(buf);
5194
	err = page_counter_memparse(buf, "max", &high);
5195 5196 5197 5198 5199
	if (err)
		return err;

	memcg->high = high;

5200 5201 5202 5203 5204
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5205
	memcg_wb_domain_size_changed(memcg);
5206 5207 5208 5209 5210 5211
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5212
	unsigned long max = READ_ONCE(memcg->memory.limit);
5213 5214

	if (max == PAGE_COUNTER_MAX)
5215
		seq_puts(m, "max\n");
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5226 5227
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5228 5229 5230 5231
	unsigned long max;
	int err;

	buf = strstrip(buf);
5232
	err = page_counter_memparse(buf, "max", &max);
5233 5234 5235
	if (err)
		return err;

5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5262
		mem_cgroup_event(memcg, MEMCG_OOM);
5263 5264 5265
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5266

5267
	memcg_wb_domain_size_changed(memcg);
5268 5269 5270 5271 5272 5273 5274
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5275 5276 5277 5278
	seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5279
	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5280 5281 5282 5283

	return 0;
}

5284 5285 5286
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5287 5288
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5302 5303 5304
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5305
	seq_printf(m, "anon %llu\n",
5306
		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5307
	seq_printf(m, "file %llu\n",
5308
		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5309
	seq_printf(m, "kernel_stack %llu\n",
5310
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5311
	seq_printf(m, "slab %llu\n",
5312 5313
		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5314
	seq_printf(m, "sock %llu\n",
5315
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5316

5317
	seq_printf(m, "shmem %llu\n",
5318
		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5319
	seq_printf(m, "file_mapped %llu\n",
5320
		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5321
	seq_printf(m, "file_dirty %llu\n",
5322
		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5323
	seq_printf(m, "file_writeback %llu\n",
5324
		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5336
	seq_printf(m, "slab_reclaimable %llu\n",
5337
		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5338
	seq_printf(m, "slab_unreclaimable %llu\n",
5339
		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5340

5341 5342
	/* Accumulated memory events */

5343 5344
	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5345

5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
		   events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
		   events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);

5356
	seq_printf(m, "workingset_refault %lu\n",
5357
		   stat[WORKINGSET_REFAULT]);
5358
	seq_printf(m, "workingset_activate %lu\n",
5359
		   stat[WORKINGSET_ACTIVATE]);
5360
	seq_printf(m, "workingset_nodereclaim %lu\n",
5361
		   stat[WORKINGSET_NODERECLAIM]);
5362

5363 5364 5365
	return 0;
}

5366 5367 5368
static struct cftype memory_files[] = {
	{
		.name = "current",
5369
		.flags = CFTYPE_NOT_ON_ROOT,
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5393
		.file_offset = offsetof(struct mem_cgroup, events_file),
5394 5395
		.seq_show = memory_events_show,
	},
5396 5397 5398 5399 5400
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5401 5402 5403
	{ }	/* terminate */
};

5404
struct cgroup_subsys memory_cgrp_subsys = {
5405
	.css_alloc = mem_cgroup_css_alloc,
5406
	.css_online = mem_cgroup_css_online,
5407
	.css_offline = mem_cgroup_css_offline,
5408
	.css_released = mem_cgroup_css_released,
5409
	.css_free = mem_cgroup_css_free,
5410
	.css_reset = mem_cgroup_css_reset,
5411 5412
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5413
	.post_attach = mem_cgroup_move_task,
5414
	.bind = mem_cgroup_bind,
5415 5416
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5417
	.early_init = 0,
B
Balbir Singh 已提交
5418
};
5419

5420 5421
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
5422
 * @root: the top ancestor of the sub-tree being checked
5423 5424 5425
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
 * ancestors up to (but not including) @root, is below the normal range.
 *
 * @root is exclusive; it is never low when looked at directly and isn't
 * checked when traversing the hierarchy.
 *
 * Excluding @root enables using memory.low to prioritize memory usage
 * between cgroups within a subtree of the hierarchy that is limited by
 * memory.high or memory.max.
 *
 * For example, given cgroup A with children B and C:
 *
 *    A
 *   / \
 *  B   C
 *
 * and
 *
 *  1. A/memory.current > A/memory.high
 *  2. A/B/memory.current < A/B/memory.low
 *  3. A/C/memory.current >= A/C/memory.low
 *
 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
 * should reclaim from 'C' until 'A' is no longer high or until we can
 * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5452 5453 5454 5455 5456 5457
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

5458 5459 5460
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
5461 5462
		return false;

5463
	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
M
Michal Hocko 已提交
5464
		if (page_counter_read(&memcg->memory) >= memcg->low)
5465 5466
			return false;
	}
5467

5468 5469 5470
	return true;
}

5471 5472 5473 5474 5475 5476
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5477
 * @compound: charge the page as compound or small page
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5490 5491
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5492 5493
{
	struct mem_cgroup *memcg = NULL;
5494
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5508
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5509
		if (compound_head(page)->mem_cgroup)
5510
			goto out;
5511

5512
		if (do_swap_account) {
5513 5514 5515 5516 5517 5518 5519 5520 5521
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5540
 * @compound: charge the page as compound or small page
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5553
			      bool lrucare, bool compound)
5554
{
5555
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5570 5571 5572
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5573
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5574 5575
	memcg_check_events(memcg, page);
	local_irq_enable();
5576

5577
	if (do_memsw_account() && PageSwapCache(page)) {
5578 5579 5580 5581 5582 5583
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5584
		mem_cgroup_uncharge_swap(entry, nr_pages);
5585 5586 5587 5588 5589 5590 5591
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5592
 * @compound: charge the page as compound or small page
5593 5594 5595
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5596 5597
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5598
{
5599
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5626
{
5627 5628 5629 5630 5631 5632
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5633 5634
	unsigned long flags;

5635 5636
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5637
		if (do_memsw_account())
5638 5639 5640 5641
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
5642
	}
5643 5644

	local_irq_save(flags);
5645 5646 5647 5648 5649 5650 5651
	__this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
	__this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
	__this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
	__this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
	__this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
	__this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
	memcg_check_events(ug->memcg, ug->dummy_page);
5652
	local_irq_restore(flags);
5653

5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
5702 5703 5704 5705
}

static void uncharge_list(struct list_head *page_list)
{
5706
	struct uncharge_gather ug;
5707
	struct list_head *next;
5708 5709

	uncharge_gather_clear(&ug);
5710

5711 5712 5713 5714
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5715 5716
	next = page_list->next;
	do {
5717 5718
		struct page *page;

5719 5720 5721
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

5722
		uncharge_page(page, &ug);
5723 5724
	} while (next != page_list);

5725 5726
	if (ug.memcg)
		uncharge_batch(&ug);
5727 5728
}

5729 5730 5731 5732 5733 5734 5735 5736 5737
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
5738 5739
	struct uncharge_gather ug;

5740 5741 5742
	if (mem_cgroup_disabled())
		return;

5743
	/* Don't touch page->lru of any random page, pre-check: */
5744
	if (!page->mem_cgroup)
5745 5746
		return;

5747 5748 5749
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
5750
}
5751

5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5763

5764 5765
	if (!list_empty(page_list))
		uncharge_list(page_list);
5766 5767 5768
}

/**
5769 5770 5771
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5772
 *
5773 5774
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5775 5776 5777
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5778
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5779
{
5780
	struct mem_cgroup *memcg;
5781 5782
	unsigned int nr_pages;
	bool compound;
5783
	unsigned long flags;
5784 5785 5786 5787

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5788 5789
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5790 5791 5792 5793 5794

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5795
	if (newpage->mem_cgroup)
5796 5797
		return;

5798
	/* Swapcache readahead pages can get replaced before being charged */
5799
	memcg = oldpage->mem_cgroup;
5800
	if (!memcg)
5801 5802
		return;

5803 5804 5805 5806 5807 5808 5809 5810
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5811

5812
	commit_charge(newpage, memcg, false);
5813

5814
	local_irq_save(flags);
5815 5816
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5817
	local_irq_restore(flags);
5818 5819
}

5820
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5821 5822
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5823
void mem_cgroup_sk_alloc(struct sock *sk)
5824 5825 5826
{
	struct mem_cgroup *memcg;

5827 5828 5829 5830 5831
	if (!mem_cgroup_sockets_enabled)
		return;

	/*
	 * Socket cloning can throw us here with sk_memcg already
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5847 5848
	if (memcg == root_mem_cgroup)
		goto out;
5849
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5850 5851
		goto out;
	if (css_tryget_online(&memcg->css))
5852
		sk->sk_memcg = memcg;
5853
out:
5854 5855 5856
	rcu_read_unlock();
}

5857
void mem_cgroup_sk_free(struct sock *sk)
5858
{
5859 5860
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5873
	gfp_t gfp_mask = GFP_KERNEL;
5874

5875
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5876
		struct page_counter *fail;
5877

5878 5879
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5880 5881
			return true;
		}
5882 5883
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5884
		return false;
5885
	}
5886

5887 5888 5889 5890
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5891 5892
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5893 5894 5895 5896
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5907
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5908
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5909 5910
		return;
	}
5911

5912 5913
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5914
	refill_stock(memcg, nr_pages);
5915 5916
}

5917 5918 5919 5920 5921 5922 5923 5924 5925
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5926 5927
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5928 5929 5930 5931
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5932

5933
/*
5934 5935
 * subsys_initcall() for memory controller.
 *
5936 5937 5938 5939
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5940 5941 5942
 */
static int __init mem_cgroup_init(void)
{
5943 5944
	int cpu, node;

5945 5946 5947
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5948 5949 5950
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5951
	 */
5952 5953
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5954 5955
#endif

5956 5957
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5969
		rtpn->rb_root = RB_ROOT;
5970
		rtpn->rb_rightmost = NULL;
5971
		spin_lock_init(&rtpn->lock);
5972 5973 5974
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5975 5976 5977
	return 0;
}
subsys_initcall(mem_cgroup_init);
5978 5979

#ifdef CONFIG_MEMCG_SWAP
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5998 5999 6000 6001 6002 6003 6004 6005 6006
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6007
	struct mem_cgroup *memcg, *swap_memcg;
6008
	unsigned int nr_entries;
6009 6010 6011 6012 6013
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6014
	if (!do_memsw_account())
6015 6016 6017 6018 6019 6020 6021 6022
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6023 6024 6025 6026 6027 6028
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6029 6030 6031 6032 6033 6034
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6035
	VM_BUG_ON_PAGE(oldid, page);
6036
	mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6037 6038 6039 6040

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6041
		page_counter_uncharge(&memcg->memory, nr_entries);
6042

6043 6044
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6045 6046
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6047 6048
	}

6049 6050 6051 6052 6053 6054 6055
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
6056 6057
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6058
	memcg_check_events(memcg, page);
6059 6060 6061

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
6062 6063
}

6064 6065
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6066 6067 6068
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6069
 * Try to charge @page's memcg for the swap space at @entry.
6070 6071 6072 6073 6074
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6075
	unsigned int nr_pages = hpage_nr_pages(page);
6076
	struct page_counter *counter;
6077
	struct mem_cgroup *memcg;
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6089 6090
	memcg = mem_cgroup_id_get_online(memcg);

6091
	if (!mem_cgroup_is_root(memcg) &&
6092
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6093
		mem_cgroup_id_put(memcg);
6094
		return -ENOMEM;
6095
	}
6096

6097 6098 6099 6100
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6101
	VM_BUG_ON_PAGE(oldid, page);
6102
	mem_cgroup_swap_statistics(memcg, nr_pages);
6103 6104 6105 6106

	return 0;
}

6107
/**
6108
 * mem_cgroup_uncharge_swap - uncharge swap space
6109
 * @entry: swap entry to uncharge
6110
 * @nr_pages: the amount of swap space to uncharge
6111
 */
6112
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6113 6114 6115 6116
{
	struct mem_cgroup *memcg;
	unsigned short id;

6117
	if (!do_swap_account)
6118 6119
		return;

6120
	id = swap_cgroup_record(entry, 0, nr_pages);
6121
	rcu_read_lock();
6122
	memcg = mem_cgroup_from_id(id);
6123
	if (memcg) {
6124 6125
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6126
				page_counter_uncharge(&memcg->swap, nr_pages);
6127
			else
6128
				page_counter_uncharge(&memcg->memsw, nr_pages);
6129
		}
6130 6131
		mem_cgroup_swap_statistics(memcg, -nr_pages);
		mem_cgroup_id_put_many(memcg, nr_pages);
6132 6133 6134 6135
	}
	rcu_read_unlock();
}

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6276 6277
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6278 6279 6280 6281 6282 6283 6284 6285
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */